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Abstract

We provide a global existence result for the time-continuous elastoplasticity prob-

lem using the energetic formulation. For this we show that the geometric nonlin-

earities via the multiplicative decomposition of the strain can be controlled via

polyconvexity and a priori stress bounds in terms of the energy density. While tem-

poral oscillations are controlled via the energy dissipation the spatial compactness

is obtain via the regularizing terms involving gradients of the internal variables.

1 Introduction

The theory of elastostatics at finite strains has seen a rapid development within the last

decades. The fundamental work on polyconvex materials developed in [Bal77] provided

a basis for a general theory that allows to treat the geometric nonlinearities arising in

physically correct model. In particular, a stored-energy density W : Rd×d → R∞
def

=

R ∪ {∞} has to satisfy

W (RF ) = W (F ) for R ∈ SO(d), F ∈ Rd×d,

W (F ) = +∞ for det F ≤ 0,

W (F ) → +∞ for det F → 0+.

Approximately at the same time the theory of elastoplasticity obtained a sound mathe-

matical basis starting from [Mor74], see also [Tem85, Alb98, HaR99] for surveys on further

developments. However, this theory is restricted to the case of small strains and the so-

called additive split e(u) = 1
2
(∇u + (∇u)T ) = eel + epl, as it fundamentally depends on

the methods of convex analysis in Banach spaces.

Elastoplasticity at finite strain is usually based on the multiplicative decomposition ∇ϕ =

F = FelFpl, introduced in [Lee69]. Meanwhile, these models are heavily used in engineer-

ing and are quite successful in predicting macroscopic deformation processes like deep

drawing and other forming processes, see e.g. [SiO85, MiS92, NeW03]. A major advance

was the observation in [OrS99] that the time-incremental problems in rate-independent

and in the viscoplastic case can be written as variational problems, viz., the sum of the in-

crements in the stored energy and in the dissipated energy has to be minimized (at least lo-

cally) to obtain the new state at the next time level. This idea opened up the whole toolbox

of the direct methods in the calculus of variations and lead, in particular, to the analysis of

microstructures in elastoplasticity, see [OrR99, ORS00, CHM02, Mie03a, CoT05, GM∗06].

1



In this paper we follow a similar spirit but our aim is to develop a theory for the time-

continuous setting. Thus, we want to connect the classical formation involving the elastic

equilibrium and the plastic flow law with an analytic approach that allows us to handle the

associated geometric nonlinearities. For this, we introduce some notations. Let ϕ : Ω →
Rd denote the deformation, P : Ω → SL(d) = {P ∈ Rd×d | det P = 1 } the plastic tensor,

and p : Ω → Rm some hardening variables. Then, we assume that the stored-energy

functional takes the form

Ẽ(t, ϕ, P, p) =

∫

Ω

W (x,∇ϕP−1, P, p,∇P,∇p)dx− 〈ℓ(t), ϕ〉.

Here, the gradients (∇P,∇p) are essential to provide compactness and prevent formation

of microstructures. The plastic flow law is expressed through a dissipation distance

D(P0, p0, P1, p1) =

∫

Ω

D(x, P0(x), p0(x), P1(x), p1(x))dx,

where D(x, ·, ·) satisfies a triangle inequality.

If additionally at the Dirichlet boundary ΓDir ⊂ ∂Ω the boundary conditions

ϕ(t, x) = gDir(t, x) for (t, x) ∈ [0, T ]×ΓDir (1.1)

and an initial condition z0 = (P0, p0) ∈ Z are prescribed, we want to find a so-called

energetic solution q = (ϕ, P, p) : [0, T ] → Q = Y×Z satisfying for all t ∈ [0, T ] the

stability condition (S) and the energy balance (E):

(S) Ẽ(t, q(t)) ≤ Ẽ(t, q̂) + D(q(t), q̂) for all q̂ ∈ Q satisfying (1.1)

(E) Ẽ(t, q(t)) + DissD(q; [0, t]) = Ẽ(0, q(0)) +
∫ t

0
π(s)ds,

(1.2)

where DissD(q; [r, s]) = sup{∑N
1 D(P (τj−1), p(τj−1), P (τj), p(τj))| all partitions of [r, s] }

and π : [0, T ] → R is the power of the external loadings:

π(t) = −〈ℓ̇(t), ϕ(t)〉 −
∫
ΓDir

τ(t, x) · ġDir(t, x)dx, (1.3)

with τ being the normal stress on the boundary.

In Section 2 we repeat some of the arguments in [Mie03b] that explain why the concept

of energetic solutions can be seen as a weak version of the classical plasticity formulation.

The major advantage of (S) and (E) is that it avoids derivatives and is based solely on

the functionals Ẽ and D, which need not be smooth or even continuous. In Section 3 we

formulate precise assumptions on W, D, and gDir that allow us to construct solutions in

suitable Sobolev spaces. The main existence result is Theorem 3.1 which states the global

existence of energetic solutions for a large class of models of elastoplasticity. In particular,

we show that the classical cases of kinematical hardening and isotropic hardening are

included, see Examples 3.3 and 3.4.
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The existence theory is based on an abstract result for rate-independent energetic systems

(Q, E, D), where Q = Y×Z are topological spaces (here: weakly closed subsets of reflexive

Banach spaces Q = Y ×Z equipped with the weak topology). This theory was developed

in [MiT99, MTL02, MaM05, FrM06], and in Section 4 we provide the suitable version

with all the abstract assumptions.

This abstract approach relies on incremental minimization. For a partition 0 = t0 < t1 <

· · · < tK = T and an initial state one has to solve iteratively, for k = 1, . . . , K,

qk minimizes q 7→ Ẽ(tk, q) + D(qk−1, q). (1.4)

These minimization problems are close to the ones discussed above, the difference being

that we use the dissipation distance D whereas most other works approximate this by some

explicit predictors. Here it is crucial that D is a quasi-metric on Z, i.e., D(z0, z1) = 0

implies z0 = z1 and the triangle inequality holds (see (4.D1) and (4.D2)). The latter

property is essential to provide natural a priori bounds while the former allows to apply

a generalized Helly selection principle, cf. [MaM05, FrM06].

In [Mie04] it is shown that (1.4) can be solved for arbitrarily large K even without the

regularizing terms (∇P,∇p), but under severe restrictions on W and D. In [MiM06],

where the term (curl P )P T is used for regularization, again the solvability of (1.4) is

established for more general W and D. Here, we use full regularization via (∇P,∇p)

which is also common in engineering models, cf. [FlH97, Gur00, Gur02].

In Section 5 we then show that all assumptions are satisfied in our elastoplastic setting

that includes kinematic hardening (cf. Example 3.3) as well as isotropic hardening (cf.

Example 3.4). Our theory relies on sufficiently strong hardening to obtain coercivity and,

thus, failure effects like localization or fracture are prevented. Similarly, the regularization

via (∇P,∇p) prevents the formation of microstructure, cf. [CHM02, BC∗04].

At the heart of the analysis is the treatment of the nonlinearities arising through the geo-

metric structure of finite strains. To treat the case of time-dependent boundary conditions

gDir we seek for ϕ(t, ·) in the form

ϕ(t, x) = gDir(t, y(s)) with y ∈ Y
def

= { y ∈ W1,qY (Ω; Rd) | y|ΓDir
= id }

and set E(t, y, P, p) = Ẽ(t, gDir(t, ·)◦y, P, p). As a consequence the integrand of E depends

on the product

∇gDir(t, y(x))∇y(x)P (x)−1. (1.5)

To allow for finite-strain elasticity we assume that W is polyconvex in the corresponding

argument. Hence, to establish the lower semicontinuity, we need to show that the minors

Ms of order s ∈ {1, . . . , d} of the term in (1.5) are weakly continuous in suitable Sobolev

spaces. For this, we use the Cauchy–Binet formula

Ms(GFP−1) = Ms(G)Ms(F )Ms(P
−1) = Ms(G)Ms(F )Kd−s(P ),
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for det P = 1, and the celebrated weak continuity of Ms(∇y) (cf. [Res67, Bal77]), and

strong convergence of P , which is obtained from coercivity of W in ∇P .

Another important ingredient, which again relies on the multiplicative structure of GL+(d),

is the control of the power of the external forces ∂tE(t, y, P, p). In particular, it is then al-

lowed to replace π in (1.3) by ∂tE(t, y(t), P (t), p(t)). Using the condition |∂FW (F )F T | ≤
cW
1 (W (F )+ cW

0 ), which was introduced in [BOP91] and popularized in [Bal02], we obtain

the formula

∂tE(t, q) =
∫
Ω
(∂F W (F̃ , z,∇z)F̃ T ) : V (t, x)dx

with F̃ (t, x) = ∇gDir(t, y(x))∇y(x)P (x)−1

and V (t, x) = ∇gDir(t, y(x))−1∇ġDir(t, y(x)).

Under suitable assumptions on gDir this allows for an estimate of ∂tE(t, q) in terms of

E(t, q) itself and to derive further helpful continuity properties for ∂tE.

In the final Section 6 we discuss some aspects of the developed theory and give several pos-

sible generalizations. The plastic tensor P can be chosen from general subset of GL+(d),

which does not have a group structure nor a manifold structure. Such situations occur

in crystal plasticity with infinite latent hardening. Moreover, it is possible to include a

condition that forbids (global) self-interpenetration.

2 Modeling via energetic solutions

We consider an elastic body Ω ⊂ Rd which is bounded and has a Lipschitz boundary ∂Ω. A

deformation is a mapping ϕ : Ω → Rd such that the deformation gradient F (x) = ∇ϕ(x)

exists for a.e. x ∈ Ω and satisfies

F (x) ∈ GL+(d)
def

= {F ∈ Rd×d | det F > 0 }.

Moreover, in this section we simplify by assuming that ϕ satisfies time-independent dis-

placement boundary conditions ϕ(t, x) = gDir(x) on ΓDir ⊂ ∂Ω.

The internal plastic state at a material point x ∈ Ω is described by the plastic tensor P =

Fpl ∈ GL+(d) and a possibly vector-valued hardening variable p ∈ Rm. We shortly write

z = (P, p) to denote the set of all plastic variables. The major assumption in finite-strain

elastoplasticity is the multiplicative decomposition of the deformation gradient F into an

elastic and a plastic part: F = FelP with P = Fpl. The point of this decomposition is that

the elastic properties will depend only on Fel, whereas previous plastic transformations

through P are completely forgotten. However, the hardening variable p will remember

changes in P and may influence the elastic properties (e.g., via back stresses).

The deformation process is governed by two principles. First, we have energy storage

which gives rise to the equilibrium equations and, second, we have dissipation due to

plastic transformations which gives rise to the plastic flow rule. Energy storage is described
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by the Gibbs energy

E(t, ϕ, z) =
∫
Ω

W̃ (x,∇ϕ(x), z(x),∇z(x))dx − 〈ℓ(t), ϕ〉, (2.1)

where 〈ℓ(t), ϕ〉 =
∫
Ω

fext(t, x) · ϕ(x) dx +
∫

ΓNeu

hext(t, x) · ϕ(x) da(x) denotes the process-

time dependent loading and ΓNeu = ∂Ω/ΓDir. The major constitutive assumption is the

multiplicative decomposition

W̃ (x, F, P, p, A) = W (x, FP−1, P, p, A). (2.2)

It seems that the form on the right-hand side is not more specific as the one on the left-

hand side. However, in Section 3 we will make different assumption on the dependence

of W with respect to the variable Fel = FP−1 and P . Subsequently, we will drop the

variable x for notational convenience, but the whole analysis works in the inhomogeneous

case as well.

The dissipation effects are usually modeled by prescribing yield surfaces. For our purpose

it is more convenient and mathematically clearer to start on the other side, namely with

the dissipation metric. In mechanics this metric is called dissipation potential, since the

dissipational friction forces are obtained from it via differentiation with respect to the

plastic rates. We emphasize that the natural setup for the plastic transformation P is

that of an element of a Lie group P ⊂ GL+(d) (however see Section 6 for more general

cases). A usual assumption is plastic incompressibility, which gives

P = SL(d)
def

= {P | det P = 1 }.

However, P = GL+(d) or a single-slip system P = { 1 + γe1 ⊗ e2 | γ ∈ R } may also be

possible. A dissipation potential is a mapping

R : Ω×T(P×Rm) → [0,∞], (2.3)

which is called a dissipation metric if it is convex and positively homogeneous of degree 1

in the rate

R(P, p, αṖ , αṗ)) = αR(P, p, Ṗ , ṗ) for α ≥ 0. (2.4)

(Again, we dropped the variable x for notational convenience.) This condition leads to

rate-independent material behavior. Together with the multiplicative decomposition one

assumes plastic indifference:

R(PP̂ , p, Ṗ P̂ , ṗ) = R(P, p, Ṗ , ṗ) for all P̂ ∈ P.

This property implies the existence of R̂ : Rm×Rm×p → [0,∞] with R(P, p, Ṗ , ṗ) =

R̂(p, ṗ, ṖP−1). Here p = T1P is the Lie algebra associated with the Lie group P, and

ṖP−1 is strictly speaking the right translation of Ṗ (t) ∈ TP (t)P to p = T1P.

An fundamental feature of our theory is the induced dissipation distance D on P×Rm

defined via (recall z = (P, p))

D(z0, z1) = inf{
∫ 1

0
R(z(s), ż(s))ds | z ∈ C1([0, 1], P×Rm), z(0) = z0, z(1) = z1 }.
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It is important to note that we didn’t assume symmetry (i.e., R(z,−ż) = R(z, ż)) which

would contradict hardening. Thus, D(·, ·) will not be symmetric either. However, the

triangle inequality

D(z1, z3) ≤ D(z1, z2) + D(z2, z3)

holds as an immediate consequence from the definition. The replacement of the (local)

dissipation metric R by the (global) dissipation distance in the incremental problem (1.4)

is the essential step to make to avoid the linear structure and to obtain good a priori

bounds. Plastic difference implies that the dissipation distance satisfies

D(P1, p1, P2, p2) = D(1, p1, P2P
−1
1 , p2). (2.5)

Integration gives the total dissipation between two internal states zj : Ω → P×Rm via

D(z0, z1) =
∫
Ω

D(z0(x), z1(x))dx. (2.6)

Our work is based on the following energetic formulation. To make the arguments more

rigorous we define the set of kinematically admissible deformations via

Y = {ϕ ∈ W1,q1(Ω; Rd) | ϕ|ΓDir
= gDir }, (2.7)

where the integrability power q1 in W1,q1 will be chosen larger than d in order to apply

the theory of polyconvexity. The loading can then be considered as a function ℓ : [0, T ] →
W1,q1(Ω, Rd)∗, where ∗ denotes the dual space.

The set of admissible internal states takes the form

Z = { z ∈ Lq2(Ω; Rd×d×Rm) | z(x) ∈ P×Rm a.e. on Ω, z ∈ W1,r(Ω) }. (2.8)

Because of the image space, which is a manifold, it is not clear whether it is reasonable

to equip Z with a Banach-space structure. It would seem more natural to equip Z with

the metric D and to use arguments of general metric spaces. However, our analysis will

need some underlying Banach spaces as indicated in (2.8).

As in the introduction we have now an energetic system (Y×Z, E, D) and can define

energetic solutions via (S) and (E). The major advantage of the energetic formulation is

that neither derivatives of the constitutive functions W and R nor higher derivatives of

the solution (ϕ, z) are needed (just those for calculating E). Nevertheless, (S) and (E)

are strong enough to determine the physically relevant solutions. We refer to [MiT04]

for uniqueness results under additional convexity assumptions. Moreover, it is shown

in [Mie03b] that sufficiently smooth solutions (ϕ, z) of (S) and (E) satisfy the classical

equations of elastoplasticity, namely the equilibrium equation (2.9) and the plastic flow

rule (2.10) in the form of an internal force balance (Biot’s equation):

− div T (t, x) = fext(t, x) in Ω,

ϕ(t, x) = gDir(x) on ΓDir,

T (t, x)ν(x) = hext(t, x) on ΓNeu,





(2.9)
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where T (t, x)
def

= ∂
∂Fel

W (∇ϕ(t, x)P (t, x)−1, z(t, x),∇z(t, x))P (t, x)−T, and

0 ∈ ∂sub
ż R(z(t, x), ż(t, x)) − Q(t, x), (2.10)

where ∂sub
ż R(z, ż) denotes the subgradient of the convex function R(z, ·) : Tz(P×Rm) →

[0,∞] and Q is the thermodynamically conjugated driving force to z, i.e.,

Q
def

= − ∂
∂z

W (FP−1, z,∇z) + div
(

∂
∂(∇z)

(FP−1, z,∇z)
)
.

Using the elastic domain

Q(z) = ∂sub
ż R(z, 0) ⊂ T∗

z(P×Rm)

the Legendre-Fenchel transform shows that (2.10) is equivalent to the plastic rate equation

ż ∈ ∂χQ(z)(Q) = NQQ(z), where χQ is the indicator function and NQ the normal cone.

3 Assumptions and results

We formulate the precise assumption here. For notational simplicity we omit volume and

surface forces, i.e., we let ℓ ≡ 0. Instead, the process will be driven by time-dependent

Dirichlet data gDir(t, ·). See [FrM06] and Remark 3.5 for the simple changes to be done,

if forces have to be included. Moreover, we will assume P = SL(d) as this is the most im-

portant case and as it avoids complications involving additional terms “det P” appearing

otherwise.

The domain Ω ⊂ Rd is bounded and has a Lipschitz boundary. The Dirichlet part ΓDir of

the boundary is assumed to have positive surface measure. The time-dependent Dirichlet

data are imposed via a function gDir : [0, T ]×ΓDir → Rd, and we assume that it can be

extended to all of Rd as follows:

gDir ∈ C1([0, T ]×Rd; Rd), ∇gDir ∈ BC1([0, T ]×Rd, Lin(Rd; Rd))

and |∇gDir(t, x)−1| ≤ C for all (t, x) ∈ [0, T ]×Rd,
(3.1)

where “BC” stands for bounded and continuous. Thus, for each t ∈ [0, T ] the mapping

gDir(t, ·) : Rd → Rd is a global diffeomorphism. The desired deformation ϕ : [0, T ]×Ω →
Rd is searched in the form of a composition

ϕ(t, x) = gDir(t, y(t, x)) with y(t, ·) ∈ Y,

where the space of admissible deformations y is given by

Y
def

= { y ∈ Y | y|ΓDir
= id } with Y = W1,qY (Ω; Rd),

where qY ∈ ]d,∞[ is specified later. The composition ϕ = gDir(t, ·)◦y leads to a multi-

plicative split of the deformation gradient

∇ϕ(t, x) = ∇gDir(t, y(x))∇y(x)
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due to the classical chain rule. It is this multiplicative decomposition of the deformation

tensor that is compatible with the assumption of finite strains.

The internal variable will be z = (P, p) ∈ SL(d)×Rm), and the space Z is chosen as the

set

Z
def

= { (P, p) ∈ Z | P (x) ∈ SL(d) a.e. in Ω }
with Z =

(
LqP (Ω; Rd×d) ∩ W1,r(Ω; Rd×d

)
×

(
Lqp(Ω; Rm) ∩ W1,r(Ω; Rm)

)
,

with qP , qp, r ∈ ]1,∞[ to be specified later (see Section 6 for the physically relevant case

r = 1). Clearly, Y, Z, and Q = Y ×Z are separable, reflexive Banach spaces, and Y, Z,

and Q = Y×Z are weakly closed subsets of the corresponding Banach spaces.

The stored-energy functional E and the dissipation distance D take the forms

E(t, y, z)
def

=
∫
Ω

W (x,∇gDir(t, y(x))∇y(x)P (x)−1, z(x),∇z(x))dx,

D(z0, z1)
def

=
∫
Ω

D(x, z0(x), z1(x))dx.

To define the conditions on D and W we use the notion of a normal integrand. If U is

a topological space and B(U) its Borel σ-algebra, then a function f : Ω×U → R∞
def

=

R∪{∞} is called a normal integrand, if

(NI1) f is LΩ×B(U) measurable,

(NI2) for a.a. x ∈ Ω : f(x, ·) : U → R∞ is lower semicontinuous,

where LΩ denotes the (Lebesgue) measurable subsets of Ω. Note that for each measurable

mapping u : Ω → U the composition x 7→ f(x, u(x)) is measurable. We define the domain

dom f via

dom f
def

= { (x, u) ∈ Ω×U | f(x, u) < ∞}.

For the quasi-distances D(x, ·, ·) we impose the conditions

D : Ω × (SL(d)×Rm)2 → [0,∞] is a normal integrand; (3.2a)

∀x ∈ Ω, z1, z2 ∈ SL(d)×Rm : D(x, z1, z2) = 0 ⇐⇒ z1 = z2; (3.2b)

∀x ∈ Ω, z1, z2, z3 ∈ SL(d)×Rm : D(x, z1, z3) ≤ D(x, z1, z2) + D(x, z2, z3). (3.2c)

The conditions on W are much more involved. In particular, they include coercivity as-

sumptions and convexity assumptions to obtain lower semicontinuity. To shorten notation

we let L(d,m) def

= Rd×d×d×Rm×d and use A as a placeholder for ∇z = (∇P,∇p) ∈ L(d,m).

The function M : Rd×d → Rµd with µd =
∑d

s=1

(
d
s

)2
maps a matrix to all its minors
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(subdeterminants).

∃ W : Ω × Rµd×Rd×d×SL(d)×Rm×L(d,m) → R∞ :

(i) W is a normal integrand,

(ii) ∀ (x, F, z, A) : W (x, F, z, A) = W(x, M(F ), z, A),

(iii) ∀ (x, z) : W(x, ·, z, ·): Rµd×L(d,m) → R∞ is convex;

(3.3a)

∃ c > 0, h ∈ L1(Ω), qF , qP , qp, r > 1 ∀ (x, F, P, p, A) ∈ dom W :

W (x, F, P, p, A) ≥ h(x) + c
(
|F |qF + |P |qP + |p|qp + |A|r

)
.

(3.3b)

∃ cW
0 ∈ R, cW

1 > 0, δ > 0, modulus of continuity ω : ]0, δ[ → ]0,∞[

∀ (x, F, z, A) ∈ dom W ∀N ∈ Nδ
def

= {N ∈ Rd×d | |N−1| < δ } :

W (x, ·, z, A) is differentiable on NδF and

(i) |∂F W (x, F, z, A)FT| ≤ cW
1 (W (x, F, z, A)+cW

0 )

(ii) |∂F W (x, F, z, A)FT − ∂F W (x, NF, z, A)(NF )T|
≤ ω(|N−1|)(W (x, F, z, A)+cW

0 ).

(3.3c)

Thus, (3.3a) implies that the mapping F 7→ W (x, F, z, A) is polyconvex, cf. [Bal77]. In

(3.3c) a modulus of continuity ω is a nondecreasing function with ω(ρ) → 0 for ρ → 0+,

and NδF means {NF | N ∈ Nδ } ⊂ Rd×d. The usefulness of constitutive assumption

(3.3c)(i) is emphasized in [Bal02] and may be called a multiplicative stress control, as

the Kirchhoff stress tensor ∂F W (x, F, z, A)FT can be estimated uniformly in terms of the

energy W . Assumption (3.3c)(ii) states that we even have uniform continuity, if we use

the energy as a weight. The importance of these conditions is their full compatibility

with polyconvexity and with the physically desirable condition W (x, F, z, A) = ∞ for

det F ≤ 0 and W (x, F, z, A) → ∞ for det F → 0+, see our examples below.

We need one more condition that we give in two versions, one relating to kinematic

hardening and the other to isotropic hardening. These alternative conditions should be

seen as prototypical situations that have to be adjusted to the concrete plasticity model

one wants to investigate. The first condition is simple but more restrictive concerning the

applications in elastoplasticity:

D : Ω × (SL(d)×Rm)2 → [0,∞[ is a Carathéodory function, (3.4a)

∃h ∈ L1(Ω), C > 0, q1 ∈ [1, qP [ , q2 ∈ [1, qp[ :

|D(x, P0, p0, P1, p1)| ≤ h(x) + C
(
|P0|q1+|P1|q1+|p0|q2+|p1|q2

)
.

(3.4b)

The second condition is more complicated, since it involves D and W . We set DR(x)
def

=

{ (x, z0, z1) | D(x, z1, z2) < ∞, |z0|, |z1| ≤ R } and D(x) = domD(x, ·) = ∪R>0DR(x), and
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make the following assumptions:

r > d; (3.5a)

D(x, ·, ·) : D(x) → [0,∞[ is continuous; (3.5b)

∀M > 0 ∃R > 0 ∀x ∈ Ω ∀ z0, z1 ∈ DR(x) : D(x, z0, z1) ≤ M ; (3.5c)

there exists a v∗ ∈ Rm such that the following holds:

(i) ∃ cW
0 , modulus of continuity ω ∀ δ > 0, (x, F, P, p, A) ∈ dom W :

|W (x, F, P, p+δv∗, A) − W (x, F, P, p, A)| ≤ ω(δ)(W (x, F, P, p, A)+cW
0 ),

(ii) ∀ δ, R > 0 ∃ ρ > 0 ∀x ∈ Ω ∀z, z0, z1 :

|z−z0| ≤ ρ and (z0, z1) ∈ D(x) =⇒ (z, z1+(0, δv∗)) ∈ D(x).





(3.5d)

We are now formulate our existence result, which will be proved in Section 5.

Theorem 3.1 Let the spaces Q = Y×Z ⊂ Y ×Z = Q and the functionals E and D be

defined as above. The integrability powers qY , qF , qP , qp, and r satisfy

1

qF
+

1

qP
=

1

qY
<

1

d
, qp > 1, and r > 1. (3.6)

Moreover, the conditions (3.1), (3.2), (3.3) hold and, additionally, either (3.4) or (3.5).

Let q0 = (y0, z0) ∈ Q be a stable initial condition, i.e.,

E(0, q0) < ∞ and ∀ q̂ ∈ Q: E(0, q0) ≤ E(0, q̂) + D(q0, q̂).

Then, there exists an energetic solution q : [0, T ] → Q for (Q, E, D) with q(0) = q0 such

that q : [0, T ] → Q is measurable.

Remark 3.2 The condition r > d in (3.5a) is of technical nature. Using the ideas of

[Tho08], which are developed for a damage model, it is expected that the result can be

extended to all r > 1.

We provide two typical examples, which show that the theory is applicable to rate-

independent elastoplasticity at finite strain. In particular, all the geometric nonlinearities

arising from the multiplicative decomposition can be handled in this framework.

Example 3.3 (Kinematic hardening) We do not need the variable p ∈ Rm here, i.e.,

we set m = 0 in the above:

W (x, F, P, A) = Wel(F P−1) + c1|P |qP + c2|∇P |r,
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where the elastic part is chosen to be polyconvex in the form

Wel(F ) =





c1|F |qF + c2
(det F )γ for det Fel > 0,

∞ otherwise,
with c1, c2, γ > 0.

It is easy to see that (3.3a) and (3.3b) are satisfied. The Kirchhoff tensor K = ∂F WFT

in (3.3c) only depends on F and takes the simple form

K(F ) = c3qF |F |qF−2F FT − c4γ

(det F )γ
1.

Hence, (3.3c)(i) immediately holds with cW
0 = 0 and cW

1 = max{qF , γ
√

d}. Moreover,

condition (ii) also holds, since K can be differentiated once again giving |∂F K(F )[HF ]| ≤
CW (F )|H|.
For the dissipation density D we choose any left-invariant distance on the Lie group SL(d),

viz.,

D(x, P0, P1) = dSL(P1P
−1
0 ) with dSL : SL(d) → [0,∞[ ,

where dSL is generated by a norm R on the Lie algebra sl(d)
def

= T1SL(d) via

dSL(P1) = inf{
∫ 1

0
R(Ṗ (s)P (s)−1)ds | P ∈ C1([0, 1], SL(d)), P (0) = 1, P (1) = P1 }.

Clearly this D satisfies the plastic indifference condition (2.5). According to [Mie02] the

mapping dSL is continuous, is strictly positive for P 6= 1, satisfies the triangle inequality

dSL(P1P0) ≤ dSL(P0) + dSL(P1), and allows for the bounds

δ|Σ| ≤ R(Σ) ≤ dSL(Q eΣ) ≤ C + R(Σ) for Σ = ΣT and Q ∈ SO(d), (3.7)

with δ, C > 0, see [Mie02, HMM03]. Thus, conditions (3.2) and (3.4) are fulfilled.

This shows that Theorem 3.1 is applicable for the case of kinematic hardening.

Example 3.4 (Isotropic hardening) We now use the scalar parameter p ∈ R to mea-

sure the amount of hardening, i.e., we have m = 1 in the abstract setting of Section 2.

For the stored-energy density we take the form

W (x, F, P, p, A) = Wel(F P−1) + c1 exp(c2 p) + c5|∇P |r + c6|∇p|r + χP((P, p)),

where Wel is as in Example 3.3. Here χA is the characteristic function with χP((P, p)) = 0

for (P, p) ∈ P and ∞ otherwise. Before we specify the set P, we define, using dSL from

above, the dissipation distance

D(x, P0, p1, P1, p1) =





dSL(P1P
−1
0 ) for p1 ≥ p0+dSL(P1P

−1
0 ),

∞ otherwise,

which again satisfies (2.5).
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We let P
def

= { (P, p) | D(x, 1, 0, P, p) < ∞} and obtain P = { (R eΣ, p) | p ≥ dSL(R eΣ) }.
Using (3.7) and |R eΣ| = |eΣ| ≤ e|Σ| we find, for P = R eΣ, the coercivity estimate

c1e
c2p ≥ 1

2

(
c1e

c2p + c1e
c2δ|Σ|

)
≥ c7|p|qp + c8|P |qP

with arbitrary qp > 1 and qP = c2δ. Thus, conditions (3.2) and (3.3) hold.

We now show condition (3.5). Part (a) can be achieved by taking r > d, and (3.5b) and

(3.5c) hold automatically. For (3.5d) the vector v∗ = 1 is the obvious choice. In fact, in

(i) the estimate reduces to

∣∣ c1 exp(c2 (p+δ)) − c1 exp(c2 p)
∣∣ = ω(δ)c1 exp(c2 p) with ω(δ) = |ec2δ−1|.

Condition (ii) is also valid, since dSL is continuous.

Thus, we have shown that elastoplasticity with isotropic hardening and gradient regu-

larization is covered by Theorem 3.1, and, hence the existence of energetic solutions is

guaranteed.

Remark 3.5 Time-dependent loading can also be added to E in the form indicated in

(2.1). However, we again have to substitute ϕ(x) = gDir(t, y(x)) and assume that fext and

hext such that ℓ ∈ C1([0, T ], (W1,qY (Ω; Rd))∗) holds. Then, the above theorem remains

true without any change, see [FrM06].

4 Abstract existence result

Our existence theory for elastoplasticity is based on the abstract theory of energetic

solutions for rate-independent processes on topological spaces. This theory is developed

in [MaM05, FrM06, Mai07], see also the survey [Mie05] and the further developments in

[MRS08]. We use a slightly adapted version as we are in a concrete Banach space setting.

Thus, we will use notions like weak and strong convergence, coercivity, and boundedness,

which are not available in the general topological setting.

We consider two reflexive and separable Banach spaces Y and Z and weakly closed subsets

Y and Z, respectively. The state space for the full system is then given by Q = Y×Z ⊂
Q

def

= Y ×Z, and the states are denoted by q = (y, z). The evolution is described in

terms of the stored-energy functional E : [0, T ]×Q → R∞
def

= R ∪ {∞} and the dissipation

distance D : Z×Z → [0,∞]. The triple (Q, E, D) is called a rate-independent energetic

system.
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For the stored-energy functional E impose the general conditions

Compactness of energy sublevels:

∀ t ∈ [0, T ] ∀E ∈ R : Lt,E := { q ∈ Q | E(t, q) ≤ E } is bounded

and weakly closed in Q;

(4.E1)

Uniform control of the power ∂tE:

∃ cE
0 ∈ R ∃ cE

1 > 0 ∀ (t∗, q) ∈ dom E :

E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ cE
1 (cE

0 +E(t, q)) for all t;

(4.E2)

Uniform time-continuity of the power ∂tE:

∀ ε > 0 ∀E ∈ R ∃ δ > 0 ∀ t1, t2, q :

E(t1, q) ≤ E and |t1−t2| < δ =⇒ |∂tE(t1, q)−∂tE(t2, q)| < ε.

(4.E3)

Using a simple Gronwall argument we see that (4.E2) implies the bound

(t, q) ∈ dom E =⇒ ∀ t1, t2 ∈ [0, T ] : E(t1, q)+cE
0 ≤ ecE

1
|t2−t1|

(
E(t1, q)+cE

0

)
. (4.1)

For the dissipation distance D : Z×Z → [0,∞] we impose the general conditions

Positivity of D:

∀ z1, z2 ∈ Z : D(z1, z2) = 0 ⇐⇒ z1 = z2.
(4.D1)

Triangle inequality:

∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) + D(z2, z3).
(4.D2)

Weak lower semi-continuity:

zk ⇀ z, ẑk ⇀ ẑ =⇒ D(z, ẑ) ≤ lim infk→∞ D(zk, ẑk).
(4.D3)

Note that (4.D1) and (4.D3) imply the following condition (4.2), which is used in [FrM06].

Lemma 4.1 If (4.D1) and (4.D3) hold, then we also have the following:

if (zk)k∈N is bounded and if min {D(zk, z), D(z, zk)} → 0, then zk ⇀ z. (4.2)

Proof: To prove condition (4.2) we take any bounded sequence (zk)k∈N and z in Z. By

choosing a subsequence we find ẑ ∈ Z with zkn
⇀ ẑ and either (i) D(zkn

, z) → 0 or (ii)

D(z, zkn
) → 0. Let us consider the case (i), the case (ii) is analogous. Using (4.D3) we

find

0 ≤ D(ẑ, z) ≤ lim inf
n→∞

D(zkn
, z) = 0.

Hence, we have D(ẑ, z) = 0, and the positivity (4.D1) gives z = ẑ and zkn
⇀ z = ẑ. As

the limit z is unique, we conclude that even the whole sequence converges (without taking

a subsequence).

13



To formulate the existence result we need to impose additional conditions which provide

a suitable compatibility between the two functionals E and D. For this we define the set

of stable states at time t via

S(t)
def

= { q ∈ Q | E(t, q) < ∞, ∀ q̂ ∈ Q: E(t, q) ≤ E(t, q̂) + D(q, q̂) },
S[0,T ]

def

=
⋃

t∈[0,T ]{t}×S(t) ⊂ [0, T ]×Q.

Moreover, we define the notion of a stable sequence (tk, qk)k∈N via

sup
k∈N

Ek(tk, qk) < ∞ and qk ∈ S(tk) for all k ∈ N. (4.3)

A function q : [0, T ] → Q is called an energetic solution of (Q, E, D), if t 7→ ∂tE(t, q(t)) is

integrable and if for all t ∈ [0, T ] we have global stability (S) and energy balance (E):

(S) q(t) ∈ S(t);

(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds.

For the proof of the following existence result we refer to [FrM06, MRS08] and remark

that it is based on abstract versions of ideas developed in [DFT05]. The measurability

results was first obtained in [Mai05]. The proof is based on time-incremental minimization

as indicated in Section 1, but to keep this paper short we will not go into details here and

refer to [Mie05] for a survey.

Theorem 4.2 Let E and D satisfy conditions (4.E) and (4.D). Moreover, let the following

compatibility condition hold:

∀ stable seq. (tk, qk)k∈N with (tk, qk) ⇀ (t∗, q∗) :

∂tE(tk, qk) → ∂tE(t∗, q∗), (4.C1)

q∗ ∈ S(t∗). (4.C2)

Then, for each q0 ∈ S(0) there exists a solution q : [0, T ] → Q of the rate-independent

energetic system (Q, E, D) satisfying q(0) = q0. Moreover, the solution can be chosen

such that q : [0, T ] → Q is measurable.

Note that condition (4.C1) is slightly weaker than weak continuity of ∂tE : S[0,T ] → R, since

stable sequences have bounded energies. We may reformulate (4.C1) as weak continuity

of ∂tE when restricted to S[0,T ] ∩ { (t, q) | E(t, q) ≤ E } for any E ∈ R. Similarly, (4.C2)

is slightly weaker than weak closedness of S[0,T ].

The following abstract results are sufficient to establish the compatibility conditions (4.C1)

and (4.C2) for our application to elastoplasticity. The first result is implicitly contained in

[MaM05] but for the readers we provide a direct short proof. See [MRS08] for a discussion

of more general joint recovery sequence conditions.
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Proposition 4.3 Let E and D satisfy (4.E) and (4.D), respectively. Moreover assume

that

∀ stable seq. (tj, qj)j∈N with (tj, qj) ⇀ (t∗, q∗) ∀ q̂ ∈ Q ∃ (q̂j)j∈N :

lim sup
j→∞

(
E(tj, q̂j) + D(qj, q̂j)

)
≤ E(t∗, q̂) + D(q∗, q̂),

(4.4)

then E is weakly continuous along stable sequences and (4.C2) holds.

Proof: Let (tj, qj)j∈N be any stable sequence with (tj, q∗) ⇀ (t∗, q∗). First take q̂ = q∗

in (4.4) and obtain a sequence (qj)j. Using stability of qj we find

lim sup
j→∞

E(tj , qj) ≤ lim sup
j→∞

E(tj, q̂j)+D(qj , q̂j) ≤ E(t∗, q̂)+D(q∗, q̂) = E(t∗, q∗).

Using supj E(tj, qj) ≤ C0 and (4.1) we find

|E(tj, qj)−E(t∗, qj)| ≤
(
ecE

1
|tj−tj |−1

)
ecE

1
|tj−tj |

(
E(tj, qj)+cE

0

)
≤

(
ecE

1
|tj−tj |−1

)
ecE

1
T
(
C0+cE

0

)
.

Since E is lower semicontinuous, we find

lim inf
j→∞

E(tj, qj) = lim
j→∞

E(tj , qj)−E(t∗, qj) + lim inf
j→∞

E(t∗, qj) ≥ 0 + E(t∗, q∗).

Together with the lim sup-estimate from above we have E(tj , qj) → E(t∗, q∗), as desired.

To prove q∗ ∈ S(t∗), we now choose q̂ in (4.4) arbitrary and take (q̂j)j as stated there.

Using stability of qj we obtain

E(t∗, q∗) = lim
j→∞

E(tj , qj) ≤ lim inf
j→∞

E(tj , q̂j)+D(qj, q̂j) ≤ E(t∗, q̂)+D(q∗, q̂),

which is the desired stability.

The following Proposition 4.4, which is proved in [FrM06], shows that condition (4.C1)

on the continuity of the power is a direct consequence of Proposition 4.3. Thus, to apply

the abstract existence result it suffices to satisfy (4.E), (4.D), and (4.4).

Proposition 4.4 Let E satisfy conditions (4.E). Then, we have

tj → t∗, qj ⇀ q∗,

E(tj, qj) → E(t∗, q∗) < ∞



 =⇒ ∂tE(tj, qj) → ∂tE(t∗, q∗).

5 Coercivity and lower semicontinuity

The aim of this section is to show that the assumptions in Section 3 for the elastoplastic

problem are sufficient to establish the abstract assumption (4.E) for the stored-energy

functional E, (4.D) for the dissipation distance D, and the compatibility conditions (4.C).

Having done this, the Existence Theorem 3.1 for the elastoplastic problem is a direct

consequence of the abstract existence result of Section 4.
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5.1 Stored energy potential

To establish the coercivity of E we note that we always use the matrix norm |F | def

=

(F :F )1/2, where the matrix scalar product is defined as A:B
def

= tr(ATB) =
∑d

i,j=1 AijBij .

In particular, we have |AB| ≤ |A| |B|, which implies

|F P−1| ≥ |F |/|P | ≥ rδr/(r−1)|F |1/r − (r−1)δ|P |1/(r−1) for det P 6= 0,

where δ > 0 and r > 1 are arbitrary. In particular, Hölder’s inequality applied to

P ∈ LqP (Ω; Rd×d) and AP−1 ∈ LqF (Ω; Rd×d) gives, with 1
qY

= 1
qF

+ 1
qP

,

‖AP−1‖qF

LqF (Ω;Rd×d)
≥ ‖A‖qF

LqY (Ω;Rd×d)
/‖P‖qF

LqP (Ω;Rd×d)

≥ rδ1/(r−1)‖A‖qY

LqY (Ω;Rd×d)
− (r−1)δ‖P‖qP

LqP (Ω;Rd×d)
,

(5.1)

where r = qF /qY .

We now integrate the coercivity assumption (3.3b) over Ω. Exploiting the bound on ∇g−1
Dir

in (3.1) and (5.1) with δ > 0 sufficiently small we obtain

E(t, y, P, p) ≥
∫

Ω

hdx + c
(
‖∇gDir∇yP−1‖qF

LqF +‖P‖qP

LqP + ‖p‖qp

Lqp+‖(∇P,∇p)‖qr

Lr

)

≥ c̃
(
‖∇gDir∇y‖qY

LqY + ‖(P, p)‖qZ

Z

)
− C

≥ ĉ
(
‖∇y‖qY

LqY /‖∇g−1
Dir‖qY

L∞ + ‖(P, p)‖qZ

Z

)
− C,

(5.2)

where qZ = min{qP , qp, r}. This shows that E(t, qk) → ∞ whenever ‖qk‖Q → ∞. Hence,

all sublevels of E(t, ·) are bounded uniformly in t ∈ [0, T ].

Second, we establish the lower semicontinuity of E(t, ·). For this we use the following

result that relies on the weak continuity of the minors of gradients, cf. [Res67, Bal77].

Proposition 5.1 (Convergence of minors) The three sequences (Gk)k∈N, (yk)k∈N and

(Pk)k∈N satisfy

Gk → G in L∞(Ω; Rd×d), yk ⇀ y in W1,qY (Ω; Rd),

Pk → P in Lbq(Ω; Rd×d) and det Pk ≡ 1.

If qY > d, q̂ ≥ 1, and 1
qY

+ d−1
bq

≤ 1, then all minors of the product Gk ∇yk P−1
k converge

weakly, i.e.,

M(Gk ∇yk P−1
k ) ⇀ M(G∇y P−1) in L1(Ω; Rµd).

Proof: For a matrix F ∈ Rd×d we introduce the matrix Ms(F ) ∈ R

(
d
s

)
×
(

d
s

)
consisting

of all minors of order s. Then, the weak continuity of minors of gradients gives

Ms(∇yk) ⇀ Ms(∇y) in LqY /s(Ω; R

(
d
s

)
×
(

d
s

)
). (5.3)
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Of course, strong convergence Hk → H in LqH(Ω; Rd×d) and 1 ≤ s ≤ qH imply strong

convergence of the minors, i.e., Ms(Hk) → Ms(H) in LqH/s.

We prove the statement for d ∈ {1, 2, 3} first and then the general case. For d = 1 the

result is trivial as the product of a weakly convergent sequence times several strongly

convergent sequences is again weakly convergent.

For d = 2 the result is again trivial for s = 1 as M1(F ) = F . Since M2(F ) = det F and

det Pk ≡ 1, we have M2(Gk∇ykP
−1
k ) = det Gk det∇yk and the result follows again.

For d = 3 we have M1(F ) = F and M3(F ) = det F , and we may identify M2(F ) with

the cofactor matrix cof F , which satisfies cof F = (det F ) F−T for invertible F . Using

det P ≡ 1 we have P−1 = (cof P )T. Thus, we have

M1(Gk∇ykP
−1
k ) = Gk∇yk (cof Pk)

T, cof(Gk∇ykP
−1
k ) = cof Gk cof ∇yk PT

k ,

det(Gk∇ykP
−1
k ) = det Gk det∇yk.

We again see that in all cases s ∈ {1, 2, 3} we have the desired weak convergence in

Lσs > 1 where 1
σs

= s
qY

+ d−s
bq

.

For d ≥ 4 one needs the general definitions of the minor matrix Ms and the cofactor

matrix Ks, see [Šil02, App. A] or [MiM06, Lem. 2.4]. In particular, we have Ms(AB) =

Ms(A)Ms(B) and M(P−1) = 1
det P

Kd−s(P )T if det P 6= 0. Moreover, Ms and Ks are

polynomial and are homogeneous of degree s. Thus, we obtain the desired convergence

as above from Ms(Gk∇ykP
−1
k ) = Ms(Gk)Ms(∇yk)Kd−s(P )T and the weak and strong

convergence properties.

Theorem 5.2 (Weak lower semicontinuity) The assumptions (3.1), (3.3a), (3.3b),

and (3.6) hold. Then, E(t, ·) : Q → R∞ is weakly lower semicontinuous with respect to

the topology of Q = Y ×Z.

Proof: We take a sequence qk = (yk, Pk, pk) ⇀ (y, P, p) in Q. The weak convergence of

Pk in LqP ∩ W1,r implies by the compact embedding of W1,r into Lr strong convergence

in Lr. As weak convergence in LqP implies boundedness, the classical interpolation yields

strong convergence in Lq for all q ∈ [1, qP [. Similarly, pk strongly convergences in Lσ for

all σ ∈ [1, qp[.

Using yk ⇀ y in W1,qY (Ω) and qY > d we have yk → y in C0(Ω; Rd). Hence, for Gk
def

=

∇g(t, yk(x)) assumption (3.1) gives Gk → G in C0(Ω; Rd). Since from qY > d and (3.6)

we have qP > d, we can apply Proposition 5.1 by choosing q̂ ∈ [d, qP [.

Now, we use that (Pk, pk) → (P, p) strongly in Ld×Lr and that
(

M
(
∇gDir(t, yk(·))∇yk P−1

k

)
,∇Pk,∇pk

)
⇀

(
M

(
∇gDir(t, y(·))∇y P−1

)
,∇Pk,∇pk

)
.

Property (3.3a) states that the integrand has the form W : (x, F, z, A) 7→ W(x, M(F ), z, A)

where W is a normal integrand that is convex in (M, A). Hence, together with the lower
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bound (3.3b) the classical lower semicontinuity results (cf. e.g. [Eis79] or [Str90, Ch. I.1])

give the desired result.

Since the last mentioned references only treat the case that W is a Carathéodory function,

we may obtain our more general result for normal integrands as follows. For ε > 0 define

the Yosida-Moreau regularization

Wε(x, M, z, A) = inf{W(x, U) + 1
ε
|(M, z, A)−U |2 | U ∈ Rµd×Rm×L(m,d) }.

Now, Wε is a Carathéodory function, and it approximates W pointwise, monotonically

from below. Moreover, the convexity property in (M, A) is maintained. Thus, we may

define functionals Iε : Q → R∞ by replacing W in E(t, ·) by Wε. Each Iε is weakly lower

semicontinuous and Iε(q) is nondecreasing in ε. Using the monotone convergence lemma

of Beppo Levi, we find Iε(q) → E(t, q). Thus, for qk ⇀ q∗ and each ε > 0 we have

Iε(q∗) ≤ lim inf
k→∞

Iε(qk) ≤ lim inf
k→∞

E(t, qk)
def

= α.

In the limit ε → 0+ we find E(t, q∗) ≤ α as desired.

Combining the coercivity estimate (5.2) with this weak lower semicontinuity result we

have established the abstract condition (4.E1).

Third, we investigate the differentiability of E(t, q) with respect to time. For this we fix

q = (y, P, p) ∈ Q such that E(0, q) < ∞ and introduce the Kirchhoff tensor

Kq(x, F )
def

= ∂F W (x, FP (x)−1, P (x), p(x),∇P (x),∇p(x))(FP−1)T ∈ Rd×d.

Theorem 5.3 (Power of the boundary conditions) If assumption (3.1) and (3.3) hold,

then E satisfies (4.E2) and (4.E3), i.e., there exist constants cE
0 ∈ R and cE

1 > 0 and a

modulus of continuity ω such that the following holds:

For q ∈ Q with E(0, q) < ∞, we have E(·, q) ∈ C1([0, T ]) with

∂tE(t, q) =
∫
Ω

Kq(x,∇gDir(t, y(x))∇y(x)):V (t, y(x))dx,

where V (t, y) =
(
∇gDir(t, y)

)−1 ∂
∂t
∇gDir(t, y),

(5.4)

and the estimates

|∂tE(t, q)| ≤ cE

1

(
E(t, q)+cE

0

)
and |∂tE(t1, q)−∂tE(t2, q)| ≤ ω(|t2−t1|)

(
E(t1, q)+cE

0

)
.

Proof: First, observe that (i) in (3.3c) provides δ > 0 and C > 1 such that

∀ (x, F, z, A) ∈ Ω×Rd×d×SL(d)×Rm×L(m,d) ∀N ∈ Nδ :

(W (x, NF, z, A)+cW
0 ) + |∂F W (x, NF, z, A)F T | ≤ C

(
W (x, F, z, A)+cW

0

)
,

(5.5)

see [Bal02, Lem. 2.5]. We fix (t∗, q) ∈ [0, T ]×Q with E(t∗, q) < ∞. Hence, the function

w(t, ·) : Ω → R∞; x 7→ W (x,∇gDir(t, y(x))∇y(x)P (x)−1, P (x), p(x),∇P (x),∇p(x))
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is finite for t = t∗ and x ∈ Ω̃, where Ω\Ω̃ has measure 0. For x ∈ Ω̃, (5.5) and (3.1) shows

that t 7→ w(t, x) is differentiable near t∗ with derivative

ẇ(t, x) = Kq(x,∇gDir(t, y(x))∇y(x)P (x)−1):V (t, y(x)).

Because of (3.1) V is uniformly bounded on [0, T ]×Ω and by (5.5) we conclude that E(t, q)

is differentiable for t near t∗, see e.g. [Rou05, Thm. 1.29].

Using (3.3c)(i) we find the estimate

|∂tE(t, q)| ≤
∫
Ω
|Kq(x,∇gDir(t, y(x))∇y(x)P (x)−1)| |V (t, y(x))|dx

≤
∫
Ω

cW
1

(
W (x,∇gDir(t, y(x))∇y(x)P (x)−1, z, A)+cW

0

)
dx V ≤ cE

1

(
E(t, q)+cE

0

)
,

where V = ‖V (·, ·)‖L∞([0,T ]×Ω), cE
1 = VcW

1 , and cE
0 = VcW

1 cW
0 |Ω|. As this estimate is

independent of t, a simple Gronwall estimate shows that E(t, q) is finite for all t ∈ [0, T ]

if it is finite for one t, cf. (4.1). Thus we have proved (4.E2).

To show (4.E3), we use formula (5.4) and that the sublevel L0,E = { q | E(0, q) ≤ E }
is bounded in Q. In particular, there exists RE such that all q = (y, z) ∈ L0,E satisfy

‖y‖L∞ ≤ RE . We set BE = { ŷ | |ŷ| ≤ RE } ⊂ Rd and denote by ωV the modulus of

continuity of the mapping V : [0, T ] → L∞(BE ; Rd×d). Moreover, (3.1) guarantees that

there is a modulus of continuity ωG such that
∥∥∇gDir(t2, y(·))∇gDir(t1, y(·))−1−1

∥∥
L∞(BE ;Rd×d)

≤ ωG(|t2−t1|).

For t1, t2 ∈ [0, T ] and q ∈ L0,E we now estimate

|∂tE(t1, q)−∂tE(t2, q)|
≤

∫
Ω
|Kq(x,∇gDir(t1, y(·))∇yP−1)−Kq(x,∇gDir(t2, y(·))∇yP−1)| |V (t1, y(·)|dx

+
∫
Ω
|Kq(x,∇gDir(t2, y(·))∇yP−1)|V (t1, y(·)−V (t2, y(·)|dx

≤
∫
Ω

ω
(∣∣∇gDir(t2, y(·))∇gDir(t1, y(·))−1−1

∣∣
)(

Wq+cW
0

)
dx V

+
∫
Ω

cW
1

(
Wq+cW

0

)
ωV (|t2−t1|)dx

≤
(
E(t1, q)+cW

0 |Ω|
)(

V ω
(
ωG(|t2−t1|)

)
+ cW

1 ωV (|t2−t1|)
)
,

where ω is defined in (3.3c)(ii). This is the desired result.

5.2 Dissipation potential

The dissipation distance D on Z is defined via D(x, z0, z1). Condition (3.2a) implies that

D is well defined and the positivity (4.D1) follows from (3.2b). Integrating the pointwise

triangle inequality (3.2c) we see that (4.D2) holds.

Using again that zk ⇀ z in Z implies zk → z in Lr(Ω) and that D is nonnegative and

lower semicontinuous in both z-variables the classical lower semicontinuity theory implies

the lower semicontinuity of D, namely (4.D3).
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5.3 Compatibility conditions (4.C)

The compatibility conditions (4.C) are derived via Proposition 4.3. Hence, it remains to

show that (4.4) can be derived from the alternative conditions (3.4) or (3.5).

Case (3.4) is conceptually simpler than the other one. Since D is a Carathéodory function

it is continuous in the variables (z0, z1). Moreover, the upper bounds on D imposed in

(3.4b) implies that D maps Z×Z into [0,∞[. Since weak convergence of zk = (Pk, pk) in

Z implies strong convergence of Pk in Lq1(Ω; Rd×d) and of pk in Lq2(Ω; Rm), a classical

argument shows that D is weakly continuous:

zk ⇀ z, ẑk ⇀ ẑ =⇒ D(zk, ẑk) → D(z, ẑ).

Now (4.4) is obviously satisfied by letting q̂j = q̂.

Case (3.5) is more involved. We consider a weakly convergent stable sequence (tk, qk) ⇀

(t∗, q∗) and arbitrary test state q̂ ∈ Q. If E(t∗, q̂) = ∞ or D(q∗, q̂) = ∞ there is nothing

to show as we may take any sequence q̂j . Hence, we assume D(q∗, q̂) < ∞ from now on.

From r > d we know that Z embeds into C0(Ω); hence there exists R > 0 such that zj , z∗,

and ẑ lie in the ball of radius R−1 in Rd×d×Rm. From condition (ii) of (3.5d) we obtain

a function a : ]0, 1[ → ]0, δ0[ with a(ρ) → 0 for ρ → 0+, such that for ρ ∈ ]0, 1[ estimate

(ii) in (3.5d) holds for this R and δ ≥ a(ρ).

Now, we set ρk = ‖Pk−P∗‖L∞+‖pk−p∗‖L∞, δk = a(ρk), and q̂k = (ŷ, P̂ , p̂+δkv
∗). Using

r > d and qk ⇀ q∗ we find ρk, δk → 0, and by construction we have (zk(x), ẑk(x)) ∈
DR(x) on Ω. Hence, the continuity of D on DR (cf. (3.5b)) gives D(x, zk(x), ẑk(x)) →
D(x, z∗(x), ẑ(x)) pointwise. Exploiting the uniform bound (3.5c) we find (b) in the fol-

lowing statement:

(a) E(tk, q̂k) → E(t∗, q̂∗), (b) D(zk, ẑk) → D(z∗, ẑ). (5.6)

It remains to establish (a), then (4.4) holds with “lim sup” being a “lim” and with equality.

For (a) first note that as above we may consider tk = t∗ by the uniform Lipschitz continuity

on sublevels of E, cf. (4.1). Since q̂ and q̂k differ only by the term (0, 0, δkv
∗), we can

employ part (i) of (3.5d) to obtain

|E(t∗, q̂k)−E(t∗, q̂)| ≤
∫

Ω

ω(δk)
(
Wbq+cW

0

)
dx ≤ ω(δk)

(
E(t∗, q̂)+cW

0 |Ω|
)
,

which is the desired convergence (a).

6 Generalizations and discussion

The conditions (3.4) and (3.5) are given to fit the Examples 3.3 and 3.4, respectively.

Of course, these conditions can be modified to match other constitutive assumptions.
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The essential point for the mathematical analysis is that the stored-energy density W is

coercive in the gradients of the internal variables z = (P, p) while the dissipation distance

D only depends on the point values of z. Thus, it is easily possible to include models

of crystal plasticity as discussed in [OrR99, Gur00, Sve02] and formulated in the present

framework in [HMM03, Mie03b] (see Ex. 3.3 and Sect. 3.4.4 in the latter work).

Of course, the regularization via the gradient ∇z = (∇P,∇p) could be replaced by coer-

civity in a weaker norm that still guarantees a compact embedding into Lq(Ω). On the

one hand we may use the physically more desirable growth rate r = 1 (cf. [CoO05]) by

using the space BV(Ω) instead of W1,r(Ω). Using the compact embedding of BV(Ω) into

Lq(Ω) for each q ∈ [1, d/(d−1)[ the proof of Theorem 3.1 still works for the case that (3.4)

holds. On the other hand, we may use a regularizing term like
∫

Ω

κ
|∇z(x)−∇z(x̃)|r

|x − x̃|d+rs
dxdx̃,

where κ > 0, s ∈ ]0, 1[, and r > 1. Then, we have coercivity in the Sobolev-Slobodetsky

space Ws,r(Ω). For s − d/r > 0 we have a compact embedding into C(Ω) and Theorem

3.1 still holds with either (3.4) or (3.5), if (3.5a) is strengthened to r > d/s.

However, it remains an open problem to generalize our result to the case treated in

[MiM06], where only the term G = (curl P )PT is used for regularization. At the moment

the best we can do in this direction is to use a regularizing term in the form
∫

Ω

κ1|(curlP )PT|r + κ0|∇P |r dx with 0 < κ0 ≪ κ1.

To treat the more interesting case κ0 new ideas have to be developed.

From the general theory of energetic solutions for rate-independent systems (cf. [MaM05,

FrM06] it is clear that the Lie-group structure of P is not essential at all. In the contrary,

it just makes the analysis more difficult. The only importance is that the dissipation

distance D is a quasi-metric (i.e., it satisfies (3.2)). Some engineering models don’t take

the plastic spin into account and assume that P represents a “plastic metric” taken from

S(d)
def

= {G ∈ Rd×d | G = GT, det G > 0 } ⊂ GL+(d),

which may be considered as a symmetric space but not a Lie group. Introducing a dissipa-

tion potential R(G, Ġ) = R̂(R−1/2ĠR−1/2) for some convex and 1-homogeneous functional

R̂ : Rd×d
sym → [0,∞[, the dissipation distance reads D(G1, G2) = R̂

(
log(G

−1/2
1 G2G

−1/2
1 )

)

and our theory is again applicable.

In cases of single-crystal plasticity with infinite latent hardening the set of plastic tensors

does not even have a manifold structure. Let Sa = sa⊗ma, a = 1, . . . , N , be the N glide

systems with sa, ma ∈ Rd and sa·ma = 0. Then, we choose

P ∈ S
def

=
N⋃

a=1

{ 1 + γaSa | γa ≥ 0 },
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and the dissipation distance D : S×S → [0,∞] with

D(1 + γSa, 1 + γ̃Sb) =





κb(γ̃−γ) for a = b and γ̃ ≥ γ,

∞ elsewhere.

Our theory is again applicable since the set Z = {P ∈ LqP (Ω) ∩ W1,r(Ω) | R ∈ S a.e. } is

weakly closed.

Finally we address the question of self-interpenetration. The property W (F, · · · ) = ∞
for det F ≤ 0 implies det∇y(t, x) > 0 a.e. in Ω which means that there is no local

self-interpenetration. Following [CiN87] (see also [MaM07] for a similar approach using

currents), we may define the “non-self-interpenetration” version of the space Y of admis-

sible deformations via

Ynsi
def

= { y ∈ W1,qY (Ω; Rd) | y|ΓDir
= id, det∇ ≥ 0 a.e. in Ω,

∫
Ω

det∇ydx ≤ vol(y(Ω)) }.

In [CiN87] it is shown that Ynsi is weakly closed in W1,qY (Ω; Rd) if qY > d (see also [Bal02]

for further discussion), and hence our theory works exactly the same way if Y is replaced

by Ynsi.
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