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Abstract

We study semilinear parabolic systems on the full space R™ that admit a
family of exponentially decaying pulse-like steady states obtained via trans-
lations. The multi-pulse solutions under consideration look like the sum of
infinitely many such pulses which are well separated. We prove a global center-
manifold reduction theorem for the temporal evolution of such multi-pulse so-
lutions and show that the dynamics of these solutions can be described by an
infinite system of ODEs for the positions of the pulses.

As an application of the developed theory, we verify the existence of Sinai-
Bunimovich space-time chaos in 1D space-time periodically forced Swift-
Hohenberg equation.

1 Introduction

It is well-known that even relatively simple dynamical systems generated by low-
dimensional systems of ODEs can demonstrate very complicated irregular behavior
(the so-called deterministic chaos). It is also well-known that the temporally local-
ized solutions (pulses, homoclinic loops) play a crucial role in the modern theory of
the deterministic chaos, see [KaHa95| and references therein. The main feature that
makes these structures so important is the ability to construct more complicated
multi-pulse structures by taking the appropriate sums of "shifted" pulses. In par-
ticular, very often the existence of a single pulse allows to find the huge family of
multi-pulses parameterized by the elements of the Bernoulli scheme M := {0, 1}%
such that the evolution operator will be conjugated with the shift operator on M!.
Thus, the existence of a single (transversal) pulse allows to verify e.g., that the
topological entropy of the system is strictly positive and to obtain the description
of the deterministic chaos in terms of Bernoulli shifts on M®.

The dynamical behavior of infinite-dimensional systems generated by evolution par-
tial differential equations are usually much more complicated (and essentially less un-
derstood), since, in addition to irregular temporal dynamics, the formation of com-
plicated spatial patterns usually takes place (the so-called spatial chaos phenomena)
and, as a result of irregular evolution of spatially-chaotic structures, the so-called
space-time chaos may appear. These phenomena are genuinely infinite-dimensional
and can demonstrate the essentially higher level of complexity which is not observ-
able in the classical finite-dimensional theory, see e.g. |[CoEc99a, Zel03b, Zel04] for
the case of dissipative dynamics in unbounded domains.



Nevertheless, analogously to the finite-dimensional case, localized structures are
very important for the understanding the space-time dynamics generated by PDEs.
Moreover, in contrast to the finite-dimensional case, here we have the additional
spatial variables, such that space, time or space-time localized solutions can be a
priori considered. The most studied and, in a sense, most interesting is the case
of space-localized structures, in particular, spatially localized equilibria or traveling
solitons or multi-solitons, especially in the case of integrable Hamiltonian systems,
where these objects can be completely described by the inverse scattering methods.

However, the existence of soliton-like solutions is not restricted by integrable systems
and takes place for many PDEs which are far from being integrable, e.g., for the
so-called dissipative systems including the classical pattern formation equations like
Ginzburg-Landau, Swift-Hohenberg, Cahn-Hilliard equations etc. Thus, spatially
localized structures are one of the typical phenomena that arise in spatially extended
systems under the pattern formation including hydro- and magneto-hydrodynamics,
quantum physics, mathematical biology etc., see [AfMi01, BGL97, BIW02, CMat03,
Cou02, DGK98, PelTr01, REzZW00, San02].

On the other hand, analogously to the homoclinic loops in ODEs, spatially local-
ized solutions (=spatial pulses) can be considered as elementary building blocks
for constructing more complicated multi-pulse structures by taking a sum of spa-
tially well-separated pulse solutions and describing the space-chaos phenomena, see
[ABC96, AfMi01, Ang87, Bab00, DFKM96, MiHo88, PelTr01, Rab93, REzZWO00,
San93|. Furthermore, even if the initial spatial pulse is independent of time, for
general pulse configurations the associated multi-pulse solution is not an equilib-
rium due to the weak "tail" interaction between pulses, but evolves slowly in time
(in particular, this evolution can be temporarily chaotic and even produce the so-
called Sinai-Bunimovich space-time chaos as it is shown below on a model example of
1D Swift-Hohenberg equation with space-time periodic external forcing). Thus, the
ability to give an effective description of these weak tail interactions between pulses
becomes crucial for the understanding of multi-pulse structures and their evolution.

On the physical level of rigorisity, the required slow evolution equations for multi-
pulse structures can be relatively easily obtained by inserting the multi-pulse con-
figuration w(¢, x) in the form

u(t,z) = Z Vi(z—¢&(t)) + “small”

(where V' = V() is the initial pulse and &;(t) is the position of the center of the i-th
pulse at time t) into the equation considered and making the asymptotic expansion
with respect to the large parameter L = inf,,; ||, — &;||. Then, dropping out the
(formally) higher terms in this expansion, one arrives at a reduced system of ODEs
for the pulse centers &(t).

We however note that, although the above expansions are widespread in the physical
literature (see e.g. [Cou02, SkV102, TVMO03, VIFKKR99, VIKRo01, VIMSF02]), the
rigorous justification of this reduction (based on the center manifold or the Liapunov-



Schmidt reduction technique) is a highly nontrivial mathematical problem which is
solved only for rather particular cases.

Indeed, to the best of our knowledge up to the moment the general center manifold
reduction was obtained only for the finite number of pulses (or for space-periodic
pulse configurations) and only in the case of one spatial direction, see [Ei2002,
San93, San02|. Moreover, even in that case, only the local center manifold reduction
theorem (in a small neighborhood of a fized pulse configuration) is available in
the literature, see |[Ei2002|. This theorem is mainly adapted for the study of the
multi-pulse equilibria and their stability and is clearly insufficient for describing
the multi-pulse evolution if the pulses undergo large changes of their position. A
global multi-pulse center manifold theorem with one manifold for all admissible
pulse-configurations (also for finite number of pulses and 1D case) is announced to
be proven in [Sand|. We also note that for the particular case of multi-kinks in
1D Chafee-Infante equations the infinite number of kinks has been considered in
[EckR98].

The main aim of the present paper is to give a systematic study of the above jus-
tification problem in the case of parabolic dissipative systems in R™ for an infinite
number of pulses. Moreover, keeping in mind the applications to the space-time
chaos problem, we study also space-time periodic perturbations of the multi-pulse
structures.

To be more precise, we consider the following evolutionary problem in x € R™:

Oru+ Apu + P(u) = uR(t, z,u) (1.1)

where u = (u',--- ,u™) is the unknown vector-valued function, Ay is a positively

defined uniformly elliptic operator of order 2 in [L?(R™)]™ with constant coefficients.
®(u) := ®(u, Dyu, - -, D*~'u) is a nonlinear interaction function which is assumed
to be smooth, with ®(0) = ®'(0) = 0. R(t,r,u) = R(t,z,u,---,D* ) is a
perturbation which is also assumed to be smooth with respect to u, - - - , D*~!u, and
i is a small perturbation parameter. We consider this equation in the phase space X},
of spatially bounded functions (and do not assume any decay conditions as |z| — 00).
To be more precise, X, = W2 /PP(R7) with large p (or X, = CZ~H(R™)), see
Section 3 for rigorous definitions.

Our basic assumption is that the unperturbed equation
Ou+ Aou + P(u) =0 (1.2)

possesses a pulse equilibrium V = V (), [V(z)| < Ce ¥l for some o > 0. Thus,
we assume that the initial spatially localized structure is a priori given and will
concentrate ourselves on the study of the multi-pulse structures generated by V.

We recall that equation (1.2) is spatially homogeneous and consequently possesses
a group of spatial shifts {7¢,& € R"}, (Zeu)(x) := u(x — £) as a symmetry group.
Moreover, in addition to these shifts equation (1.2) is often invariant with respect
to some rotations v := (7,72) € SO(n) x SO(m) that generate a linear action on
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[C=(R™)]™ via

(Tyu)(z) := yu(nx). (1.3)
In order to take into account this typical situation in our general theory, we assume
that equation (1.2) is invariant with respect to the action of a Lie group G of
symmetries which is a skew product of the shifts R" and some (compact) subgroup G.
For simplicity, this compact Lie group is assumed to be a subgroup of SO(n)x.SO(m)
(see Section 2 for slightly more general symmetry groups). Thus, the Lie group of
symmetries {7p, ' € G} of equation (1.2) is also assumed to be a priori given.

Therefore, the initial pulse is not isolated, but generates the whole manifold P; of
shifted and rotated pulses

Py :={Vpr =TV, T € G} (1.4)

(the so-called one-pulse manifold) parameterized by the elements I of the symmetry
group G. To be more precise, P, is a finite-dimensional submanifold of the phase
space diffeomorphic to the factor group G/ Ste(V), where Stg (V) is a stabilizer of
V in G. In order to avoid the technicalities, we assume that this stabilizer is trivial

St (V) = {Id}. (1.5)

and, consequently, Py is diffeomorphic to G (we emphasize that G is not necessar-
ily the whole group of symmetries of (1.2), so (1.5) does not seem to be a great
restriction and is usually satisfied in applications.

Finally, we assume that the invariant one-pulse manifold Py is normally-hyperbolic
with respect to equation (1.2), i.e., in the exponential trichotomy (V,Vy,V_) for
linearized equation

v+ A+ P (V) =0 (1.6)

(which always exists due to the Fredholm property, see Section 2) the neutral sub-
space V) coincides with the tangent plane TyP; to the manifold P; at V:

Vo = Ty Py (1.7)

We recall that the neutral subspace is always finite dimensional (Fredholm property)
and the tangent space Ty Py is always contained in it, so assumption (1.7) can be
considered as a non-degeneracy assumption (= minimal degeneracy assumption) and
is also natural if the initial pulse is not “bifurcating”.

We are now able to introduce the main object of the paper — the multi-pulse manifold
P(L):={m=> Vi, T;:= (&%) €G, |&—Ellen>2L, i#5}  (18)
j=1

which describes all possible multi-pulse configurations consisting of well-separated
(2L-separated) pulses. We prove in Section 4 that, for sufficiently large L, P(L) is,
indeed, a submanifold of the phase space with the boundary

OP(L):=={meP(L—¢), e>0 sup |&—¢&l| =2L}.

i,jEN, i#]



Thus, a multi-pulse configuration is determined by well-separated sequence {I';}22,
of symmetry group elements and, therefore, its time evolution can be described by
symmetry group-valued functions {I';(¢)}32, € G.

The following theorem, which gives the center manifold reduction for equation (1.1)

near the manifold P(L) to the appropriate equation on P(L) can be considered as
the first main result of the paper.

Theorem 1.1. Let the above assumptions hold and let | € N be arbitrary. Then, for

a sufficiently large L and sufficiently small perturbation parameter p, there exist a
time-dependent vector field f(t,-) on P(L) and a function W(t,-) : P(L) — Xy, which
are C'-smooth and uniformly small, viz.,

HECE o + W llen < Cle™ +u) (1.9)

and satisfy the following properties:
1) Every solution m(t) of the reduced equation

d
—m(t) = (¢, m(?)) (1.10)

belonging to P(L + 1) C P(L) for any t € [1,T], generates a multi-pulse solution of
the initial problem (1.1) via

u(t) :=m(t) + W(t,m(t)), te[r,T]. (1.11)

2) Vice versa, every solution u of (1.1) which is close to the manifold P(L) for all
t € R can be represented in the form (1.11) where m(t) is an appropriate solution
of the reduced equation (1.10).

The reduced equations (1.10) can be rewritten in “coordinates” I';(t) as follows

d == :
Sl =4(tD), jeN, (1.12)
where T 1= {L;}32, and, consequently, gives the infinite system of ODEs describing
the weak temporal evolution in the well-separated multi-pulse structures.

Moreover, we give a simple formula for the leading terms in the asymptotic expansion
of the vector field f as L. — oo and compute them explicitly for a number of equations
of mathematical physics including the 1D Ginzburg-Landau and Swift-Hohenberg
equations, see Section 10. In particular, let us consider the case of Swift-Hohenberg
equation

Ou+ (02 +1)*u+ fPu+ f(u) =0, B#0. (1.13)

Since the equation is one-dimensional and scalar, we do not have here any rotations
and the symmetry group coincides with the 1D shifts G = R. We assume the
existence of the symmetric normally hyperbolic pulse equilibrium V', V(z) = V(—x),
for that equation (see [BGLI7]| and [GIL94] for the sufficient conditions which give its
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existence). Thus, the multi-pulse configuration is determined now by the sequence
{612 oo €R, &1 — & > 2L of the positions of pulse centers. Then, the reduced
pulse-interaction equations read:

d
%53 Mole (& =E-) sin(w(&; — §-1) + ¢o)—
— e O sin(w(€ — ) + do)] + O(e ), (114)

where A\ = a +iw solves (A\*+1)? + 3% = 0 and the amplitude M, # 0 and phase ¢
are some constants depending on the nonlinearity f, but are independent of L.

We are also interested in the dynamics of (1.1) near the constructed center mani-
fold. In particular, in the spectrally stable case (i.e., where the subspace V. in the
trichotomy for (1.6) is trivial) we verify the exponential convergence to the manifold
and the existence of an asymptotic phase.

Theorem 1.2. Let the assumptions of previous theorem hold and let, in addition,
the pulse V' be spectrally stable. Then, for every initial data u(T) = u, close to the
manifold P(L), the corresponding solution u(t) of (1.1) exists and remains close to
that manifold fort > 7 as long as it remains far from the boundary OP(L). Moreover,
there exists a solution ug(t) in the form (1.11) for the appropriate solution m of
(1.10) such that

[u(t) = uo()lx, < Ce 7, 4 >0

where the constants C' and ~ are independent of the concrete choice of the initial
data u,, t and 7. Thus, the dynamics of (1.1) near P(L) is completely determined
by reduced equations (1.10).

Furthermore, keeping in mind the applications to the space-time chaos problem,
we have also verified the continuity of the functions f and W in the local topology
CZ~1(R") and studied the relations between hyperbolic trajectories of the whole
and of the reduced systems and their stability, see Section 9.

Although we consider in the paper only the case of whole physical space 2 = R",
under the minor changes the method is applicable for any sufficiently large regular
domain € if we assume that the pulses are situated sufficiently far from the boundary.
Furthermore, one can also consider the structures generated by different pulses and
even with different symmetry groups. Moreover, one can relax also assumption (1.7)
and consider multi-pulse structures with bifurcating pulses. In this case, together
with the global symmetry group variables I" the "state" of the pulse will be described
also with the additional "small" bifurcation variables associated with / Ty P.

Finally, the developed methods are also applicable for the case where the initial
spatially localized structure is time-dependent, e.g. traveling wave solutions or, more
general, spatially localized solutions with hyperbolic (chaotic) temporal dynamics.
We return to that in the subsequent work.

The rest of the paper is devoted to the application of the above developed theory to
the problem of detecting and describing space-time chaos in the concrete equations
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of mathematical physics. We recall that, in spite of a huge amount of numerical and
experimental data on various types of space-time irregular and turbulent behavior
in various physical systems, see e.g. [GEP98, Man90, Man95, REzW00| and refer-
ences therein, there are very few rigorous mathematical results on this topic and
mathematically relevant models describing this phenomenon.

The most simple and natural known model for this phenomenon is the so-called
Sinai-Bunimovich space-time chaos which was initially defined and found for discrete
lattice dynamics, see |AfFe00, BuSi88, PeSi88, PeSigl|. We also recall that this
model consists of a Z™-grid of temporally chaotic oscillators coupled by a weak
interaction. Then, if the single chaotic oscillator of this grid is described by the
Bernoulli scheme M! := {0,1}%, the uncoupled system naturally has an infinite-
dimensional hyperbolic set homeomorphic to the multi-dimensional Bernoulli scheme
M= {0, 1}Zn+1 = (M1Y)Z". The temporal evolution operator is then conjugated
to the shift in M™*! along the first coordinate vectors and the other n coordinate
shifts are associated with the spatial shifts on the grid. Finally, due to the stability
of hyperbolic sets, the above structure survives under sufficiently small coupling.
Thus, according to this model, the space-time chaos can be naturally described by
the multi-dimensional Bernoulli scheme M™T1,

It is worth to note that although this model is clearly not relevant for describing
the space-time chaos in the so-called fully developed turbulence (since it does not
reproduce the typical properties like energy cascades and Kolmogorov’s laws which
are believed to be crucial for understanding of this phenomenon), it can be useful
and relevant for describing weak space-time chaos and weak turbulence (close to
the threshold) where the generation and long-time survival of such global spatial
patterns is still possible.

Unfortunately, even for this simplest model, the verification of such space-time chaos
in continuous media described by PDEs occurs to be an extremely complicated
problem. Moreover, even the existence of a single PDE that possesses an infinite-
dimensional Bernoulli scheme was a long-standing open problem. The first examples
of such PDEs (in the class of reaction-diffusion systems), have been recently con-
structed in [MieZel04]. However, the method used in that paper is based on a direct
modulation of a spatial grid by the structure of the nonlinearity and leads to a very
special (and rather artificial) nonlinear interaction function, which is far from the
classical nonlinearities arising in physical models.

In this paper we present an alternative method of finding Sinai-Bunimovich space-
time chaos in continuous media based on the multi-pulse center manifold reduction
theorem formulated before. Indeed, reduced equations (1.12) for the multi-pulse
evolution have the form of spatially discretized dynamical system close to dynamical
systems on lattices. So, the most singular and complicated passing from spatially
continuous to spatially discrete dynamics is already done and the problem is reduced
to the following one: Find a spatial pulse configuration in such way that the reduced
equations (1.12) would have the form of weakly coupled system of chaotic oscillators
situated at the nodes of a some grid. Applying then the Sinai-Bunimovich theory



to the reduced equations, we obtain the existence of the above space-time chaos in
the initial equation (1.1).

However, the initial standing pulse is not a very convenient object for the realization
of this scheme, since it does not have its own dynamics and all dynamics appears due
to the coupling, so the coupling cannot be "small" with respect to this dynamics as
in Sinai-Bunimovich model. In order to overcome this difficulty, we suggest to find a
pulse-pattern consisting of finite number of pulses which demonstrate the temporally
chaotic (hyperbolic) dynamics and treat it as a single temporally chaotic pulse. If
we consider then a grid of well-separated temporally chaotic pulses, its reduced
dynamics would be governed by a lattice model of Sinai-Bunimovich type. Of course,
if the temporally chaotic pulse is a priori known, the situation becomes much simpler
(see e.g., [ASCTO1, BIW02, TVZ]| for examples of such pulses). Nevertheless, the
direct verification and investigation of the existence of chaotic pulses is much more
delicate problem than the analogous one for the standing pulse. So, the above
construction of a chaotic pulse from standing ones seems to be applicable to a wider
class of equations. In particular, the existence of pulse solutions is known for a large
class of so-called modulation equations (like Swift-Hohenberg, Ginzburg-Landau
equation, etc., see e.g. |Mie02|). So, if hyperbolic space-chaos will be detected
in such equations, it can be "lifted" to many other physically relevant equations
(including even Navier-Stokes and other hydrodynamical equations) using the spatial
center manifold reduction, see [Kir82, Kir85, Mie86, Mie02|. In particular, we refer
to [AfMi01] for the existence of multi-pulse solutions in the Poiseuille problem which
is based on the corresponding result in CGL equation of [AfMi99).

In order to avoid the technicalities, we realize the above scheme only for the case of
space-time periodically 1D Swift-Hohenberg equation

O+ (92 +1)%u+ fPu+ f(u) = ph(t,z), f(u)=u®+rku?, p<1 (1.15)

(the space-time chaos of Ginzburg-Landau equations and infinite dimensional hy-
perbolic local attractors for the Swift-Hohenberg equations will be considered in the
forthcoming papers |[TZ2| and |TZ1]).

The following theorem, which establishes the existence of Sinai-Bunimovich space-
time chaos for the Swift-Hohenberg equations, can be considered as the second main
result of the paper.

Theorem 1.3. There exists a nonempty open set of parameters (3,k) € R? of
equation (1.15) such that, for every (3, k) belonging to this set and every sufficiently
small p # 0 there exists a space-time periodic external force h, ||h| ¢, m2) < 1 such
that the associated equation (1.15) possesses an infinite-dimensional hyperbolic set
homeomorphic to the Bernoulli shifts M?* such that the Bernoulli shifts on M? are
conjugated to the space-time shifts (scaled by the space and time periods of h) on the
above hyperbolic set.

The reason of adding the space-time periodic perturbation into the equation con-
sidered is two-fold:



1) Swift-Hohenberg related: It is known that equation (1.15) with = 0 is so-called
extended gradient system which cannot have the space-time chaos, see [Zel04], so at
least a temporally non-autonomous perturbation is unavoidable here.

2) Absence of hyperbolicity (structural stability): The invariance with respect to
the continuous groups of space and time shifts in space or space-time homogeneous
systems in unbounded domains (see Remark 9.2 below) leads to new essential diffi-
culties.

Nevertheless, in the forthcoming paper [TZ2|, we will partially extend Theorem 1.3
to the case of space-time homogeneous Ginzburg-Landau equation (of course by
relaxing the hyperbolicity assumption).

The paper is organized as follows. The rigorous assumptions on the structure of the
considered equation, its a priori given spatial pulse V' and the symmetry group G,
and the immediate corollaries of these assumptions are discussed in Section 2. In
Section 3 we formulate and prove a number of results on the regularity of solutions
of parabolic problems in weighted Sobolev spaces that are the main technical tools
of the paper.

The geometric structure of the multi-pulse manifold P(L) and its relations with the
original problem (1.1) is studied in Sections 4, 5 and 6. In particular, we prove here
that P(L) is indeed a submanifold of the phase space consisting of "almost-equilibria"
of equation (1.1) (Section 4). We construct a uniform family of projectors Py, to
the tangent space Ty, P(L), m € P(L) (Section 5) and study the general structure of
differential equations on P(L) (Section 6).

The linearized problem associated with (1.1) near P(L) is studied in Section 7 and
its hyperbolicity in directions transversal to T, IP(L) is verified there.

Based on these results, in Section 8 we construct the center manifold reduction
for equation (1.1) in a small neighborhood of the multi-pulse manifold P(L). In
particular, Theorems 1.1 and 1.2 are proven there.

The relations between hyperbolicity and stability in infinite dimensional pulse con-
figurations, which are very important for the applications to space-time chaos, are
investigated in Section 9.

The asymptotic expansions of the reduced equations on the manifold P(L) as L — oo
are studied in Section 10. In particular, explicit formulae for the leading term in
these expansions are computed for a number of concrete equations of mathematical
physics.

Finally, the application of the above theory to space-time chaos in the 1D Swift-
Hohenberg equations is given in Section 11.



2 Assumptions and preliminaries

In this section, we formulate the basic assumptions to the equation considered,
its pulse solution and the associated symmetry group and introduce some useful
notations which are assumed to be valid throughout the paper. We start with
describing the general structure of our basic nonlinear PDE.

2.1 The equation

In the whole physical space 2 = R™ we consider the following parabolic system of
PDEs:
Oyu + Agu + ®(u) = 0. (2.1)

It is assumed that u(t,z) := (u'(t,z), - ,u™(t,z)) is an unknown vector-valued
function, Ag : [W22(R")]™ — [L?(R™)]™ is a positive, strongly elliptic differential
operator of order 2/ with constant coefficients:

m l
(Apu); Z Z P (ap.q.i,080;5) (2.2)
J=1|pl,|q|=0

where p, g € Z7 are multi-indices, 07 := 0"} - - - 0%z and a,4;,; € R and the nonlinear
term ®(u) has the form

®d(u) == ®(u, Dlu, -, D*u) (2.3)

where D? is collection of all derivatives 0%, p € Z7, |p| = s and ® is a smooth
function. Moreover, we assume that

o(0) = D,®(0) = 0. (2.4)

We recall that the strong ellipticity of the operator Ay means that its principal
symbol

!
A(&)sy = (1) Z a5 (2.5)

Ip|=lq|=t

(where as usual &P := &" -+ - £P7) satisfies
A©)vo > cl¢Pv)?, €€R™, veR™ (2.6)

for some positive ¢ > 0, see e.g. [Ama95|, and the positivity means that the spectrum
of Ay has strictly positive real part

Re o (A, [LA(R™)]™) > Cy > 0. (2.7)
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Remark 2.1. It is well-known (see e.g. [Ama95|), that under the above assump-
tions the elliptic differential operator Ay defines an isomorphism between the Sobolev
spaces [IW2P(R™)]™ and [LP(R™)]™ for all 1 < p < oo and generates an analytic semi-
group in that spaces. In particular, the parabolic operator 0; + Ag is also an isomor-
phism between the Sobolev-Slobodetskij space [W(1:20:P(R™+1)]™ and [LP(R™)]™.
Actually, we impose the strong ellipticity assumption on Ay only in order to guar-
antee these properties. Thus, all of the results formulated below remains valid for
operators Ay which satisfy the above isomorphism properties.

We are now going to describe the symmetry group of the introduced basic equation.

2.2 The symmetry group

First of all, we recall that equation (2.1) always possesses a group of translations
{Tt, £ € R}, (Teu)(x) == u(z — &). Except of that group, this equation very often
possesses a (compact) symmetry group of "rotations" (e.g., SO(n) or SO(n)x.SO(m)
or subgroups thereof). That is the reason why we assume that the symmetry group
G of equation (2.1) is a linear representation of a finite-dimensional Lie group G,

G = {7}7 I'e GO} C E([Cm(Rn)]ma [COOGRH)]m)v 7}1 © 7}2 - 7}101“2 (28)

dim Gy = k > n, which is a skew product of R" and some (k — n)-dimensional
compact Lie group Go, i.e., every element I' € Go has the form I' = (&,7), £ € R
v € Gammagy and elements ¢ € R™ generate the subgroup of translations in G:

Ti¢ry) = Te 0 T(0)- (2.9)

For simplicity, we assume that Gy is realized as a closed subgroup of the matrix
group GL(RY) ¢ R¥*N for some large N and, consequently, Gy C GL(RY) is a
compact subgroup of it. Furthermore, we can define a metric on the group G, via

1Ty = Lol = [l = 22llgy + 160 — Sl
where || - ||g, is some left invariant norm on Gq (which exists since Gy is compact)
and || - ||ge is a standard norm in R™. Then, the norm thus defined on Gy will be

also left invariant:
IToly —Toly|| =Ty — Ty

Moreover, we assume that the action I' — 7t is smooth with respect to I' € G at
every ¢(x) satisfying
02(z)] < CpeW (2.10)

(where the constant C), depends on p € Z7, but is independent of € R") and the
following inequalities hold:

1O2(Ted) ()] - (1 + | — |~
+ |8 (Trg) (2)| < Cpe ™8 Ve e R", T'=(£,7) € Go (2.11)
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where the norms of Op-derivatives are computed using the metric associated with
the above embedding Gy C GL(RY) and the constant C,, depends on p through the
constant C, from (2.10), but is independent of I' and z.

Furthermore, in order to avoid the technicalities, we make two additional assump-
tions on the symmetry group G. The first is that it can be extended to £([W'P(R")]™,
[(Whp(R™)]™) forall 1 < p < co and [ € Z, and

||T||ﬁ([Wl,p(Rn)}m7[Wl,p(Rn)}m) < Cl,P? VT €d (212)

where the constant C' depends on p and [, but is independent of 7 € G. And the
second one is that G acts by isometries in [L*(R™)]™, i.e

(Tu,Tv) = (u,v) forall T €@q. (2.13)

It is also worth to mention that, due to (2.4), G is a symmetry group not only for
whole equation (2.1), but also for the operators Ay and ® separately, i.e.

ToAy=Ay0T, Tod=d0T7T, VT €G. (2.14)

All of the assumptions of this subsection are obviously satisfied if Gy is a subgroup
of SO(n) x SO(m) with the standard action on [C°°(R"™)]™. In all applications of
the general theory considered in the paper the group G, will be such a subgroup.
Consequently, it will be not necessary to verify the above conditions in the concrete
examples considered below (see Section 10).

Finally, we formulate the assumptions on the localized pulse solution.

2.3 The pulse

We assume that equation (2.1) possesses a smooth pulse equilibrium V' (z) which
satisfies the following estimate:

2V (2)] < Cpeo (2.15)

where the constant C), depends on p € Z’", but is independent of x € R".

Let us consider the linearization of (2.1) on the pulse solution V' which gives the
following linear elliptic operator:

Ly = Ay + D, (V). (2.16)

We recall that, due to our assumptions on Ay and ®, the operator Aq is invertible
and D,®(V) is relatively compact with respect to Ag. Thus, (2.16) is a Fredholm
operator of index zero and, consequently, has a finite-dimensional kernel and Co-
kernel. On the other hand, since equation (2.1) is invariant with respect to 7r,
then

P = Lvi(Tp)v\He ckerLy, i=1,--- .k (2.17)
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where T, := (0, ¢) is a unit element of the group G, {v'}F_, is some fixed basis in
the Lie algebra G associated with the group Gy and L, is a differentiation along v'.
To be more precise, let exp : G — Gq be the associated exponential map. Since G
is realized as a subgroup of the matrix group GL(RY), the exponential map exp(-)
coincides with the standard matrix exponent:

exp(g) == Y “?—;, g €GC M(RY). (2.18)

=0

Then, the basis {v'}¥ | generates k one-parametrical subgroups {exp(sv?), s € R}
in Gy and the functions ¢’ can be defined as follows:

d

R N

Our next assumption is that the eigenvectors ¢’ are linearly independent
det{(¢",¢’)} # 0 (2.19)
and generate the whole kernel ker Ly :
ker Ly = span{¢’, i =1,---  k}, dimker Ly = k.

Moreover, we assume that the operator £y does not have any Jordan cells at zero
eigenvalue (i.e. that its geometric multiplicity is equal to the algebraic one) and the
rest of the spectrum of Ly is separated from the imaginary axis:

o(Ly, L*(R")N{\ € C, Re) € [-6,6]} = {0} (2.20)

for some positive 9.

Note also that, according to (2.11) eigenfunctions ¢’(x) are smooth and exponen-
tially decaying (i.e. satisfy (2.10)). Furthermore, since Ly is Fredholm of index
zero, then the adjoint operator

voi=Ap + [Du®(V)]* (2.21)
also has k-dimensional kernel
ker £, := span{¢’, i=1,--- k}. (2.22)

We also note that, according to our assumptions on ® and V/, all of the coefficients
of linear differential operators D, ®(V) and [D,®(V)]* satisfy estimate (2.10) and,
consequently, using the standard elliptic regularity estimates in weighted spaces (see
e.g. |Tri78] or the next section), it is not difficult to verify that the eigenfunctions
" are also smooth and exponentially decaying (i.e., satisfy (2.10)). We assume that
the eigenfunctions ¢* € [L*(R")]™ of the adjoint operator are normalized in such
way that

(¢, ¢7) = dy5. (2.23)
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Such a normalization exists since, due to our assumptions, the operator Ly does not
have any Jordan cells at zero eigenvalue. It is also worth to recall that, according
to Fredholm property, equation

Lyv="h, (v,¥)=0, i=1---,k

is uniquely solvable if and only if (h,¢?) = 0, i = 1,--- ,k, then the following
estimate holds:
lv]|wzre@nym < Cpllh|lize@nym (2.24)

where the constant C, depends on 1 < p < oo, but is independent of h (and the
analogous result holds also for the adjoint operator).

We say that the initial pulse V() is spectrally stable if the following stronger analog
of (2.20) holds:
o(Ly, L*(R"))N{\ € C, Re\ € [-6,00]} = {0}. (2.25)

In other words, the pulse V() is spectrally stable, if the spectrum of Ly consists of
a zero eigenvalue of finite multiplicity and the rest of the spectrum belongs to the
left halfplane.

And, finally, we assume that the symmetry group G is already factorized by the
stabilizer of V' and, consequently,

Sta(V) :={I' €Ty, TtV =V} ={I.}. (2.26)

We recall that together with the principal pulse solution V' (z), we also have a whole
family of pulse solutions Vr(z) := (7rV')(x) parameterized by the elements of the
symmetry group G and, consequently, equation (2.1) possesses the following one-
pulse manifold of equilibria:

P, = {T:V, T € G,}. (2.27)

We conclude the section by formulating the corollaries of the above assumptions on
the structure of this manifold which are of fundamental significance for what follows.

2.4 The one-pulse invariant manifold: uniform normal hy-
perbolicity

We first recall that, due to (2.11), all the pulses Vi satisfy the following shifted
analog of estimate (2.10):

[02Ve(2)] < Cpe @l T o= (€,9). (2.28)

where the constant C), depends only on p. Let us now consider the linearized operator
L on the pulse Vi
Lr = Ay + DUCD(VF) = Ag + Fr. (2.29)
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Then, all of the coefficients of linear differential operator Fr := D, ®(Vr) also satisfy
(2.28). Moreover, due to the commutation relations (2.14),

Lr=TroLyo(Tr)', Ly =TroL}o(Tp)! (2.30)

(here we have used our simplifying assumption that 7t are isometries in L? and,
consequently, 7% = (7r)~!). Thus, the functions ¢L := Tr¢’ and ¥ = Tpi,
1 =1,---, k generate the kernel and co-kernel of the operator Lr respectively:

ker Lr = span{¢h, i=1,---,k}, ker L} =span{¢p, i=1,--- k}  (2.31)
and satisfy the shifted analog of (2.10):
[02r ()] + 0% (2)] < Cpeale=el, (2.32)
Moreover, due to (2.12) the equation
Lrv=h, (v,Yp)=0 (2.33)
is uniquely solvable if and only if (h,}) = 0, then the estimate
[ollw2tp@mm < CpllAllizr @ (2.34)
holds uniformly with respect to I' € Gy and, since 7p are isometries
det{(¢F. ¢p)} = det{(¢",¢")} # 0, det{(¥,¥1)} = det{(s",9")} # 0,
(6F, 1) = (¢, ¢) = 8. (235)

Thus, the invariant manifold IP; is indeed uniformly normally hyperbolic with respect
to equation (2.1).
We are now going to study the local structure of the manifold P;. To this end, we
consider the local coordinates I' = I'(a), a = (a!, -+ ,a*) € R¥ near some point
Iy € Gy. Then, differentiating the equation AgVi) + ® (Vi) = 0 with respect to
o', we derive that

6ain(a) € ker ﬁp(a) (2.36)

and, consequently, there exists a matrix I1;;(«) € L(R”, R¥) such that

k
aoﬂ"/F(a) - Z Hij (a>¢JF(a) (237)

J=1

The next proposition shows that P is a manifold globally diffeomorphic to G and
that there exists a convenient coordinate atlas on IP; such in all local coordinates of
that atlas the matrices II;; are uniformly bounded and invertible.
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Proposition 2.2. Let the above assumptions hold. Then there exists a positive
constant Cy such that

Co_l min{l, ||F1 — FQH} S ||VF1 - VFQH[LQ(R")]W S CO min{l, ||F1 — FQH} (238)
for all Ty, Ty € Gy and the space L* in (2.38) can be replaced by any Sobolev space
WEP(R™) with | > 0 and p € [1, 00)].

Moreover, there exists a smooth coordinate atlas on Py such that, for every local
coordinates of this atlas, we have

[OPT() | o ety + (T (@) || sty < Gy (2.39)
where the constant C, depends only on p and is independent of o and on the concrete

choice of the local coordinates.

Furthermore, there exists positive ro such that, for every I'y € Gq there exist local
coordinates o near Vr, belonging to the above atlas such that the set

Oro (Vi) := {Vr, [T = To|| < 7o}

belongs to the same coordinate neighborhood and

CoHlen — aaller < [Viiar) = Vigen liz2@eym <
< Collar — agllgr, T'(on),l(ag) € Oy (Vr,) (2.40)

where the constant Cy is independent of To, aq and ay (and, analogously to (2.38),
the L?-norm can be replaced by any Sobolev’s norm WH ).

Proof. Indeed, since the map I' — V is smooth and the vectors LviVF‘F:Fe’ 1=
1,--+ .k are linear independent, then this map is a local diffeomorphism between
G and Py near I' = I'.. Thus, there exists a neighborhood O,,(I'.) of the unitary
element such that

Co HITy — Dol < [IVE, — Vil r2@ey < Col|Ty — Iy (2.41)

for all ', Iy € O,,(I'c). Moreover, since all norms on a finite-dimensional space are
equivalent, the L2-norm in the middle part of (2.41) can be replaced by any Sobolev
norm WHp.

Furthermore, it is well-known that the exponential map

k
['a) :=expla-v), a-v:= Zaivi,

=1

where o € R¥ and {v'}*_, is a basis in the Lie algebra G, is a local diffeomorphism
near « = 0 and defines, thus, the local coordinates on GGy near the unit element
I' = T'.. Lifting the constructed local coordinates from Gy to Py, we obtain the
local coordinates o — Vr(,) on Py near the initial pulse V' = V.. Obviously, the
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coordinates thus defined satisfy (2.40) for every I'),I'y € O, (I'c). Finally, since
{(ﬁ%(a) ¥ . and {0.:Vi(a)}iz1 are bases in ker Lr(,), the transfer matrix II;;(«) is
invertable and satisfies (2.39) uniformly with respect to I' € O, (T.).

Thus, we have verified all the assumptions of the proposition locally near the unitary
point I'.. In order to extend these local results from O,,(I'.) to O,,(Iy), for every
Iy € Gy, it is sufficient to "shift" them by the group action operator 7r,. Indeed,
the local coordinates @ — I'(«) near arbitrary I'y € G can be defined via

k
INa):=Tgoexp(la-v), a-v:= Z o'’
i=1

where o € R*. Then, due to assumption (2.12) and the proved estimates near I' =
I'., the coordinate atlas thus defined satisfies all the assertions of the proposition.
In particular, since

¢%(o¢) = 7}0 : aaivf(a) = %oaai‘/exp(a-v)y

exp(a-v)»

the transfer matrix II(«) is independent of I'y and (2.39) holds.

Moreover, the analogous shift arguments, together with the assumption that the
metric ||[I'y — T'yf| on Iy is left invariant, show that estimate (2.41) holds for every
I'y,Ty € Go such that ||[T'; — I's|| < ro. Thus, it only remains to verify (2.38) in the
case ||[T'; — T'g|| > ro.

To this end, we note that the right-hand side of this inequality is obvious since P
is globally bounded in [L?(R™)]™ (and (2.41) holds for every I'; and 'y which are
sufficiently close to each other), so we only need to verify the left one. Assume that
this estimate is wrong. Then, there exists two sequences I'} and T'? such that

0 = T3 =70, (Ve = Viellpzz@nym < 1/i (2.42)

Moreover, due to the above translation trick, we can assume without loss of gen-
erality that I'} = ', and T? = I'; = (&,7). We also note that, the pulse Vf, is
"localized" near x = &; (see (2.28)) and, therefore, (2.42) implies that &; are uni-
formly bounded: |§| < R, ¢ € N. Taking now into account that Gg is a product of
R™ and a compact group, we may assume that I'; — I'" in G as i« — oo. Finally,
passing to the limit in (2.42), we infer

I, 7& I'e Stg<V)

which contradicts assumption (2.26) on the triviality of this stabilizer. Proposition
(2.2) is proven. O

Remark 2.3. If it is known, in addition, that the Lie group Gy is commutative, the
above defined natural local coordinates I'(«v) near I' = I, have the form

['(a) = exp(a’v!) - exp(afo®)

17



where {v'}%_ | is the above fixed basis in the Lie algebra. Consequently, in these
coordinates the transfer matric II is identical

[I(s) =1d.

However, for general non-commutative Lie groups we do not have such canonical
coordinates and the only thing which we can assume is

I(r,) =Id

(just taking the coordinate axis at I' = I', along the vectors v;). Translating this
local coordinates to arbitrary point I' = I'y, we see that there exists a coordinate

system from the atlas described in the previous proposition centered at I' = I'y such
that I1(I'y) = Id.

We conclude by some kind of spatially localized version of estimate (2.38) which will
be useful for what follows.

Proposition 2.4. Let the above assumptions hold. Then, there exists positive Ry
such that, for every I' = (§,7v) and I = (£,7') belonging to Gy, we have

(Co)™'min{1, |0 = T'[|} < [[Ve = Viv| o oy < Comin{L, [T =TI} (2.43)
13

oo
where Bfo denotes the ball of radius R in the space R™ centered at xq, the constant
Cy is independent of I',\T" € Gy and the L?>-norm can be replaced by any Sobolev’s
norm WHP.

Proof. We first note that, due to (2.38), it is sufficient to verify only the left in-
equality of (2.43). Moreover, due to translation invariance, we may assume without
loss of generality that £ = 0. Furthermore, using the assumption Ste(V) = {I'.}
analogously to the previous proposition, we reduce the proof to the case where

Il = I'|| < ry and, consequently, I' and I” belong to the same coordinate neighbor-
hood.

Using now assumption (2.11), we infer
1
Vi(x) = Viu(z)] < C|T =TV / |00V, (2)| ds < C,||T — IY|| e~elel/2
0

where I'y is a segment (in local coordinates) in Gy connecting I" and IV. The last
formula, in turns, gives an estimate

Ve — Vi roy < Crl|IT = TV[| /Ry (2.44)

HL2(R”\BO
Thus, using the left estimate of (2.38) and (2.44), we infer

Vo=V I, oy = Ve =Vl oy = 1 VE = Vi > (Cy*=C7/Rg)|IT—T||*

2
L2(R™\B,'0)

which implies (2.43) if Ry is large enough. Proposition 2.4 is proven. ]
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Remark 2.5. The properties of the normally hyperbolic one-pulse invariant man-
ifold P; collected in the previous subsection play a fundamental role throughout of
the paper. In contrast to this, the fact that this manifold is generated from a single
pulse by translation via the symmetry group is not essential and will be nowhere
essentially used below. In a fact, we have introduced the symmetry formalism only
in order to simplify the verification of the above uniform normal hyperbolicity and
to avoid the technicalities although all of the results of the paper remain true for
general one-pulse invariant manifolds satisfying the properties of the previous sub-
section.

3 Weighted Sobolev spaces and regularity of solu-
tions

In this section we recall some basic facts concerning weighted Sobolev spaces with
weights of exponential growth rate and regularity of solutions of elliptic and parabolic
equations in that spaces which are of fundamental significance for the next sections.
We start by introducing the class admissible of weight functions.

Definition 3.1. A function § € C(R”) is a weight function of exponential growth
rate ¢ > 0 if (z) > 0 for all z € RY and

9(21 + ZQ) S Cge<21) eslel, (31)

for all 21, 2o € RY and some positive constant Cy depending only on 6.

We will mainly use the following basic weight functions of exponential growth rate:

Oc i (2) = e o172 (3.2)
where ¢ € R and z, € RY are parameters and their smooth analogs

0...,(2) = e =VIzmal L (3.3)

Obviously all these functions have exponential growth rate |e| and the constant Cy
for these weights are independent of z, € RY.

The next definition gives weighted Sobolev spaces associated with these weights.

Definition 3.2. Let 6 be a weight function of exponential growth rate. For every,
1 < p < o0, we define the spaces Ly(RY) and Lj 4(RY) by the following norms:

lull Lz ey = = ( / IR AQILON dZ) " (3.4)

el e : = sup-egn {00l oo }
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respectively (here and below Bfo denotes the R-ball of the space RV centered at
xg. Moreover, for every [ € N, we can define the Sobolev spaces Wé’p(RN) and
W,i’g (RY) as the space of distributions whose derivatives up to order [ belong to
Ly(RY) and Lj o(RY) respectively. In particular, in the case N =n + 1, z = (t, ),
we can define the anisotropic Sobolev spaces WP (R7+1) and W27 (Rr+1) ag
the space of distributions whose ¢-derivatives up to order /; and z-derivatives up to
order I belong to Ly(R"*') and L ,(R"*!) respectively. We will usually use these
anisotropic spaces with exponents (1,2]) which are the usual spaces for the study of
parabolic equations associated with the elliptic operators of order 2[.

We collect in the next proposition the important estimates related with the above

weighted spaces whose proofs and more detailed exposition can be found, e.g. in
|[EfZe01, Zel03b).

Proposition 3.3. Let u € LH(RY) where 0 is a weight function of exponential
growth rate €. Then,

1/p
0R<9>—1||u||Lg<RN)s(/ I dz) < Ch@lull gy (35)
zE

where the constant C'r(0) depends only on N, R > 0, ¢ and the constant Cy and is
independent of u, p and the concrete form of the weight function 6. Moreover, for
every a > g, we have

Ca(0)Hlull @) <
1/p
g( / 07 (20) / el [yflp, 0 d dzo) < Cal®lull zexy (3.6)
20€ERN 2€RN

where the constant C,(0) depends only on N, «, ¢ and Cy. Analogously, if u €
Ly o(RY) then

«

1/p
< sup {Q(zo) </ . il (171 A dz) } < CalO)lJullzp ,mvy. (3.7)
FAS]

O (0) ull g o) <

z20 €RN

Furthermore, estimates (3.5)~(3.7) remain valid if we replace thew spaces LP by the
Sobolev spaces WP and Wht2)p,

Estimates (3.5) are very useful in order to verify various embedding and interpolation
estimates in weighted Sobolev spaces and estimates (3.6) and (3.7) allow us to obtain
the regularity estimates for the solutions for arbitrary weights 6 if the analogous
estimates for special weights (3.2) or (3.3) are known.

We are ready now to recall the regularity estimates for the solutions of parabolic
equations in weighted Sobolev spaces introduced before. We start with the following
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parabolic equation associated with the elliptic operator Ay introduced in the previous
section:

O + Agv = h. (3.8)

Proposition 3.4. Let the differential operator Aq satisfies the assumptions of Sec-
tion 2. Then, for every 1 < p < oo, there exists eg > 0 depending only on Ay and p
such that, for every weight function 6 = 0(t,x) of exponential growth rate e < eq and
every h € [Ly(R™)]™ or [Ly o(R™)]™ there exists a unique solution v of equation (3.8)
which belongs to [WG(I’QI)’p(R”)]m (resp. Wb(}e’m)’p(R”)]m) and the following estimates
hold:

||U||W9(1’2l)’p(Rn) < OHhHL]g(R”)a resp. ”U“Wé’lé?l)vP(Rn) < CHhHLf,e(R”) (39)

where the constant C' depends on p and the constant Cy from (3.1), but is independent
of €, h and the concrete form of the weight function 6.

Proof. We first recall that, since Ag is assumed to be uniformly elliptic and positively
defined, then equation (3.8) is unique solvable for all h € LP(R"™!), 1 < p < oo and
the following estimate holds:

||'U||W(l,2l),p(Rn+1) S CthHLP(RnJrI), (310)

see e.g. [Ama95|. Thus, estimate (3.9) is verified for the non-weighted case 6 = 1.
In order to obtain its weighted analogies, we first consider the case of the special
weights 0., ., (t, ), 20 := (to,0) € R™™ introduced in (3.3). Indeed, let v be a
solution of (2.8) and let 9(t, z) := v(t, x)0., +, (¢, z). Then, it is not difficult to verify,
using the obvious estimate

10202, 20 (t, )] < Coobegy(t,2), (t,7) € R™H! (3.11)

(where the constant C,, depends on p, but is independent of (¢,z), ¢ < 1 and zp),
that the function o solves the following perturbed version of equation (3.8):

Oy + Agt = e0Acy (t, )0 + 02y o b (3.12)

where Ay is the differential operator of order (21 — 1) with respect to & which is
uniformly bounded with respect to 9 and z, i.e.

1A 9|2y < Cllollwar-1mgen) (3.13)

with the constant C' independent of £y and z;. Applying now estimate (3.10) to
equation (3.12) and using (3.13), we obtain that, for sufficiently small e,

151l .20 p(nt1y < CpllOcg.zhl| Lonsn).- (3.14)

And, consequently, since the weights (3.3) are equivalent to (3.2), we have verified
that
ol < Clnl

W£172l)aP(Rn+1 F;
CERIEN €0:20

(3.15)

(R+1)
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where the constant C) is independent of zy € R*". Multiplying now estimate (3.15)
by 6P(z), integrating over z; € R"™! and using (3.6), we derive the first estimate
of (3.9). The second one can be obtained analogously, replacing the integration
over zp € R™! by the supremum and using (3.7) instead of (3.6). Thus, estimates
(3.9) are verified for every weight function 6 of exponential growth rate ¢ < .
The existence of a solution follows in a standard way form these estimates and
Proposition 3.4 is proven. O

We are going to obtain now the analogous estimates in weighted Sobolev spaces
for the perturbed operators Lr := Ay + Fp, I' € Gy introduced in (2.29) and the
associated parabolic operators 0;+Lr. In contrast to the operator Ay these operators
have k-dimensional kernels and that is the reason why we need to introduce the

following projectors:
k

Prov := Z(Uﬂ/fr)(#r, (316)

=1
where L = Tr)' € ker Lf and ¢h = Tr¢' € ker Lr are introduced in the previous

section. Indeed, according to estimate (2.32) operators Pr are well defined for all
v € L*(R") and uniformly bounded with respect to I' € Gy. Moreover, obviously,

k

Piv =Y (v, 0p)Uf. (3.17)

i=1

Instead of studying the equation Lrv = h and its parabolic analog (which is solvable
only for h satisfying Prh = 0, see (2.33), (2.34)), it is much more convenient to
consider the following modified equation:

o+ Lrv+Prv=nh (3.18)

which is in a sense equivalent to the initial equation (see Remark 3.6 below), but is
solvable for all h € LP(R™*!) as the following proposition shows.

Proposition 3.5. Let the operators Lr = Ag + Fr satisfy all the assumptions im-
posed in Section 1. Then, equation (3.18) is uniquely solvable for every h € LP(R™1)
and the following estimate holds:

||’U||W(1,2l),p(Rn+1) S C||h||Lp(Rn+1) (319)

where the constant C, depends on p, but is independent of I' € Go. Moreover, the
analogous result holds also for the adjoint equation

—0w + Liw + Prw = h. (3.20)
Proof. We first recall that equations (3.20) are conjugate for different I" by the

transformations 7r. Therefore, due to (2.12), it is sufficient to verify the solvability
and estimate (3.19) for I'. = (0,e) only. We now note that Ay is a uniformly
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elliptic operator of order 2/ and Fr, is a differential operator of order 2/ — 1 whose
coefficients satisfy estimate (2.32) and, consequently, decay exponentially as |z| —
00. Therefore, the term Fr, + Pr, is relatively compact with respect to Ay and,
consequently, the operator L, +Pr, is a compact perturbation of a uniformly elliptic
operator Ay. Thus, this operator also generates an analytic semigroup in LP(R").
Moreover, since P v € ker L, then the term Pr_v does not change the component
of the operator Ly (associated with the nonzero part of the spectrum) and the
spectrum of the restriction of Lr, + Pr_ to the kernel ker L, obviously equals 1.
Consequently,

o(Lr, +Pr.) = {1} U (o(Lv)\{0}) (3.21)

and, due to assumption (2.20), there exists § > 0 with
o(Lr, +Pr,)N{A € C, ReA € [-4,0]} =@ (3.22)

and, consequently, operator L, + Pr_ possesses an exponential dichotomy in the
space [LP(R™)]™, 1 < p < oo, which, in turns, implies the unique solvability of
(3.18) and estimate (3.19), see e.g. [Hen81|. The adjoint equation (3.20) can be
treated analogously. Proposition 3.5 is proven. [

Remark 3.6. Let us multiply equation (3.18) scalarly by v%. Then, taking into
account, the orthogonality conditions, we obtain the following system of ODE for
determining (v(t),¥h):

d . ) )

2 (0@),¥r) + (v(t), vp) = (A(),¥r), i=1,---,k (3.23)
which shows that if Prhi(t) = 0, then Pro(t) = 0 (if v(¢) does not grow very fast as
t — o0) and consequently v solves equation without the artificial term Prv. Analo-
gous trick of adding the artificial projector term in order to treat the neutral modes
was devised already in [DFKM96]. In the present paper, we will apply this idea
in more complicated situation of slowly evolving multi-pulses where the associated
neutral modes also evolve slowly in time (and this evolution depends on the concrete
choice of the multi-pulse trajectory, see Sections 7 and 8 below).

We now consider the analog of equation (3.18) on the positive semi-axis [0, +00)

o+ Lrv+Prv=0, t>0, v‘ = p. (3.24)

t=1

For simplicity, we consider only the spectrally stable case (where (2.25) holds).

Corollary 3.7. Let the above assumptions hold and let, in addition, the initial pulse
V' be spectrally stable. Then, there exists a positive constant 3 > 0 such that, for
every initial data vg € W2 UI=VPLP(R™) problem (3.24) possesses a unique solution
and the following estimate holds:

HUHW(Lm)»P([T,T-i-l} xR1) S Ce " [[vo HW”(l*l/P)!P(R") (3.25)

where the constant C' is independent of the concrete choice of I' and vy.
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Indeed, due to (2.25), instead of (3.22) we have
o(Lr, +Pr.)N{A € C, ReA € [0, +x0]} =0 (3.26)

and, consequently, the exponentially unstable component of the exponential di-
chotomy for equation (3.24) vanishes and the whole phase space belongs to the
exponentially stable component which implies (3.25) (here we implicitly used that
the space WU=1/P)P(R") is a trace space for W12)P([0,1] x R") at t = 0, see
[LSU6T]).

In order to obtain the weighted analog of Proposition 3.5 and Corollary 3.7, we need
the following Lemma which describes the behavior of the projectors Pr in weighted
spaces.

Lemma 3.8. Let 0(x) be a weight function of a sufficiently small exponential growth
rate € < g9. Then,
”PFUHLZ(R") < CHUHL’,Z(R") (327)

where the constant C depends on Cy, but is independent of the concrete form of the
weight function 6 and I" € Go. Moreover, let 0. ,,(x) be the special weights introduced
in (3.3) and let My, be the multiplication operator on function 0. .,. Then,

M., o Pro My ., —Prllewre)Lre) < Ce (3.28)

where the constant C' is independent of ¢ and xy € R".

Proof. We first note that, due to estimates (3.6) and (3.7), it is sufficient to ver-
ify estimates (3.27) only for the special weights (3.3). Moreover, since Lj(R™) =
My LP(R™), in order to prove (3.27), it is sufficient to estimate the norm of Pr . ,, :=
Mgs,zo o]P’po]\/[(;_E’ac0 in the non-weighted space. In order to do so, we represent Pr .,
and Kr. ., = Pr.,, — Pr in the form of integral operators:

(Pr c00v)(y) = K(z,y)v(x) dz, (Krewv)(y) = Ky (z, y)o(z) do

zeR™ TER™

where the (matrix) kernels K and K have the following form

Z Up () @ R (Y)]0—c,20 (2)0c20 (1),
(3.29)

Z V() ® SR ()] (0-c.0 (%)= () — 1)-

Without loss of generality, we may assume that T' := (0,7) (the general case is
reduced to that one by the appropriate space shift). Then, using the obvious in-

equality
Vol +1—z[ < V/|z = zo| +1 < |zo| + V2> + 1,
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we obtain that

9757% (37)95,9:0 (y) < elel(zl+lyl+1)

(3.30)
100 ()00 () — 1] < [ (|| + [y[ + 1) eI FHwIFD

and, consequently, due to (2.32) (with £ = 0), for sufficiently small ||, we have
K (x,y)| < e~ llelHlyD/2. |K(x, )| < Cle| e—allzl+ly)/2 (3.31)

where the constant C'is independent of € and xy. Using now that the LP — LP norm
of the integral operator is bounded by the following L” — L% norm of its kernel K

q/p 1/q 1 1
(/ (/ K (2, )] dx) dy) R (3.32)
y€eR™ zEeRn 2

together with estimates (3.31), we deduce the desired estimates (3.27) and (3.28)
and finish the proof of Proposition 3.10. O]

The following slight generalization of Lemma 3.8 (which is based on the simple
observation that (Prv)(z) decays exponentially like e=*~¢l as || — oo (due to
estimates (2.32))), will be very important in the sequel in order to sum an infinite
number of projectors Pr; with different T';.

Corollary 3.9. Let the assumptions of Lemma 3.8 holds. Then, there exists a
sufficiently small g > 0 such that, for every e < ey and every xg,yo € R", we have
the following estimates

H]P)FUHL:+a/2|x—5|—s|x_yO|(R") < CHUHL:_M_W(R@ (3 33)
10c,20Pr(v0_c 2) — PFUHLZQ/Q‘:C_Q_EW_W(Rn) < Cle|- HUHL:_E‘x_yO‘(R”)

where the constant C' is independent of p, xo and yo.

Indeed, the proof of that estimates is completely analogous to the proof of Lemma
3.8 and we leave it to the reader.

We are now ready to formulate and prove the weighted analog of Proposition 3.5.
Proposition 3.10. Let the assumptions of Proposition 3.5 hold. Then, there exists
a positive constant €y depending only on p such that, for every weight function 0 of

exponential growth rate € < g9 and every h € LY(R™™), equation (3.18) possesses a
unique solution and the following estimate holds:

|‘U’|Wél’2l)’p(Rn+1) < Cpl|Pl pznry (3.34)

where the constant C, depends on p and Cy, but is independent on I', h and on the
concrete form of the weight 0. Moreover, the analogous result holds for the spaces
Ly 4 and for the adjoint equation (3.20).
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Proof. As in Proposition 3.3, it is sufficient to verify estimate (3.34) only for the
special weights (3.3). It is however more convenient to use here the equivalent
weights 0. ., (t,z) = 0.4, (t)0:.0,(7), for 2o := (to, 70) € R, Indeed, let 0(t, 1) =
0..,(t,z)v(t,r). Then, analogously to Proposition 3.5, this function satisfies the
following perturbed version of (3.18):

040 + Agd + Frd + Prd = Prd — 0., Pr(0_. 4,0) + A0 + hb. ., (3.35)

where the operator A, satisfies (3.13) uniformly with respect to z; € R""! and
I' € Gy. Applying now estimate (3.19) to equation (3.35) and using (3.13) and
(3.28), we obtain that, for sufficiently small & > 0,

||’5||W(1,2l),p(Rn+l) S Othéa,zo ||Lp(Rn+l) (336)

where C, is independent of T" and 2y € R"™'. Estimate (3.34) for arbitrary weight can
be obtained form (3.36) exactly as in Proposition 3.5. Proposition 3.10 is proven. [J

Corollary 3.11. Let the above assumptions hold and let, in addition, the initial
pulse be spectrally stable. Then, there exists a positive constant (3 such that, for
every weight 0 € C(R™) of sufficiently small exponential growth rate and every vy €
W;l(lfl/p)’p(R"), equation (3.24) possesses a unique solution v and this solution
satisfies:

HUH ) < Ce BT ||U0|’W921(1—1/p),p T>0 (3.37)

WP (1,7 4+1)xRn (R")?

where the constant C' depends on Cy, but is independent of the concrete choice of
the weight 6 and the initial data vy. Moreover, the analogous result holds also for
the spaces Wblg

Indeed, the proof of this estimate is completely analogous to the proof of Proposition
3.10, only we need to use additionally Corollary 3.7 in order to solve problem (3.18)
on a semi-axis with inhomogeneous initial data.

We conclude this section by preparing some technical tools which allow us to deal
with the infinite sums of operators Fr; + Pr; for "well-separated" sequences I';.

Lemma 3.12. For each L > 0 and e > 0 there exists a positive constant C' = C(L, ¢)
such that, for every sequence = = {{;};en of vectors §; € R™ satisfying

& — &1 >2L, i,jEN, i#], (3.38)
the function
Rez:R" =R, R.z(z):=)» e "4l (3.39)
i=1

18 well-defined and possesses the following estimate:

R.=(z) < C(1 4 [dist(z, Z)]") e s dist@=) (3.40)
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Proof. Indeed, since all of &; satisfy (3.38), then the number N,(s) of points &;
belonging to the ball B,(s), s € N, can be estimated via

No(s) < 0(% 1) (3.41)

where the constant C' is independent on s, L, = and x. Therefore,

[I]

Z e <Oy (s+1)e D < L (3.42)

s=1

Thus, the function (3.39) is indeed well-defined. In order to prove (3.40), we set
M := dist(x,Z). Then, obviously

Ny(s)=0, s=1,---,[M]—1 (3.43)

and, consequently, (3.43) reads

RE,E(‘I) < Z Nz(8> —e(s—1) S Z s+ 1 n —E(s 1) <
s=[M] s=[M]
—eM n ny ,—€s ny ,—eM
e Z(s + M™) e < Co(1+ M™)e™=M | (3.44)
Lemma 3.12 is proven. O

The following proposition is the main technical tool for dealing with infinite sums
of well-separated operators.

Proposition 3.13. Let = be a sequence satisfying (3.38) and let H;, i = 1,00 be a
sequence of operators (not necessarily linear) which satisfy

[ Hv| v < KHUHL” el B (3.45)

oHBle—g;|—eglo—aol (B

for some positive 3 and €y and a constant K independent of 1 € N and xy € R".
Then, for every ¢ < e¢/2, the operator H := »"° | H; acts from Lj(R™) to L)(R")
and the following estimate holds:

where the constant C' depends on ey, 5 and Cy, but is independent of =, H;, h, K
and L > Ly. Moreover, the analog of (2.46) for the spaces L{f’(, holds as well.

Proof. Indeed, estimate (3.45) together with (3.5) imply that

1/p
[ Hivl| o,y < CK e ot (/ S [/ dw) (3.47)

[SINE
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where the constant C' is independent of K, = and i. Using estimate (3.47) together
with (3.40), we infer

I1Hol e sy < Z [Hivl Loz,

1/p
< CK - RB,E(ZEO) (/ —pE\x zo| ||v||LP (B1) dZL“) <
zER™

1/p
< CsK (/ e pele—aol [ollZs¢ B1) d:v) . (3.48)
zeR™

Multiplying this inequality by 0(x), taking supremum over zo € R"™ and using (3.7),
we obtain the analog of (3.46) for the spaces Lj ,(R"). In order to obtain (3.46) for
the case of space Lj) (p < oo!), we rewrite (3.48) in the equivalent form:

1ol < (CoRY [ e o, di (3.49
TeR™

Multiplying this relation by 6P(zq) integrating over z, € R™ and using (3.6), we
deduce (3.46) and finish the proof of Proposition 3.13. O

Corollary 3.14. Let the operators Ay and ® satisfy all of the assumptions of Section
2 and let, in addition, I == {I'; = (5], Vi) 132, € GY be a sequence of transformations
such that the associated sequence = := {fj} °, satisfies (3.38). Then the operator

o0

Fr:=Y» (Fr, +Pr,) (3.50)

j=1

is well-defined on W2 ~1P(R™) and, there exists £g > 0 (which is independent of T;
such that, for every weight function 0 of exponential growth rate € < gy, we have

where the constant C' depends on Ay and ® and Cy, but is independent of L > Lo
and the sequence I';. Analogously, the operator

K := ZMQM o Pr, o My_

7j=1

—Pr ] (3.52)

€,2Q J

is well defined on LP(R™) for all zo € R™ and € < gy and
1Ko z@ny < Clell[v]] Lz @ny (3.53)
where the constant C' is independent of ¢, I'; and xy. Moreover, the analogous

estimates hold also for the spaces Lfﬁ.
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Proof. Indeed, since all of the coefficients of the differential operator Fr, satisfy
estimate (2.32), then we have

(Rn) S C||U||W21—1,p (354)

||FFjU||L:+ﬁ|17€j‘7€‘17ZO‘ efs\zfzol(Rn)

where the constant C' is independent of I'; and xz, € R™. All of the assertions of
Corollary 3.14 follow now from Proposition 3.13, estimate (3.54) and Corollary 3.9.
Corollary 3.14 is proven. ]

Remark 3.15. As it follows from the proof of Proposition 3.13, the result remains
valid if we replace the weights e %17=%l by arbitrary weights 6;(z) satisfying

i@z(:ﬁ) <C< oo (3.55)

where the constant C'is independent of x. We will use below this simple observation
in the situation, when we have space-time integration in (3.45) and (3.46) (over
(t,x) € R™1), but the weights 6;(z) = ¢’*~&l will depend only on the spatial
variable.

4 The multi-pulse manifold: general structure

In this section, we start to study the manifold of non-interacting (standing) pulses.
To this end, we first need to define and study the space of sequences I' = {I';}22,
of admissible pulse configurations.

Definition 4.1. Let L be a sufficiently large positive number. Let us define the
space B(L) of 2L-separated sequences as follows

B(L) = {T':= {(&,7)}321 € (Go)", sep(T') > 2L}. (4.1)

where

sep(T) == inf{|& — &1, i #j}.
Moreover, we set ¥ = {&;},en and define the associated semi-metric on B(L) as
follows:

(", T?) = supinf d(T'}, T?) (4.2)
JEN 7]
and
&* (T, T?) := max{d(T"*,T?),d(I? T")} (4.3)
where d(-,-) is some bounded metric on the Gy (e.g., d(I'*,T'?) = min{1, ||T* — T?||}
where || - || is the norm on the group Gg introduced in Section 2.).

We note that d°(I'',I2) = 0 if and only if there exists an infinite permutation

7: N — N such that T'! = 72 = {T2;)}321- Moreover, obviously, 45 (m T, moT2) =

d=vm(T1, T?) for every two permutations 7, T € Ss and, consequently, (4.3) gives

a metric on a factor space ~
B(L) := B(L) /S (4.4)
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It is not difficult to verify that B(L) is a smooth manifold over the B-space [* =
[°°(R*) with the standard norm || ||~ := sup,cy [|7j||zs- Indeed, for every I € B(L),
the set . o L

B, (I") :={T € B(L), |I" Tl = Sup IT5 = T5ll < 7o} (4.5)

is an open neighborhood of T in B(L) if o > 0 is small enough. Moreover, analo-
gously to Proposition 2.2, the map o — TI'(a) from [ to [G]" defined by

[(a) == {Tj(aj)}jen, D(ay) :=TY%0exp(e; - v), a = {a;}jen € I®(RY),  (4.6)

where v = {v'}F_| is a fixed basis in the Lie algebra G, is a local diffeomorphism
and, consequently, gives the natural local coordinates on B(L) near IO, Thus, the
whole neighborhood Bro(fo) belongs to the same coordinate neighborhood if 7y > 0
is small enough and, due to the uniformity proven in Proposition 2.2, the radius rq
can be chosen uniformly with respect to I € B(L + 6), & > 0 and the norms of
coordinate diffeomorphisms will be also independent of Io.

In the sequel we will identify (everywhere where it does not lead to misunderstand-
ings) the element I' € B(L) with its proper coordinates and write I'; € > instead
of o € 1.

We note that, obviously, B(L) C B(L — ) if 6 > 0. In the sequel, we will also need
the "boundary" OB(L) which is defined via

OB(L) :={T e B(L —4), 6 >0, sep(T)=2L}. (4.7)
Moreover, we also need to introduce the local topology on the space B(L).

Definition 4.2. We say that a sequence " e B(L) converges locally to some
I' € B(L) if, for every R > 0

lim disten ({7} g, {T}z) = 0 (4.8)

where {T'}x € R¥*N s a set of all components Iy =(&,;) of [ satisfying €| < R
and distgy is a symmetric Hausdorff distance between sets in RV,

For every v > 0, we introduce also the following "quasimetric" on B(L):
dfy(rlu FQ) = max{d’}’(rlv F2)7 d’Y(F27 Fl)}
where o o
d,(T", T?) := sup{e "% inf d(T'}, T?)} (4.9)
jEN ieN
(compare with (4.2) and (4.3)). Then, as not difficult to see, the local convergence
is equivalent to the convergence with respect to d.
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We define also the pulse map V : B(L) — [L>*(R™)]™ by the following expression:
V([) =Vp=> W, (4.10)
j=1

where Vp, = 7Tr,V is a I';-shift of the initial pulse V.

We are now ready to define the central object of our paper, the multi-pulse manifold
P(L) as follows:
P(L) :=V(B(L)) (4.11)

which is naturally endowed by the topology, induced by the embedding P(L) C
LR

The next proposition shows that this set is indeed a smooth submanifold diffeomor-
phic to B(L) (and clarifies our choice of the topologies on B(L)).

Proposition 4.3. Let the pulses Vr, satisfy the assumptions of Section 2. Then,
for a sufficiently large L > 0, the set P(L) is a smooth submanifold of [L>°(R™)]™
and the function (4.10) is a diffeomorphism between P(L) and B(L). Moreover,
there exists positive constants Cy and vy independent of L > Ly such that, for every

v E [07’}/0] oL S
Co '3 (T, I?) < || Vg — Vialle @) < Cod? (I, T?) (4.12)

for all T, T? € B(L).

Proof. Let us introduce some notations which are useful for weighted estimates of
multi-pulses. Let I'',T? € B(L) and let 0 < r < L/2. We introduce the following
subsets of N:

Nl(r):={j €N, FcN, HFJI ~T?|| <r}, Ni(r):= N\N(l)(r) (4.13)

and the analogous subsets N2(r) and N2(r). Then, up to the renumeration, we may
assume that

1 20 . 1 2 .
No(r) = NJ(r) :=Ne(r) and ||I'; = T3 <7, j€N(r). (4.14)
Then, the equivalent weighted distance D7 between [ can be now computed via

sl T e e e
D3 (T, I'?) = max { sup {e V51, sup {e V1Y, sup {e vl I0; =21} )
JENG(r) JENG(r) JENe(r)
(4.15)
Indeed, it is not difficult to verify that

1 (I, 1?) < D3I, 1) < Cay (I, 1)

where the constant C' depends on r, but is independent of L. We also set f’o =
{T%}jeni ) and T% := {T"% }jen,(r), @ = 1,2. Then, obviously
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Let us first prove the inequality in the right-hand side of (4.12). Indeed, let r = 1.
Then, due to (4.16)

HVfl _Vf2||ij ®Rn) < ||Vp1||L°° ol Rn)—i-

Vel oy + Ve = Vsl gy (417)

Then, due to (2.10) and (2.11) and Lemma 3.12, for v < «/2, we have
HVFIHL‘)o el (B™) < S;l]éjn Z e—olz=gjl=7lal <
jEN}

< sup{e "1} sup R, 51 (x) < Csup{e "5}, (4.18)
jENL z€ER™ JENY

The second term in the right-hand side of (4.17) is completely analogous and for
estimating the third one we need to use additionally that

Vi (2) = Ve ()| < Ceolo=8 T} — T2 (4.19)

where the constant C' is independent of j and of I'}, I} € G such that ||I; —T%|| <1
(which is also and immediate corollary of (2.10) and (2.11)). Thus, the right-hand
side of inequality (4.12) is verified.

Let us now verify the left-hand side of (4.12). To this end, we will use again splitting
(4.13)—(4.14), but now with sufficiently large » < L/2 which will be fixed below. Let
us first consider some jy € N1, Then, by definition,

dist(¢],2%) > 2r" =1 — C} (4.20)
(here C} is the norm of the compact group Gy realized as a subset of RV*Y in the

metric || - || defined in Section 2) and

Vs = Vi | o=
€

2 1o (R™) > ||Vﬁ1 - VﬁQHL:ng(B% ) > ||Vr}0||L:3W|(B%O)_

Z VF1||L°° BT, ) ||Vfg _VngLOj (Bry ) ||Vﬁg||L°j (B™ ) (4.21)
JO i Ej() eIzl fjo

J€N1 3770

Furthermore, according to Lemma 3.12, and estimates (2.10) and (2.11), we have

| Z VF;HL;Wl(Bgi)S
JGN(I)L]#JO 70
< sup | Z e~ Ml=EN gup {81} < C e ’")/QDS(Fl I?)
l2=E0|=" jens(r) g0 JENG(r)

(4.22)
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where we have implicitly assumed that v < a/2. Analogously,

HVﬁ}: — Vﬁ% ||L°°77|$I(Bg1 ) S Ceia(LfT‘ )/2 D’F;(Flj I‘\2)’
¢ J

Vi < Ce 2 Dyt I 429)
I rgHLOO_W‘(Bg y=>be S, I7)
e o

(here we have implicitly used (4.20)). Inserting these estimates to (4.21), we arrive
at

Ve = Veallze e = (Vi [l e ) — Cle @2/ g o=/ D3 (1 2),
e e—vlz| Vel

Using now (2.43), we obtain

—¢] |
HVF}OHL?W\I\(B%O) > Ke )

for some positive x (which is independent of ' > Ry). Assuming now that L is large
enough and fixing " > R in such way that

C(e—a(L—r’)/2+e—ar’/2) < /§:/27

we will have 1
||Vf‘1 - Vf@ ||L:iﬂ (R™) 2 /{e_ﬂfjo‘ —/€/2Df/(1“1, FQ)

|

and, taking the supremum over j, € N!,

||Vﬁ1 — Vi ||L;7\m|(R") > K Sup{e*ﬂ{}\} — n/?D,ﬁ(flv fQ) (4.24)

jeENS
Arguing analogously, we establish also that

Vi = Vil | @ 2 & S;g){e_”'gj' T — T2} — k/2D5(T, T?),

m . B (4.25)

(&ny > Ksup{e 71} — Kk/2D5(17, 7).
JENZ

Vi — Vi ||
o=

al
Combining (4.24) and (4.25), we deduce
IVer = Vel @y 2 w/2D5(F, 1)

which finishes the proof of estimate (4.12).

In particular, taking v = 0 in that estimate, we see that V is a Lipschitz continuous
isomorphism between B(L) and P(L) and, consequently, P(L) is a submanifold of
[L>°(R™)]™. The differentiability of V can be verified completely analogously and
we left it to the reader. Thus, Proposition 4.3 is proven. O

The next corollary shows that all Sobolev’s norms are equivalent on the manifold
P(L).
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Corollary 4.4. Let the assumptions of Proposition 4.3 holds and let 1 < p < oo,
[ €[0,00) such that £ — % > 0. Then, there exists C = C(p,l) such that

C™Hlmy — my|[

o

Rn) S Hm1 — mQHWl,p (R") < CHm1 — mQHLoci | l(Rn) (426)
b,e77|z| e

for every my, my € P(L)

Proof. Indeed, since W' C L, then taking in account Proposition 4.3, it is suffi-
cient to verify only that

||Vfl - Vf2l|Wl’_°:‘x‘(R") S Cld,sy(]__‘l,]__Q)

and this inequality can be verified exactly as in the case [ = 0 (see Proposition
4.3). O]

Remark 4.5. The last proposition allows us to fix a convenient uniformly smooth
atlas (in the sense that all transfer maps are uniformly smooth) of local coordinates
on P(L). Indeed, let v — T'() be the local coordinates near [* € B(L) introduced
in Definition 4.1. Then, due to Propositions 4.3 with v = 0 and 2.2, we have that
the whole neighborhood

Oy (Vi) i= {m € B(L), [ m — Vol pany < 74}

(where 1, = r{(r9) > 0 is sufficiently small positive number, independent of [0 e
B(L + 0) belongs to the same coordinate neighborhood of that atlas and, for suffi-
ciently large L and every I'" = T'(a'),I? =T'(?) € Oy (Vo),

Co ot = i < Vi) = Vigaz) o=@ < Colla’ — o[l (4.27)

where the constant Cy is independent of the concrete choice of [ € B(L). Thus,
the map o — Vg, where ['(a) is defined by (4.6) gives indeed a natural local
coordinates near Vg,. In the sequel, the local coordinates on P(L) will always mean
the local coordinates belonging to the above described atlas.

Remark 4.6. We define also the boundary 0P(L) := V(0B(L)). Then, Proposition
4.3 shows also that the map V is a diffeomorphism of OP(L) and 0B(L).

Let us now consider the tangent space T, [P(L) to the manifold P(L) at point m = Vx
endowed by the metric of [L>(R™)]™. Obviously, every element v € T,[P(L) has a

form
[e%) k

v=v(a) = Zzaé.(ﬁirj, a= {aé} c I®°(R"),

j=1 i=1

see (2.37) and (4.10). Then, analogously to Proposition 4.3, one establishes that
C M allie < [ v(@)llzoe@n) < Cllalli
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for some C' independent of @ and m. Furthermore, analogously to Corollary 4.4, all
Sobolev norms are also equivalent on 7,,,P(L).

We are now ready to prove that the manifold P(L) consists of "almost equilibria"
of equation (2.1). To this end, we introduce the function

F(m) := Aym + ®(m), m € P(L) (4.28)
or, in terms of f,
F(F) :=F(Vp) = ®(Vz) — > (k) (4.29)
j=1
where I' = [V]"'m (here we have used that every pulse Vr, is an equilibrium of

(2.1)).

The following lemma shows that the function F is indeed small.

Leznma 4.7. Let the above assumptions hold. Then, for every e > 0 the function
F(T") satisfies

F(T) ()] < C. ¢ (a-oldistleS)dist'(.2)] (4.30)

where the positive constant C. is independent of z € R™ and T € B(L) and dist’(z, =)
denotes the distance from x to the second nearest element of =:

dist'(z,2) 1= sgg 125 llx — &l (4.31)
J 7

In particular, |F(T)||pe@n < Coe 29L& > 0. Moreover, the function F : T —
L>(R™) is Fréchet differentiable and

”]F/(f)“E(Tl:IB%(L),L‘X’(R")) < CLe ool (4.32)

Proof. In order to verify (4.30), we use the following obvious formula
1
O(v1 + vg) — P(vy) — P(vg) = / D' (vy + sv2) ds - vg—
0

1 1 1
—/ D' (sv9) ds - vy = / / D" (5101 + Sov9) dsy dsy - [vg, v] (4.33)
0 0o Jo

which is valid for every two sufficiently smooth functions v; and vy. Applying this

—

formula to the function F(I') and iterating it (infinitely many times), we have

F(T) = Z’]r(vpi, > Vi)V, > W (4.34)

J=i+1 J=i+1

where T(u,v) := fol fol D2®(syu + syv) ds; dss.
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Using now estimates (2.28) and the fact that allof 3372, |
we obtain the following estimate:

(F@) ()| < C Y eoletilgmole=sl, (4.35)

2'7j7 l#]

Vr, are uniformly bounded,

This estimate implies (4.30). Indeed, let {;, € = be the nearest to = element of the
grid =. Then, according to Lemma 3.12,

Z e—a|$—§i\ e ale=¢&1 — e—Oé|1’—Ej0\ Z e ale—&il + Z e~ alz=¢;l Z e—alz=&il <
1.3, 7] i#jo J#Jo i#]
< CE e @ dist(z,=) e—(a—a) dist(x,2\{;, }) + Z e—a\x—fj‘ Ca e—(oz—a) dist(z,=) <
J#jo
<C.e” (a—e)[dist(z,Z)+dist’ (z,2)] ) (436)
Moreover, since
dist(x, Z) + dist'(z, Z) > [§, — &;1| > 2L

where &, is the second nearest to x element of the grid Z, estimate (4.30) implies

that the L>*-norm of ]F(F) is bounded from above by C. e (@)L,

The Fréchet differentiability of F(I') can be verified in a standard way and we leave
it for the reader. So, it only remains to verify estimate (4.32). To this end, we note
that the derivative DgIF(I')oI", T' € TxB(L) is given by the following expression:

F/([)0T = _[@( Vi,)]Dr Vi, - L. (4.37)

7=1
Using now the obvious formula
&'(F) — &'(Vr)) = / (Vg — Vi) ds- 3 Vi,
i#j

together with estimates (2.28) and Lemma 3.12, we deduce analogously to the proof
of (4.30) that

|(F x)| < Z —alz—¢&;] 16T ||Z —alz—¢&| <

i#]

< 0H5f”Roo Z e—a|:c—§j| Z e—a|x—£i| < CgH&lem e—(a—a)[dist(:z:,E)+dist’(x,E)] (438)
Jj=1 i#]

and Lemma 4.7 is proven. O

In particular, estimates (4.30) and (4.32) imply the following uniform Lipschitz
continuity of the function F:

IF(E) = F(®)|[ oo n) < Coem @9k a*(T, I?) (4.39)
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where the constant C. depends on £ > 0, but is independent of ', ['2 € B(L). The
next lemma gives the weighted analog of this estimate.

Lemma 4.8. Let the above assumptions hold and v < a/2. Then

IF(T) — F(T?)]

ezl

@ < Ce @ (T, T?) (4.40)
where the constant C is independent of T € B(L).

Proof. Let T € B(L), ¢ = 1,2. Analogously to Proposition 4.3 We introduce the
sets N/ = N’(1) and N.(r) = N,(1) via (4.13), (4.14) and will use splitting (4.16).
Then, we have
[F() = F(I?)](2)] < |[F(T) — FTD] (@) +
+IF(I?) = FI)](@)] + [[F(Le) = FIO)(x)]. (4.41)
We transform the first term in the right-hand side of (4.41) as follows:

—

[F(CY) = F(E)](2)] < N[@(Viy + Vi) = (V) = ©(Viy )] ()] + [F(F) (2)]-
Using now (4.33) and Lemma 3.12, we infer
[@(Vey + Vi) = (Vi) = @(Viy)l(@)| < ) D emelr&ilel6l <
i€NL jeNL

< O sup {e—a\a:—ﬁjl.\/ll} e—a/z(dist(a:,zi)+dist(x,2g)) < ce L sup {e—a\x—§;|/4}.
JEN] JEN]

Multiplying this estimate by e ™17l and using that e 1*I=72=&1 < e=7&l and v < a/4,
we have

12(Vy + Vi) = (Vi) = @(Vpy )l n) <C sup{e %1},

-z ]EN})

Moreover, using (4.35) (with T! instead of T'), we deduce the analogous estimate for
the term F(T"}). Thus,

IR = Bz, < O3 E2) (1.42)
Analogously, the second term in the right-hand side of (4.41) can be estimated via

[F(E2) B2, ey < OD(T2), (4.43)

In order to estimate the third term, we recall that |1 —I2||o, < 1 and, consequently,
analogously to (4.38), we have

[F(T}) — F(I2))(z)] < Coem sup{e M40} — T3]},

JEeNe
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Multiplying this estimate by e™*! and taking the supremum over z, we finally
deduce that

IF(EY) — Bl ) < Cet DI, T2). (4.44)
Estimates (4.42), (4.43) and (4.44) imply (4.40) and finish the proof of Lemma 4.8.
[

We now reformulate the above two lemmas in terms of the manifold P(L).

Corollary 4.9. Let the above assumptions hold. Then the function F : P(L) —
L>(R™) is Fréchet differentiable and satisfies the following estimates:

IF(my) — F(my)||peo@n) < Cee 9" lmy — my|| o en)

L (4.45)

IF"(m) | £z oo )y < Cee™7
where e > 0 is arbitrary and C. depends on €, but is independent of L and m; € P(L)
(here and below we denote by T, P(L) the tangent space to P(L) at point m).

Moreover, for every 0 < v < a/4, we have
IF(m1) — Fmo) [z @n < Ce™ my —mollre e (4.46)

where C' is independent of L and m; € P(L).

Indeed, the assertion of this corollary follows immediately from Lemma 4.7 and (4.8)
and Proposition 4.3.

Remark 4.10. Arguing analogous, it is not difficult to verify that F € C*(IP(L), L>°(R"™))
for every k € N and the analogies of estimates (4.45) hold. Moreover, the weight

e~ 7l in Proposition 4.3 and Lemma 4.8 can be replaced by e~7*=%l and all of the
constants will be uniform with respect to xy € R". This gives estimate (4.46) also
with weight e="1*=2l  Proposition 3.3 then gives estimate (4.46) for any weight
function 6 of sufficiently small exponential growth rate.

5 The multi-pulse manifold: projectors and tangent
spaces

In this section, we continue to study the basic manifold P(L). To be more precise,
we construct here a family of projectors Py, : [L°°(R")]"™ — Ty,P(L) which plays an
essential role in our center manifold construction. To this end, we need the following
lemmas.

Lemma 5.1. Let the assumptions of Section 2 hold. Then, for sufficiently large L
and every I' € B(L) there exists a family of functions %(T') € C*(R™), i =1,--- ,k,
J € N which satisfy the analog of (2.32):

|0P4(D)| < O e (@)e8] (5.1)
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and the following orthogonality relations

Moreover, these functions are Fréchet differentiable with respect to ' and the follow-
ing uniform estimate holds:

| DD (2)8T| < C.e™ @4l ||5T |1 (5:3)

where the constant C. depends on € > 0, but is independent off € B(L), i, j and
r e R".

Proof. Let us fix jo € N and seek for the associated functions &;0 in the form

INOEDIPIALAC) (5.4)

where o’ € R are the unknown coefficients. Multiplying (5.4) scalarly by ¢t and
using the orthogonality relations (2.35) and (5.2), we obtain the following system
for at:

J

k
! (il
a0 D @ (Wi on,) = G (5.5)
j#r i=1
We claim that, for sufficiently large L this equation in [*° possesses a unique solution
and this solution possesses the following estimate:

|a;] < 2e (@9)l& ol (5.6)

Indeed, let us introduce a new unknown b} := afe(® 29550l which satisfies the
following analog of (5.5):

1B, b=1, (5.7)

where (l;o); := 0, j, and the linear operator B, is defined via

k
(Bjol)i — bf« 4 Z Z b; e—(a—?s)(|€j_§jo‘_lfr—fjo‘)(w%j7 gbi_‘r) (58)

jF#r 1=1
We now note that, due to estimates (2.32), we have
e~ (2265 Eil 1660 | (i, gl )| < O, @2l (a2l —6] = ¢, ocler5]
(5.9)
and, consequently, due to Lemma 3.12,

Bjo | cioo g2y < CLL™ €™ (5.10)

Thus, for sufficiently large Lo, ||Bj,|| < 1/2 and, consequently, equation (5.7) is
uniquely solvable in [* and the solution b satisfies ||bljoc < 2||/j,||[cc = 2 which
implies estimate (5.6).
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It remains to note that (5.6) together with (2.32) imply (5.1). Indeed,

|a£1/jjzj(f)(x)| < 2C’pze*(a*5)|£r*§j‘ ealr—&l <

r=1

<20, e TMTEIN "emeletrl < Of el (5.11)

r=1

Thus, (5.1) is verified. The differentiability of the functions &; with respect to r
and estimate (5.3) can be verified analogously (see also the next Lemma). Lemma
5.1 is proven. ]

We are now ready to define the required projectors Py,:
k: —
P =Y > (04(T), 0)¢, (5.12)
jEN i=1

where m € P(L), T = [V]"'m and v € L*(R") is arbitrary. Indeed, it follows
immediately from (5.12) and the fact that ¢r, is a derivative of V1, with respect to
I';, that

Pmv C TiP(L), Vv € L¥(R").

Moreover, from the orthogonality relations (5.2), we infer
P2 =Pn, PuTwP(L) = TnP(L). (5.13)

Thus, Py, are indeed the projectors on the tangent space Ty,[P(L).

The following theorem which establishes the smooth dependence of the projectors
P, on m can be considered as the main result of the section.

Theorem 5.2. Let the above assumptions hold. Then, the projectors Py, are well-
defined and depend smoothly on m € P(L). In particular, for every 1 < p < oo,

Pea [l 2z ), Lo @n)) + |Prall et ()00 @), o @ny)) < C (5.14)

where the constant C' is independent of m, p and L (if L is large enough). Moreover,
for v € L (R™) and sufficiently small v > 0, we also have

Py 0 = Panyvf| e ey < ClJol| g ey 000 = Mg ny (5.15)

uniformly with respect to my, my € P(L).

Proof. Indeed, estimate (5.14) is a standard corollary of Lemma 5.1, Proposition
3.13 and exponential decay conditions (2.32), so we rest its proof to the reader.
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Thus, we only need to verify the weighted Lipschitz continuity (5.15). Indeed, let
' T% € B(L) be arbitrary and let the sets N, 7 = 1,2 and N, be defined by (5.61)
and (5.62) with r = 1. Then, we split the difference Pp,, v — Py, v as follows:

k
0= Pryo =Y > (04T, v V)¢ — ZZ v)bpa+

P
JEN} =1 JENZ =1
k
+ 3 D W, 0)[ép — o] = > Z (D5(T) = 45(1%), 0)dpa  (5.16)
JEN, i=1 JEN, 1=1

Using now inequalities (4.10), (2.32), we estimate the first term in the right-hand
side of (5.16) via

I S 0] < Clelagan 3 e

jENL =1 JEN]

which immediately gives

k
| Z Z(@Eé(fl),v) Z'F;”L:o o (B) < C'sup{e” vI€} \}

1
jeND i=1 J€NG

if v < /2. The second and the third term in (5.16) can be estimated analogously.
And, the last forth term can be also estimated analogously if, in addition, the
following estimate is known:

|[H(T) — <r2>||L @ < CD3(I,T?) (5.17)

’Y\E [+a|z— 5 [/2

for every j € N, (we recall that the metric D3 is introduced by (4.15)). In order to
verify this, we recall that the function W (T ) satlsfy

7Ljo (f) = Z a; (jOa f)¢Fj
j=1

(in order to simplify the notations, we assume that k = 1 and omit the corresponding
indexes). Then, using (5.6) and (2.32) and arguing analogously, we reduce the
verification of (5.17) to the following estimate:

la; (o, ) — a;(jo, T2)| e & I8 =512 < 0 p3 (T T2) (5.18)

for all j, jo € N, and with C independent of j, jo and .

In order to verify (5.18), we recall that the coefficients a;(jo, f) are determined by
the following equations:

oo

ar(]bv f) + ZA%I_;)CLJ(]O: f) = 67“:j07 reN

Jj=1
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with AJ(T) = (¢, ¢r,). Let us introduce now the new coefficients:
¢ (jo, T) v= o7 0812 0, (o, ), di (o) = ¢ (o ") = e (o, %)

Then, the coefficients ¢, solve

jOJ f + Z C .]07 )C]<.]07 f) = e*’7|§r| 57’,]‘
J#T

with CI(jo, ') := e &l el&l eal€io=61/2 e=l&io —=&il/2 A{(jo,f) and, moreover, if 7 <
a/4, we also have

|4 (jo, T)| < Cemel&rl/ (5.19)
Furthermore, we rewrite the equations for {d, },cn, as follows:
Y Cilos ;o) = Li(jo) (5.20)
JEN, j#r
where r, 7 € N, and
L,(jo) := (e~ el _e—v\ﬁ NS Z i (Go, T ')+
jEN]
+ Z CJ(jo, T%)¢;(jo, I?) + Z 9o, ") = C2(jo, T)]e; (jo, T?)  (5.21)
jENZ JEN.
We claim that o
| L (jo)| < CD: (I, %) (5.22)

where the constant C is independent of 7, j, € N, and T" € B(L).

Indeed, since r € N, then estimate (5.22) for the first term in the right-hand side
of (5.21) is obvious. Analogously, using (5.6) and (5.19) together with Lemma 3.12,
we infer

Z C9(jo, T Ye; (o, ' <c Z el =&l e IE ] gmeléi—60l/4 < O sup {e 181,

JENL JEN] JENS

The third term is completely analogous and we only need to estimate the last one.
To this end, we use again the fact that j, jo,” € N, estimates (5.6) and (5.19) and,
in addition, estimates (2.38) (for estimating the differences between gbpjl_ and ijz,

see the above formula for C¥(jo,T')). Then, we obtain

1D 1€ G0, ) = Gl (o, T2)]e (o, T2)] <
JEN:
<C Z e~ & —&11/4 o= e—a\ﬁ}o—ﬁgl'\/‘l(nrjl _ F?H + ”F;o _ F?()H + ”F?{ _ FEH) <
JEN
< Csup{e&! |1} - 123

J€eNe
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(if v < «/8). Thus, estimate (5.22) is verified.

We are now able to return to system (5.20). Indeed, according to (5.19) and as-
sumption (3.38), the matrix C(jo, ") := {C¥(jo,T")},ren, is close to the diagonal
one if L is large. Thus, fixing L to be large enough, analogously to the proof of
Lemma 5.1, we infer

sup d;(jo) < 2sup L;(jo) < 20D3 (", T?)
jEN. JEN

which, together with (5.19) imply (5.18). Thus, estimate (5.15) is verified and
Theorem 5.2 is proven. O

We are now formulate the analog of Lemma 3.1 and Corollary 3.4 for the projectors
Pu.

Proposition 5.3. Let the above assumptions hold. Then, for sufficiently large L,
there exists an exponent v > 0 (independent of L > Ly) such that, for every m €
P(L), every 1 < p < 0o and every weight function 6 of exponential growth rate less
than v, one has

1Pt 2z @ny 2@y + 1Pl o(mmp() ez @y @y < C (5.23)
where the constant C' depends on Cy, but is independent of m, p and on the concrete
choice of the weight 6.

Moreover, if M. ., be the multiplication operator on the special weight 0. ,, and € is
small enough, then, analogously to (3.28),
| Me 2o © P © M wy — Pl £(zr@ny,Lo@ny) < Cle (5.24)

where the constant C' is independent of €, m and xy.

The proof of that proposition is based on estimates (5.1) and (2.32) and is analogous
to Corollary 3.14, see also Lemma 3.8, therefore, we leave it to the reader.

The next corollary gives the leading part of the asymptotics of Py, as L — oc.

Corollary 5.4. Let the above assumptions hold. Then, for sufficiently large L, every
weight function of 0 sufficiently small exponential growth rate and every m = Vi €

P(L),
Pt = > Pr,vllppgn) < Cee @™ |v]| o gn (5.25)
j=1

where € > 0 and v € Ly(R™) are arbitrary and C. depends on £ and Cy, but is

independent of m and v. Moreover, the analogous estimate holds for the spaces
LY /(R™) as well.
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Indeed, according to (5.4), (5.6) and (2.32), we have
[3(T) (x) = o, ()] < oo ool (5.26)

which together with definition (5.12) of the operator Py, gives the required esti-
mate (5.25).

We introduce now one more linear operator which is essential for studying the evo-
lution of pulses. We recall that P, is smooth with respect to m, so the map
dm — P, [0m] is well-defined for all dm € T,,[P(L). Then, we define

D(m)[dm]v := Pp,P, [dm]v (5.27)

for every m € P(L), ém € T,,P(L) and v € L{(R") and obtain the following analog
of Theorem 5.2.

Theorem 5.5. Let the above assumptions hold. Then, the operator D(m) is uni-
formly (with respect to m € P(L) and L > Ly) smooth (and, obviously, linear with
respect to om and v). Moreover, for sufficiently small v, the following analog of
(5.15) holds:

[D(my)[dm;]v; — D(my)[dma]vsl| L

e—7lz|

< Cflmy —myf[p - en) + [[0my = dmy|[pe o) + [l = v2llree | @my)  (5.28)

where the constant C depends on ||0my||pocmr) and ||vi|| o @ny, but is independent of
the concrete choice of m;, 0m; € T,P(L), v; and L being large enough.

The proof of this result is completely analogous to Theorem 5.2 and is left to the

reader.

Remark 5.6. Obviously, the transposed operator to Py, (in L?*(R")) has the form
k

Pro =Y (¢ v)ed(I). (5.29)

j=1 i=1

Then, arguing exactly as before one can verify that the transposed projectors P},
also satisfy the analogs of Theorems 5.2 and 5.5. In particular, analogously to (5.25),
we have

[Prv — ZPEUHLg(Rn) < Ce ot [0l| £z ey
j=1
where ¢ > 0 and v € Lj(R"™) are arbitrary and C. depends on ¢ and Cjp, but is

independent of m and v. Moreover, the analogous estimate holds for the spaces
Ly o(R™) as well.

We conclude this section by verifying that the tangent space T,,P(L) "almost coin-
cides" with the zero spectral subspace of the linearized operator A+ ®'(m). To this
end, we introduce one more operator

S(m)v := P, (Av + @' (m)v). (5.30)

The following theorem gives the uniform smallness of the operator S(m) thus defined.
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Theorem 5.7. Let the above assumptions hold. Then, for sufficiently large L, the
operator S(m) depends smoothly on m and satisfies:

IS(m) | £z ey e @)y + IS ()| £timb(z) £z (re, ooy < Cee™ @798 (5.31)
where € > 0 is arbitrary, C. depends on €, but is independent of m € P(L).
Moreover, for sufficiently small v > 0 and every my,my € P(L) and vi,vy €
L=(R™),

1S(my)vy — S(mz)wHL:gW‘(Rn) <

< Coem(|m,; - my|[p= )+ [or = v2fli @) (5.32)

where € > 0 is arbitrary and C. depends on ¢ and ||v||pomny, © = 1,2, but is
independent of the concrete choice of m; and v;.

Proof. Indeed, taking into account (5.26) and the fact that @Z){;j solves the conjugate
equation, we get

[(05(F), Av + @' (m)o)| = (A7 + [@'(m)])¢5(L), )] <
< (A" + [@'(m)])er,, 0)] + Ce e o] oo ey =

= “( (m) ( Fj))i/JliﬂjHLl(Rn)H’UHLw(Rn)—I—Cse*2(a75)L (533)

Moreover, according to (2.32), we have

(@' (m) — &' (Vo)) ¢y, [ L ny < Csup{e (@il y "emaleaily <
k#j

< CZ e (alg =&l < C. e 2(a—e)L (5.34)
s
which together with (5.33) gives estimate (5.31) for S(m)v. The required estimate

for the derivatives and the weighted Lipschitz continuity (5.32) can be proven anal-
ogously, see the proof of Lemma 4.8 and Theorem 5.2. Theorem 5.7 is proven. [

Remark 5.8. Analogously to the previous section, the weight e 7%l can be re-
placed in all weighted estimates of this section by any weight 6 of sufficiently small
exponential growth rate.

6 The multi-pulse manifold: differential equations
and the cut off procedure

This section is devoted to study the differential equations on the multi-pulse mani-
fold. We start by recalling the standard facts on the following differential equation
on P(L):

M= f(t,m), m(ty) =my (6.1)
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where the unknown function m(t) belongs to P(L) for every t and the function
f(t,-) € C*(P(L),L>®(R")), k > 1, such that f({,m) C T,,P(L) for every t € R
and every m € P(L). We however note that, since P(L) is not compact, the above
assumptions are not sufficient even for the local existence of a solution. That is
why we require, in addition, the global boundedness and Lipschitz continuity of the
function f:

| £t ) — £ ) e ey < Ky — gl e, |6 m)l| gy <€ (6.2)
where the constants K and C' are independent of m, m;, my € P(L) and ¢ € R.

Theorem 6.1. Let the function f satisfy assumptions (6.2). Then, for every my €
P(L) and every ty € R, there exists a unique local solution m(t) defined on the
interval (ty,t5). Moreover, either t; = —oo (resp. t& = +oc0) or m(ty) € OP(L)
(resp. m(ty) € OP(L)). Moreover, this solution is Lipschitz continuous with respect
to the initial data:

[y (£) — g (8) | oo gy < €100 1y (£9) — g (t0) | oo ) (6.3)
for all t such that both my(t) and my(t) are well defined.

Proof. The local existence and uniqueness of a solution can be verified in local
coordinates exactly as in finite-dimensional case. So, we only need to verify estimate
(6.3). Indeed, let m(t) := m;(t) — my(t). Then, it obviously satisfies the following
integral equation

m(t) = m(tg) —I—/ (f(s,my(s)) — f(s,my(s))) ds.

to
Let t >ty (for t <ty the proof is analogous). Then, taking the L*°-norm from both
parts of that equality, we have

t
() Lo gy < [[1mo(8) | oo (rm) + K/ [m(s)| oo rny ds
to

which, together with the Gronwall inequality, gives (6.3) and finishes the proof of
the theorem. O

We recall that the above solution depends also continuously on f. Indeed, let

” fl(t7 ) - f2(t7 )H = Sup || fl(t7 m) - f2(t7 m)HLO"(]R”)-

meP(L
Then, the following analog of (6.3) holds.

Corollary 6.2. Let the above assumptions hold and let m; and my be two solutions
of (6.1) with the right-hand sides f1 and fy respectively. Then

e MI=tolimy () — mp (t)]| poe(rny <
t
< |lmy (to) — ma(to)|| oo rny + K sgn(t — tO)/ e Kool £y (s, ) = fa(s, )| ds
to
(6.4)

for all t such that both m; and my are well-defined.
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The proof of that estimate can be obtained by Gronwall inequality exactly as in
Theorem 6.1 and so omitted.

Analogously, if the Lipschitz continuity of f in weighted spaces is, a priori, known
H f(t, Il’ll) — f(t, mg) ||Lg°(R”) é KHIl’ll — m?”LgO(R”) (65)

for some weight function 6 of exponential growth rate, then one has the analogous
Lipschitz continuity of solutions in weighted spaces.

Corollary 6.3. Let 6 be a weight function and f, and fy be right-hand sides of
equation (6.1) satisfying (6.5) and let

[£1(2,) = f2(t,)]lo == sup [[£1(t, m) — £2(¢, m)][ g0 ().
meP(L)

Then, for the associated solutions my and my of equation (6.1), one has

e~ Kli=tol [m; (t) — m2(t)”L3°(R") <

t
S ”ml(to) — mg(to)HLSO(Rn) + ngn(t — to) / e*K|tofS| H f1<87 ) — f2(57 )H@ ds
to
(6.6)
for all t such that both m; and my are well-defined.
Furthermore, as usual, if the function f is more regular, then the dependence of the

solution m on the initial data is also more regular. In particular, the equation of
variation associated with the solution m(t) of equation (6.1) reads

d

%W@) =1 (t,m(t)) w(t), w(ty) =wo € TrP(L) (6.7)

or in the equivalent covariant form

d
Pma w(t) =Pl (t,m(t)) w(t), w(ty) =wy € TmP(L) (6.8)
where, as usual, the expression Vf(t,m) := P, f__ (¢, m) can be interpreted as a

covariant gradient of the vector field f(¢,-). The next standard corollary confirms
that the solution w thus defined is indeed a Fréchet derivative of m(¢) with respect
to the initial data.

Corollary 6.4. Let the above assumptions hold and let, in addition, the vector field
f be Fréchet differentiable and its Fréchet derivative £ is uniformly continuous on
P(L). Then the solution m(t) of equation (6.1) is Fréchet differentiable with respect
to the initial data my and its derivative w(t) := Dy m(t) wo solves equations (6.7)
and (6.8). Analogously, if the vector field f is C*-differentiable and its kth derivative
is uniformly continuous, then the function my — m(t) is also C*-differentiable.
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The proof of this assertion is completely analogous to the finite-dimensional case
and is also left for the reader.

Remark 6.5. It is not difficult to obtain the form of equation (6.1) in the manifold
B(L) in terms of local coordinates I'}. Indeed, since

m(t) = V(D) = Vi
then

ook k
I (T
S Y i
j=1 i=1 I=1
Thus, multiplying equation (6.1) by the function 1/_1;(1:(15)) (which is introduced in
Lemma 5.1), integrating over z € R™ and using (5.2), we have

ZHzldt j (f(t,Vﬁ(t)>,QZ§(ﬁ(t))), je N7 [ = 17 7k (69)

which allows us to obtain the explicit expression for (6.1) in local coordinates (we
recall that the transfer matrix II;;(I") is defined by (2.37)).

The manifold P(L) has a boundary and the trajectory m(¢) of equation (6.1) can
reach this boundary in finite time. As usual, this fact is very inconvenient for the
center manifold constructing and some cut-off procedure is necessary. However, in
contrast to the finite-dimensional case, the L*>°-distance to the boundary is not a
differentiable function (even in the neighborhood of the boundary) and, thus, cannot
be used for this procedure.

We overcome this difficulty by constructing, instead of a usual scalar cut-off function,
a special cut-off operator Cut(m) acting on the vector fields on P(L) and define the
modified version of (6.1) in the form

d
(1) = Cut(m(t) £(z, m(1)). (6.10)

Roughly speaking, the operator Cut(m) will be identical if m is far from the bound-
ary and will stop the motion of ¢th and jth pulse if the distance between them
become close to 2L. To be more precise, the following theorem holds.

Theorem 6.6. For every sufficiently large L and all € > 0, there exist linear oper-
ators Cut(m) € L(L>®(R™), L*(R"™)) depending smoothly on m € P(L) such that,

1) Cut(m)w C TP(L)
2) Cut(m) = ifme P(L) with I > (14 ¢)L (6.11)
3) | CUt(m)H k@)oo, L)) < Ch.
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where the constant CY, is independent of m and L.

Moreover, for every vector field t satisfying the assumptions of Theorem 6.6, and
every mgy € P(L), the associated trajectory m(t) of the modified equation (6.10) is
globally defined for allt € R, never reaches the boundary OP(L) (in finite time) and
satisfies the analogs of estimate (6.4).

Furthermore, the operator Cut is Lipschitz continuous in the local topologies, i.e.

| Cut(my) wy — Cut(my) ws || @n)

< O (|l = v

eIzl

(R") (6.12)

+ ([ Wi lzee ) + [ W2 [l Loe ) [my = mZHL:‘iW,(R"))

for all my,my € P(L) and every w; € Tm,P(L) and sufficiently small v > 0 and
0> 0.

Proof. We first note that, it is sufficient to construct the operator Cut(m) only on
the tangent space Ty,P(L) (it can be then extended to all L>°(R™) by taking the
composition with the projector Py,.

To this end, we introduce, for every ¢+ € N and some fixed 3 > 0, the following
smooth analog of functions (3.40):

Rim) =) 05¢(&) =Y e VG e, (6.13)

J# J#

where m = Vi and dist'(§, X) is defined by (4.39). Then, according to Lemma 3.12,
we have B
e A (E2-1 < Ri(m) < Cydist/(&,Z)" e P63 (6.14)

Moreover, using Proposition 4.3, it is not difficult to verify that these functions are
smooth with respect to m and the following estimate holds:

||§§(m)||£(TmP(L),R) < CR;(m) (6.15)

where the constant C' depends on [, but is independent of m and L and the analo-
gous estimate hold for higher derivatives as well.

Let us now introduce the cut-off function © : R, — R, © € C®(R) such that
O(z)=1, z€[0,1/2], O(2)=0, z>1 (6.16)
Obviously such a function exists and we have
Cy, = sup{|0®(2)], z >0} < co. (6.17)
For j € N, we introduce the following cut-off functions ©, : P(L) - R, j € N:
0, :P(L) — R, ©;(m):=06(e*?* R;(m)). (6.18)
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We are now ready to introduce the desired operator Cut(m). To this end, we rewrite
equation (6.1) in the equivalent form (6.9) and defined the desired modified equation

as follows:
k

Z Hil(l—‘j)%ré- = 0,(m)(f(t,m), @Eé(m)) (6.19)

Returning now to the m variable, we have

k
%m =D > 05 (m)(f(t, m), }(m))er, (6.20)

jEN I=1
and, consequently,

k

Cut(m)w =Y > 0;(m)(w, }(m))e}. . (6.21)

jEN i=1

We claim that the operator Cut(m), thus defined, satisfies all of the assertions of
the theorem. Indeed, the first assertion of (6.11) is obvious. Let us verify the second
one. Let L' = L'(L) > L solves

Cy(L) e 2Pl = 1/2e7%L

Then, on the one hand, for sufficiently large L > Ly(¢), L' < L' := (1+¢)L. On the
other hand, due to (6.15) and (6.16), we have

O;m)=1, YmeP(L') cP(L), jeN. (6.22)

It remains to note that (6.21) and (6.22) together with the orthogonality relation
(5.2) imply that
Cut(m)w=w, Vw e T,P(L).

Thus, the second assertion of (6.11) is verified. Furthermore, the smoothness of
the operator Cut(m) follows from the explicit formula (6.21) and estimate (6.11)(3)
follows from (6.15) and (6.17) and, therefore, assertions (6.11) are verified.

Let us now verify that the trajectory m(t) of the cutted-off equation (6.10) cannot
reach the boundary OP(L) in a finite time. Indeed, let the distance between two
pulses ijl (r) and ijZ(T) is less than 2L + 1 at some time 7. Then, according to
(6.16) and left inequality of (5.6)

6,,(m(T)) = ©,,(m(T)) = 0

and, consequently, these pulses do not move and the distance between them cannot
decrease under the time evolution. Thus, the trajectory m(¢) cannot indeed reach
the boundary in a finite time and, therefore, due to Theorem 6.1, is defined for all
teR.

Thus, it only remains to verify the weighted estimate (6.12). This estimate can be
easily verified arguing as in the proof of Theorem 5.2 and so is left to the reader (the
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only difference here is that we do not have the analog of (6.15) in weighted norms
and, as a result, the weighted Lipschitz constant in (6.12) contains exponentially
growing term e’’’ where the constant § = J(y) can chosen arbitrarily small if 7 is
small enough). Theorem 6.6 is proven. O

7 Slow evolution of multi-pulse profiles: linear case

In this section, we begin the study the dynamics, generated by equation (2.1) in a
neighborhood of the multi-pulse manifold P(L). We start with the following result
which gives the nonlinear "orthogonal" projectors to the manifold P(L).

Theorem 7.1. Let the assumptions of Section 2 hold and let L be large enough.
Then, there exists 6 > 0 and the nonlinear smooth function m : Os5(P(L+1)) — P(L)
(where the d-neighborhood is taken in the L*-topology) such that

Pry(v —m(v)) =0, for allv e Os(P(L + 1)) (7.1)
The function 7(v) is uniquely defined by this equation,
7(m)=m, 7'(m)="P,, VYmeP(L+1) (7.2)
and moreover, its C*-derivatives are uniformly bounded for any k € N:

7l ek 05 L))z < Ch- (7.3)

Finally, the constants 0 and Cy are independent of L.

Proof. As usual, the existence of such projector can be obtained by the implicit
function theorem. In order to show that, we first note that the required projector
can be constructed locally, for the d-neighborhood of every point my € P(L + 1).
Indeed, the local uniqueness of it will be guaranteed by the implicit function theorem
and the global uniqueness follows immediately from the local one.

Thus, it is sufficient to verify the existence of 7 only in the neighborhood Os(my)
for some my € P(L + 1). Then, v = my + w with ||w|[z~ < 0 and the required
m := 7(v) should be found from the equation

Pm(my +w —m) = 0.

Or, rewriting it in the local coordinates I' near [0 = [V]"'my (see Remark 4.5), we

will have

(Vo +w—Vf,z/_1;(f)):0, jeN, i=1,--- k.

The last equation can be easily solved by the implicit function theorem in the space
[*°. Indeed, let F': > x L*(R™) — R> be defined via

F(T,w)i = (Vo +w — Vg, 94(T)) (7.4)
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(where, for simplicity, we have identified the point [e B(L) with its local coordi-
nates near I).

Obviously, the function F' depends smoothly on ' and w. Moreover, F(fo, 0)=0
and
(F%(f:o’ O)(SF); = (_ Z Hlm(Fg)¢lF9(5F;n> @D; (fO)) = _5F;
L,r,m

where we have implicitly used the orthogonality relations (5.2) and the fact that the
local coordinates on Gy near I' = I'? can be chosen in such way that TI(T"°) = Id, see
Remark 2.3. Thus, DfF(fO, 0) = —Id and, consequently, due to the implicit func-
tion theorem, equation F(T',w) = 0 has a unique solution T’ = T'(w) if ||w]| g~ < & is
small enough. Moreover,it is not difficult to see that the constant 0 is independent
also on I € B(L + 1). Thus, the required projector 7 : Os(P(L + 1)) — P(L) is
constructed (we note that I'(w) does not necessarily belong to P(L + 1), but it al-
ways belong to P(L) if 6 > 0 is small enough). Formulae (7.2) follow from the basic
equation (7.1) and the differentiability and estimates (7.3) are simple corollaries of
the implicit function theorem. Theorem 7.1 is proven. O

Remark 7.2. The above theorem shows, in particular, that every point u € Os(P(L+
g)), € > 0, can be uniquely decomposed in a sum

u=v+m, meP(L), Phbv=0

where m := m(u). In turns, this splitting shows that P(L) is a submanifold in
L>°(R™) where the neighborhood of m € P(L) locally looks like ker Py, x TyyP(L) ~
ker P, x [*°.

According to Theorem (7.1), it seems natural to seek for the solution u(t) of problem
(2.1) in the form

u(t) = v(t) + m(t), m(t) € P(L), Puuv(t) =0 (7.5)

where m(t) solves the appropriate equation on P(L) and v(¢) is small and satisfies
some equation on the "normal" bundle of P(L) generated by ker Py,. Differential
equations on P(L) have been studied in the previous section and the aim of this
section is to study the linearized equations for v(¢) (the nonlinear case will be con-
sidered in the next section). To be more precise, we will study the following linear
problem

O + Agv + @' (m(t))v = h(t), (7.6)

where m(t) is an arbitrary "slow" trajectory on P(L) and find necessary and suffi-
cient conditions on h(t) which allow to satisfy the additional condition Py v(t) = 0.
These conditions will be used in the next section in order to deduce the equations
for the pulse evolution.

Analogously to (3.18), it is convenient to eliminate the "neutral" modes of equation
(7.6) by adding the artificial projector as follows:

v + Agv + ' (m(t))v + Pmyv = h(t), (7.7)
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We start our consideration by the case of standing pulses m(t) = m € P(L)
O + Agv + @' (m)v + Pyv = h(t). (7.8)

and then treat the case of slowly moving pulses via a perturbation technique. The
next proposition gives the solvability (7.8) if L is large enough.

Proposition 7.3. Let the operators Ay and ® satisfy all of the assumptions of Sec-
tion 2. Then, for every 1 < p < oo, there ezists a (large) constant Lo and a (small)
positive constant £y such that, for every L > Ly, every m € P(L) and every weight
function 0 with exponential growth rate € < ey, equation 7.8 is uniquely solvable for
every h € LY(R") in the class I/V(1 2l)p(R"+1) and the following estimate holds:

ollyy 120 gnry < ClUA s (7.9)

where the constant C' depends only on Cy and is independent of L, e, m € (L) and
of the concrete choice of the weight 0. Moreover, the analogous result holds for the
adjoint equation.:

—Oyw + Ajw + [@'(m)]*w + Pr,w = h (7.10)
and for the weighted spaces L’;’g.
Proof. We first note that it is sufficient to verify the assertion of Proposition 7.3
for the non-weighted case # = 1 only. The case of general weights can be deduced

from this particular case using (5.23), (5.24) exactly as in Proposition 3.10. Thus,
we assume from now on that h € LP(R"™) and 6 = 1.

We first construct an approximate solution of equation (7.8). We seek for that
approximate solution in the form

o0

0(t,x) == wvo(t,x) + Zvi(t, x) (7.11)
i=1
where v; solves
Ow; + Aov; + (Fr, + Pr,)v; = hi(t, z) == h(t, I)XB; (x), (7.12)

xv(z) is the standard characteristic function of the set V' C R"™ and the remainder
vy satisfies

8tU(] +AOU0 hg(t LE = h t .13 Zh t x (713)

Let us consider now the sequence of sets V; = Bé, 1t = 1,---,00 and Vy =
R™\ (372, Vi) and the associated special weights

0, 5(x) = eHdist@Va) i — ... 0. (7.14)
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Then, obviously, the weights 0; g(x) are exponential with growth rate 3 and, since
the sequence I'; is L-separated, we have V; NV, = @ for i # j. Moreover, according
to Proposition 3.10, for sufficiently small § and ¢, we have

lolyoans — gueny S Cllbllr gy i =0, 00 (7.15)

—elz—zg|

Gi’ﬂ(z)c

where the constant C' is independent of L, I'; and zy := (tg,z9) € R". We have
used here that 6, 3(x) = 1 if x € V. Let us now consider the approximation error

operator
Rh := 0,0 + Agv + <I>’(m)17 + Pnv — h. (7.16)

Then, since h =Y .-, h;, we have

Rh Z(I) Vr)lo + [P Z]PF v—l—ZRvZ (7.17)

where
o0

Raw:= Y (Fp, +Pr)u, Fp, = (V).
j=1,ji
The following lemma shows that the error operator R is uniformly small if L is large
enough. The proof of Proposition 7.3 will be continued after this.

Lemma 7.4. Let the above assumptions hold. Then, for sufficiently large L,
| RA|| o nt1y < Ce o 12| o (nt1) (7.18)

where the positive constants C and ¢ are independent of L, h and T';.

Proof. We first note that, according to estimates (7.15) and Proposition 3.13, we
have
10l wa2np@niry < ClR| Logn+r) (7.19)

where the constant C' is independent of L > Ly, h and m € P(L). Then, arguing
analogously to Lemma 4.7, we deduce that
— Z CIDI(VF].)]@HLp(RnH) < Ce ok ||1~)||W(1,21),p(Rn+1) < C' ek ||h||LP(Rn+1).

(7.20)
Moreover, due to estimate (5.25), we also have

= " PrJillr@eny < C e bl ogaty. (7.21)

J=1

Thus, the first two terms in (7.17) satisfy (7.18) and we only need to estimate the
sum »_ 20 Riv;.
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We are going to do so using Proposition 3.13. Indeed, according to the first estimate
of (3.33) and estimates (3.6) and (3.54) and the fact that the weights 6 = 6, 5 are
exponential with growth rate § and the constant Cy is uniformly bounded with
respect to i, we have that, for sufficiently small positive § and e:

(R™) S CH’UZ‘HWQZ—L;; (722)

||(FFj + ]P)Fj)UiHLp
01‘, ( Gi’ﬂ(z)e

g I>ea\z—§j|/2—s|z—zo\ (Rn)

—elz—xq]

where the constant C' is independent of ¢, j, I'; and zop € R". We now note that
assumption (3.1) applied to weight functions 6; (=) imply that

0;5(x) > Cy0;,5(¢;) el (7.23)

Moreover, it follows from the explicit form of the weights 6, s(x) and from the fact
that I'; are 2L-separated that

0i5(&5) > e, Vit (7.24)
and, consequently, if 5 < /4, we have for i # j
91,,8(1;) ea\:p—ﬁj\/2 > Ce,BL ea|x—§j|/4
and, thus, estimate (7.22) implies that

|(Fr, + B, il gy < C' e [yt

97:,6(2:) e

for all j # 4 (and with the constant C’ independent of L, ¢, j and I';. Estimate
(7.25) allows to apply Proposition 3.13 for estimating R; which gives

(7.25)

alo—g;1/4—cla—a| ( —ela—ag| (R™)

IRl ey < O e BL ||UZ-HW921—1,p(Rn) (7.26)
1,89

which is valid for every weight function of a sufficiently small exponential growth

rate £ < g¢. In particular, for i = 0, (7.26) together with (7.15) and integration over

t € R imply that

HROUOHLP(RMJ) < 01 e_ﬁL HhHLP(Rn"'l) (727)

and, thus, we it remains to estimate an infinite sum ) _.°, R;v; using again Proposi-
tion 3.13. To this end, we take 8 = 0 5,(z) e~¢1*=%l in estimate (7.26) with positive
By and ¢ satisfying 3y + & < 9. Then, using the fact that ; g, (z) > e Pl efole=&l,
we obtain from (7.26) that

Raov:lIP
H 1 ZHLfﬁolw—fil—e\x—wo\

< (Cy e*(ﬁ*ﬁO)L)pHviHﬁVQHm - (7.28)
95,8+ () e

(R™) —elo—ag] {
where the constant Cy is independent of L, zp := (t9, ) € R""! and T';. Multiplying
(7.28) by e Pelt=tl integrating over ¢ € R and using (7.15) (where 6; 5 is now replaced
by 0; +3,, we finally deduce

| Rivi|| @1y < Ce” P |

Solz—E&;l—elz—z0l e—s|z—z0\(

Rnt)- (7.29)

Estimate (7.29) allow to apply Proposition 3.13 (see also Remark 3.15) for estimating
the sum > .~ R;v; which together with (7.27) imply (7.18) and finishes the proof
of the lemma. O]
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We are now ready to finish the proof of Proposition 7.3. To this end, we note that,
due to estimate (7.19), the linear operator T : h — ¥ is well-defined and uniformly
bounded. Fix now the constant Ly > 0 large enough that the (L? — LP)-norm of
the error operator R will be less than 1/2. Then, the exact solution of problem (7.8)
can be found by the following Neumann series:

v:=To (i R')v. (7.30)

The convergence of the series is guaranteed by the fact that R is a contraction and
estimate (7.19) guarantees that the solution thus obtained satisfies estimate (7.9)
with 6 = 1. Thus, the existence of the required solution v is verified. In order to
verify its uniqueness, it is sufficient to prove that the adjoint equation (3.3) is also
solvable (in the same class) for every h € LP(R™™!), but this fact can be verified
exactly in the same way as for equation (3.1). Proposition 7.3 is proven. ]

We are now ready to study the case of slowly moving pulses. To this end, we assume
that we are given a trajectory m(t) € P(L) for all ¢ € R and depending slowly on
time, i.e. there exists a small positive constant v (which will be specified below)
such that

d
||%m(t)||Loo(Rn) <v, teR. (7.31)
We now consider the nonautonomous equation (7.7) where the pulse curve m(?)

satisfies (7.31). Since the Sobolev’s norms are equivalent on the manifold P(L), see
Corollary 4.4, then (7.31) implies

[’ (£)| o ey < ol (@) oo gy < Chv (7.32)

for all £ € N.

The following theorem, which gives the unique solvability of equation (7.7) is con-
sidered as the main result of this section.

Theorem 7.5. Let the operators Ay and ® satisfy all of the assumptions formulated
in Section 2. Then, there exist positive vy, Ly and ¢ such that for any L > Lg, for
any curve m : R — P(L) satisfying (7.31) with v < vy and every weight function 6 of
exponential growth rate € < €q equation (7.7) is uniquely solvable in Wg(l’Ql)’p(R““)
for every h € LL(R™™) and the following estimate holds:

||/U||W9(1,2l),p(Rn+1) < CHhHLg(Rn'H) (733)

where the constant C' depends on Cy, but is independent of h, L, v and the concrete
choice of the curve m(t). Moreover, the analogous estimates hold also for the adjoint
equation of (7.7) and for the spaces Ly ,.

Proof. First of all, we note that (as in Proposition 7.3), it is sufficient to verify (7.33)
for the non-weighted case § = 1 only. Estimate (7.33) for general weights can be
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deduced from the non-weighted one using estimate (5.24) exactly as in Proposition
7.3 and Proposition 3.5. Thus, we assume below that h € LP(R™!).

As in the proof of Proposition 7.3, we are going to construct the approximate solution
0(t, x) of problem (7.7). To this end, for every m € P(L) we introduce the solution
operator Ly, : LP(R"1) — W L2D:p(R7H) via

Lmh =0 (7.34)

where © is a unique solution of equation (3.1) (with standing pulses) constructed in
Proposition 7.3. For every s € R, we define now

w(s,t,x) := (Lmh)(t, x) (7.35)

(we emphasize that, for every s € R, we solve equation (7.8) with standing pulses
m(s)) and then define the approximative solution (¢, x) of (7.7) by the following
expression:

o(t,x) == w(t,t, ). (7.36)

We now need to deduce some estimates for the functions (7.35) and (7.36). To
this end, we recall that m(s) is assumed to belong to P(L) for every s € R and,
consequently, due to Proposition 7.3,

||U}(8, ° ->||W9(1,21),p(Rn+1) S CHhHLg(R”‘H) (737)

where the constant C' is independent of s and T and 6 is a weight function with
a sufficiently small exponential growth rate. We are now going to estimate the
function w(s,t,z) := dsw(s,t,z) which obviously satisfies the following equation:

O + Agw + ' (m(5))W + Py = —P"(m(s))m'(s)w — Dy Pp(ym’(s)w. (7.38)
Using now estimates (5.2), (7.32) and (7.37), we deduce

127 (m(s))m’ (s)w + Py oy m'(s)w] ppensny <
< Cvlwlly 20y < C¥ Rl (7.39)

Applying now estimate (7.9) to equation (7.38) and using (7.39), we infer
HUN)(S’ . ) “Wél’m)’p(R"+1) S Cl/HhHLg(Rn+l) (740)

where the constant C' is independent of v, m, h and the concrete form of the weight
0. We are now going to verify that

”@||W(l,2l),p(Rn+l) S C||h||LP(Rn+1) . (741)

To this end, we observe that (7.37) implies the following estimate:

m-+1
/ 10r(s, 7, )y + (57, ) st ey A <

<C [ O dt (742)
R
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for sufficiently small € > 0 and the constant C' independent of m € R. Analogously,
(7.40) gives

m—+1
||7“D(87m7 )HI[),;D(]RH) +/ ||8tQI)(S,T, )HiP(Rn) + ”ﬁ)(S,T, ')H];VQZ,;D(]RW) dr S

< (o [ @)y . (703)
R

Combining estimates (7.42) and (7.43) and using the obvious formula
m+1
lw(t,t,x) —w(m,t,z)| < / lw(s,t,z)| ds, t € [m,m+1]
we obtain

m+1
/ 100(s, W7oy H1T(S, MTp2pny dr < C/Re"’ﬁ'm—t' 1R (E)Y gy . (7.44)

m

Summing inequalities (7.44) for all m € Z, we finally deduce (7.41).

Now it is not difficult to finish the proof of the theorem. To this end we consider, as

in the proof of Proposition 7.3, the approximation error operator R : LP(R"*!) —
LP(R™1) defined via

(RR)(t, x) := 0,0 + Ag¥ + @' (m(t))0 4+ Py — h = w(t,t, x) (7.45)
where we used that
00 = [Osw(s,t,-) + Opw(s,t, )] s—r = Opw(t,t,-) + w(t,t,-).
It now follows from (7.43) that
IRA| Lo @iy < Cv[[h| Lo @ns), (7.46)

where the constant C' is independent of v and of the concrete choice of I';(¢). Thus,
R is a contraction for sufficiently small vy (e.g., if Cvg < 1/2) and, consequently,
the exact solution v(t,z) of (7.7) can be found by the Neumann series (7.30) where
the operator T maps h to v. Moreover, due to estimate (7.41) the solution v thus
constructed satisfies (7.33) with § = 1. In order to verify the uniqueness of that
solution, it is sufficient to verify that the adjoint equation

—0pw + Agw + [®'(m(t))]"w + P, yw = h. (7.47)

also possesses a solution w € WH2)P(R™1) for every h € LP(R™*!) which can be
proved exactly as for equation (7.7). Theorem 7.5 is proven. ]

Thus, due to Theorem 7.5, the solution operator Ty, of problem (7.7) is well-
defined as a linear operator from L5(R™1) to WS "*?(R™+1) and from Ly o(R™1)
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to Wb(’lg’%)’p (R™*1) for all 1 < p < oo and every weight function 6 of sufficiently small
exponential growth rate by the following expression:

Teh =0 (7.48)

where v solves (7.7) with the right-hand side h. The next lemma shows that this
operator depends continuously on the curve m(t)

Lemma 7.6. Let the assumptions of Theorem 7.5 hold and let h € LY (R™*1). Then,
for every weight function 0 of sufficiently small exponential growth and every two
curves my(t) and my(t) satisfying the assumptions of Theorem 7.5, the following
estimate holds:

||Tm1h — Tm2h||Wé{d2l>’p(Rn+l) S C'||h||L£(Rn)Hm1 — m2|’L30(Rn+1) (749)

where the constant C' is independent of h and the functions my(-) and my(-) satis-
fying the assumptions of Theorem 7.5.

Proof. Indeed, let w; := Ty,h. Then the difference w := w; — wq satisfies the
equation:

atw + Aow + @’(ml(t))w + Pml(t)w =
= —[®(my (t)) — ' (my(t))Jwz = [Pra, 1) = Prny(o)]w2 := himy my- (7.50)
Using now that ®(u) is smooth and of order 2/ — 1 together with estimates (4.26)
and the f-weighted analog of (5.15) (see Remark 5.8), we infer

Hhml,mg HLZ,;Q(R"JA) S CHw2HWt§1’Ql)’p(R") Hm1 — mQHLSO(RTH—I) (751)

It remains to note that, due to Theorem 7.5, ||w2HWé1,zz),p giny < Ol Lz oty and,

(
consequently, applying again Theorem 7.5 to equation (7.51), we obtain estimate

(7.50) and finish the proof of Lemma 7.6. O

We now recall that the term Ppyv in equation (7.7) is artificial and, therefore,
we want to eliminate it. In order to do so, we impose the additional restriction
Pm@yv(t) = 0, or, which is the same
ZHt) = (v(t),:(m(t)) =0, i=1,---,k, r€N. (7.52)
If Pmyv(t) = 0 is satisfied, then,
Prasye0(t) + D(m(t)) ' (1)]u(t) = 0

where the operator D(m) = PP, is studied in Theorem 5.5. Applying now the
operator Py, to both sides of equation (7.7), and using the last relation, we infer

—D(m (1)) [m’(#)]v(t) + S(m(1))v(t) = Pmh(t) (7.53)

with S(m) defined by 5.30. Thus, restriction Pp,yv(t) = 0 implies relation (7.53).
The next proposition shows that this relation is also sufficient for Ppv(t) = 0 to
be satisfied.
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Proposition 7.7. Let h € LP(R™™Y) andv € W"*"(R"1) be the associated unique
solution of equation (7.7). Assume also that (7.53) is satisfied for everyt € R. Then,
(7.52) is also satisfied for allt € R and, consequently, v solves the following reduced
form of equation (7.7):

0w + Agv + @' (m(t))v = h. (7.54)

Proof. Indeed, applying operator Py to both sides of equation (7.7) and using
(7.53), we infer

]P’m(t)at(]Pm(t)U(t)) + ]P’m(t)v(t) =0. (7.55)
Using now that Pm@yv(t) = 377, S Z;(t)dr., () and multiplying scalarly equation
(7.55) by 1%(m), we will have

d

aZ;i(ze) + Z(t) + QL) Z(t) = 0 (7.56)
where i
Q) (0)Z(t) ==Y > ZH () (Drgp, (1), ¢ (m(1))

and Z(t) = {Z] ()} jeni=1,. » € [*°. Moreover, using estimates (2.32) and (5.1) and
the fact that m'(¢) is uniformly small, see (7.31) and arguing in a standard way, we
have

Q) || oo ooy < Cv (7.57)

where the constant C'is independent of L and of the concrete choice of the trajectory
m(t) € P(L). This estimate shows that equation (7.56) has the form

%Z(t} + Z(t) = Q(t)Z(¢) (7.58)
which is a small linear perturbation of the simplest one: £7(t) + Z(t) = 0. Since
this equation, obviously, possesses an exponential dichotomy, then the perturbed
equation possesses the same property if v is small enough. It remains to note that,
by the assumptions of the proposition, v € Wél’Ql)’p(R”“) and, consequently, Z(t)
is, a priori, uniformly bounded as ¢ — oo. Thus. Z(t) = 0 and Proposition 7.9 is
proven. O

Remark 7.8. Proposition 7.7 remains true also for local solutions v of (7.7) defined
for ¢ € [7,T] if it is known, in addition, that P, v(to) = 0 for some t, € [7,T7.
Indeed, the last assertion implies that Z(ty) = 0 and, due to the uniqueness theorem
for equation (7.56), we have Z(t) =0, t € [r,T].

We conclude this section by formulating the analogous results for the initial value
problem

O + Agv + ' (m(t)v + P =0, t>71, v|,_ =, (7.59)

t=1

under the additional assumption that the single pulse V() is spectrally stable.
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Proposition 7.9. Let the assumptions of Theorem 7.5 hold and, in addition, assume
that the pulse V' s spectrally stable. Then, there exists a positive constant [3 such
that, for every weight function 6 € C(R"), every T € R and every v, € Wél’Ql)’p(R"),
problem (7.59) possesses a unique solution v and the following estimate holds:

) < Ce PI-7) ||UT||W021(1—1/1>>,11 T>rT (7.60)

||U||W9(1’2l)’p([T,T+1}XR” (Rm)?

where the constant C' depends on Cy, but is independent of the concrete choice of
0, m(t) and v,. Moreover, the analogous result holds also for the spaces Wblg
Furthermore, if equality (7.53) holds for every t > 7 and Pm-yv; = 0, then

Pmyo(t) = 0, Yt > 7. (7.61)

Indeed, estimate (7.60) can be verified analogously to the proof of Theorems 7.5 (we
only need to use, in addition, Corollary 3.11 in order to estimate the functions v,
from the proof of Theorem 7.5 on a halfline t € [, 00)). In order to verify (7.61), it
is sufficient to note that, under the assumptions of the proposition, the function Z(t)
defined by (7.52) satisfies equation (7.58) for ¢ > 7 with the initial data Z(7) = 0.
Since the solution of (7.58) is unique, then necessarily Z(t) = 0 which implies (7.61)
and finishes the proof of Proposition 7.9.

8 Slow evolution of multi-pulse structures: center
manifold reduction

In this section, we construct a center manifold reduction for the following perturbed
version of equation (2.1):

Ou + Apu + P(u) = pR(t, u) (8.1)

in the neighborhood of the multi-pulse manifold P(L) with sufficiently large L. Here
p > 0 is a small parameter and R(t,u) := R(t,z,u, Dyu,---, D 1u) is a smooth
function with respect to u, Dyu, -+, D*~ 'y and is uniformly bounded with respect
to (t,z) € R™*,

To this end, we first fix the exponent p = p(n) in such way that
WY (R ¢ CEHRM). (8.2)
Then, as known (see e.g. [Ama95|), the Cauchy problem

O+ Agu+ ®(u) = pR(t,u), ul,_ =u, (8.3)

t=T1

is locally uniquely solvable for every u, € Wsl(l_l/p)’p(R") and every 7 € R and, thus,
defines a local dynamical process U(t,7) in the phase space X, := Wfl(lfl/p)’p(R”)
U(t,T)u; :=u(t), usolves (8.3), 7 <t <t(u,)>rT. (8.4)
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We restrict ourselves to consider equation (8.1) in a sufficiently small neighborhood
Ox(P(L)) of the multi-pulse manifold P(L). According to Theorem 7.1, every such
solution u(t) can be uniquely decomposed as follows:

u(t) = m(t) +v(t), m(t) €P(L), Puu(t) = 0. (8.5)

Inserting now expression (8.5) into equation (8.1) and using that Aom = F(m) —
®(m), see (4.28), we obtain the following equivalent form of equation (8.1):

O+ Agu+9' (m(t))v = —F(m(t)) —P(v(t), m(t))+uR(t,v(t)+m(t))—m’'(¢) (8.6)

where (v, m) := ®(v+m)—P(m)—P’'(m)v. Furthermore, since we are interested in
the small neighborhood of P(L) and (consequently) the rate m'(¢) of pulse evolution
is also expected to be small, we assume from now on that

[ @) lyyzia-1/00 gy + 100 (@) oo (n) < 5 (8.7)
where x is small enough that all of the assumptions of previous sections are satisfied

(this inequality will be justified below).
We now recall that Pp)v(t) = 0 and, consequently, due to (7.53),

(Id =D (m(#))[-Jv(t))m’(t) =
= P (=F(m(t)) — ®(v(t), m(t)) + pR(t, v(t) + m(t))) — S(m(t))o(t) (8.8)

which will be interpreted as a differential equation for m on the manifold P(L). To
this end, we need the following lemma, which allows us to solve it with respect to
m' ().

Lemma 8.1. Let the above assumptions hold and letv € L>(R™) with ||v||pemn) < &
with k being small enough. Then, for every m € P(L), the operator
M(m,v) w := (Id —D(m)[-]v) ' w

is well defined as an operator from L>®(R™) to P(L), depends smoothly on m and v
and its norms is uniformly bounded:

[IM(-, ')Hck(nw(L)x{||u||LOO(Rn)<K}) < Ck (8.9)

for all k € N. Moreover, this operator is also Lipschitz continuous in weighted
norms, i.e. for every m; € P(L) v; € L*(R™) such that ||v;||pe@mn) < k& and w; €
TwmP(L), we have

[IM(my, 01) wy =Mi(mg, v2) W [z eny < O wi = wa [[z | gen)+

eIzl

+ ([[ w1 [|zee@ny + || W || oo ny) ([[ 101 — Mg L

> @) T |lvr — vz||L:°;W|I|(Rn)))

(8.10)

where the constant C' is independent of L, m;, v; and w; and v > 0 is small enough.
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Indeed, all of the assertions of the lemma follow immediately from Theorem 5.5 and
the standard presentation of the operator M as the Neumann series

M(m,v) = Y (D(m)[Jv)"

i=1
Thus, equation (8.8) can be rewritten in the following more convenient form:
m'(t) = f(t,m(t),v(t)) (8.11)
where
f(t,m,v) := M(m,v)( — Py (F(m) — ®(v, m) + pR(t,v + m)) — S(m)v). (8.12)

The next lemma collects the main properties of the function f which are factually
already proven above.

Lemma 8.2. Let the above assumptions hold. Then the function f is uniformly
smooth on P(L) x {Hv||W(zz<171/p>,p(Rn) < K} for every fized t and, in particular, the
b

following estimates hold:

12, m,0) || oo ey + | 10 (00, 0) | 2nmp(n), 20 () < Ce(@77E 4y 4 12)
1 £,(t, m, 0) || £, (Rn), Loo Ry < Ce(e72O7E 411+ k)

(8.13)

where € > 0 is arbitrary, and the constant C. is independent of t, m, v and L >

Lo(g). Moreover, f is also Lipschitz continuous in the local topology as well, namely

| £(t, my,vy) — f(t,m2,1f2)HL°3ﬂ ®r) <

ol

< Cle™™ +p+ w)([my — my|

o ®) T l|lvr — UQ||W,,2;(:L/\WJ(R”)) (8.14)

where v > 0 s small enough and C' is independent of t, m;, v; and L.

Indeed, the required estimates for operators F(m), S(m), P, and M(m,v) are
obtained in Corollary 4.9, Theorem 5.7, Theorem 5.2 and Lemma 8.1 respectively.
Combining these estimates and taking into the account that ®(m,0) = @/ (m,0) =
0, we receive all of the estimates stated in the lemma.

Furthermore, in order to solve equation (8.6), we transform it to the form of (7.7)
(taking into the account that Pp,qv(t) = 0)

O + Agv + @(m(t))v + Pmpyv = h,(t, m(t), v(t), m'(t)) (8.15)

with

h,(t,m,v,w) := —F(m) — ®(v,m) + pR(t,v + m) — w (8.16)
We recall that, by the construction, equation (8.11) is exactly condition (7.53) for
equation (8.15) which, due to Proposition 7.7 and Remark 7.8, guarantees that the
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additional artificial term Pu)v(t) vanishes identically. Thus, if u(t), t € [7,T]
solves (8.1) and u(t) € O,(P(L)) on [r,T] then the associated functions m(t¢) and
v(t) satisfies on [7,T] the following system:

(8.17)

O + Agv + @(m(1))v + Pryv = hy(t, m(t), v(t), m'(t))
m’ = f(t,m,v)

and, vise versa, any solution (m(t),v(t)), t € [r,T] with sufficiently small v and

satisfying Pm(-v(7) = 0 generates a unique solution u(t) := m(t) 4+ v(t) of equation

(8.1). Therefore, instead of the initial equation (8.1), it is sufficient to solve the

associated system (8.17).

Nevertheless system (8.17) is still inconvenient for the center manifold reduction.
Indeed, we are going to use the cut-off operator Cut(m) in order to eliminate the
influence of the boundary OP(L). However, the equation does not coincide with
condition (7.53) for the first equation and, consequently, we cannot eliminate the
artificial term P,,v.

In order to overcome this difficulty, we replace the function A in the first equation
of (8.17) by the following one:

H(t,m,v,m’) = h, — Pph, — D(m)m'lv + S(m)v =
= (Id =P)(—F(m) — ®(v,m) + pR(t,v + m)) — D(m)[m']v + S(m)v. (8.18)

Indeed, on the one hand, if the second equation of (8.17) is satisfied we have h, = H,
see (8.8). Consequently, (8.17) is equivalent to the following one:

{&W + Agv + @(m(t))v + Py = H(t,m(t), v(t), m'(t)), (8.19)

m’ = f(¢t,m,v).

On the other hand, as is not difficult to verify, condition (7.53) is automatically
satisfied if the first equation of (8.19) holds (independently of the validity of the
second equation). Thus, the term Pp,)v(t) is now controllable and we can, indeed,
cut-off the second equation. To this end, using the cut-off operator introduced in
Theorem 6.6, we finally transform system (8.19) as follows

{@v + Agv + ®(m(t))v + Pangyv = H(t, m(t), v(t)), (5.20)
m' = f(t,m(t),v(t)) := Cut(m(t)) f(t, m(t), v(t))
with N

H(t,m,v) := H(t,m,v, f(t,m,v)). (8.21)

Indeed, equations (8.19) and (8.20) are no more equivalent, but, due to the con-
struction of the cut-off operator, they coincide for all m € P(L’) where

L'>(1+¢)L
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(and € > 0 tends to zero as L — o0). Consequently, these equations are still
equivalent as long as the trajectory m(¢) remains inside of P(L’) (and v(¢) remains
inside of Os(P(L’))). On the other hand, due to Theorem 6.6, the trajectory m(¢)
cannot now reach the boundary OP(L) in finite time and, therefore, we need not to
take care on the "boundary effects".

Thus, instead of studying the initial equation (8.1), it is sufficient to investigate the
more convenient system (8.20).

The next lemma collects, analogously to Lemma 8.2, the main properties of the
function H which are factually verified in the previous sections.

Lemma 8.3. Let the above assumptions hold and let
||U||W§l(1*1/P)1P(Rn) < K, (822)

for a sufficiently small k. Then, the function H defined by (8.21) is uniformly smooth
with respect to m € P(L) and v satisfying (8.22) and the following estimates hold:

[H(¢, m, v) | e gn)+

[, (8, 00, 0) || (b2, 28 () < Ce(e @™ 452 1), (8.23)
||H;(t, m, U)||E(ng(l—1/p),p(Rn)7L£(Rn)) S Oe(e—2(a—E)L +M 4 /1)
where € > 0 s arbitrary and the constants C' and C, are independent of L, t, m and
v. Moreover, the weighted Lipschitz continuity also holds:

|H(¢, my, v) — H(t, mg, vz)HLie—'y\xl(Rn) < CeMl(e™ 4y + k) x
X (||m1 - m2||L:gW|(Rn) + ||v1 — w“Wi(iwlx/p)'p(R”)) (8.24)
for v >0 and 6 > 0 sufficiently small.

Indeed, as in the previous lemma, the required estimates for operators F(m), S(m),
P, f and Cut are obtained in Corollary 4.9, Theorem 5.7, Theorem 5.2, Lemma 8.2
and Theorem 6.6 respectively. Combining these estimates and taking into account
that ®(m,0) = &/ (m,0) = 0, we receive all of the estimates stated in the lemma
(we emphasize that the growing multiplier e’Z comes from the analogous growing
estimate for the operator Cut, see Theorem 6.6).

Remark 8.4. As before, we have formulated in Lemma 8.2 and 8.3 the weighted
estimates for the case of weights e 1%l only. In a fact, they holds for all weights
e Vlz=zol yniformly with respect to zo € R”.

Thus, lemmas 8.2 and 8.3 together with Theorem 7.5 show that equations (8.20) give
indeed the splitting of the initial problem (8.1) into slow (m) and fast (v) variables.
The next theorem, which establish the existence of a center manifold reduction for
that system is the main result of the section.
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Theorem 8.5. Let the assumptions of Section 2 hold. Then, for every finite k € N
and every € > 0, there exist Ly = Lo(k,e) and po = po(k) such that, for every
L > Lo and |u| < po, there is a unique map

W:R x P(L) — W27 (Re
which is C*-smooth with respect to m € P(L) and satisfies

|W(t,-) < O (e M9l 4y (8.25)

”Ck(P(L»W?“*“P“’(Rn)) =

where C s independent of t, L and p. This map possesses the following properties:
1) For every T € R and every m, € P(L) the solution m(t) of the equation

%m(t) = f(t,m(t), W(t,m(t))), m(r)=m, (8.26)
1s globally defined for all t € R and generates an associated solution of problem

(8.20) via
v(t) == W(t,m(t)).

2) Vise versa, every solution (m(t),v(t)) of problem (8.20) which is defined for all
t € R and whose v component belongs to a sufficiently small neighborhood of P(L)

for all t can be represented in the form (m(t), W(t,m(t))) for some solution m(t)
of (8.26).

3) For allt € R and all m € P(L), we have
PnW(t,m) = 0.

Moreover, if, in addition, the quantity e®(e=*L' +u) is small enough, the map
W(t, ) is also uniformly Lipschitz continuous in the local topology, i.e.

HW(t, ml) — W(t, m2>HW2l(171/p),p(Rn) S C(,LL -+ e*O‘L)Hml — mQHLZc_Mx‘ (R™) (827)

be—7lZl
where v > 0 is small enough.

Remark 8.6. Theorem 8.5 claims that the set
Q= {(t,;m,W(t,m)), t € R, m € P(L)}

is a globally invariant (center) manifold for (8.20) in the extended phase space
R xP(L) x Xp. This manifold generates a family of manifolds in the phase space X},
of the initial problem (8.1) via

Ur(t) ={u=m+W(t,m), meP(L)}.

Indeed, estimate (8.25) (together with the orthogonality of W) guarantees that they
are C*-submanifolds of Xy, globally diffeomorphic to P(L). However, these manifolds
are not invariant with respect to the flow generated by equation (8.1), since the
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construction of equations (8.20) involves the cut-off procedure. Nevertheless, if we
restrict ourselves to consider slightly smaller manifolds

Up(t) == {u=m+W(t,m), meP(L)}c UL

with L' = (14¢)L, the time dependent family U’ = U’(¢) of manifolds will be locally
invariant with respect to the evolution governed by (8.1), i.e., the trajectory w(t)
of equation (8.1) can enter or go out from Uy, only through the boundary oU;,
and the dynamics on the family Uy, is governed by the reduced equations (8.26).
Thus, the time-dependent family Uy (¢) gives, indeed, the non-autonomous center
manifold reduction for (8.1) near the multi-pulse manifold P(L’).

Beginning of Proof of Theorem 8.5. As usual, we restrict ourselves by constructing
only the Lipschitz continuous center manifold. The smoothness of function W can

be proven in a standard way using e.g. the fiber contraction arguments, see the
monograph [SSTCO01| or [Mie86, Mie88, VaV87|.

According to the general scheme, and using the Banach contraction principle, we
are going to check that, for any 7 € R and m, € P(L), system (8.20) possesses a
unique solution (m(t),v(t)), t € R, such that m(7) = m, and v(t) € O(P(L)) for
all t € R. Then, we set W(7,m,) := v(7) and obtain the required center manifold.

Let us consider now a ball

< K}

,20), n
B, = {ve WélZ)p(R 1y, ”UHWé1,2l),p(Rn+1) <

where k is a sufficiently small positive number, which will be fixed below. Then,
due to Theorems 6.1 and 6.6 and Lemma 8.2, for every 7 € R, every m, € P(L) and
every v € B,, the second equation of (8.20):

m'(t) = f(t,m(t),v(t)), m(7)=m,

possesses a unique solution m = S,(m,,v). Moreover, due to Lemma 8.2 and
Theorem 6.6, we have

[’ (8) ][ oo ny < Ce(e™ @ 442 4 p1) (8.28)

where C. depends on € > 0, but is independent of L > Ly(¢), u, 7 and m,. Thus,
the rate of pulse evolution is indeed slow (e.g. assumption (7.31) is satisfied) and we
can apply Theorem 7.5 in order to invert the linear part of the first equation (8.20).
To be more precise, we define the following operator:

L(r,m.,v) := Ts, (m, H(-, S-(m-,v),v(-)) (8.29)

where Ty, is the solution operator defined by (7.48). Then, finding bounded solutions
of (8.20) is equivalent to finding fixed points of the operator (8.29). The next Lemma
shows that this map is really well defined on B,.
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Lemma 8.7. Let the above assumptions hold and let
ko = C.(e 29 ) (8.30)

for the appropriate constant C. depending only on €. Then, the map I defined above
maps B, into itself

L(r,m.,-) : By, — By, VT €R, m, € P(L)
if L> Lo(e), [ul < pole).
Proof. Indeed, according to Lemma 8.3 and Theorem 7.5, we have
(7, mr, 0) 00200 gy < Cl (e 29 152 )
if v € B,. So, we only need to find x satisfying
k< Ol(e 2@l L2 4y,

It is not difficult to see that, for sufficiently large L and small u, this inequality has
a solution of the form (8.30) and Lemma 8.7 is proven. O

Our next aim is to verify that IL is a contraction in the appropriate metric weighted
in time.

Lemma 8.8. Let the above assumptions hold. Then, for sufficiently large L and
small p, there exists a positive constant vy (independent of L and p) such that

HL(T7 m71'7/U1) - ]L’<T7 m72'7v2)||w(1’2)a1’7 (Rn+1) S
b

e It—T]

< Cue " ) (lm = m2| gy + on — vl geny) (831)

be—YIt—7l

uniformly with respect to T € R, m’ € P(L) and v; € By, .
Proof. Indeed, due to Lemma 8.2 and Theorem 6.6, we have

[t m, ) ~F(E M3, 02) [y < ([0 =00 gy 01 (8) (0 |y 11170 )

with sy := Ckg. Consequently, denoting m; := S(7,m’,v;) and applying estimate
(6.4), we get

e I my () — mp ()| oo ey <

t
< it ey st = ) [ o157 () ) vy
T
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Multiplying this inequality by e~=*)t=7I for some v > &’ and taking the supremum
over t € R, after the standard estimates, we infer

[my —my|[pe  (@erry < [[ml — m2 || poore)+
e—It—7]

/fl

+ So— igﬂ}g{e’”“ﬂ [v1(s) — U2(S)HW§Z<1*1/?>7P(W)} < [lmy — 2 oo ) +

/

+C

Y= o H’Ul - UZHW;;EQ\??T\(RMQ). (832)
Using now this formula together with the fact that v; € B, and Lemma 8.3, we
obtain the analogous estimate for the function H:

||H(',m1,1}1) —H(-,m2,v2)||L: R7+1) <

el

< CK)O(“m}_ — mzHLOO(Rn) + HUl - /UQHW(L?l)‘,i’ ‘(RTH-I))
be” YItTT

we have assumed, for simplicity, that v > 2k.

Finally, fixing v > 2k, small enough such that Theorem 7.5 and Lemma 7.6 hold
for the weight e =71, we deduce the required estimate (8.31) (we note that the
validity of Theorem 7.5 and Lemma 4.4 requires v < gy independent of L and p, so
such v exists for sufficiently small k). Lemma 8.8 is proven. O]

End of Proof of Theorem 8.5. It is now not difficult to finish the proof of the
theorem. Indeed, according to Lemmas 8.7 and 8.11, for every fixed 7 € R and
m, € P(L), the map L(7,m,,-) is a contraction on B, (endowed by the topology of
Wb(;’fi)‘fiﬂ (R™1)), if ko(L, 1) is small enough. Since, B, endowed by this topology is,
obviously, a complete metric space, then, due to the Banach contraction principle,
this map has a unique fixed point v = V (7, m,) € B,,. Moreover, since this map is
Lipschitz continuous also in m,, we have

IV (rm) = V(rm2) o0, < Crolml —m ey (3.33)

be” Y 77\(Rn+1)
We now set
W(r,m,) = V(r,m,)(7).

We claim that the map W thus defined satisfies all assertions of the theorem. Indeed,
the Lipschitz analog of (8.25) is an immediate corollary of (8.33).

Let now (m(t),v(t)) be a bounded solution of (8.20) such that v € B,,. Then, due
to the uniqueness of W, we have

v(t) =W(t,m(t), teR

and, consequently, m(¢) solves the reduced problem (8.26). Vice versa, the fact
that any solution m(t) of the reduced problem generates the associated solution
of problem (8.20) is an immediate corollary of our construction of map L and the
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property P, W(¢,m) = 0 follows from the fact, that, due to Proposition 7.7, any
solution (m(t),v(t)) of (8.20) which is defined for all ¢ and bounded, necessarily
satisfies Pmyv(t) = 0.

So, it only remains to verify the weighted Lipschitz continuity (8.27). To this end, it
is sufficient to verify that the operator IL is a contraction in the space-time weighted
metric of Wlflefi)ltp_ 1—ve (R™1) as well. Indeed, since all of the "space-uniform" es-
timates involved into the proof of Lemma 8.8 have their space weighted analogs,
we also have the space-weighted analog of estimate (8.31), but with the Lipschitz
constant Ce’L(e=*F +p). If this quantity is small enough, we have the contrac-
tion in the space-time weighted norm which, in turns, gives (8.27). Theorem 8.5 is
proven. [JLet us now study the dependence of the function
W on t. To this end, it is however more convenient to investigate the dependence
of equation (8.1) on the perturbation R. To this end, we introduce a metric on the
space of such perturbations via the following natural expression:

[R1(t,) = Ra(t,-)|lcm = || Ra(t, ) — Ra(t, -)llem0sry), o @),
m = 0,1,---. Then, the following result holds.

Corollary 8.9. Let the above assumptions hold and let Wg, and Wg, define the
center manifolds for equation (8.1) with right-hand sides Ry and Rs respectively.
Then, for any m, sufficiently large L and small u, one has

HWR1 (t7 ) - WR2 (t, ')||Cm(P(L)ngl(l—l/P)vp(Rn)) <

< Cpsup{e ™[ Ris, ) = Ra(s, Yljom} (8:34)
sE€

where the positive constants C' and v depend on the C™-norms of Ry and Rs, but
are independent of L, u, t and s.

Indeed, including the dependence on R into the operator L and arguing exactly as in
the proof of Lemma 8.8, we obtain the additional term Cusup,cg{e™ || R (¢, ) —
Ry(t,+)||co} which,in turns gives (8.34) for m = 0. The proof of estimate (8.34) for
m > 0 is analogous to the standard proof of the higher regularity of the center
manifold and we leave it to the reader.

Corollary 8.10. Let the above assumptions hold and let W(t,-) define the center
manifold for equation (8.20) with some fized right-hand side R. Then, the following
estimate holds:

W, ) = W+ 7, ) g gty <
< Cpsup{e ™ *||R(s,-) = R(s +7,)|lem}. (8.35)

seR

In particular, if R(t,-) is autonomous, time-periodic or almost-periodic in time, the
same will be true for the manifold W.
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Indeed, in order to deduce (8.35), it is sufficient to apply estimate (8.34) with
R1<t, ) — R(t, ) and Rg(t, ) _ R(t + T, )

We now recall that the group of spatial symmetries G acts on the phase space of
(8.1) by isometries 7, I' € G. Moreover, as it is not difficult to see, the pulse
manifold P(L) and the projectors Py, are invariant with respect to this action:

TeP(L) = P(L), Pram=TroPmo T

The next corollary shows that the map W(t, -) is also invariant with respect to the
part of group G which leaves invariant the perturbation R. This result will be used in
our application to space-time chaos construction in the Swift-Hohenberg equations.

Corollary 8.11. Let the above assumptions hold and let R be invariant with respect
to some Ip,, I'y € G:
Tr R(t,u) = R(t, Tr,u). (8.36)

Then, the manifold W is also invariant with respect to Tp,:

TroW(t,m) = W(t, Tpr,m). (8.37)

Indeed, under the additional assumption (8.36), all of the terms in equations (8.20)
will be 7 -invariant and, consequently, the operator L. will be also 7p -invariant.
Due to the uniqueness part of the Banach contraction principle, we conclude then
that the fixed point of that map should be 7r,-invariant which, in turns, gives (8.37).

Remark 8.12. Although we state the weighted estimate (8.27) for the weight e=1®!
only, it holds also for all shifted weights e=?*=%0l uniformly with respect to zo € R",
see Remarks 4.10, 5.8 and 8.4. This, in turns, allows to prove (8.27) for all weights
of exponential growth rates less or equal ~.

Remark 8.13. It is worth noting that, since different Sobolev norms are equiva-
lent on P(L), see Corollary 4.4, the manifold is, obviously, precompact in the local
topology of L . /(R"). However, it is not closed in that topology since the pulses
can escape to 1nﬁn1ty and their number can decrease. If the number of non-escaping
pulses remains infinite, the limit point will belong to P(L) = P, (L) or to its bound-
ary 0P (L), but if it remains only finite number of pulses, we obtain the finite-pulse
manifold which is formally not contained in P, (L)

N
Py(L) = {m:=Y Vp,, dist(§,&) > 2L, i # j}.
j=1
Thus the closure of P(L) in the local topology can be described as follows:

P(L) = cle(P(L)) = Poo (L) U 9P (L) U i YUOPN(L)U{0}  (8.38)

N=1

(where zero corresponds to the case where all of the pulses escape to infinity).
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Moreover, since the function W(¢,-) and all the terms in equations (8.20) are uni-
formly Lipschitz continuous in the weighted metric, they can be extended in a unique
way from P(L) to P(L) preserving all of the properties formulated in Theorem 8.5.
In particular, restrictions of the extended W to the stratus Py(L) give the cen-
ter manifold reduction for the finite number N of pulses. For N = 0, we have
up(t) == W(t,{0}) which gives the perturbed trajectory (in the absence of pulses)

associated with the hyperbolic equilibrium u = 0 of the non-perturbed equation.

Remark 8.14. The advantage the unified approach described in previous remark
is, in particular, the possibility to use weighted estimates of the form (8.27) in situ-
ations where m; and m, contain different number of pulses. For instance, applying
this estimate for m; = m and my, = {0} where m € P(L) is some fixed pulse
configuration, we will have
W (e, m) — wo(t)ll o= oy < Cetut e D)lmllze e

uniformly with respect to zo € R™ and m € P(L). Multiplying this inequality by
etV disi®0=)/2 (where 2 = Z(m) = {;}52, are the pulse centers) and taking into
account that this function is a weight function of exponential growth rate v/2, we
obtain

[W(#, m) — uo(t)]| o

ety dist(z,E)/2

< Ce(p+eh)|ml

®’r) <
) < Cre’t(p+et) (8.39)

Zi'y dist(z,=2)/2 (Rn

where C is independent of ¢ and m € P(L). The last formula shows that far
away from the pulse centers, the function W is uniformly exponentially close to the
perturbed equilibrium wug(¢) in the absence of pulses.

We conclude this section by studying the behavior of the solutions of (8.1) in a
small neighborhood of the above constructed center manifold. For simplicity, we
restrict ourselves to consider only the most physically relevant case of spectrally
stable pulses. See [Mie90| for cases where also unstable directions are present.

Theorem 8.15. Let the assumptions of Theorem 8.5 hold and let, in addition, the
single pulse V- =V (z) be spectrally stable (see Section 2). Then, there exist § > 0
such that, for every initial data (m,,v,) such that

m, € P(L), |lv,]lx, <0, Pm.v, =0 (8.40)

the associated semi-trajectory (m(t),v(t)), t > 7 of (8.20) exists globally in time
and converges exponentially to the center manifold of this system. Moreover, there
ezists a trace-trajectory mo(t) of the reduced system (8.26) such that

lo(t) = W(t, mo(t))llx, + [lm(t) — mo(t)[ = < Ce?7, t 27 (8.41)

where the constants C' and ~y are independent of (m,,v,;), 7 and t.
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Proof. The assertion of the theorem is a standard corollary of the normal hyperbol-
icity of the center manifolds. Nevertheless, since, in contrast to usual situation, the
manifold is now infinite-dimensional, we prefer to give a complete proof of that fact.

We start with the global solvability of system (8.20) near the center manifold.

Lemma 8.16. Let the above assumptions hold. Then, for sufficiently small 9, the
trajectory (m(t),v(t)) of system (8.20) starting from the initial data satisfying (8.40)
exists globally in time t > 7 and remains close to the center manifold:

Jo()llx, < C6, t>7 (8.42)

where C' is independent of the concrete choice of the trajectory, satisfying (8.40).

Proof. Indeed, the local existence of a solution in the phase space Xy, for (8.20) is
obvious, since, the equation for v is a parabolic semilinear PDE and the second
one (for m) is generated by a globally bounded smooth vector field on a globally
bounded manifold P(L). So, we only need to verify a priori estimate of the form
(8.42) for the (potentially unbounded) v-component. Then, by standard arguments,
the local solution can be globally extended for all ¢ > 7.

In order to obtain such estimate, we invert the linear part of the v-equation using
Proposition 7.9 (here we need the assumption that the single pulse is stable) and
the first estimate of (8.23). Then, we have

lWlleqri < Cllollx, + Crole™ +u + 011 g1y x,,)

uniformly with respect to all 7" > 7. It remains to note that, for sufficiently small x,
this inequality allows to obtain a priori upper bound for the norm of v of the form
(8.42) if the norm of the initial data v, is small enough. Lemma 8.16 is proven. [J

Our next task is to study the perturbations of the second equation of (8.20) by the
exponentially decaying in time terms. For simplicity, we set from now on 7 = 0 and
consider the perturbed version of the second equation of (8.20):

m'(t) = f(t, m, v(t) — 5(t)) (8.43)
where the perturbation ¢ has finite norm in the space Ce+v: (R4, X))

10]lc e Ry 30y SV (8.44)

and v > 0 is large enough.

Lemma 8.17. Let the function v satisfy inequality (8.42) for sufficiently small § >
0. Let us assume also that the quantity vy = C.(e 2@~ 4y + 6 + v) is small
enough. Then, for every v > 7o and every function © € Cer(Ry,Xy) satisfying
(8.44), there exists a unique solution my = mgy(0) of problem (8.43) such that

Yo
7=

“m - m0|‘Ce+wt(R+7Xb) < Hf}||ce+wt(R+7Xb)' (8‘45)

73



Moreover, the map © — mg(0) is uniformly Lipschitz continuous in the weighted
metrics:
"o

7=

[mo (1) — mo(D2)lc . ry x0) < 101 = Dallc, ey ) (8.46)

for all v, and ¥y satisfying (8.44).

Proof. We first note that, due to Lemma 8.2 and Theorem 6.6, we have
[£(¢, 0, v () =5 () —=E(t, My, v(1)) || 2o @) < 01T |15, + 1M1 =Mz | oo ) (8.47)

uniformly with respect to m; € P(L). For every N € N, we now define the function
my(t) as a unique backward solution of the following problem

m'y (t) = f(t,my(t),v(t) — 9(t)), my(N)=m(N), te[0,N]
Then, due to estimate (6.4), we have

N
() = m() ey < 0 [ € i(s) s, ds. ¢ € [0.V)
t

Extending my(t) for ¢ > N by my(t) = m(¢), multiplying the last inequality by
e and taking sup over t € R, , we have

"o -
oo =l ez < ——llollc,me 5 (8.48)
and, analogously, for different v, we have
- - Yo - -
”mN(Ul) - mN(v2>HCe+7t(R+7Xb) < ||U1 - U2||Ce+'yt(R+7Xb)' (8'49)

We claim that the functions my generate a Cauchy sequence in Cyy—o) (R4, L (R™))
as N — oo. Indeed, for M > N, according to (8.49), we have

B sup {5l } < CoN.

lmy —mylle ., ® L@y < ———
r=0p (R L2 () Y — € =70 te[N,M]

Thus, we can define the limit solution m(t) of problem (8.43) by my = limy_.., my
(where the limit is taken e.g. in C,(Ry, L>(R™)). Since estimates (8.48) and (8.49)
are uniform with respect to N, then the limit function mg also satisfies these es-
timates. Thus, the required solution ¥ — my(v) satisfying (8.46) and (8.47) is
constructed. The uniqueness of that solution is obvious since the decaying exponent
~v is assumed to be larger than the Lipschitz constant v of equation (8.43). Lemma
(8.17) is proven. O

Let us now construct the v-component associated with the m-component my(t)
constructed in the previous lemma. We seek for it as a solution of the following
equation:

8tv0 + AD’UO + (I),(mo(t))vo = H(t, mo(t), U(t) — ?7(25)), Uo(()) = W(O, 1’110(0)) (850)

where my = my(?) is defined in the previous lemma. The next lemma gives the
natural estimates for the solution vy(t) thus defined.
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Lemma 8.18. Let the above assumptions hold. Then, for sufficiently small u, v
and 0 and sufficiently large L, the following estimate holds:

[0 = volle (e ) < C6+ Cryo(L+ 0} (8.51)

where 7y := Co(e 2@ 1+ v+ §), v > 27, is some positive exponent and C and
C are some constants independent of §, v and .

Moreover, the map © — vg s uniformly Lipschitz continuous in the following sense:

[[v0(01) = vo(D2)c, s s 3x0) < C170(1 4+ 70) |01 — V2llcyye e 30) (8.52)

for all vy and vy satisfying the above properties.

Proof. Indeed, due to Theorem 8.5 and Lemma 8.17, we have

[00(0) |, < Crovov

and the analogous estimate for ||vg(?1)(0)—vo(02)(0)]x,. Proposition 7.3 and Lemma
8.3 then give
[volloy s x) < C(6+v) (8.53)

if 79 and k¢ is small enough. This estimate, together with Lemma 8.3 yield
JEL(t, mo(8), 0(t) — 9(t)) — H(t, m(t), v(t)) || ey <
< C(llo()lx, + [lm(t) —mo(t)]lx,) (8.54)
and, analogously, for the Lipschitz continuity
[[HI(E, mo (01) (1), v(t) — 01(8)) = H(E, m(02) (1), v(t) — B2(8)) || gy <
< Cyo([|on(2) — 02(8) |1, + [Jmo (1) (£) — mg(02) (1) [|x,, ). (8.55)
Then, for the difference v(t) = v(t) — vo(t), we have
v + Agv + ' (m(t))v = [®' (m(t)) — ' (my(t))]ve(t)+
+ [P — P Juo () + [H(Z, m(2), v(t)) —H(Z, mo(t), v(t) —0(¢))], 0(t) = v(0) = vo(0).

Applying Proposition 7.3 to this equation, using (8.55) and (8.53) and fixing ~
in such way that the weight ¢ satisfies the assumptions of that proposition, we
establish estimate (8.51) (here we have also implicitly used that ||m; — my|x, <
C|lmy — my|[ o rny). The Lipschitz continuity (8.52) can be established completely
analogous. Lemma 8.18 is proven. [

We are now ready to finish the proof of the theorem. Indeed, let us consider the
v-ball B, in the space Ceve (R, X}) and the map

Q:B, = Cont(Ry,Xy), QD) :=v —vy(0)
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We claim that, for sufficiently small 0 and g and large L, there exists vy such that
Q:B,, — B,,. Indeed, due to Lemma 8.18, it is sufficient to take vy = 2C'9 if 9, L
and o are such that Cyyy(1 + ) < 1/2. Moreover, estimate (8.52) shows that, in
this case, the map Q : B,, — B,, will be a contraction.

Thus, due to Banach contraction principle, there exist a (unique) fixed point ¥y of
this map. This means that the function vy(0g) = v — 0y satisfies

atU() + AUQ + @’(mo)vo + PmOUO = H(t, mg(t), ’Uo(t))

where my = mg () and, therefore, the pair (my,vy) solves indeed problem (8.20).
Moreover, since v5(0) = W(0, mg(0)), then

volt) = W(t, mo(1))), ¥t > 0.

Thus, (mg,vg) belongs to the center manifold. Finally, estimate (8.41) is now an
immediate corollary of (8.45) and (8.51) and Theorem 8.15 is proven. O

Remark 8.19. The assertion of the last theorem can be easily reformulated in terms
of the initial problem (8.1). Namely, under the assumptions of Theorem 8.15, there
exist a constant ¢ such that, if u, € Os(P(L’)) then either the associated solution
u(t) of problem (8.1) belongs to O¢s(P(L')) for all t > 7 or there exists T, > 7 such
that u(T%) € Ocs(OP(L')) (in the first case we set T, = 00).

In both cases, there exists a trajectory of (8.1) on the center manifold wu(t) € Uy (¢)
for t € (7,T,) such that
lu(t) = @(®)]x, < Ce7, telrT)

where C' and v > 0 are independent of u,, 7 and ¢. Thus, in the spectrally stable
case, the dynamics generated by (8.1) in the small neighborhood of the multi-pulse
manifold P(L’) is completely determined by the reduced dynamics on the center
manifold generated by (8.26).

9 Hyperbolicity and stability

The main task of this section is to discuss briefly the basic facts of hyperbolic theory
adapted to the case of infinite-dimensional equations of the form (8.1) or (8.26), see
e.g. |[KaHa95, MieZel04] for more details. We start with equation (8.1) which we
rewrite in the following form:

Ou~+ Aou+ F(t,u) =0 (9.1)

with F(t,u) := ®(u) — pR(t,u) and R(t,u) = R(t,z,u, Dyu,--- , D*~'u) satisfying
the assumptions of Section 8.
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Definition 9.1. A complete trajectory u € Wél’QZ)’p(R”“) of equation (9.1) is hy-
perbolic if there exists a constant C,, > 0 such that, for every h € LI(R"™), the
associated inhomogeneous equation of variations

dyw + Agw + F.(t,u(t))w = h (9.2)
has a unique solution w € Wél’zl)’p (R™1) and the following estimate holds:

HwHWész,p(RnH) S CuHhHLﬂ(R”Hy (93)

A set HiT € WPDP (R of trajectories of (9.1) is a (uniformly) hyperbolic (tra-
jectory) set if it is bounded

|’Htr”Wt§1le)vP(Rn+1) < O’}l-(tr (94)

and every trajectory u € H' is hyperbolic and the hyperbolicity constant C, in
(9.3) is independent of the concrete choice of u € H" (C, < Cypr).

Remark 9.2. The above definition of a hyperbolic trajectory is equivalent to the
standard one via stable and unstable foliations. In particular, it is not difficult to
verify that this definition is independent of the concrete choice of the exponent p. We
however emphasize once more that this definition has sense for the nonautonomous
and non-homogeneous (e.g. space-time periodic) case only. In contrast to this, in
the autonomous or homogeneous case, the functions dyu or/and V,u always belong
to the kernel of equation of variations, so the neutral foliation appears. Furthermore,
the standard requirement for the finite-dimensional theory is that this foliation is
one-dimensional (or, more generally, finite-dimensional). This can be satisfied only
for spatially localized structures decaying exponentially as x — oo. Obviously, this
requirement is too restrictive for the study the multi-pulse structures containing
infinitely many pulses. Moreover, we do not know any reasonable extention of the
hyperbolic theory for that case. That is the reason why we restrict ourselves to
consider only the space-time non-homogeneous case where such a theory exists and
is analogous to the finite-dimensional case.

The next theorem gives the standard relation between hyperbolicity and stability of
a hyperbolic trajectory.

Theorem 9.3. Let equation (9.1) satisfy the above assumptions. Then a complete
trajectory u € Wél’m)’p(R”“) s hyperbolic in the sense of previous definition if

and only if, there exists, a neighborhood Vs(u) of u in Wél’gl)’p(R”“) and for every
function F(t,u) == F(t,z,u, Dyu,--- , D 1u) which belongs to LP with respect to
(t,z) and C' with respect to u, such that the norm

IE = EC Mot vy po@nsny) < b (9.5)
18 small enough, the perturbed equation

Ou+ Ao+ F(t,u) = F(t,u) (9.6)
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has a unique solution @ in Vs(u) and this solution satisfies

= 100010, < CIE (0.7

with the constant C' independent of I .

Moreover, the perturbed trajectory u is also hyperbolic and the set H' is uniformly
hyperbolic if and only if it is bounded and the constant C in (9.7) is independent of
the concrete choice of u € H'.

Proof. Indeed, let the trajectory uw be hyperbolic in the sense of Definition 9.1.
We will seek for the desired solution of the perturbed equation (9.6) in the form
@ := u + v. Then, the function v should satisfy the following equation:

v+ Agv + F'(t,u(t))v = —[F(t,u+v) — F(t,u) — F'(t,u)v] + F(t,u+v). (9.8)

Since the trajectory u is bounded in Wél’Ql)’p(R”“) and F' is smooth, the function
H(t,v):= F(t,u+v) — F(t,u) — F'(t,u)v satisfies

| H (-, U)HLP(R”“) + ||Hz/)('>U)”L(Wélvm)»lj(Rn+1),Lp(Rn+1)) < CIHUHWILEL?Z)*P(RnH)

where C depends only on F' and the norm of w.

Using now that the linear part of equation (9.8) is invertible (the hyperbolicity
assumption) and applying the implicit function theorem, we deduce the existence
and uniqueness of the required solution % and estimate (9.7). Note also that the
constant C'in (9.7) depends only on the hyperbolicity constant C,,, function F' and
the norm of u and is independent of the concrete choice of u and F.

Let us now assume that the trajectory u € Wél’Ql)’p(R”“) is stable in the sense that
(9.7) holds for every sufficiently small perturbation F and the associated perturbed
solution 4. We need to verify that equation (9.2) is uniquely solvable for every
h € LY(R™!') and estimate (9.3) holds. To this end, for every sufficiently small
e > 0, we consider the perturbation I = eh(t). Let u. be the associated solution
(9.6) and w, := *=*. Then, this function satisfies

dywe + Awe + F(t,u(t))w. —h = —%[F(t, u+ew.) — F(t,u) — eF(t,u)w.] (9.9)

and, due to estimate (9.7), we have
Hw5||wél,2l),p(Rn+1) S C||h||Lp(Rn+l). (910)

We see that the right-hand side of equation (9.9) tends to zero as ¢ — 0 (in the
L?-norm). Moreover, due to (9.10), we may assume without loss of generality that
w. — w weakly in I/Vlglc’m)’p(R”“). Passing then to the limit in equation (9.9), we
conclude that the function w solves (9.2) and (9.10) gives estimate (9.3) for this

solution. Thus, the existence of a solution of (9.2) and estimate (9.3) are verified.
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Let us now verify the uniqueness. Indeed, let the uniqueness fail. Then there exists
woy € WDP(R1) such that

Oywo + Agwo + F (¢, u)we = 0. (9.11)

Let us now construct the perturbed equation (9.6) in order the function @ = u+ecwy
to be its solution. Indeed, it is not difficult to verify using (9.11) that u solves

Ol + Aot + F(t,01) = F(t,0) == [F(t,u+ cwy) — F(t,u) — eF'(t,u)wo] = he(t).
Obviously, ||fe||zp@n+1) < C and, consequently, due to (9.7),
|la — UHWél,zl),p(RnH) = 6HwOHWI§1,21),p(Rn+1) < Ché.

Passing to the limit ¢ — 0 in this formula, we see that ||wOHW(1,zz),p(Rn+1) = 0 and
b
the uniqueness is also verified. Theorem 9.3 is proven. O

Remark 9.4. It follows from the proof of Theorem 9.3 that, in order to verify the
hyperbolicity, it is sufficient to prove the existence of @ and estimate (9.7) only for
the perturbations of the form

F(t,u) =eh(t), he FR"™), <1,

Moreover, it is sufficient to consider only more regular than L}-integrable functions
h, say, belonging to C,(R"™!) or C(R, X, (R")). Indeed, in this case, arguing as
before, instead of (9.2), we will have an estimate

||U) HWb(l’zl)’p(R”‘H) S CHhHCb(R7C§l71(]R")) (912)

and it remains to note that, due to the parabolic regularity, the solvability of (9.1)
for more regular i and estimate (9.12) imply the solvability for » € LV(R™"!) and
estimate (9.3). In order to see that, one can use that, for sufficiently large constant
M, the auxiliary equation

8tw1 + A0w1 -+ F/<t, u(t))wl —+ Mw1 =h (913)

for all h € LE(R™"!) and satisfies (9.3) and the remainder wy = w — w; satisfies the
analog of (9.2)
8tw2 + Aowg + F{L(t, u(t))w2 = Mw1

with more regular external forces Mw; € Cy(R, CZ~1(R")) for which (9.12) is ap-
plicable.

Moreover, due to the smoothing property for parabolic equations, we may replace the
w20 (ReH) norm in the left-hand side of (9.7) by a weaker norm, for instance
Cp(R, C27H(R™)). We will use these simple observations below in order to verify
that a hyperbolic set for the reduced system on the pulse manifold P(L) remains
hyperbolic for the whole system (8.1) as well.

79



Thus, if H" a hyperbolic set of equation (9.1) and F is a sufficiently small per-
turbation, then, according to Theorem 9.3, for every u € H' there exist a unique
hyperbolic trajectory @ € H' of the perturbed equation and, therefore the map

S H" - H", Su=1u (9.14)

is well defined. The next corollary shows that S is a homeomorphism in the local
topology.

Corollary 9.5. Let H'" be a hyperbolic set of equation (9 1) and let the perturbation
F be sufficiently small. Then the map S : H™ — H' defined via (9.14) is a

homeomorphism in the topology of W L2)P(Rn+1).

loc

Proof. We first note that the sets H'" and H'" are precompact in T\ 1(321 P(R™). In-
deed, since H' is bounded in W, "*)P(R"*1) it is precompact in Cloc(R, CZ~1(R™))

(due to our choice of the exponent p). Using now the fact that the map v — F(-, u)
is continuous as the map from Cj..(R, C?~1(R")) to L (R"*1) together with the

loc

parabolic regularity (3.9), we conclude that H'" is compact in w2 ’p(R”+1) The

loc
(pre)compactness of H'" can be established analogously. Moreover, without loss of

generality, we can assume that they are closed in I/Vl(1 2D (R™F1), otherwise we can
take a closure preserving the uniform hyperbolicity. Thus, H" and H!" are compact.

Thus, we only need to verify the continuity of S. Indeed, let {u,}>°, C H" be a
sequence converging to some u € H" in W -P(R"1) and let @, = Su, € H'.
Let also @ belongs to the limit set of {a,} (1t exists since H'" is compact). Then,
due to estimate (9.7), we have

||an - u”||Wl(01C’2D’p(Rn+1) < OHFH

and, consequently,
1~ tlly 00 gnssy < CIE]

Since Su is a unique solution of the perturbed equation belonging to Vs(u), then
necessarily 4 = Su (if the perturbation is small enough). Thus, {u,}°, has a
unique limit point @ = lim,,_,, %,, = Su. Corollary 9.5 is proven. O

Remark 9.6. The result of Corollary 9.5 can be improved as follows: there exists
positive ¢ such that, for every weight function 6(t,z) of exponential growth rate
e < gp, the following estimate holds:

O_1||U1 — u2||W9(l,2l),p(Rn+1) < ||SU1 — Su2||W9(1,2l)p(Rn+1) < C’||u1 U,2||W9(1,2l),p(Rn+l),

see |MieZel04]. However, the proof of this estimate given there essentially uses that
the phase space is a linear space. So, keeping in mind the extention of the hyperbolic
theory to equations on the pulse manifold P(L), we prefer to give the alternative
proof of Corollary 9.5 which does not use the global linear structure and can be
immediately extended to manifolds.
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Remark 9.7. Projecting the trajectory hyperbolic set to X, := Wfl(l_l/p)’p(R") via
Tr|,_ u = u(r), we obtain the associated hyperbolic sets H, := Tr|t H! in the
phase space for every 7 € R. If it is known, in addition, that the map T?“’ _ s
injective, then, due to compactness it will be a homeomorphism of sets H!" and H.
in the local topology and, consequently, due to Corollary 9.5 the sets H, and H,
will be also homeomorphic. The sufficient conditions for the injectivity of Tr’ —
(=backward uniqueness) can be found e.g. in [AgNi63] and [AgNi67]| although we
do not know whether or not the backward uniqueness theorem holds for solutions of
(9.1) under the above general assumptions. We however note that, for the hyperbolic
sets obtained from the center manifold reduction to the multi-pulse manifolds (which
we are mainly interested in this paper) such uniqueness is immediate since it takes
place on the center manifold. So, we need not to verify rather delicate backward
uniqueness property for that particular case.

Our next task is to extend the above theory to equations on the multi-pulse manifold
P(L) analogous to (8.26). To be more precise, we consider the following equation
on P(L):

d

Zm=f{(t,m), meP(L) (9.15)

with the uniformly smooth and bounded function f.

Definition 9.8. Analogously, we say that a complete trajectory m of equation
(9.15) is hyperbolic if, for every H € L>®(R"™) such that Ppu H(t) = H(t), the
associated equation of variation

Pant) e W —Pon) (. 0(8)) W) = H (1) (916

has a unique solution w € L*(R, Ty)P(L)) and the following estimate holds:
| W [[£oe @nt1)) < Conl[H|| oo @n+1).- (9.17)

A set H' of trajectories of equation (9.15) is a (uniformly) hyperbolic set if every
trajectory belonging to it is hyperbolic and estimate (9.17) holds uniformly with
respect to all trajectories from H" (we do not require boundedness of H' here since
the manifold P(L) is globally bounded).

The following theorem is the analog of Theorem 9.3 for (9.15) on P(L).

Theorem 9.9. A complete trajectory m € L= (R"*1) of equation (9.15) is hyperbolic
in the sense of previous definition if and only if, there exists, a neighborhood Vs(m)
of u in L®(R™) and for every function f(t,m) such that Puf(t, m) = f(t, m) which
belongs to L™ with respect to t and C' with respect to m, such that the norm

~ ~ ~
Bl i=sup sup (It 0)llimqee) + IE (6 0) e imen) <8 (9.15)
teR veVs(m)
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18 small enough, the perturbed equation

d _
priciie f(t,m) = f(¢, m) (9.19)

has a unique solution m in Vs(m) and this solution satisfies
m — W o gainy < C|f] (9.20)

with the constant C' independent of .

Moreover, the perturbed trajectory m is also hyperbolic.

Proof. The proof of this result is very simular to the proof of Theorem 9.3. The
only difference with the case of linear phase space is the fact that now the difference
m(t) — m(t) between the solutions of (9.15) and (9.19) does not belong to the
tangent space and, therefore, cannot be directly interpreted as a solution of some
equation on the tangent space close to the equation of variations. That is why, we
only explain below how to overcome this problem leaving the details to the reader.

To be more precise, instead of the difference m — m we will write the equation on
its projection w to the tangent space

w(t) := Pangy (0() — m(1)).

Then, on the one hand, arguing as in Theorem 7.1, we can verify that, if the norm
|m — m| oo (rny is small enough, the element m is uniquely determined by w and m
and, uniformly with respect to m € P(L), we have

m—m = w+O(|| W |7~ @n))- (9.21)
On the other hand, using the formula

(1) P (1) = Py 5(6) + Dm0 (1)]5(1)

and equations for m and m, we obtain that w(¢) should satisfy

Pin(t) g W(t) = Prage) (Fn (£, m()) (m(t) — m(1)))
= £(t,10(t)) + Py [£(t, 102(1)) — £(t, m(1)) — £'(t, m(t))(m(t) —m(1))]  (9.22)
+ D(m(?))[m’(#)](m(t) — m(#))
where D(m) := Py, 0P, is studied in Theorem 5.5. Using now (9.21) and the obvious

fact that
D(m)[wy|wy =0, Vw; € T,,P(L),

we see that (9.22) is indeed a small perturbation of the equation of variations and,
consequently, the implicit function theorem is applicable. The rest of the proof
repeats word by word the proof of Theorem 9.3 ad so omitted. Theorem 9.9 is
proven. ]
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Thus, as in the previous case, hyperbolic sets are stable under the perturbations. The
next corollary shows that the associated map S : H" — H! is a homeomorphism
in the local topology.

Corollary 9.10. Let H'™ be a hyperbolic set of equation (9.15), f be a sufficiently
small perturbation and H' be the associated hyperbolic set of the perturbed equation.
Assume in addition that the functions £(t,m), f(t,m) and f'(t,m) are continuous
in the local topology. Then, the associated map S : H" — H, Sm = 1 is a
homeomorphism in the topology of L (R™1).

The proof of this assertion is completely analogous to the proof of Corollary (9.5)
and so is omitted.

To conclude the section, we study the relations between the hyperbolic sets of the
full system (8.1) and of the reduced multi-pulse system (8.26) under the assumptions
of Theorem 8.5. Indeed, let H!’; be a hyperbolic set of trajectories of the reduced
system (8.26) such that m(¢) € P((1 +¢)L), for every t € R and m € H'’;. Then,
due to the construction of the center manifold, the functions

u(t) == m(t) + W(t, m(t)), me HT, (9.23)

solve the initial problem (8.1). Thus, the trajectory set H{", of the initial equation
(8.1) associated with H!, is well-defined. The following corollary shows that H}",
will be a hyperbolic trajectory set for equation (8.1).

Corollary 9.11. Let the assumptions of Theorem 8.5 holds and let H' be a hyper-
bolic set of the reduced equation (8.26) such that m(t) € P((1 +¢)L) for allt € R
and m € HIT, (where € > 0 is the same as in Theorem 8.1). Then, the associated
trajectory set H{, of the initial equation (8.1) will be also hyperbolic.

Proof. Let m € H', be arbitrary and u be the associated trajectory of the full
equation (8.1). We need to verify that u is hyperbolic in the sense of Definition 9.1.

According to Theorem 9.3 and Remark 9.4, it is sufficient to verify that, for every
function h € L>°(R"™!), the perturbed equation
Owu + Aou + ®(u) — pR(t,u) = vh(t) (9.24)

possesses a unique solution @ = a(v) if v > 0 is small enough and the following
estimate holds:
@(t) — u(t)||x, < CV||h| Leom@ntny (9.25)

where the constant C' is independent of v, h and t € R.

We now recall that, due to Theorem (8.1), the perturbed equation (9.25) also pos-
sesses a center manifold reduction W(¢, m) and the reduced equation reads

—1n(t) = f,(t, m(t), W(t,m(t))) (9.26)



where the function fj, is obtained from f (which is, in turns, defined by (8.12)) by
replacing uR by pR + vh. Moreover, due to Theorems 7.1 and 8.5, every solution
of (9.24) which belongs to a sufficiently small neighborhood of P((1 + ¢)L) for all
t € R can be obtained from the reduced equation (9.26). On the other hand, due to
Corollary 8.9, we have

IW(t,-) = W(t, )o@z < CVIhll e (9.27)

(where W(¢,-) is the center manifold reduction associated with v = 0) and, conse-
quently,

IEa(t, -, W(E, ) — £t -, Wt Ner ey iy < CVIA] o @niny.- (9.28)

Thus, equation (9.26) is a small perturbation of equation (8.26) (which corresponds
to the case v = 0). Since the initial trajectory m € H'", is assumed to be hyperbolic,
then Theorem 9.9 gives that (9.26) is uniquely solvable in a small neighborhood of
m (if » > 0 is small enough) and the associated solution m(t¢) satisfies

I (t) — m(t)|| @) < Cv ||l po o). (9.29)

Formula %(t) = m(t) + W(t, m(t)) gives now the unique solution of (9.24) belonging
to the small neighborhood of u and estimates (9.27) and (9.29) imply (9.25) which
finishes the proof of hyperbolicity of u. The uniform hyperbolicity of Hf, is an
immediate corollary of the fact that the constant C' in (9.25) depends only on the
hyperbolicity constant Cy, and is independent of the concrete choice of m € HZ,.
Corollary 9.11 is proven. O]

10 Multi-pulse evolution equations: asymptotic ex-
pansions

In this section, we compute the leading terms in the asymptotic expansion of the
reduced ODEs on a center manifold as the distance 2L between pulses tends to oo.
Moreover, for some concrete examples of equations of the form (8.1), we give the
explicit form of that terms. The following theorem can be considered as a main
result of the section.

Theorem 10.1. Let the assumptions of Theorem 8.5 holds. Then, the reduced
system (8.26) on a center manifold has the following structure:

d ~
M= fo(t, m) + £(¢, m) (10.1)

where

fo(t,m) := » "Pr, (Z onpl> + 1y Pr R(t, Vi) (10.2)

JjeEN l#7 JEN
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and the remainder f satisfies
(2, )o@y poo@ny < Cele 2@ 9L 4 p]? (10.3)

where the constant C. depends on € > 0, but is independent of L, p and m €
P((1+¢)L).

Proof. We first recall that, due to the assumption m € P((1 + ¢)L) the cut-off
operator Cut(m) = Id, the right-hand side f in the pulse-equations (8.26) can be
found by (8.12), i.e., the right-hand side of the reduced equations (8.26) reads

f(t, m, W(t, m)) =
(m, W(t, m)(Pp,(—F(m)—®(W(t, m), m)+pR(t, m+W(t, m)))—S(m)W(t, 1((1112))4)

Moreover, due to (8.25) and Lemma 8.1 the operator M(¢,m) := M(m, W(¢, m))
satisfies

HM(t> ) - IP)mHC'l(]P (L),L(L% (R™),L (R™)) < C ( a—e)L +u>

2(a—e)L

and, consequently (since f is also of order C. (e~ +/1), see Theorem 8.5), up to

the remainder, we can set M(¢, m) = Id.

Furthermore, since the function ®(v, m) is quadratic with respect to v, estimate
(8.25) guarantees the ®(W (¢, m), m) also belongs to the remainder and, analogously,
due to Theorem (5.7), the term S(m)W (¢, m) belongs to the remainder as well.

Finally, due to (8.25), the expression R(t, W(t, m)+m) = R(t,m)+O(e 2L 1)
and, due to Corollary 5.4, [Py — Y22, Pp || < C.e 9% Thus, expression (10.4)
can be represented as follows:

—iIij +MZIP>F (t,m) + O([e >~ +p]?). (10.5)

At the next step, using (2.28) and Lemma 3.12, we conclude that
[(R(£, Vi) = R(£, Vi), wp, )| < Ce )y e @me/DIomal < 0 e2emat
I#5

and, consequently, up to the remainder the term ZJGN ;R(t,m) can be replaced
by Z jen Pr; R(Z, Vr;). Thus, the theorem will be proved 1f we verify that

D _PrF(m) == Pr,(3_ Ak + O™ (10.6)
jeN jeN 1
which is an immediate corollary of the following lemma.

Lemma 10.2. Let the above assumptions hold. Then, the following decomposition

18 valid: ' ' o
(F(Ve), b)) == > (AoVk,, 9) + [O'T(T) (10.7)
l#j
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where the remainder O’ satisfies:
HO;'(')HCl(]B(L),R’V) < Cs 672(a75)L ef(afe) dist’(gj,E(f)) (10.8)
where the constant C. depends on & > 0, but is independent of L and r.

Proof. We give below only the estimate of the [*°-norm of O" and the estimate of its
[-derivative can be obtained analogously. To this end, we first split Vi := Vp, + Vg,

and
F(F) = [@(Vk, + V) — ®(Vr,) — ®(Vg,)] + F(IY) (10.9)

where I = {I';},.;. Moreover, analogously to Lemma 4.7, we have
‘F(ﬁ])‘<l‘> <C. ef(afe)[dist(x,Ej)erist'(:l:,Ej)]
and, consequently, due to the triangle inequality, we have

|(]F(f]>7w%])’ < CE sup {ef(afe)ktfﬁj|+dist(x,Ej) ef(afs) dist’(m,E)} <

r€ER™ -

(1]

< O Bt (€:8) g=2a—2)L | (10.10)

So, the term (]F(fj),wﬁj) belongs to the remainder. In order to estimate the first

term in the right-hand side of (10.9), we use formula (4.33) with v; = V¢, and
vp := Vg;. Then, we have

(I)(VFJ' +Vfﬂ) - (1)<VFJ) - (I)(ij) =
1 1
= / / Di@(81‘/pj + SQVI:j) d81 dSQ[VFj,ij] ==
0 Jo
1 1
_ / / (D205, Vi, + 55V ) — D2B(s1 Ve, )} dsy dsa[Vi,, Vi +
0 JO
1 1
—f-/ / DQQL(I)(Sl‘/F].) d81 dSQ[Vl"j,Vf]‘] = ]1 + ]2. (].0].].)
0 JO

Using now assumptions (2.28) and Lemma 3.12, we verify

2
’([hw%j)’ < CE Sup{ (Z eam€m|) 672(a75)|x,§j|} <

rER™ mtj
< Cé sup {e—Q(a—a) dist(z,=7) e—2(a—€)\ac—§j|} < Cé e—2(a—6) dist’ (¢;,E)
reR?

and, consequently, this term also belongs to the remainder. We now transform the
term (Ig,w%j) as follows (using that D, ®(0) = 0):

1 1
I — / / D2®(s,Vk,) ds dss[Vr,, V] =
0 JO

1
- / D2B(s, Vi) dsi[Vi,, V] = [Du® (Ve )V (10.12)
0
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and, consequently, using the fact that the functions w%j are eigenfunctions of the
conjugate of the linearization of (2.1) at u = Vr,, we finally deduce

(I, ¥},) = ([Du®(T )|V, vh,) = = (Ve Ajtp,) = = > (AoVhy, f,). (10.13)
1#j I#j

Lemma 10.2 is proven. 0
Consequently, Theorem 10.1 is also proven. O

The next corollary gives the analog of the proved theorem in local coordinates.

Corollary 10.3. Let the assumptions of Theorem 10.1 hold. Then, the reduced
pulse interaction equations (8.26) have the following form in the local coordinates
Fé described in Definition 4.1 (see also Remark 4.5):

d _ =N
(L) s = Y F() o T) + pR(E,T5) + O(t,T), jeN (10.14)
m#j
where the matriz II(T') is defined in (2.37), the functions F and R are defined via
P(F) = (Vp, Agwi>L2(Rn), ’R,l(t, F) = (R(t, VF), w%)Lz(Rn), 1= 1, ce ,]{,’, (1015)

the conjugate eigenfunctions ° are defined in (2.22) and (2.23), and the remainder
O satisfies
1O, ) ler oo ey < Cele™ @7 4p]? (10.16)

where the constant C' depends on € > 0, but is independent of L and p.

Indeed, taking the inner product of equation (10.1) with the function w;(ﬁ) and
using the orthogonality relations (5.2), formula (2.37) and the obvious identity
(AoVr,, @/)f“j) = (ATr,V, TF]-W) =
- (7-[’1";11407}1‘/7 wl) = (AOIZIFj]—1~Flva ¢Z> = (AOWFj]—l-Fja ¢Z)>

we obtain equations (10.14) in any local coordinates belonging to the atlas described
in Remark 4.5.

Remark 10.4. We see that, due to Theorem 10.1, up to the terms of order [e’2(a’5) L+
u]?, the reduced system of ODEs has the form
d a .
(L)L = Y F(j) " oTw) + uR(LT;), jEN. (10.17)
m#j

Here, the terms F([I;]7' o T,,), m # j can be interpreted as a pairwise "tail"-
interaction between pulses Vr, and Vr,, and the term pR(t,T';) is a "self-interaction"
of the jth pulse appeared due to the perturbation of the initial equation (2.1). We
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also note that, formally, equation (10.17) contains infinitely many interaction terms
F([j]t oT,,). Nevertheless, only finite number of them are factually larger than
[e=2(@=4) [, + p)? and, consequently, the others can be included into the remainder
0. To be more precise, arguing as in Lemma 10.2, it is easy to verify that

|F(T] " o D) || < Cee(mellestml (10.18)

and therefore, due to Lemma 3.12, all the terms F([I';]"' o I',,,) with [§; — &,| > 4L
can be also interpreted as a part of remainder. Then, system (10.17) reads

M) ST = 0 F(N] 7 oT,) 4 uR(LT), jeN (10.19)
)

meNg €]

where Nz(j) := {m e N, [{; —&,| <4L}. It is also worth to note that the number
of points in Nz(j) is finite and uniformly bounded

#Nz(j) < Co = Co(n) (10.20)

where the constant Cy depends only on n (and is independent of f, L and j). In
particular, in one-dimensional case n = 1, Cy = 2 and consequently, for every given
pulse Vr,, we have at most two neighboring pulses on the distance less than 4L
from it. Moreover, in one-dimensional case we have a natural ordering on the set
of pulses: I'; < I'; if and only if & < & which preserves under the evolution inside
of the center manifold. Thus, after the renumeration of the pulses in the increasing
order, equations (10.19) read:
d

() 205 = F([5] 7 o Tya) + F(] 7 o i) + pR(LT), j€Z (10.21)

which are usual for the one-dimensional theory, see [Ei2002, San93, San02].

In contrast to that, in the multidimensional case n > 2, we do not have any canonical
ordering of the pulses and, moreover, the neighboring pulses to Vr, (i.e. the pulses
Vi, m € Ng(j)) also can change under the time evolution (the set Ng, (j) can
depend on t). That is the reason why, we retain in (10.14) all of the "tail"-interactive
terms.

We now going to consider several examples of equations of the form (8.1) and give
some explicit formulae for computing the pairwise interaction function F(I'). We
start with the case of a spherically symmetric pulse and gradient equations.

Example 10.5. Let us assume that initial pulse V' (x) of equation (2.1) is spherically
symmetric and that the linearized operator Ly := Ay + D, ®(V(x)) is self-adjoint:

V(z):=V(r?), r=lz|, [Lv]"=Ly. (10.22)

Then, we obviously have n-eigenfunctions of operator £y generated by derivatives
of the initial pulse V

¢ (x) = —0,,V(x) = —22;,V'(r*), i=1,---,n. (10.23)
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Furthermore, we assume that these functions generate the whole kernel of Ly, then
this pulse satisfies all of the assumptions of Section 1 with the symmetry group of
spatial translations G :=R", [' := £ € R"” and

(Zeu)(x) = u(z = §). (10.24)

In that case, we have Vip(z) = Ve(z) == V(z —§) and O, Ve = =0,V (- — &) =
¢'(- — &) = ¢¢. According to (2.37), this gives

T(¢) =1d. (10.25)

Moreover, it is not difficult to verify that (¢’, ¢’) = 0 for i # j and, since, the oper-
ator Ly is assumed to be self-adjoint, the conjugate functions 1)° have the following
form:

; —1 i i 1
V@) = @), 0 = [ VO (1026)
(the multiplier ¢! is chosen in order to satisfy (2.23)). Inserting these formulae to
the definition of F (), we establish that, in this case the interaction function has a
gradient structure F(§) = VG (§) with the potential

G&)=ct /n V(e —¢). AV (x) de. (10.27)

where u.v means the standard inner product in R™. As a particular example of
equations of that type one can consider the scalar reaction-diffusion equation

Oru = aAu — f(u) (10.28)

The existence theorems for a spherically symmetric pulse V(r?) in the gradient
case (the so-called ground state solution for this equation (under some natural as-
sumptions on the nonlinearity f) can be proven e.g. by variational methods, see in
[BerL83]. Moreover, the computation of the interaction function F for more com-
plicated non-gradient equations with spherically symmetric pulse in two dimensions
related with nonlinear optics (including the asymptotics for G(§) as & — oo) and
the examples of spectrally stable pulses can be found in [TVMO03], [VIMSF02].

The next example will be the so-called generalized 1D Swift-Hohenberg equation
which is factually a particular case of Example 10.5.

Example 10.6. Let us consider the following problem in x € R:
Ou+ (92 +1)*u+ BPu+ f(u) =0, f(0)=f'(0)=0. (10.29)

Here Ay := (0?4 1)*+ 3% and, obviously, (10.29) has a gradient structure, so we are
under the assumptions of Example 10.5. Our task now is to find the explicit form of
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function G(§) and/or its asymptotics as £ — oo. Our assumption is that equation
(10.29) possesses a nondegenerate symmetric pulse equilibrium V' (x), i.e.

V(z) =V(-x). (10.30)
It is known that such pulses exist, e.g. for the cubic nonlinearity
flu) =v’+ru?, kKER (10.31)

in some region of parameters 3 and k, see [BGLI7, GIL94|.

Let A € C, o := Re A > 0 solve the characteristic equation:
(N +1)+p°=0. (10.32)
Then, the pulse V() has the following asymptotics as x — 4o00:
V(z) = Re {Vpe™} + Vi(x), |Vi(z)| < Ce 2ol (10.33)

for some Vy € C, [Vy] # 0 (here we have implicitly used the assumption that the
pulse V(z) is symmetric. We are now going to simplify expression (10.27) for G
using asymptotics (10.33). To this end, we also need the following version of Green’s
formula for the operator Ay which can be easily verified by integration by parts:

/Ooo[gl(x)'Aogz(x) — Aogi(2).g2(x)] dz = Ko(g1, 92) == —[91(0)g5'(0)—
— 91(0)g5(0) + ¢7(0)g5(0) — 91"(0)g2(0) + 241(0)g5(0) — 297 (0)g2(0)]. (10.34)

Using (10.33) and (10.34) and the fact that Aye’ = 0, we have

V(- =8, AV () =
= /_ Ve —€). AV (x) do +/ V(z —§).AV(z) do =

e 0
= /0 V(r —€).Ap[V(z) — Re Vpe] do+
0

+ /000 V(e —€).A[V(z) —Re Vye ™ do = / AV (z —&).V,o(x) de+

+ /Doo AoV (z — €).Vi(z) dz — Ko(V(z — €),V(z) — Re Vy e )+
+ Ko(V(z —€),V(-) = Re Voe ™) = /_ AV (x — €).V(z) do+

+ /000 AV (=€) V() dz + Re{VoKo(V(z — &), —eM)} =

- /R AoV (& — ). Vi) da + 2Re{VoA(V(=E)N2 + V(=€) + 2V (=€)}, (10.35)
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Moreover, due to (10.34), we have |V,(z)| < Ce~2%l and
AoV (z = &) = |f(V(z = )] < Ce ol (10.36)
Therefore,
| / AV (2 — €).Vy(z) da| < CLe 2@ < 0 4oL
R

Thus, up to the terms of order e~4(@=2)L

G(&) = 27 Re{VoA(V(=€)A* + V(=€) + 2V (=€)} (10.37)

, we have

Furthermore, since the function V'(x) is even, then the potential G(§) is also even
with respect to §. So, without loss of generality, we may assume that £ > 0. Inserting
now V(—&) = 1/2[Vy e ¢ 4V e ] (up to the terms of order e~} we deduce that

V(=N + V(=€) +2V (=€) == Voe ¥\ + 1]+
F1/2Voe M2 + A% + 2] = Voife ™ (10.38)
4(a—e)L

where we have used that A\?> +1 = i3. Thus, up to the terms of order e~
have

, we

G(€) = 2¢7 ' BRe{iVZN e 27 ImASY — N el sin(Tm AJ€| + o) (10.39)

where My = 2¢7HVoPBIA| = 2¢7HVo|2By/1+ 32 > 0 if § # 0 and ¢y € R is some

real number. Finally, returning to the function F, we have, up to the terms of order
—4(a—e)L
e

F(€) = Mysgn(§) e sin(wl¢] + ¢f) (10.40)

where M| > 0, w := Im A # 0 and ¢ € R. The reduced system of ODEs on the

center manifold associated with equation (10.29) reads (up to the terms of order
672(0475)L)

d

aﬁj = Mle= "8l sin(w]g;_y — & + o) — e Sl sin(w]g i — &)+ Bp)),

where j € Z and the pulses Vg, are numerated in the increasing order.

We consider also the perturbed version of equation (10.29) (which will be used in
the next section for constructing the example of space-time chaos):

O+ (92 4+ 1)%u+ f*u+ f(u) = ph(t,z), f(0)=f(0)=0 (10.41)

for some h € L>®(R"™'). Then, according to Theorem 10.1, the reduced ODEs on
the center manifold read (up to the terms of order [e=2(@=)F 4 1)?):

d P
—& = Mle™ =8 sin(w|¢; 1 — &) + ¢p)—

dt
— e onSlsin(wlgj — &)+ )] + uR(LE) (1042)
with R(§) == —c" [ h(t,2)0,V (x — §) da.
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Remark 10.7. We see from (10.42) that if dist(&;,&j41) ~ 2L then the term
F (&1 — &) is of order e72*F and, therefore, gives indeed the leading term of the
asymptotic expansion as L — oo. It is also worth to emphasize that the form of the
interaction functions in (10.42) depends only on the properties of the linear part of
equation (10.29) and is independent of the nonlinearity f. So, the concrete choice of
f determines only the amplitude M| and the phase ¢[ in equations (10.42). It was
however crucial to verify that M| # 0 (otherwise, the first term of the expansion
would vanish identically and one need to compute the further term of the asymp-
totics). The fact that the frequency w # 0 is also very important for what follows,
see the next section.

We conclude this section by considering the generalized 1D Ginzburg-Landau equa-
tion.

Example 10.8. Let us consider the following problem:
Ou — (1 +ir)Pu +yu +uf(|ul?), f(0)=0 (10.43)

where u(t, z) = uy(t, z) + ius(t, x) is an unknown complex-valued function, f: R —
C is a given nonlinearity and x € R and v € C are parameters. This equation
possesses a natural group of symmetries G := R! x S1, T':= (£, ¢) and

(Tepyu) (@) == culz —¢), ¢,£€R (10.44)

which are isometries with respect to the inner product (u,v) := Re [, u(z)v(x) dz.

We assume that equation (10.43) possesses a homoclinic equilibrium solution V' (z) to
u = 0 which is symmetric with respect to z, i.e. V(—z) = V(z). Then, analogously
to (10.33), this solution necessarily has the following asymptotics as x — +oc:

~
1+ ik

V(z) = Ve +V,(z), = — £oo, where \:= (10.45)

with A\ = a +iw, a > 0 and, as in the previous example |V,(z)| < Ce™22l. See
[AfMi99, AfMi01] for existence of single and multi-pulse equilibria for (10.43) as
well as for the Poiseuille profile. See also, [ASCTO01] for numerical and experimental
observations of different pulses in (10.43).

In contrast to the previous example, we now have two-dimensional group of sym-
metries and, consequently, the dimension of the kernel for the nondegenerate pulse
V(z) is equal two and the corresponding eigenfunctions are

bn(x) = — eV (x = &), ¢i(x) =i V(- E). (10.46)

Since Gy is Abelian, we again have II(T") = Id. Moreover, the function ¢' is odd with
respect to z and ¢? is even. Consequently (¢!, $?) = 0. We however note, that our
equation is now not gradient, so we need to introduce also the adjoint eigenfunctions
YL(x) (which do not coincide as before with ¢4 () and should be computed by solving
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the adjoint equation E”{/FQ/J% = 0). Without loss of generality, we may assume that
Y!(x) is odd and ¢*(z) is even, so the orthogonality relations (¢!, 9?) = (¢2, ') =0
are automatically satisfied and the rest of the (2.23) ((¢*,v!) = (¢?,¢?) = 1) can
be obtained by scaling. Furthermore, analogously to (10.45), we have

PHa) = (£ e yl(z), o — +oo (10.47)

for some W' € C and [ = 1,2. According to Theorem 10.1, we need to compute the
following quantities:

FU(E, 6) = Refe® /R Viz — &) Ay (z) dz}, 1= 1,2 (10.48)

with Ag := —(1 + ik)9? + . Inserting now the asymptotic expansions (10.47) into
the right-hand side of (10.48) and arguing exactly as in (10.35), we infer

[ Vo= A0 @) do = (1= i)WV (0 = (-1 e =)=
—V'(x = (1) e —e )} _, + O(e Ky (10.49)
and, consequently,

{ FHE 0) =2Re{(1 — ir) e TgV' (=€)} + Oe7*1),

FAE, ¢) =2Re{(1 — ir) e WAV (=)} 4+ O(e~20kl), (10.50)

Moreover, since V (x) and ¥?(x) are even and ! is odd, then F' and F? are odd and
even with respect to & respectively. So, without loss of generality, we may assume
that £ > 0. Then, due to (10.45), we have

{ FHE ¢) =2Re{(1 —ir) e WLVoA e} + O(e 2y,

F2E, ) =2Re{(1 — ir) e T2Vp\ e} + O (e 20kl), (10.51)

Thus, up to the terms of order e~**F (which can be considered as a part of the
remainder), we have

F'(&, ¢) =My sgn{&} e~ sin(¢ + w|€| + 01),
F2(E ¢) =Mg e lsin(¢ + w|é] + 62),

where M} := |2(1 — ir) W VoAl # 0 and 6, € R. Finally, according to (10.21) the
ODE on the center manifold has the following form:

(10.52)

d
dt£ Ml[ —a(&i+1-¢5) SlH( (€j+1 — 5]) - ¢j+1 + (bj + 91)_

e &5 gin(w(& — &1) + @5 — dj_1 + 601)], (10.53)
d .

— ;= Mile G4 sin(w(&j41 — &) — G + &5 + O2)+
+ e &5 gin (w (& —&o1) + &5 — dj1 + 02)],

where j € Z and the pulses are numerated in an increasing order.

dt"’

93



Remark 10.9. The existence of the pulse solution in Example 10.6 is verified an-
alytically or/and numerically for wide class of equation (10.43) including the clas-
sical Ginzburg-Landau equation with cubic nonlinearity, quintic Ginzburg-Landau
equation (where the above pulse can be spectrally stable) and even for the case of
non-polynomial nonlinearity f arising in laser dynamics, see [AfMi99, VIFKKR99,
VIKRo01, VIMSF02|. Formal derivation of equations (10.53) can be found also in
[SkV102].

11 An application: spatio-temporal chaos in peri-
odically perturbed Swift-Hohenberg equation

In this concluding section we show how the multi-pulse center manifold reduction can
be applied in order to prove that the concrete equations of mathematical physics pos-
sess the so-called space-time chaos. One of the most natural mathematical model for
that phenomena was suggested by Sinai and Bunimovich [BuSi88| (see also [PeSi88]|
and [PeSi91]). A discrete lattice dynamical system consisting of a Z"-grid of weakly
coupled chaotic in time oscillators has been considered there. Then, without taking
into account the coupling, the above system is just a Z"-Cartesian product of the
basic chaotic oscillator. In particular, if this chaotic oscillator contains a hyperbolic
set Gy then the uncoupled system will contain an infinite-dimensional hyperbolic
set G ~ (Go)Z". Therefore, due to the structure stability theorem for hyperbolic
sets, the coupled system also possesses a hyperbolic set homeomorphic to G if the
constant of interaction is small enough.

We also recall that the simplest model example of a hyperbolic set G is the one
generated by a single transversal homoclinic orbit. Then it is naturally homeomor-
phic to the Bernoulli scheme M := {0,1}%. In this case, the infinite-dimensional
hyperbolic set G of the whole coupled system will be homeomorphic to the mul-
tidimensional Bernoulli scheme M"t1 := {0,1}7"" = (M")Z" (see Definition 11.1
below). Thus, the multidimensional Bernoulli scheme M"™"! can be considered as a
natural model for describing the space-time chaos phenomena in dissipative systems
in unbounded domains.

It is worth to note that the existence of the above hyperbolic sets in concrete equa-
tions of mathematical physics seems to be a highly nontrivial problem and for a
long time there were not any example of a dissipative PDE where this existence
were rigorously verified. The first examples of such PDEs has been recently sug-
gested in [MieZel04] where the above hyperbolic sets were found on the attractors
of some special space-time periodic reaction-diffusion equations in R". However,
the nonlinear interaction function for that examples is very complicated and con-
structed artificially, i.e., it is rather far from the concrete nonlinearities arising in
mathematical physics.

In this section, we present an alternative method of constructing such hyperbolic
sets based on the analysis of weak interaction of an infinite grid of pulses and the
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center manifold reduction obtained in previous sections. We believe that this method
can be applied for many concrete equations of mathematical physics. We illustrate
this method on model example of the generalized 1D Swift-Hohenberg equation
considered in Example 10.6. Further applications will be considered in forthcoming
papers.

Thus, we consider the space-time periodically forced Swift-Hohenberg equation:
O+ (02 + 1)%u+ B+ f(u) = ph(t,x), F(0)=F0)=0  (11.1)

where h(t,z) = h,(t,z) is some special space-time periodic external force and p is
a small parameter. Our main assumption concerning the non-perturbed equation
(with © = 0) is that equation possesses a nondegenerate pulse V' (z) which satisfy
the assumptions of the center manifold theorem proved above. Then, we show that
under some special forcing h pairs of weakly interacting pulses generate chaotic
oscillators in time with the hyperbolic set Gy = M. Considering after that a Z-
grid of such pairs of pulses and using the center manifold reduction, we verify the
existence of a hyperbolic set (Gg)% = M?2.

In order to formulate the precise results, we first recall the notion of a Bernoulli
scheme.

Definition 11.1. Let M" be a Cartesian product {0, 1}%" endowed by the Tikhonov
topology (by definition, this means that M™ consists of functions v : Z™ — {0,1}
endowed by the local topology). Obviously, the group of shifts {S;, [ € Z™} naturally
acts on M" via

(Sw)(m) :=v(l+m), I,meZ", veM" (11.2)

The set M™ and the group &; acting on it are usually called Bernoulli scheme
and Bernoulli shifts respectively. We also introduce the natural one-parametric
subgroups {Si,l € Z},i=1,--- ,n by the following expression:

S} =84z, €T (11.3)

where ¢; is the ith coordinate vector in R™.

We are now ready to formulate the main result of this section which establishes
the existence of an infinite-dimensional hyperbolic set of the above form for the
generalized Swift-Hohenberg equation.

Theorem 11.2. Let the nonlinearity f and the parameter 3 in equation (11.1)
be such that the non-perturbed equation (with p = 0) possesses a homoclinic pulse
satisfying the assumptions of Theorem 8.5. Then, for every sufficiently small > 0
there exist two positive numbers P, = Py(u) and P, = P,(u) (tending to infinity
as pr — 0) and a smooth external force h = h, which is Pi-periodic in time and
Py-periodic in space (and is uniformly bounded as jp — 0, i.e. [[hy|lc1@ny < C) such
that the forced Swift-Hohenberg equation (11.1) possesses a hyperbolic set H'™ C
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WélA)’p(RQ) of trajectories (in the sense of Definition 9.1). Moreover, there exists a
one-to-one map

KM —H
which satisfies the following commutation relations:
Tipok=koS', Tp ok=roS}, €L (11.4)
where Ty is a space-time translation group, i.e. (T u)(t,z) = u(t + s,x) and
(T?u)(t,z) = u(t,z + s). Furthermore, the map r is a homeomorphism if the

set H' is endowed by the local topology of VVISCA)”’(RQ).

Proof. As already mentioned, in order to prove the theorem, we consider a special
grid of pair of pulses. To this end, for every sufficiently large L, we define the
numbers L; € R, j € Z, by the following recursive procedure:

LO = 0, L2j+1 - ng - 2L, LQJ' - ngfl - 4L, ] € Z (115)

The numbers L; will play the role of nodes of our grid of pulses. To be more precise,

—

we seek for the pulse configuration &(t) = {&;()};ez satistying
L, —&(H)| < C, teR. (11.6)

Keeping in mind (11.6), we introduce the new pulse coordinates &; := &; — L; which
should be of order 1 as L. — oo. Moreover, without loss of generality, we may
assume that 2wl + 0 = 2nk for some k € N. Then, according to Theorem 10.1 and
computations of Example 10.6, the reduced ODE on the center manifold reads

(
d - ) s = -
g8 = Mo o2 oG =) sin(w(Ey 41 — €9y))+

+UR(t, Loj + &) + O(e™"79F),
] o (11.7)
Efzjﬂ = Mye 2 om0 gin(w(&yj41 — &oy))+

+uR(t, Laji1 + Eajir) + O(e H79E),

\

where the self-interaction function R(§) = —C~" [, h(t, )9,V (z — &) dz. We now
start to construct a special external force h(t,z). We assume that

P, =4L, P,:=Ty-M;'e** and h(t,x) = h(t- Mye " z) (11.8)

for some smooth function A which is Tj-periodic with respect to ¢ and P,-periodic
with respect to = (the period Tj is independent of L and will be fixed below).
Therefore, all of the self-interaction terms are reduced to the following two functions:

Ri(1,&) == —c_l/ h(r,2)0,V(x — & —iL), i=0,1, 7:=t-Mye **L. (11.9)
R

On the other hand, we recall that equation (11.1) is invariant with respect to discrete
spatial shifts T3 ; := Ty, consequently, due to Corollary 8.11, the reduced system
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(11.7) is also invariant with respect to these spatial shifts and the maps W(t,-)
defined in Theorem 8.5 are also invariant. We now note that the spatial shift on
length 4L of system (11.7) coincides with the shift of indexes by 2 in the above local
coordinates. To be more precise, let

-

Sp 1 — loo’ (Skg)l = §2k+l7 k?,l € 7. (1110)

Then, equations (11.7) will be invariant with respect to this group of shifts. More-
over, according to Corollary 8.10, the map ¢ — W(¢,-) is P,-periodic with respect
to t and, consequently, the reduced system is also P,-periodic.

We claim that, in order to prove the theorem, it is sufficient to construct the re-
quired hyperbolic set H!, for the reduced system (11.7) only. Indeed, according
to Corollary 9.11, the associated trajectory set Hf’, of the whole system will be
also hyperbolic. The commutation relations (11.4) will be immediate corollaries the
analogous relations for the hyperbolic set H! . Finally, according to Theorem 8.5
and estimate (8.27), the map U; m(-) — u(-) :== m(-) + W(-,m(-)) is a homeomor-
phisms of H', and H}, in local topologies as well and, therefore, the continuity of

K is also immediate if H'", is homeomorphic to M?2.

Thus, the theorem would be proven if we find a hyperbolic set H

ed € Cb(R,ZOO) Of
trajectories of (11.7) and a one-to-one map & : M? — H!"; satisfying

Tipok=FoS, Sok=FroS} (11.11)

such that £ will be a homeomorphism in a local topologies. Therefore, we can now
concentrate ourselves on studying the reduced system (11.7). To this end, we first
make the change of variables ¢ — 7 and fix

= Mye 2 (11.12)

Then, (11.7) reads

62 = — e @78 sin(w(&y 11 — &)+

+Ro(7, &) + O(e™20=0), (11.13)

S = o) sin(w(&y1 — &)+
+Ry(7, &yj41) + Oe 20790,

\

We now need to simplify also the functions R;(7,&) introduced in (11.9). To this
end, we first introduce a cut-off function x, € C§°(R) in such way that y.(z) =1
forx € [-L+1,L—1] and xz(z) =0 for ¢ [—L, L] and then, for every two given
smooth Ty-periodic with respect to 7 functions fi(7,z) and fo(7,2) we define the
external force hy, 5, by

hy g (T, 2) == —cfi(1,2)x1(z) — cfo(T,2 — 2L)x1(x — 2L), (11.14)
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for all x € [-2L,2L] and extend it space-periodically for all z € R. Inserting this
formula into (11.9) and taking into the account that V' (z) decays exponentially as
r — 00, we arrive at

Ri(r,€) = [fi* (0:V))(7,€) + O(e™"), i=0,1 (11.15)

where (f  g)(&) == [, f(x)g(x — &) da is a convolution operator. Thus, (11.13) is
now transformed to

oy = — e ) sin(w (&g — &) + (fr * V/)(7, &) + O(e™*h),
e =e ) sin(w (&1 — &)+ (fa * V)(7,&501) +0(eF)

(11.16)
where the functions f; and f> can be chosen arbitrarily. We see that the leading part
of the asymptotic expansion of equations (11.13) is now independent of L. Moreover,
system (11.16) is weakly coupled perturbation of the following uncoupled system:

%éi?j = - e_a(g}”l_g}j) Siﬂ(w(f}jﬂ - §:2j)) + (frx V(7 &), (11.17)
%52341 = e~ 82+1762) sin(w(&ajr1 — &25)) + (fo x VI)(7,&2541)
which is a Z" Cartesian product of the system of two ODEs
Y = = U sin(w(Z - Y)) + (A V(1Y) (11.18)
47 =e U Vsin(w(Z-Y))+ (foxV')(1,2). '

Thus, if this system of two scalar ODEs possesses a hyperbolic set Gy homeomorphic
to the one-dimensional Bernoulli scheme M! (and such that the Poincare map of
(11.18) (we recall that system (11.18) is Ty-periodic in time) is conjugated to the
Bernoulli shift §; on M!, then the whole decoupled system (11.17) possesses a
hyperbolic set G ~ (Gg)? = M? and the commutation relations (11.11) (with
P, = Ty due to the scaling of time) will be naturally satisfied. Therefore, due to the
stability theorem for hyperbolic sets on P(L), see Theorem 9.9 and Corollary 9.10,
the weakly coupled system (11.16) will also possess a hyperbolic set HI, ~ M?
which satisfies the same commutation relations.

We also recall that, in order to verify the existence of the above hyperbolic set for
system (11.18), it is sufficient to construct at least one transversal (=hyperbolic
in the sense of Definition 9.1) homoclinic trajectory for system (11.18), see e.g.
[KaHa95]. Thus, in order to finish the proof of the theorem, we only need the
following lemma.

Lemma 11.3. There exist Ty € R and smooth Ty-periodic with respect to time func-
tions fi and fo such that equation (11.18) possesses a Ty-periodic in time solution
(Y,(t), Z,(t)) and a transversal homoclinic orbit (Yo(t), Zo(t)) to it.

Proof. We first show that the convolution operators f; * V/ in equations (11.18) can
be replaced by arbitrary functions g; in equations (11.18). To this end, we consider
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the particular case of function f which is a trigonometric polynomial with respect
to x:

M
fra)y= > axe™* ay(r)eC (11.19)
N=—M

when x > 0 is a parameter. Then the function (f x V')(7,&) is also a trigonometric
polynomial with respect to £ and

(fV)(&) = > by(r) ™ by(r) = inNay(r)V(kN) (11.20)

where \7(5) is a Fourier transform of the pulse V. We note that the initial pulse
is assumed to be exponentially decaying as @ — oo. Consequently, its Fourier
transform V() is an analytic function in a strip | Im £| < « and therefore, it possesses
at most countable number of zeros at the real line. Thus, there exists at most
countable set = C R, such that for any x € =, the grid {kN, N € Z, N # 0}
contains at least one zero of the function \A/(f) Consequently, for almost all x, we
have N

V(kN)#0, Ne€Z, n#0 (11.21)

and, therefore, we can invert the expression for by (7) and find, for any by (7) with
N # 0 the associated coefficient ay (7). The latter means that, every trigonometric
polynomial of the form (11.20) (for almost all k) with zero mean (i.e. with by =
0) can be realized as a convolution of V’ with the appropriate function f. Since
these polynomials are obviously dense in C*(R x [—R, R]) for any R € R and the
homoclinic orbits preserve under small perturbations, in order to prove the lemma,
it is sufficient to construct smooth Tj-periodic with respect to time functions g; and
go in such way that the following system of two ODEs

d

d_Y — _ g(Z-Y) sin(w(Z —=Y)) +g1(1,Y),

r (11.22)
EZ — g a(Z-Y) sin(w(Z =Y)) + go(7, Z)

possess a zero solution Y (7) = Z(7) = 0 and a transversal homoclinic orbit (Y5, Zp)
to that solution.

We are now going to construct "by hands" the homoclinic orbit (Y5(t), Zo(t)) of
problem (11.22). To this end, we first need the origin Y = Z = 0 to be a hyperbolic
equilibrium. In order to have this property, we will seek for equation (11.22) in the
following form:

Y'= (Y, 2) + (1Y), Z' = f(Y,Z) + ga(7, Z) (11.23)
where

fi(Y,Z2) = —e @ Vsin(w(Z - Y)) - 2wY, fo(V,Z) :=e *Z Vgin(w(Z -Y))
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and the functions g;(7, &) vanish identically for small |£|. Obviously, system (11.23)
has the form of (11.22). On the other hand, this system has indeed an equilibrium
Y = Z = 0 and the linearization at this equilibrium reads

Y =—-wly+z2), Z=wiz-—y). (11.24)

It is not difficult to verify that the matrix of this linear system has the eigenvalues
A+ = +wy/2 and the with the associated eigenvectors e = (1, —1F1/2). Therefore,
the equilibrium is indeed hyperbolic and, moreover, the nonlinear system (11.23)
possesses one dimensional stable V_ and unstable V, manifolds near the origin.
Since the perturbations g; vanish near the origin, these manifolds are independent
of gz

Let us now fix small 6 > 0 and construct some special solutions of (11.23). Firstly,
let (Yi(t),Z4(t)) be the solutions of (11.23) belonging to the manifolds V,. We
normalize this solutions by the following condition:

Z.(0)=—6, Z_(0)=20 (11.25)

Then we have lim, . (Yi(7), Z£(7)) = (0,0) and (Yi(7), Z+(7)) are close to the
direction of ey for £7 > 0. We also fix a time ;3 > 0 and yy > 0 such that

sinwyy = —1 and define Z,,(t) as solution of the following equation:
7' = e T sin(w(Z —yy)), Z(tg) = =6 (11.26)
Since sinwyy = —1, then, for sufficiently small 4, the solution Z,(¢) monotonely

increases for t > ¢y and there exists ¢,, > 0 such that Z,(ty + t,) = +9.

We are now ready to construct the required homoclinic loop (Yy(t), Zo(t)) as follows:

(Yi(7), Z4(7)) <0
(Yo(7), Zo(7)) = (Y0, Zn(7)) T € [to,to + 1, (11.27)
(Yo (T — by — 2t0), Z_ (7 — tn — 2tg)) ¢ > 2t + L.

and we connect these pieces of curves in C*°-smooth way on the time intervals
7 € [0,t0) and 7 € [ty + t,, 2ty + t,] arbitrarily satisfying the only two conditions

1) ¥o(7) 2 Yo(0), Zo(r) < =0, 7€ [0,40],

2) Yo(r) > Y_(0), Zo(t) > 6, T € [to+ tn, to + 2t (11.28)

We are now ready to define the perturbations g; in such way that the curve (Yy(7), Zo(7))
will be a homoclinic loop for (11.23). To this end, we introduce the cut-off function
Xs € C* such that ys(z) =1 for |z| < §/4 and xs(z) = 0 for |z| > §/3 and set

_ o 0, 7€ (—00,0lU 2ty + t,,+00)

BTV~ Ly ) O, ) rbervise (1129
and

= o Oa TE (—OO, O] U [t0>t0 + tn] U [2t0 + tn? +OO)

0205~ {5 DA O B, e, (1190
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It then follows form the explicit construction given above that the functions g; thus
defined are C*°-smooth and the function (Yy(7), Zo(7)) is indeed a homoclinic loop
solution of equation (11.23).

Moreover, the functions g; vanish identically for 7 ¢ [0, 2ty + t,] and also in a §/4-
neighborhood of the origin. The latter means that we can extend the functions g;
To-periodically (with a sufficiently large Ty > 2ty + ¢,) and the homoclinic loop
(Yo(7), Zo(7)) will be not destroyed.

Thus, the required homoclinic loop (Yy(7), Zo(7)) is constructed. In order to finish
the proof of the lemma, it only remains to verify that this loop is transversal (hy-
perbolic). In order to verify that fact, we need to study the linearization of equation
(11.23) at the above loop which gives the following operator

— 4 _ (ovlfi(¥o, Zo) + g(7, Y0)] 02 1(Yo, Zo)
L:= dr ( anQ(YE), ZO) 8Z[f2(Y07 ZO) + gQ(T’ Zo)]> (1131)

and, in order to have the hyperbolicity, we need this operator to be invertible (say,
in [L3(R)]? or, which is the same, in [L*(R)]?). We note that, due to the fact
that zero equilibrium of (11.23) is hyperbolic and the functions Yy(7) and Zy(7)
decay exponentially the essential spectrum of the operator £ (in [L?(IR)]?) coincides
with the essential spectrum of the linearization (11.24) which is two imaginary lines
Oess(L) = {Fwiv/2\, X € R}. Thus, if zero belongs to the spectrum of £ (oth-
erwise the operator £ is invertible and, consequently, the homoclinic loop (Yy, Zp)
is hyperbolic and Lemma 11.3 is proven), it should be only a discrete eigenvalue of
finite multiplicity and the associated eigenfunctions (yo, 29) decay exponentially as
T — to0:

8 @2) =0, |yo(r)| + |20(r)] < ce™V2, (11.32)

Moreover, since the right-hand side of (11.24) has zero trace, there exists at most
one eigenfunction (yo, 29) satisfies (11.32) and, consequently, zero eigenvalue of £ has
geometric multiplicity one. We introduce also the conjugate eigenfunction (yg, z)
via

- (y) — 0, [y + |25 (r)] < comVa (11.33)

We are now going to construct a small perturbation of system (11.23) which does
not change the loop (Yo, Zp), but makes it hyperbolic. To this end, we find positive
0 and v such that

Yo(T) >0, Zo(T) >0, Y (r)# Zy(t) 7€ [te,te+ V] (11.34)

for some t. € [0,2ty + t,] (they are exists, due to the explicit construction of the
pulse (Yy, Zy)) and perturb the functions g; in equations (11.23) as follows:
gl (7', Y) =
G2(1,7) :

(7, V) + eCr(m)xs (Y = Yo(7)) (Y = Yo(7)),

g1
G2(7, Z) + eCo(T)xs(Z — Zo(T))(Z — Zy(T)), (11.35)
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for t € [0, 2ty + t,,] and then extend them Ty-periodically for all 7. Here ¢ > 0 is a
small parameter and C; are smooth functions satisfying

supp C; C [te, te + 1] (11.36)

Then, obviously the perturbation of the form (11.35) does not destroy the homoclinic
loop (Yo, Zp) (it solves the perturbed equations as well) and changes the linearization
operator (11.31) as follows:

L.=L—¢ (Clo(T) er)) (11.37)

where the functions C; satisfying (11.36) and € > 0 can be chosen arbitrarily. We
claim that it is possible to chose these parameters in such way that 0 ¢ o(L.).
Then, the loop (Yg, Zy) would be hyperbolic for the perturbed equation and the
lemma would be proven. Assume that the latter is not true. Then, for any ¢ € R
and any functions C; satisfying (11.36), we have

0€a(L). (11.38)

Then, exactly as for the case of non-perturbed equation, there exists an exponentially
decaying eigenfunction (y., z.) of the perturbed operator (11.37):

L. (ye) =0, |y(7)| + |ze(7)| < ce @Vl (11.39)

Ze

whose geometrical multiplicity is one. Moreover, due to the classical spectral pertur-
bation theory, the functions (y., z.) tend to (yo, 29) as € — 0, e.g. in CL(R) (under
the proper normalization). On the other hand, multiplying equation (11.39) scalarly
in [L*(R)]? by the function (yg, z5) and using (11.33), we infer

/t C V[Cl(7-)y€<7—>y8<7—> + Cy(7)2:(T)25(T)] dT = 0. (11.40)

Passing now to the limit ¢ — 0 in (11.40), we finally arrive at

/tC V[Cl(f)yo(f)yé‘(f) + Cs(1)20(7) 25 ()] dT = 0 (11.41)

which should be valid for any C; satisfying (11.36). The latter immediately implies
that

Yo(T) - ys(7) = 20(7) - 25(17) =0, 7 € [te,te+ V).
Thus, without loss of generality, we can conclude that yo(7) = 0 on some subinterval
J C [te, t.+v] (otherwise, the same assertion for zo(7) or for conjugate eigenfunction

is true). We also recall that, due to the assumption Yy(7) # Zy(7) for 7 € [t., t.+ V],
we obtain that the functions

9z f1((Yo(7), Zo(7))  and 9y fo(Yo(T), Zo(7))
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do not vanish identically on [t.,t. + v|. Thus, from equation (11.32) we conclude
that zo(7) = 0 on J as well which is impossible since (1o, 2) is a nontrivial solutions
of linear system of two ODEs. Thus, our assumption is wrong and there exist ¢ and
C; such that (11.38) is wrong. Thus, Lemma 11.3 is proven. O

Hence, theorem 11.2 is proven. O

Remark 11.4. We see that equation (11.1) with the spatio-temporal external forc-
ing of an arbitrarily small order ;1 possesses a hyperbolic set homeomorphic to M?2.
Nevertheless, in the case of Swift-Hohenberg equation, we clearly cannot take p = 0.
Indeed, in this case the equations of two-pulse interactions have a gradient structure
(and the same is true for N-pulse interaction for any finite V) and autonomous and,
consequently, cannot generate the chaotic in time oscillations. The same problem
arises if we try to restrict ourselves by considering only time independent external
forces.

Moreover, equation (11.1) is formally gradient, consequently, the spatio-temporal
topological entropy of any spatio-temporal invariant subset of it (e.g. global at-
tractor if it exists) equals zero, see |Zel04]. Since this entropy is strictly positive
for the Bernoulli scheme M2, the homeomorphic embedding of it into the space of
trajectories of (11.1) satisfying the commutation relations (11.4) cannot exist in the
case pu = 0.

In contrast to this, for the case of generalized Ginzburg-Landau equation considered
in Example 10.8, the two-pulse interaction system is far from being gradient and
can (in principle) generate chaotic dynamics in time. Thus, it is probably possible
to find the space-time chaotic dynamics in the Ginzburg-Landau equations even
without external forces (or for small autonomous space periodic external forces).
We return to this problem somewhere else.

Remark 11.5. As we have already mentioned before, the simplest nonlinearity f
for which the non-perturbed Swift-Hohenberg equation possesses a pulse to zero
equilibrium has the form f(u) = u® + ku? (for some values of parameters x and [3)
which differs from the classical nonlinearity f(u) = u® by presence of a sufficiently
large quadratic term xu? (it is also known that the cubic Swift-Hohenberg equation
with k = 0 does not possess equilibria homoclinic to zero state, see [PelTr01]. How-
ever, the term xu? can be vanished by the trivial linear variable change u = @ — /3
in equation (11.1) which gives

A+ (0 +1)%a+ @ — B'a = & + ph(t) = h(t) (11.42)

for some new values 3 and x’. Thus, the result on existence of Sinai-Bunimovich
space-time chaos stated in Theorem 11.2 remains true for the classical cubic non-
linearity as well (only the external forces should contain in that case the additional
non-small constant x'.

To conclude, we note that we have proved Theorem 11.2 by constructing highly
artificial space-time periodic external forces h(t, z). This were made in order to avoid
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rather delicate dynamical analysis of the two-pulse interaction equations (11.18) and
to have the explicit expression for the transversal homoclinic orbit in it. On the other
hand, everything what we need from this system is the existence of the irregular
recurrent dynamics (~ the existence of a single transversal homoclinic orbit) which
does not look as a great restriction. Thus, the result of Theorem 11.2 is expected
to be true for large class of space-time periodic external forces h(t,z). The only
essential restrictions on this class are the following ones:

1) Sufficiently large spatial period P, (in order to be able to have different influence
to different elements of the pulse-pair).

2) Essentially larger time period P, ~ e’F=. Indeed, the characteristic rate of pulse
evolution is proportional to e~2* and if the time period will be essentially shorter
the influence of the non-autonomous effects will be averaged and we return to the
autonomous gradient system which cannot demonstrate chaos.

Up to these structural assumptions (which seem to be unavoidable under the above
method), the external forces h(t,x) are expected to be more-or less arbitrary.
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