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AbstratThe rate-independent damage model reently developed in [BMR09℄ allows foromplete damage, suh that the deformation is no longer well-de�ned. The evolu-tion an be desribed in terms of energy densities and stresses. Using onepts ofparametrized Γ-onvergene, we generalize the theory to onvex, but non-quadratielasti energies by providing Γ-onvergene of energeti solutions from partial toomplete damage under rather general onditions.1 IntrodutionThere is a rih literature on rate-independent mehanial models for damage in brittlematerials, f. [Ort85, FrM93, DPO94, FrN96, DMT01, MaA01, HaS03℄, and reently sev-eral mathematial approahes [FrM98, FKS99, FrG06℄ were developed, in partiular theabstrat theory of rate-independent proesses [MiT99, MiT04, Mie05℄ proved very helpfulas it allows one to employ the mahinery of inremental minimization.Here we want to ontribute to the models disussed in [MiR06, BMR09, MRZ07℄. Let
u : Ω → Rd be the displaement and z : Ω → [0, 1] the damage variable, then therate-independent system is given by the triple (F×Z, E ,D), where u ∈ F , z ∈ Z. Theenergy-storage funtional has the form

Eδ(t, u, z) =

∫

Ω

Wδ(x, e(uD(t)+u)(x), z(x))dx + G(z), where e(u) =
1

2
(∇u+(∇u)T),and the dissipation is D(z, ẑ) =

∫
Ω

D(x, z(x), ẑ(x)) dx. Here uD ∈ C1([0, T ]; W1,p(Ω))presribes time-dependent boundary displaements on the Dirihlet part ΓD of the totalboundary ∂Ω. For δ > 0 the stored-energy density is regularized in the form Wδ(e, z) =
W (e, z) + δ|e|p, whih renders Wδ oerive while W may be non-oerive for ompletedamage z = 0.For δ > 0 existene of energeti solutions (uδ, zδ) is known for general W , see [MiR06,ThM09℄. The limit passage for δ → 0 in the sense of Γ-limits was established in [BMR09,MRZ07℄ under the assumption that e 7→ W (x, e, z) is quadrati. However, this is not arealisti model, sine it implies that damage behaves symmetri under ompression andextension. The purpose of this work is to generalize the approah to a muh larger lassof funtionals. For instane, we are able to treat the model

W (e, z) =
z

2
e:C:e +

c

2

(
min{0, tr e}

)1+β
, c > 0 and β ∈ ]0, 1] .whih displays resistane to ompression even after omplete damage, like powderizedonrete. 1



The di�ulty is that W is not oerive, hene in the limit δ → 0 we are not ableto ontrol uδ, and onvergene should only be valid for zδ. The task is to de�ne a limitequation in terms of z. In partiular, one needs a replaement of the power of the externalfores that provides the limit of
∂tEδ(t, uδ(t), zδ(t)) =

∫

Ω

Σδ:e(u̇D)dx with Σδ = DeWδ(e(uD+uδ), zδ). (1)We will show that it is possible to ontrol the limit of the stresses Σδ while in generalthe strains eδ = e(uD+uδ) will have no limits. Hene, we follow the ideas of [BMR09℄ toeliminate the elasti variable u ompletely by de�ning the redued funtional
Iδ(t, z) = min{ Eδ(t, ũ, z) | u ∈ F } with F = { u ∈ W1,p(Ω) | u|ΓD

= 0 }and to apply the Γ-onvergene theory to the rate-independent systems (Z, Iδ,D). Notethat a onvergene theory for the systems (F ×Z, Eδ,D) is doomed to fail beause of themissing uniform oerivity with respet to u ∈ F .However, the total elimination of the displaements, and hene of the strains, leadsto missing information on the stresses whih is needed to ontrol the limit in (1). Thus,the seond important idea in [BMR09℄ is the introdution of an intermediate funtionalde�ned in terms of the boundary displaements uD. More preisely, we let
Jδ(e, z) = min{

∫

Ω

Wδ(e+e(u), z)dx + G(z) | u ∈ F }.Here e an be taken from all of E = Lp(Ω, Rd×dsym), but the minimization with respet toall admissible displaements shows that it depends only on muh less information to beextrated from e. The point about the de�nition of Jδ is that it provides the formulas(i) Iδ(t, z) = Jδ(e(uD(t)), z) (ii) ∂tIδ(t, z) = 〈DeJδ(e(uD(t)), z), e(u̇D(t))〉. (2)In fat, DeJδ(e(uD), z) ∈ E
∗ = Lp′(Ω, Rd×dsym) provides the equilibrium stresses assoiatedwith the given boundary data uD and the damage state Z.In Setion 3 we will disuss the theory of Γ-onvergene for a family of funtionals

Jδ : E×Z → R∞, where the Γ-onvergene is done with e ∈ E treated as a parameter, i.e.,
Jδ(e, ·) Γ→ J(e, ·). The main question is how properties of the funtions Jδ(·, z) : E → Rare inherited to the limit J(·, z). For this we introdue the notion of simultaneous Γ-limitsfor parametrized families (Jδ(e, ·))δ>0 by asking that for eah two points e1 and e2 andeah z ∈ Z there exists a reovery sequene (zδ)δ>0 suh that Jδ(ej , zδ) → J(ej , z) for
j = 1 and 2. With this ondition we are able to olude that onvexity and di�erentiabilitywith respet to e passes from Jδ(·, z) to J(·, z). In partiular, we provide the followingonvergene of stresses, whih is ruial in the theory of rate-independent systems (f.[FrM06, Prop. 4.4℄):

zδ ⇀ z0

Jδ(e, zδ) → J(e, z0)

}
=⇒ DeJδ(e, zδ) ⇀ DeJ(e, z0) in E

∗.Combining this result with (2ii) we are able to obtain the limit ∂tIδ(t, zδ) → ∂tI(t, z0).2



For the omplete-damage problem one easily obtains the simultaneous Γ-onvergeneby taking Γ-onvergene with respet to strong onvergene in W1,p(Ω), beause of thestrong ontinuity of G and the monotoniity of z 7→ W (e, z), see Proposition 4.5. Themain di�ulty is then to establish our main strutural assumption (see (17)) that weakonvergene along so-alled stable sequenes implies strong onvergene. In this work weshow that this ondition holds under the additional assumption W1,p(Ω) ⊂ C(Ω), i.e.
r > d. However, in Setion 6.1 we give arguments in favor of our onjeture, that thestrong onvergene an also be established for r ∈ [1, d].Our main result is formulated in Theorem 2.3 for r > d: any family of energetisolutions zδ : [0, T ] → Z for (Z, Iδ,D) has a subsequene (zδj

)j∈N with δj → 0 and
zδj

(t) → z(t) for all t ∈ [0, T ], where z : [0, T ] → Z is an energeti solution of theomplete-damage system given by (Z, J,D). The result is based on the abstrat theoryof Γ-onvergene for rate-independent systems developed in [MRS08℄.If the uniform di�erentiability property does not hold, one an still use onvexityarguments. If eah Jδ(·, z) is onvex, the parametrized Γ-limit is onvex as well. Thisonvexity allows us to haraterize the Clarke di�erential of I(·, z) using the left and rightpartial derivative in t:
∂Cl

t I(t, z) =
[
∂−

t I(t, z), ∂+
t I(t, z)

]
, where ∂±

t I(t, z) = lim
ε→0+

±1
ε

(
I(t±ε, z)−I(t, z)

)
.In fat, we have ∂±

t I(t, z) = ± sup{±〈σ, e(u̇D(t))〉 | σ ∈ ∂sub
e J(e(uD(t)), z) }.We generalize the notion of energeti solutions [Mie05℄ to generalized energeti solutionsby keeping stability (S) and replaing the energy balane by

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ with p(τ) ∈ ∂Cl
τ I(τ, z(τ)),see De�nition 6.1. Theorem 6.2 establishes existene of generalized energeti solutions tothe rate-independent system (Z, I,D).2 Setup of the modelWe �rst disuss the physial setup and provide the existene result for the oerive ase

δ > 0. Afterwards we disuss the redution of the problem by eliminating the displaementwhile keeping the boundary strains eD(t) = e(uD(t)).2.1 Disussion of the oerive modelThe body Ω ⊂ Rd is desribed by a bounded Lipshitz domain. The state of the system isdesribed by the displaement ũ : Ω → Rd and the salar damage variable z : Ω → [0, 1],where z = 1 denotes no damage and z = 0 means that the maximal damage has beenreahed (all mirosopi breakable strutures are broken). The displaement ũ will satisfy3



time-dependent Dirihlet boundary onditions on ΓD ⊂ ∂Ω via uD ∈ C1([0, T ], W1,p(Ω))in the form
ũ(t) = uD(t) + u(t) with u(t) ∈ F = { v ∈ W1,p(Ω) | v|ΓD

≡ 0 }.We also use the in�nitesimal strain tensor e(u) = 1
2

(
∇u + (∇u)T

) and set
eD(t) = e(uD(t)) and ėD(t) = e(u̇D(t)) where ˙ = ∂t.The stored energy of the system is given via the funtional
E(t, u, z) =

∫

Ω

W (x, eD(t, x)+e(u)(x), z(x))dx + G(z) (3a)with G(z) =

∫

Ω

b(x, z(x)) + G(x,∇z(x))r dx. (3b)Here b : Ω × [0, 1] → R and G : Ω × Rd → R are Carathéordory funtions satisfying
∃C > 0 ∀ (x, z) : 0 ≤ b(x, z) ≤ C, (4a)
∀x ∈ Ω : z 7→ b(x, z) is non-dereasing, (4b)
∃C > 0, r > 1 ∀ (x, a) :

|a|r
C

− C ≤ G(x, a) ≤ C|a|r + C, (4)
∀x ∈ Ω : a 7→ G(x, a) is stritly onvex. (4d)The funtion G ontains the regularizing term and is typially of the form κ(x)|a|r. Thus,the suitable spae for the damage states is Z = { z ∈ W1,r(Ω)|0 ≤ z ≤ 1 }. The additionalterm b is intended to model ohesive e�ets (or healing), i.e., if the stresses in the materialare released then the damage may heal (ż > 0) by using up some energy.The stored energy density W : Ω×Ed×[0, 1] → R, where Ed = Rd×dsym, is a Carathéordoryfuntion satisfying
∀ (x, z) ∈ Ω : W (x, ·, z) ∈ C1(Ed), (5a)
∃C > 0 ∀ (x, e, z) : 0 ≤ W (x, e, z) ≤ C|e|p + C, (5b)
∀ (x, z) : e 7→ W (x, e, z) is onvex, (5)
∀ (x, e) : z 7→ W (x, e, z) is nondereasing, (5d)
∃ c1, c2 ∀ (x, e, z) : |∂eW (x, e, z)| ≤ c1(W (x, e, z)+c2)

1−1/p. (5e)Condition (5d) means that the material beomes weaker if damage inreases, and (5e) isalled �stress ontrol�, sine it allows us to ontrol the size of the stresses in terms of theenergy alone, uniformly in (x, z). A typial funtion W has the form
W (x, e, z) = W 0(x, e) + a(z)W 1(x, e),where W0 and W1 are smooth and onvex, W 0 may be non-oerive while W 1 is oerive,

a(z) ≥ czα and a′(z) ≥ 0. As above we set Wδ(e, z) = W (e, z) + δ|e|p and de�ne Eδ as in(3a) with W replaed by Wδ. 4



For the time-dependent Dirihlet boundary data we impose
uD ∈ C1([0, T ], W1,p(Ω; Rd) with p from (5). (6)Finally we desribe the dissipation funtional D : Z × Z → [0,∞] via

D(z0, z1) =

∫

Ω

D(x, z0(x), z1(x))dx,where D : Ω × [0, 1]2 → [0,∞] is a normal integrand. For eah x, D satis�es the triangleinequality and the oerivity D(x, z, z̃) ≥ c|z−z̃|. The typial hoie is D(x, z, z̃) =
δ+(z−z̃) for z̃ ≤ z and δ−(z̃−z) for z ≤ z̃, where δ+ ∈ (0,∞) and δ− ∈ (0,∞]. Here
δ− = ∞ is the unidiretional ase that enfores that damage an only inrease, thushealing is forbidden. The latter an only take plae if δ− + b′(z) < 0 for some z ∈ [0, 1].We refer to [SHS06℄, where healing is modeled under the name ohesion.With these funtionals we de�ne notion of energeti solution for the rate-independentsystem (Q, Eδ,D), where Q = F × Z (see [MiT99, MiT04℄ and the surveys [Mie05,MiR08℄). A mapping q = (u, z) : [0, T ] → Q is alled energeti solution if τ 7→
∂τEδ(τ, q(τ)) lies in L1((0, T )) and if for all t ∈ [0, T ] we have stability (S) and energybalane (E):(S) ∀ q̃ = (ũ, z̃) ∈ Q : Eδ(t, q(t)) ≤ Eδ(t, q̃) + D(z(t), z̃);(E) Eδ(t, q(t)) + DissD(z, [0, t]) = Eδ(0, q(0)) +

∫ t

0

∂τEδ(τ, q(τ))dτ.
(7)Here DissD(z, [r, s]) is de�ned to be the supremum of ∑N

1 D(z(tj−1, z(tj)) over all �nitepartitions r ≤ t0 < t1 · · · tN ≤ s. For eah q ∈ Q the power of the external fores ∂tEδ(t, q)is well de�ned by using (5e).For non-oerive problems (i.e. δ = 0), where u is no longer well-de�ned and we annotguarantee q ∈ Q. It is the main problem how to de�ne this partial derivative ∂tE(t, q).Thus, it is an open problem whether under the above assumption a general existene resultholds. However, the oerive ase δ > 0 was solved under more general assumptionsinluding unilateral onstraints and volume fores, f. [MiR06, ThM09℄. The followingresult provides existene in the ase where the growth rate r for the regularizing termjust needs to satisfy r > 1. Originally [MiR06℄ used the embedding W1,p(Ω) ⊂ C(Ω),whih leads to the assumption r > d. In [ThM09℄ a new onstrution of the joint reoverysequene allowed for the generalization to all r > 1.Theorem 2.1 If the above assumption hold with p, r > 1 and if δ > 0, then for all stableinitial states q0 ∈ Q (i.e., (S) holds at t = 0 with q(0) replaed by q0) there exists anenergeti solution qδ : [0, T ] → Q of the rate-independent system (Q, Eδ,D) with q(0) = q0,
q ∈ L∞([0, T ], W1,p(Ω)×W1,r(Ω)), and z ∈ BV([0, T ], L1(Ω)).In general one annot expet more regularity of the solutions with respet to time. Inpartiular, the solution may have jumps. In [ThM09℄ onvexity onditions on (e, z) 7→
W (e, z) are disussed whih imply simple ontinuity, Hölder or Lipshitz ontinuity.5



2.2 Redution by eliminating the displaementsThe approah for solving non-oerive problems was indiated already in [MiR06℄ and �-nally solved in [BMR09℄ under the additional assumption that W is quadrati: W (x, e, z) =
z
2
e:C:e; however more general quadrati forms 1

2
e:C(z):e+g(z):e+γ(z) would work equallywell. The main idea is to approximate the non-oerive ase with a oerive one by setting

Wδ(x, e, z) = W (x, e, z) + δ(1+|e|2)p/2. (8)Then for eah δ > 0 there is a solution qδ = (uδ, zδ) of the rate-independent energetisystem (Q, Eδ,D). Moreover, using the stress ontrol (5e) it is not di�ult to show thatthere exists C > 0 suh that for all δ ∈ (0, 1) and all t ∈ [0, T ] we have Eδ(t, qδ(t)) +
DissD(zδ, [0, t]) ≤ C.Now, using the theory of Γ-onvergene of rate-independent energeti systems [MRS08℄it is then possible to pass to the limit in the redued system, where the displaement uis minimized out. The latter step is essential, sine it is not to be expeted that uδ or
e(uδ) onverges in any reasonably sense. In regions where z = 0 holds we may have
W (x, e, 0) = 0 for a large and possibly unbounded set of strains e ∈ Ed due to the missingoerivity.To de�ne the redued problem we use the strit onvexity (5) to �nd that Eδ(t, ·, z)has a unique minimizer u = Uδ(t, z) ∈ F . With this we have

Iδ(t, z) =

∫

Ω

Wδ(x, eD(t)+e(Uδ(t, z)), z)dx + G(z).A lassial argument [KnM08, KMZ08℄ shows that ∂tIδ(t, z) = ∂tEδ(t, Uδ(t, z), z).While the limit of the energy Iδ(t, zδ) along energeti solutions qδ an be understoodin the sense of Γ-limits, it is nontrivial to ontrol the power
∂tIδ(t, zδ) =

∫
Ω

σδ(t):ėD(t)dx with
σδ(t, x) = ∂eW (x, eD(t, x)+e(uδ(t))(x), zδ(t, x)).The main observation is that the stress-ontrol assumption (5e) and the usual energy apriori estimates provide bounds for σδ in Lp/(p−1)(Ω,Ed) that are independent of δ > 0.The essential idea to make the limit tratable is to introdue an auxiliary funtional inwhih it is possible to keep ontrol over the Γ-limit. Denote by E = Lp(Ω;Ed) the strainspae, and for (e, z) ∈ E ×Z let
Jδ(e, z) = Vδ(e, z) + G(z) with
Vδ(e, z) = min{

∫
Ω

Wδ(x, e+e(u), z)dx | u ∈ F }. (9)In fat, the funtional Vδ should not be onsidered as a funtional on E but rather on
B = { u|∂Ω | u ∈ F }, sine all the other information is minimized out. Moreover, for �xed
z ∈ Z, the mapping e 7→ Vδ(e, z) is onvex and di�erentiable with

DeVδ(e, z) = ∂eW (x, e+e(V (e, z)), z) ∈ E
∗ = Lp/(p−1)(Ω;Ed),where V (e, z) ∈ F is the unique minimizer in (9). This shows that σ = DeVδ(e, z) is infat an equilibrium stress, and thus satis�es div σ = 0 in Ω and σ ν = 0 on ∂Ω\ΓD.6



The importane of the funtional Vδ is that on the one hand it is possible to do the
Γ-limit for δ → 0 and keep some of the main features and that on the other hand, byonstrution the redued funtional Iδ and its partial derivative with respet to t an beeasily expressed:

Iδ(t, z) = Vδ(eD(t), z)+G(z) and ∂tIδ(t, z) = 〈DeVδ(eD(t), z), ėD(t)〉.Thus, we have found a way to express the energies in terms of the damage alone and westill have ontrol over the equilibrium stresses DeVδ(eD(t), z) that are needed to ontrolthe power generated by the boundary data uD(t).2.3 The main onvergene and existene resultIn this subsetion we provide onvergene results of (subsequenes of) energeti solutionsfor (Z, Iδ,D) to solutions of the omplete damage problem (Z, I,D). Here I is theparametrized Γ-limit I(t, ·) = Γ-limδ→0+ Iδ(t, ·). The main di�ulty in the limit proedureis to show the onvergene of the power
∂tIδ(t, zδ(t)) → ∂tI(t, z(t)),for whih it is neessary to know that I(·, z) ∈ C1([0, T ]). For this we will show that

V(e, ·) = Γ-limδ→0+ Vδ(e, ·) exists and is di�erentiable with respet to e ∈ E.For this, we need an additional uniform di�erentiability assumption on the the storedenergy density W , whih reads as follows:
∃C > 0 ∃ β ∈ ]0, min{1, p−1}] ∀ e0, e1 ∈ Ed ∀ z ∈ [0, 1] :

W (x, e0, z) + W (x, e1, z) − 2W (x, 1
2
(e0+e1), z)

≤ C
(
1 + W (x, 1

2
(e0+e1), z) + |e1−e0|p

)1−(1+β)/p |e1−e0|1+β,

(10)where p is as in (5). It is easy to onstrut nontrivial examples ful�lling this ondition,beause it is additive in the following sense: If the nonnegative densities W1, . . . , Wksatisfy (10) with the same p, β, and C1, . . . , Ck, respetively, then the sum W =
∑k

1 Wjsatis�es the ondition as well with C =
∑k

1 Cj.Example 2.2 We list a few examples of uniformly di�erentiable funtions:(i) 1
2
e:C:e, (ii) min{0, tr e}q, (iii) |e|q.For (i) we an take any β ∈ ]0, 1] and p ≥ 1+β. For (ii) and (iii) the ondition (10) issatis�ed if and only if 1 ≤ 1+β ≤ q ≤ p.The main result is restrited to the ase r > d, whih provides the helpful embedding

W1,r(Ω) ⊂ C(Ω). However, in Setion 6 we disuss possibilities of generalizations.Theorem 2.3 (ΓΓΓ-onvergene) Let the assumptions of Setion 2.1 and (10) hold with
r > d. For δ > 0 onsider energeti solutions zδ : [0, T ] → Z of (Z, Iδ,D), then there7



exists a subsequene (zδj
)j∈N with δj → 0+ and an energeti solution z : [0, T ] → Z of

(Z, I,D) suh that the following holds for all t ∈ [0, T ]:(i) zδj
(t) → z(t) in W1,r(Ω),(ii) DissD(zδj

, [0, t]) → DissD(z, [0, t]),(iii) Iδj
(t, zδj

(t)) → I(t, z(t)),(iv) DeVδj
(eD(t), zδj

(t)) ⇀ DeV(eD(t), z(t)).Moreover, for eah stable z0 ∈ Z, i.e. I(0, z0) ≤ I(0, z̃) + D(z0, z̃) for all z̃ ∈ Z, thereexists at least one energeti solution z : [0, T ] → Z for the omplete damage problem
(Z, I,D).The proof of this result, whih is given in Setion 5, follows losely the theory developedin [MiR06, BMR09℄, and thus relies on the abstrat theory of Γ-onvergene for rate-independent systems developed in [MRS08℄.3 Parametrized ΓΓΓ-onvergeneIn this setion we onsider general re�exive Banah spaes E and Z and assume that Zis a weakly losed subset of Z. We now disuss sequenes of funtionals Jδ : E ×Z → Rand their parametrized Γ-limits J(e, ·) = Γ-limδ→0+ Jδ(e, ·). Here e ∈ E is treated as a�xed parameter, and Γ-onvergene in Z is meant with respet to the strong onvergene,viz. liminf estimate: zδ → z =⇒ J(e, z) ≤ lim inf

δ→0+
Jδ(e, zδ), (11a)reovery sequene: ∀ z ∈ Z ∃ (zδ)δ>0 : zδ → z and Jδ(e, zδ) → J(e, z). (11b)The following example shows that natural properties of the funtionals Jδ(·, z) may belost for parametrized Γ-limits.Example 3.1 (Convexity) We onsider E = R, Z = R and the funtionals

Jδ(e, z) = |e−g(z/δ)| + 1−g(z/δ)2 with g(t) = max{−1, min{t, 1}}.Clearly, eah Jδ(·, z) is onvex. The parametrized Γ-limit exists and reads
J(e, z) =

{
|e − sign(z)| for z 6= 0,

|1−|e|| for z = 0.For z 6= 0 we an take onstant reovery sequenes zδ = z. For z = 0, the reoverysequenes will depend on e: for e > 0 we hoose zδ = δ and �nd Jδ(e, zδ) = |e−1|, whilefor e < 0 let zδ = −δ obtaining Jδ(e, zδ) = |e+1|.The following de�nition is made to avoid the problem of di�erent reovery sequenesat di�erent points. 8



De�nition 3.2 The family (Jδ)δ>0 has the simultaneous Γ-limit J : E×Z → R, if (11a)holds and for eah R > 0 there exists R̂ > 0 suh that
∀ z ∈ Z with ‖z‖ ≤ R ∀ e1, e2 ∈ E ∃ (zδ)δ>0 with sup

δ>0
‖zδ‖ ≤ R̂ :

zδ → z and Jδ(ej , zδ) → J(ej , z) for j = 1, 2.
(12)The point of simultaneous Γ-onvergene is that there must exist reovery sequenesthat work at eah pair of two points e1 and e2 simultaneously. This ondition will allowus to inherit, from the family Jδ to the parametrized Γ-limit, all properties that an beformulated in terms of �nitely many funtion evaluations.Proposition 3.3 (Convexity) If all Jδ(·, z) are onvex and J is the simultaneous Γ-limit of (Jδ)δ>0 for δ → 0, then J(·, z) : E → R is onvex for eah z ∈ Z.Proof: For arbitrary e0, e1 and θ ∈ ]0, 1[ we de�ne eθ = (1−θ)e0 + θe1. Then, onvexityof Jδ(·, zδ) gives

Jδ(eθ, zδ) ≤ (1−θ)Jδ(e0, zδ) + θJθ(e1, zδ).By the assumption of 2-simultaneous Γ-onvergene, we may assume that zδ → z reoversthe Γ-limit at e0 and e1. Thus, we onlude
J(eθ, z) ≤ lim inf

δ→0+
Jδ(eθ, zδ) ≤ lim inf

δ→0+

(
(1−θ)Jδ(e0, zδ) + θJθ(e1, zδ)

)

= (1−θ)J(e0, z) + θJ(e1, z),whih is the desired onvexity.We formulate a quantitative notation of ontinuous di�erentiability. We say that J :
E × Z → R is β-di�erentiable, if all J (·, z) lie in C1(E) and for all R > 0 there exists aonstant CR > 0 suh that for all e0, e1 ∈ E, z ∈ Z with ‖e0‖ + ‖e1‖ + ‖z‖ ≤ R we have

‖DeJ (e1, z) − DeJ (e0, z)‖E∗ ≤ CR‖e1−e0‖β. (13)We say that the family (Jδ)δ>0 is uniformly β-di�erentiable if the onstant CR an behosen independently of δ > 0.The importane of this notion is that it an be equivalently formulated by using funtionvalues only and avoiding the derivative. This equivalene is a standard exerise in Banah-spae analysis.Lemma 3.4 A funtion J : E × Z → R is β-di�erentiable if and only if for all R > 0there exists a onstant ĈR > 0 suh that for all θ ∈ ]0, 1[, e0, e1 ∈ E, z ∈ Z with
‖e0‖, ‖e1‖, ‖z‖ ≤ R we have

|J (eθ, z) − (1−θ)J (e0, z) − θJ (e1)| ≤ ĈRθ(1−θ)‖e1−e0‖1+β. (14)We note that going from (13) to (14) one an estimate ĈR ≤ C∗C2R, where C∗ is auniversal onstant. Similarly, one an estimate CR ≤ C∗Ĉ2R for the opposite impliation.9



Proposition 3.5 If the family (Jδ)δ>0 is uniformly β-di�erentiable and if J is the simul-taneous Γ-limit of this family, then J is also β-di�erentiable.Proof: It su�es to show that J satis�es (14). We �rst note that this estimate holdsuniformly in δ for all Jδ. For a given R > 0 we hoose R̂ aording to De�nition 3.2.First hoose a simultaneous reovery sequene zδ → z for the points e0 and e1. Then,
J(eθ, z) − (1−θ)J(e0, z) − θJ(e1, z)

≤ lim inf
δ→0+

(
Jδ(eθ, zδ) − (1−θ)Jδ(e0, zδ) − θJθ(e1, zδ)

)
≤ Ĉ bRθ(1−θ)‖e1−e0‖1+β.The opposite estimate is obtained by multiplying with −1 and hoosing a reovery se-quene for the point eθ:

(1−θ)J(e0, z) + θJ(e1, z) − J(eθ, z)

≤ lim inf
δ→0+

(
(1−θ)Jδ(e0, zδ) + θJθ(e1, zδ) − Jδ(eθ, zδ)

)
≤ Ĉ bRθ(1−θ)‖e1−e0‖1+β.This proves (14) with CR = Ĉ bR.For onvex funtions the notion of uniform di�erentiability an be simpli�ed as oneestimate in (14) holds automatially. Moreover, it su�es to redue to the ase θ = 1/2(f. [Z l02℄), i.e. one an replae (14) by

0 ≤ J (e0, z) + J (e1, z) − 2J (1
2
(e0+e1), z) ≤ CR‖e0−e1‖1+β. (15)Proposition 3.6 Assume that the family (Jδ)δ>0 is uniformly β-di�erentiable and thatall Jδ(·, z) are onvex. Moreover, assume that J is the simultaneous Γ-limit of this family,then J is β-di�erentiable and eah J(·, z) is onvex. Moreover, we have the followingonvergene of stresses:

zδ → z in E

Jδ(e, zδ) → J(e, z)

}
=⇒ DeJδ(e, zδ) → DeJ(e, z) in E

∗. (16)Proof: The results on β-di�erentiability and onvexity for J are already establishedabove. The onvergene of stresses follows from the di�erentiability, whih means that thesubdi�erential ∂eJ is a singleton ontaining DeJ. In fat, Σδ = DeJδ(e, zδ) is bounded in
E∗, and we may hoose a subsequene δj → 0+ suh that Σδj

⇀ Σ0 in E∗ and Jδj
(ẽ, zδj

) →
J(ẽ) for all ẽ ∈ E. The latter pointwise onvergene follows from Arzela-Asoli's theorembeause of the uniform Lipshitz ontinuity of the Jδ(·, zδ) on all balls BR(e), R ∈ N .As J : E → R is the pointwise limit of a the family (Jδj

(·, zδj
))j ∈ N , whih is onvexand uniformly β-di�erentiable, J has these properties as well. By onstrution we alsohave J(e) = J(e, z) and J(ẽ) ≥ J(ẽ, z). This implies Σ∗ = DJ(e) = DeJ(e, z).Moreover, onvexity implies Jδ(ẽ, zδ) ≥ Jδ(e, zδ) + 〈Σδ, ẽ−e〉, and passing to the limit

δj → 0 gives J(ẽ) ≥ J(e) + 〈Σ0, ẽ−e〉. Thus, we onlude Σ0 = DJ(e). In turn, thisimplies Σδ ⇀ DJ(e) = DeJ(e, z) (no subsequene), whih is the desired result.10



4 The omplete-damage problem via ΓΓΓ-onvergeneBefore we an apply the abstrat theory of the previous setion, we have to deal with thefat that Jδ : (e, z) 7→ Vδ(e, z) + G(z) is de�ned by minimizing Eδ with respet to u ∈ F .Hene, Vδ is only de�ned impliitly, whih makes is more di�ult to hek onvexity and
β-di�erentiability.4.1 Convexity and di�erentiability for the redued damage fun-tionalsWe reall the de�nition of Jδ(e, z) = Vδ(e, z) + G(z), where

Vδ(e, z) = min{Wδ(e+e(u), z) | u ∈ F } with Wδ(e, z) =

∫

Ω

Wδ(x, e(x), z(x))dxwith Wδ(x, e, z) = W (x, e, z) + δ|e|p, where W satis�es (5), whih inludes the onvexityondition (5). Sine in this setion we treat the dependene on e only, we omit theonstant term G(z) that always anels in onvexity and di�erentiability onditions.For δ > 0 the stored-energy density Wδ is stritly onvex with respet to e ∈ Ed.Moreover, for δ > 0 we have the oerivity Wδ(x, e, z) ≥ δ|e|p whih implies that thereexists for eah z ∈ Z and eah e ∈ E a unique u = Uδ(e, z) suh that
Vδ(e, z) = Wδ(e+e(Uδ(e, z)), z), Uδ(e, z) ∈ F .In partiular, we have Vδ(e+e(û), z) = Vδ(e, z) for all û ∈ F , beause of Uδ(e+e(û), z) =

Uδ(e, z) − û. This shows that Vδ(·, z) : E → R is highly degenerate and should beonsidered as a funtional on E/e(F).Lemma 4.1 (Convexity of Vδ) Let W satisfy (5). Then, the funtionals Vδ(·, z) : E →
R are onvex and satisfy the estimates 0 ≤ Vδ(e, z) ≤ C(1+‖e‖p) + δ‖e‖p.Proof: For arbitrary θ ∈ ]0, 1[, e0, e1 ∈ E and z ∈ Z we have

Vδ(eθ, z) = Wδ(eθ+Uδ(eθ, z), z) ≤ Wδ(eθ+(1−θ)Uδ(e0, z) + θUδ(e1, z), z)

= Wδ((1−θ)[e0+Uδ(e0, z)] + θ[e1+Uδ(e1, z)], z)onvex
≤ (1−θ)Wδ(e0+Uδ(e0, z), z) + θWδ(e1+Uδ(e1, z), z)

= (1−θ)Vδ(e0, z) + θVδ(e1, z).This is the desired onvexity.For the estimates we �rst derive 0 ≤ W0(e, z) ≤ C(1+‖e‖p), whih follows easily byintegration. We then use 0 ≤ Wδ(e+Uδ(e, z), z) = Vδ(e, z) ≤ W0(e, z) + δ‖e‖p.To obtain uniform β-di�erentiability of Vδ in the form (15), we use the additionaluniform di�erentiability ondition (10) on the energy density W . It is easy to derive theorresponding ondition for the funtionalWδ, but is is essential that the ondition is alsostable under the redution from Wδ to Vδ. 11



Proposition 4.2 Let W satisfy (5) and (10). Then, for eah R > 0 there exists aonstant CR > 0 suh that for all δ ∈ ]0, 1], e0, e1 ∈ E, and z ∈ Z, we have
Vδ(e0, z) + Vδ(e1, z) − 2Vδ(e1/2, z) ≤ CR‖e1−e0‖1+β.Proof: We note that Wδ satis�es all the assumptions uniformly for δ ∈ [0, 1]. Integrationof (10) for Wδ and using Hölder's inequality gives, for e0, e1 ∈ E and z ∈ Z,

Wδ(e0, z)+Wδ(e1, z)−2Wδ(e1/2, z) ≤ C
(
|Ω|+Wδ(e1/2, z)+‖e1−e0‖p

)1−(1+β)/p‖e1−e0‖1+β.The orresponding inequality for Vδ follows by using the minimization properties. With
Eδ = e(Uδ(e1/2, z)) we have Vδ(e1/2, z) = Wδ(e1/2+Eδ, z) and �nd

Vδ(e0, z) + Vδ(e1, z) − 2Vδ(e1/2, z)

≤ Wδ(e0+Eδ, z) + Wδ(e1+Eδ, z) − 2Wδ(e1/2+Eδ, z)

≤ C
(
|Ω| + Vδ(e1/2, z) + ‖e1−e0‖p

)1−(1+β)/p‖e1−e0‖1+β,whih provides the desired estimate after exploiting Lemma 4.1.4.2 Parametrized ΓΓΓ-onvergene for the damage funtionalWe now onsider the Γ-limit for δ → 0 and work with the funtional Jδ : (e, z) 7→
Vδ(e, z) + G(z) again. For applying the abstrat theory it is neessary to derive simulta-neous Γ-limits. The main positive result was obtained in [BMR09℄ for the ase that the
G dominates the Lr norm of ∇z with r > d, where d is the spae dimension.We generalize this result in several aspets by reduing it to the minimal struturalassumption. For this we introdue the stable sets

Sδ(t) = { z ∈ Z | ∞ > Iδ(t, z) ≤ Iδ(t, z̃) + D(z, z̃) for all z̃ ∈ Z }.We de�ne the parametrized Γ-limit V(e, ·) = Γ-limδ→0+ Vδ(e, ·) with respet to the strongtopology of Z, whih exists by the monotoniity, see [Bra02℄. The following example,whih is inspired by [BoV88, Ex. 3℄ and further disussed in [BMR09℄, shows that ingeneral V is stritly smaller than V0(e, z) = limδ→0+ Vδ(e, z).Example 4.3 Consider Ω = ]−1, 1[ and the energy Jδ(e, z) =
∫
Ω

δ+z
2

(e+u′)2 dx + G(z).Then, Vδ(e, z) =
( ∫

Ω
e dx

)2
/
∫
Ω

2
δ+z

dx. Clearly, the pointwise limit V0 is obtained byletting δ = 0. However, the Γ-limit V(e, ·) in W1,r(Ω) satis�es
V(e, z) = V0(e, z) for min z > 0 and V(e, z) = 0 for min z = 0.For α ∈

]
1−1

r
, 1

[ let zα(x) = |x|α, then zα ∈ Z and 0 = V(e, z) < V0(e, z) = 1−α
4

( ∫
Ω

edx
)2.Sine G : Z → R is ontinuous, we also have the following parametrized Γ-limits:

Γ-lim
δ→0+

Jδ(e, ·) = J(e, ·) = V(e, ·) + G(·), Γ-lim
δ→0+

Iδ(t, ·) = I(t, ·) = V(eD(t), ·) + G(·).12



We also set S(t) = { z ∈ Z | ∞ > I(t, z) ≤ I(t, z̃) + D(z, z̃) for all z̃ ∈ Z }.In generalizing the approah in [BMR09℄ for the Γ-onvergene we replae the ondition� r > d � there by the followingstrutural assumption:
(
zj ∈ Sδj

(t), δj → 0, and zj ⇀ z
)

=⇒ zj → z.
(17)The following result shows that the strutural assumption holds for r > d, where weuse the monotoniity of W (e, ·) and the embedding W1,r(Ω) ⊂ C(Ω). Other su�ientonditions will be disussed in Setion 6.1.Proposition 4.4 (Strutural assumption) Let the assumptions of Setion 2.1 hold.(A) If (zj)j∈N is as in (17), then we have Vδj

(eD(t), zj) → V(eD(t), z) and z ∈ S(t).(B) If r > d, then the strutural assumption (17) holds and we have
V(e, z) = lim

ρ→0+

(
lim

δ→0+
Vδ

(
e, max{0, z−ρ}

)) and (
z̃δ ⇀ z̃ ⇒ V(e, z̃) ≤ lim inf

δ→0+
Vδ(e, z̃)

)
,i.e. the Γ-onvergene is even a Moso onvergene, f. [Mos67℄.Proof: Ad (A). We abbreviate e = eD(t), let v = lim supj→∞ Vδj

(e, zj), and onlude
lim supj→∞ Iδj

(t, zj) = v + G(z). Using the stability of zj we obtain
Iδj

(t, zj) ≤ Iδj
(t, ẑj) + D(zj, ẑj),where we hoose ẑj as a reovery sequene for ẑ, i.e. ẑj → ẑ and Iδj

(t, ẑj) → I(t, ẑ). In theunidiretional ase we may restrit to the ase ẑ ≤ z and assume ẑj ≤ zj (by taking thereovery sequene z̃j = min{zj , ẑj} if neessary). Thus we may pass to the limit j → ∞and obtain
I(t, z) ≤ lim sup

j→∞

Iδj
(t, zj) = v + G(z) ≤ I(t, ẑ) + D(z, ẑ).This proves the stability z ∈ S(t).Moreover, we may take ẑ = z and onlude v ≤ I(t, z) − G(z) = V(e, z). Sine

V(e, z) ≤ v by the de�nition of the Γ-limit we are done.Ad (B). We �rst show that the double limit in the formula for V exists. For this, we de-�ne the funtion V (ρ, δ, e, z) = Vδ

(
e, max{0, z−ρ}

). Sine Wδ(e, z) is nondereasing in δand in z, V (ρ, δ, e, z) is nondereasing in δ and noninreasing in ρ. For �xed z and ρ > thelimit V 0(ρ, e, z) = limδ→0+ V (ρ, δ, e, z) exists by monotoniity and boundedness. More-over, V 0(ρ, e, z) is still noninreasing in ρ, and we �nd that V(e, z) = limρ→0+ V 0(ρ, e, z)exists as well.To show that V is the Moso limit, we �rst establish the liminf estimate assuming theweak onvergene zδ ⇀ z in W1,r(Ω). Then, for eah ρ > 0, there exists δρ suh that
zδ ≥ max{0, z−ρ}, where we use the embedding W1,r(Ω) ⊂ C(Ω). Thus, Vδ(e, zδ) ≥
Vδ(e, max{0, z−ρ}), and we obtain lim infδ→0+ Vδ(e, zδ) ≥ V 0(ρ, e, z). Taking the limit
ρ → 0+ we obtain the desired liminf estimate. To obtain reovery sequenes, we use that13



by the de�nition of the double limit we may hoose a ontinuous funtion g : [0, δ∗] →
[0, ρ∗] with g(0) = 0 suh that V (g(δ), δ, e, z) → V(e, z). Hene, zδ = max{0, z−g(δ)}provides the desired strongly onverging reovery sequene.Now we establish the strutural assumption (17). Starting from zj ⇀ z as given therewe let

v = lim inf
j→∞

Vδj
(e, zj) ≥ V(e, z) and γ = lim inf

j→∞
G(zj) ≥ G(z),whih gives lim infj→∞ Iδj

(tj , zj) ≥ I(t, z). The stability of zj implies
Iδj

(tj , zj) ≤ Iδj
(tj , z

ε) + D(zj , z
ε), where zε = max{0, z−ε}.Doing the lim supj→∞ �rst and the limε→0+ afterwards gives lim supj→∞ Iδj

(tj , zj) ≤
I(t, z), and we onlude Iδj

(tj , zj) → I(t, z).In partiular this implies the onvergene G(zj) → γ = G(z). Using the strit onvexity(4d), we onlude zj → z, see [Vis84℄.To establish the stability of z, we take a general test funtion z̃ with D(z, z̃) < ∞, sineotherwise nothing is to be shown. Let (z̃j)j∈N be a reovery sequene for z̃, i.e. ẑj → z̃and Iδj
(tj , z̃j) → I(t, z̃). Then, the stability of zj implies

Iδj
(tj , zj) ≤ Iδj

(tj, ẑj) + D(zj, ẑj) where ẑj = max{0, z̃j−‖z−zj‖L∞}.Note that ẑj → z̃ and Iδj
(tj , ẑj) ≤ Iδj

(tj , z̃j). Thus, (ẑj)j∈N is a reovery sequene as well.Passing to the limit j → ∞ we �nd I(t, z) ≤ I(t, z̃) + D(z, z̃), giving z ∈ S(t).The importane of the strutural assumption lies in the fat that it implies that J is asimultaneous Γ-limit.Proposition 4.5 (Simultaneous ΓΓΓ-limit) Let the assumptions of Setion 2.1 and (17)hold. Then, the funtional J is the simultaneous Γ-limit of the family (Jδ)δ>0.Proof: Let e1, e2 ∈ E be given and let (zj
δ)δ>0, j = 1, 2, be assoiated reovery sequenesfor J(ej , z). We de�ne z̃δ(x) = min{z1

δ (x), z2
δ (x)} and obtain z̃δ → z, beause of zj

δ → z.Moreover, the monotoniity of W (e, ·) implies Vδ(ej , z̃δ) ≤ Vδ(ej , z
j
δ). Thus, we onlude,

V(ej, z) ≤ lim inf
δ→0+

Vδ(ej , z̃δ) ≤ lim sup
δ→0+

Vδ(ej, z̃δ) ≤ lim sup
δ→0+

Vδ(ej, z
j
δ) = V(ej , z).Thus, (z̃δ)δ>0 is a simultaneous reovery sequene.Now, we are able to take pro�t from the abstrat results on parametrized Γ-onvergeneof Setion 3. In partiular, we are able to dedue onvexity and di�erentiability of V(·, z).Proposition 4.6 Let the assumptions of Setion 2.1 and (17) hold. Then, V(·, z) : E →

R is onvex for all z ∈ Z.If additionally W satis�es the di�erentiability ondition (10), then V is β-di�erentiabilityin the sense of (15), and for all e ∈ E we have
zδ → z in Z

Vδ(e, zδ) → V(e, z)

}
=⇒ DeVδ(e, zδ) ⇀ DeV(e, z) in E

∗.The proof of this result is a diret ombination of Propositions 3.3, 3.5, 3.6, Lemma4.1, and Propositions 4.2 and 4.5. 14



5 Proof of Theorem 2.3Our main Theorem 2.3 provides the onvergene of the energeti solutions zδ : [0, T ] → Zfor the rate-independent systems (Z, Iδ,D) for δ → 0+ to energeti solutions z : [0, T ] →
Z of the limit problem (Z, I,D), whih represents the omplete-damage problem. It isstated under the additional assumption � r > d �.Here we will provide a more general proof avoiding the expliit use of the embedding
W1,r(Ω) ⊂ C(Ω) and replaing it with the strutural assumption (17), whih is satis�edin the ase r > d, as is shown in Part B of Proposition 4.4.For the onveniene of the reader we provide an almost omplete proof, where somedetails are ited from previous works. We follow the six steps as introdued in [Mie05℄.Step 1. A priori estimates.The solutions zδ : [0, T ] → Z are stable. Hene, we have

G(zδ(t)) ≤ Iδ(t, z(t)) ≤ Iδ(t, 0) + D(zδ(t), 0) ≤ C.Together with z(t, x) ∈ [0, 1] we obtain a uniform bound C > 0 suh that ‖zδ(t)‖W1,r ≤ Cfor all t ∈ [0, T ] and δ > 0. Moreover, the total dissipation DissD(zδ, [0, T ]) is boundedindependently of δ > 0. Thus,
∃C > 0 ∀ δ > 0 : ‖zδ‖L∞([0,T ],W1,p(Ω)) + ‖zδ‖BV([0,T ],L1(Ω)) ≤ C.Step 2. Seletion of subsequenesBy Helly's seletion priniple (in its Banah-spae version) we extrat a subsequene

(δj)j∈N with δj → 0+ suh that for all t we have
DissD(zδj

, [0, t]) → ∆(t), zδj
(t) ⇀ z(t) in Z,where δ : [0, T ] → R is nondereasing and z lies in L∞([0, T ], W1,p(Ω))∩BV([0, T ], L1(Ω))with DissD(z, [0, t]) ≤ ∆(t). Using the strutural assumption (17) and Part (A) of Propo-sition 4.4 we further onlude zδj

(t) → z(t) and Iδj
(t, zδj

(t)) → I(t, z(t)), whih meansthat (i) and (iii) are established.Step 3. Stability of the limit proessThe desired stability (S) for energeti solutions means z(t) ∈ S(t) for all t ∈ [0, T ], butthis is a diret onsequene of Part A of Proposition 4.4.Step 4. Upper energy estimateFor eah δ > 0 we have the energy balane
Iδ(t, zδ(t)) + DissD(zδ, [0, t]) = Iδ(0, δ) +

∫ t

0

∂sI(s, zδ(s))ds.Using the formula (2ii) and ∂sI(s, z) = 〈DeV(eD(t), z), e(u̇D(t))〉 we are now able to passto the limit δj → 0+ and obtain
I(t, z(t)) + DissD(z, [0, T ])

Step 2
≤ I(t, z(t)) + ∆(t) = I(0, z(t)) +

∫ t

0

∂sI(s, z(s))ds,15



where we used Proposition 4.6, whih also implies (iv).Step 5. Lower energy estimateThe lower estimate I(t, z(t)) + DissD(z, [0, T ]) ≥ I(0, z(t)) +
∫ t

0
∂sI(s, z(s)) ds is adiret onsequene of the stability, see e.g. [Mie05, Prop. 5.7℄. Thus, we onlude theenergy equality (E) and have established DissD(z, [0, T ]) = ∆(t), whih provides (ii).Step 6. Improved onvergeneSine the onvergenes (i)�(iv) in Theorem 2.3 are already established in the previoussteps, the onvergene proof is �nished.It remains to establish the general existene result for arbitrary initial onditions z0 ∈

S(0). However, it is standard to apply the existene theory developed in [Mie05, Set. 5℄diretly to the limit problem (Z, I,D). This onludes the proof of Theorem 2.3.6 Disussion of generalizations6.1 Su�ient onditions for the strutural assumptionThe reason for introduing the strutural ondition (17) is that we onjeture its validityalso in the ase r ∈ [1, d]. To support this onjeture, we highlight an interesting obser-vation from [Tho09℄, whih applies to the uni-diretional ase, where D(z, z̃) < ∞ if andonly if z̃ ≤ z. For z ∈ Sδ(t) we �nd the estimate
G(z) = Iδ(t, z) − Vδ(eD(t), z) ≤ Iδ(t, ẑ) + D(z, ẑ) − Vδ(eD(t), z)

= G(ẑ) + D(z, ẑ) + Vδ(eD(t), ẑ) − Vδ(eD(t), z) ≤ G(ẑ) + D(z, ẑ),for all ẑ ≤ z. Thus, if we de�ne the set
S = { z ∈ Z | G(z) ≤ G(ẑ) + D(z, ẑ) for all ẑ ≤ z },we onlude that
∀ δ > 0 ∀ t ∈ [0, T ] : Sδ(t) ⊂ S and S(t) ⊂ S.Conjeture. Under the assumptions of Setion 2.1 the set S is ompat in Z with respetto the strong topology for all r ≥ 1.The argument in favor of the validity of the onjeture derives from the variationalinequality de�ning the elements z ∈ S. Roughly it provides a one-sided estimate of theweak r-Laplaian and there is hope that the results in [Mur81℄ an be adjusted to provethe onjeture.Clearly, the validity of the onjeture implies that the strutural ondition (17) holds.16



6.2 Generalized energeti solutionsIn the ase that W does not satisfy the uniform di�erentiability property (10), we arenot able to show the di�erentiability of V(·, z). However, we still have onvexity, whihimplies together with the bounds 0 ≤ V(e, z) ≤ C(1+‖e‖p) that of all (e, z) ∈ E ×Z the(onvex) subdi�erential ∂sub
e V(e, z) and the diretional derivatives δeV(e, z; ê) exist:

∂sub
e V(e, z) = { η ∈ E

∗ | ∀ ẽ : V(ẽ, z) ≥ V(e, z) + 〈η, ẽ−e〉 },

δeV(e, z; ê) = lim
h→0+

1

h

(
V(e+hê, z) − V(e, z)

)
= sup{ 〈σ, ê〉 | σ ∈ ∂sub

e V(e, z) }.
(18)Using eD ∈ C1([0, T ]; E) we �nd that the left and right partial derivatives ∂±

t I(t, z) =
limh→0+

±1
h

(
I(t±h, z) − I(t, z)

) with respet to t of I exist. We have the relations
∂−

t I(t, z) = −δeV(t, eD(t);−ėD(t)) ≤ δeV(t, eD(t); ėD(t)) = ∂+
t I(t, z).The Clarke di�erential of t 7→ I(t, z) is given by ∂Cl

t I(t, z) = [∂−

t I(t, z), ∂+
t I(t, z)].De�nition 6.1 Let z : [0, T ] → Z satisfy (S) in (7) for all t ∈ [0, T ]. Then, z is alleda generalized energeti solution of the rate-independent system (Z, I,D), if there exists

p ∈ L1([0, T ]) suh that p(τ) ∈ ∂Cl
τ I(τ, z(τ)) a.e. in [0, T ] and for all t ∈ [0, T ] we have

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ. (19)Now a slight generalization of the abstrat existene theory for rate-independent sys-tems gives the following. Note that we onstrut the generalized energeti solutions for
(Z, I,D) diretly, without referene to the solutions zδ for (Z, Iδ,D).Theorem 6.2 For all stable z0 ∈ Z there exists a generalized energeti solution for
(Z, I,D).Proof: The existene theory follows the usual steps in the abstrat theory for rate-independent proesses (f. [Mie05, FrM06℄) via inremental minimization, uniform a prioriestimates and Helly's seletion priniple. This part and the proof of the stability of thelimit proess work as in [BMR09℄.For the upper energy estimate we obtain, by setting A(t) = I(t, z(t)) + DissD(z, [0, t]),

A(s) − A(r) ≤
∫ s

r

pmax(t)dt with pmax(t) = max ∂Cl
t I(t, z(t)).With a slight generalization of [Mie05, Prop. 5.7℄ we see that stability of the limit proess

z implies the lower bound A(s) − A(r) ≥
∫ s

r
pmin(t)dt with pmin(t) = min ∂Cl

t I(t, z(t)).Thus, we onlude that A is absolutely ontinuous and satis�es pmin(t) ≤ A′(t) ≤
pmax(t). Hene, setting p(t) = A′(t) the proof is omplete.17



In the following example we show that the notion of generalized energeti solution,whih involves the weakened energy balane (19) with the Clarke di�erential, is reallyneessary in ases where the one-sided partial derivatives satisfy ∂−

t I(t, z) < ∂+
t I(t, z)at some points. In partiular, it is not possible to make an a priori hoie like p(t) =

max{∂Cl
t I(t, z(t))}, whih worked in [KZM09, MiR08℄, sine there ∂−

t I(t, z) ≥ ∂+
t I(t, z)holds.Example 6.3 This example has a smooth energy Iδ suh that ∂tIδ exists, while in thelimit I is only Lipshitz in t. We let Z = R and D(z, z̃) = |z̃−z|. The energy funtionalreads

Iδ(t, z) = Hδ

(
z−α(t)

) and I(t, z) = 2|z−α(t)|,where α ∈ C1([0, T ]) is given and Hδ(u) = 2u2/
√

δ2+u2. For the partial derivatives withrespet to time we have
∂tIδ(t, z) = −H ′

δ(z−α(t))α̇(t) and ∂Cl
t I(t, z) = −2 Sign(z−α(t))|α̇(t)|.Sine Iδ(t, ·) is smooth and stritly onvex, the energeti solutions for (R, Iδ,D) areexatly the solutions of the doubly nonlinear equation (f. [MiT04℄)

0 ∈ Sign(ż(t)) + H ′

δ(z(t)−α(t)).For δ > 0 the system is smooth, while for δ = 0 we have H0(u) = 2|u| and set I(t, z) =
H0(z−α(t)).Consider the speial ase α(t) = t and zδ(0) = 0. If βδ is the unique solution of
H ′

δ(βδ) = 1, then the unique energeti solution is zδ(t) = max{0, t−βδ}. Using 0 < βδ → 0we �nd the limit solution z(t) = t = limδ→0 zδ(t). It is a generalized energeti solution inthe sense of De�nition 6.1 by using p(t) = 1 ∈ [−2, 2] = ∂Cl
t I(t, t).Aknowledgments. This researh was partially supported by the DFG within the Re-searh Unit 797 Analysis and omputation of mirostruture in �nite plastiity underMi 459/5�1. The author is grateful to Jens Griepentrog, Tomá² Roubí£ek, Ulisse Ste-fanelli, and Marita Thomas for helpful disussions.Referenes[BMR09℄ G. Bouhitté, A. Mielke, and T. Roubí£ek. A omplete-damage problem at small strains.ZAMP Z. Angew. Math. Phys., 60(2), 205�236, 2009.[BoV88℄ G. Bouhitté and M. Valadier. Integral representation of onvex funtional on a spae ofmeasures. J. Funt. Anal., 80, 398�420, 1988.[Bra02℄ A. Braides. Γ-Convergene for Beginners. Oxford University Press, 2002.[DMT01℄ A. DeSimone, J.-J. Marigo, and L. Teresi. A damage mehanis approah to stresssoftening and its appliation to rubber. Eur. J. Meh. A Solids, 20, 873�892, 2001.[DPO94℄ E. De Souza Neto, D. Peri, and D. Owen. A phenomenologial three-dimensional rate-independent ontinuum damage model for highly �lled polymers: Formulation and omputationalaspets. J. Meh. Phys. Solids, 42, 1533�1550, 1994.18



[FKS99℄ M. Frémond, K. Kuttler, and M. Shillor. Existene and uniqueness of solutions for adynami one-dimensional damage model. J. Math. Anal. Appl., 229, 271�294, 1999.[FrG06℄ G. Franfort and A. Garroni. A variational view of partial brittle damage evolution. Arh.Rational Meh. Anal., 182, 125�152, 2006.[FrM93℄ G. A. Franfort and J.-J. Marigo. Stable damage evolution in a brittle ontinuous medium.European J. Meh. A Solids, 12, 149�189, 1993.[FrM98℄ G. Franfort and J.-J. Marigo. Revisiting brittle frature as an energy minimizationproblem. J. Meh. Phys. Solids, 46, 1319�1342, 1998.[FrM06℄ G. Franfort and A. Mielke. Existene results for a lass of rate-independent materialmodels with nononvex elasti energies. J. reine angew. Math., 595, 55�91, 2006.[FrN96℄ M. Frémond and B. Nedjar. Damage, gradient of damage and priniple of virtual power.Internat. J. Solids Strutures, 33, 1083�1103, 1996.[HaS03℄ K. Hakl and H. Stumpf. Miromehanial onept for the analysis of damage evolutionin thermo-visoelasti and quasi-stati brittle frature. Int. J. Solids Strutures, 30, 1567�1584,2003.[KMZ08℄ D. Knees, A. Mielke, and C. Zanini. On the invisid limit of a model for rak propagation.Math. Models Meth. Appl. Si. (M3AS), 18, 1529�1569, 2008.[KnM08℄ D. Knees and A. Mielke. Energy release rate for raks in �nite-strain elastiity. Math.Methods Applied Sienes, 31(5), 501�528, 2008.[KZM09℄ D. Knees, C. Zanini, and A. Mielke. Crak propagation in polyonvex materials. PhysiaD, 2009. In press. WIAS prep. 1351. DOI: 10.1016/j.physd.2009.02.008.[MaA01℄ P. M. Mariano and G. Augusti. Basi topis on damage pseudo-potentials. Int. J. SolidsStrutures, 38(10-13), 1963�1974, 2001.[Mie05℄ A. Mielke. Evolution in rate-independent systems (Ch. 6). In C. Dafermos and E. Feireisl, edi-tors, Handbook of Di�erential Equations, Evolutionary Equations, vol. 2, pages 461�559. ElsevierB.V., Amsterdam, 2005.[MiR06℄ A. Mielke and T. Roubí£ek. Rate-independent damage proesses in nonlinear elastiity.M3AS Math. Models Methods Appl. Si., 16, 177�209, 2006.[MiR08℄ A. Mielke and T. Roubí£ek. Rate-Independent Systems: Theory and Appliation. In prepa-ration, 2008.[MiT99℄ A. Mielke and F. Theil. A mathematial model for rate-independent phase transformationswith hysteresis. In H.-D. Alber, R. Balean, and R. Farwig, editors, Proeedings of the Workshopon �Models of Continuum Mehanis in Analysis and Engineering�, pages 117�129, Aahen, 1999.Shaker-Verlag.[MiT04℄ A. Mielke and F. Theil. On rate�independent hysteresis models. Nonl. Di�. Eqns. Appl.(NoDEA), 11, 151�189, 2004. (Aepted July 2001).[Mos67℄ U. Moso. Approximation of the solutions of some variational inequalities. Ann. Suola Norm.Sup. Pisa, 21(3), 373�394, 1967. Erratum, ibid. (3) 765.[MRS08℄ A. Mielke, T. Roubí£ek, and U. Stefanelli. Γ-limits and relaxations for rate-independentevolutionary problems. Cal. Var. Part. Di�. Equ., 31, 387�416, 2008.[MRZ07℄ A. Mielke, T. Roubí£ek, and J. Zeman. Complete damage in elasti and visoelasti mediaand its energetis. Comput. Methods Appl. Meh. Engrg., 2007. Submitted. WIAS preprint 1285.[Mur81℄ F. Murat. L'injetion du �ne positif de H−1 dans W−1, q est ompate pour tout q < 2. J.Math. Pures Appl. (9), 60(3), 309�322, 1981.[Ort85℄ M. Ortiz. A onstitutive theory for the inelasti behavior of onrete. Meh. Materials, 4,67�93, 1985.[SHS06℄ M. Sofonea, W. Han, and M. Shillor. Analysis and approximation of ontat problemswith adhesion or damage, volume 276 of Pure and Applied Mathematis (Boa Raton). Chapman& Hall/CRC, Boa Raton, FL, 2006. 19



[ThM09℄ M. Thomas and A. Mielke. Damage of nonlinearly elasti materials at small strain: existeneand regularity results. ZAMM Zeits. Angew. Math. Meh., 2009. Submitted.[Tho09℄ M. Thomas. Damage evolution for a model with regularization. PhD thesis, Institut für Math-ematik, Humboldt-Universität zu Berlin, 2009. PhD thesis. In preparation.[Vis84℄ A. Visintin. Strong onvergene results related to strit onvexity. Comm. Partial Di�erentialEquations, 9(5), 439�466, 1984.[Z l02℄ C. Z linesu. Convex analysis in general vetor spaes. World Sienti� Publishing Co. In.,River Edge, NJ, 2002.

20


