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Abstract

We consider the dynamics of infinite harmonic lattices in the limit of the lattice
distance ε tending to 0. We allow for general polyatomic crystals but assume exact
periodicity such that the system can be solved in principle by Fourier transform and
linear algebra.

Our aim is to derive macroscopic continuum limit equations for ε → 0. For the
weak limit of displacements and velocities we find the equation of linear elastodynam-
ics, where the elasticity tensor is obtained as a Γ-limit. The weak limit of the local
energy density can be described by generalizations of the Wigner-Husimi measure
which satisfies a transport equation on the product of physical space and Fourier
space. The concepts are illustrated via several examples and via a comparison to
Whitham’s modulation equation.

1 Introduction

This paper is devoted to the problem of deriving macroscopic, continuum models from

microscopic, discrete systems. More precisely, we start from the atomistic model for a

crystal which consists of periodically spaced mass points whose motion is governed by

linear interaction forces. The aim is to provide exact mathematical links between this

microscopic system and its macroscopic limits arising when the atomic distance ε tends to

0. In fact, we will obtain one equation which describes the evolution of the macroscopic

displacement and another equation which allows us to calculate the transport of energy in

the crystal.

The analysis of discrete systems attracted a lot of attention over the last decades. How-

ever, most work is restricted to the one-dimensional oscillator chain

ẍγ =

M∑
α=1

(
V ′
α(xγ+α−xγ)− V ′

α(xγ−xγ−α)
)
−W ′(xγ), γ ∈ Z, (1.1)

where Vα is the interaction potential with the neighbors at distance α and W the on-site

potential which couples the atoms to a background. Apart from methods for completely

integrable systems like the Toda lattices (with V (y) = ey and W ≡ 0, see, e.g., [DKKZ96,

DKV95]) the analysis is restricted either to stationary problems [FJ00, FT02, Bla01] or

they concern very special types of solutions like solitons, breathers or wave trains [FW94,

MA94, FP99, FV99, IK00, Ioo00, AMM00, Jam01, Jam02]. Another series of papers tries

to characterize the response of a lattice to a simple initial disturbance [BCS01] or to
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Riemann initial data. In the latter case either a semi-infinite chain is pulled at the end

[DKKZ96, DKV95] or a double-infinite chain has initial data which jumps at one point

[DK00]. An interesting model studying the interaction of traveling and standing waves is

proposed and analyzed in [BCS01].

Rigorous justifications of macroscopic PDEs for the oscillator chain are provided in

[FP99, SW00] where the Korteweg-de Vries equation is obtained as the macroscopic model

for describing the evolution of long-wave interactions. In [GM04b, GM04a] the nonlinear

Schrödinger equation is derived to describe macroscopic evolution of pulses which modulate

a periodic pattern on the microscopic scale. Similar work, which is even more nonlinear,

concerns the modulation of large-amplitude traveling waves. In [HLM94] the discrete,

nonlinear Schrödinger equation iȦγ+c1(Aγ−1−2Aγ+Aγ+1)+c2|Aγ|2Aγ = 0 with Aγ(t) ∈ C

is studied. It has exact traveling waves of the form Aγ(t) = ρei(θγ+ωt) where ω = Ω(ρ, θ) :=

c2ρ
2−2c1(1− cos θ) and it is studied via a formal two-scale ansatz how solutions with initial

conditions of the form

Aεγ(0) = ρ̃(εγ)ei(
eθ(εγ)γ+eω(εγ)t) with ω̃(y) = Ω(ρ̃(y), θ̃(y))

evolve. It is shown there via numerical experiments, that the functions r̃ and θ̃ evolve on

the macroscopic time scale τ = εt according to the following system:

∂τ(ρ̃
2) = −∂y(2c1ρ̃

2 sin θ̃), ∂τ θ̃ = ∂y(c2ρ̃+ 2c1 cos θ̃).

For the oscillator chain (1.1) with W ≡ 0 similar results have been derived in [FV99,

DHM04]. Here, the problem leads to a system of four coupled equations, since the ad-

ditional Galileian invariance leads to macroscopic deformations as well. Let the family

X(r, θ, ω; ·) of 2π–periodic functions be such that for all r, θ and ω the function xγ(t) =

rγ + X(r, θ, ω; θγ+ωt) is an exact traveling-wave solution for (1.1). Now consider initial

conditions for (1.1) in the form

xγ(0) = 1
ε
X̃(εγ) + X(r̃(εγ), θ̃(εγ), ω̃(εγ); 1

ε
φ̃(εγ)),

ẋγ(0) = ṽ(εγ) + ω̃(εγ) ∂
∂φ

X(r̃(εγ), θ̃(εγ), ω̃(εγ); 1
ε
φ̃(εγ)),

where X̃(y) =
∫ y
0
r̃(z)dz and φ̃(y) =

∫ y
0
θ̃(z)dz.

The question is, whether the solutions of (1.1) remain in such a form on the macroscopic

time scale τ = εt. If yes then the macroscopic functions r̃, ṽ, θ̃ and ω̃ will evolve according

to the so-called Whitham modulation equation

∂τ r̃ = ∂yṽ (continuity equation for mass)

∂τ ṽ = −∂y
[
∂
∂er
F (r̃, θ̃, ω̃)

]
(conservation of momentum)

∂τ θ̃ = ∂yω̃ (continuity equation for phase)

∂τ
[
∂
∂eω
F (r̃, θ̃, ω̃)

]
= ∂y

[
∂

∂eθ
F (r̃, θ̃, ω̃)

]
(conservation of energy)

(1.2)

where the macroscopic constitutive function F can explicitly be calculated from (1.1) and

X. In [DHM04] the validity of (1.2) is discussed in detail and for special cases a rigorous

convergence results are obtained (see also Section 6.6).
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The purpose of this work aims in a similar direction, however it is different in the

methodology. We restrict ourselves completely to the linear setting and thus are free to

generalize in many other directions. First, we are able to study very general lattices in

any dimension. Second, we are able to investigate the dynamics of solutions for much

more general initial data. Finally, our results will be more detailed. As a side effect we

will obtain a justification of the Whitham equation in the linear case. In a certain sense

our work is closer to the statistical approaches for harmonic lattices, see e.g., [DPST86,

DPST88, DPS90, SL03]. In particular, the latter work also derives an energy-transport

equation. However, we stay fully in the deterministic setting.

To be more specific, consider a d–dimensional Bravais lattice Γ ⊂ Rd and the set of

coupled ODEs

Mẍγ = −
∑

β∈ΓAβxγ+β for γ ∈ Γ, (1.3)

which will be our basic microscopic system. Here, the vector xγ ∈ Rm may contain the

displacements of several atoms in the cell associated with the lattice point γ. The mass

matrix M ∈ Rm×m is symmetric and positive definite and the interaction matrices satisfy

Aβ = AT
−β and ‖Aβ‖ ≤ Ce−b|β|.

An essential feature of such harmonic lattices is the presence of many traveling wave

solutions in the form

xγ(t) = ei(θ·γ+ωt)Φ where θ ∈ Rd
∗ and (A(θ)− ω2M)Φ = 0. (1.4)

The wave vectors θ are taken from the torus TΓ∗ , which is obtained by factoring Rd
∗ =

Lin(Rd) with respect to the dual lattice. The symbol matrix A(θ) reads

A(θ) =
∑

β∈Γ e
iθ·βAβ ∈ Cm×m for θ ∈ TΓ∗ .

Hence, A(θ) is Hermitian, and we always impose the basic assumption of stability in the

form A(θ) ≥ 0 for all θ ∈ Rd
∗.

First, we derive a continuum-limit equation for the displacements in the case of the

atomic distance ε tending to 0. To this end we define the interpolation operator

Sε :
{

�2(Γ,Rm) → L2(Rd,Rm),

x = (xγ)γ∈Γ → cε
∑

Γ xγsincΓ(
·
ε
−γ),

where sincΓ is a function satisfying sincΓ(β−γ) = δβ,γ and other useful features. We will use

y = εγ ∈ Rd as the macroscopic space variable and τ = εt as the macroscopic time variable.

Using the Fourier transform F , eqn. (1.3) can be written in terms of Xε(τ, ·) = εSεx(τ/ε)
as follows:

∂2

∂τ 2
Xε +AεX

ε = 0 with Aε =
1

ε2
F−1A(ε·)F . (1.5)

Macroscopic behavior is associated with large wave length and hence with small wave

vectors θ = εη. Denoting by V ⊂ Rm the kernel of A(0) we construct a polynomial

Q : V → R which is homogeneous of degree 2 and satisfies

〈Q(η)v, v〉 = inf{ lim inf
ε→0

1

ε2
〈A(εη)wε, wε〉 | w−lim

ε→0
wε = v }.
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Then, Q defines the second order differential operator A0 = Q(i∇y) and we obtain the

partial differential equation

MV
∂2

∂τ 2
Z +A0Z = 0 for (τ, y) ∈ R×Rd, (1.6)

where MV is the restriction of M to V .

In Theorem 4.2 we show that (1.6) is a macroscopic limit equation for (1.3) in an

exact mathematical sense. In particular, we show that the limit ε → 0 commutes with

the time evolution, which means the following. Assume we have a family (xε0, x
ε
1)ε>0 of

initial data for the microscopic problem (1.3) such that Sε(εxε0, xε1) converges weakly to

the macroscopic initial data (Z0, Z1). Then, we have two choices. First, we may consider

the solutions t → xε(t) of (1.3) with initial data (xε0, x
ε
1). For fixed τ = εt we may then

consider the macroscopic limits (εxε(τ/ε), ẋε(τ/ε)) ⇀ (Z0(τ ), Z1(τ )). Second, we may use

the macroscopic initial data for the macroscopic equation (1.6) and obtain the solution

τ → Z(τ ). The theorem now states that both ways provide the same result, namely

Z0(τ ) = Z(τ ) and Z1(τ ) = ∂τZ(τ ). This means that in the following abstract diagram the

time evolution commutes with the coarse graining:

microscopic
Sε−−−−−→ macroscopic

initial data t = 0 (εxε0, x
ε
1)

ε → 0−−−−−−−−→ (Z0, Z1)

time evolution

�t > 0 τ > 0

�
(εxε(τ/ε), ẋε(τ/ε))

ε → 0−−−−−−−−→ (Z(τ ), ∂τZ(τ ))

discrete, atomistic coarse graining continuum

The static operator A0 may be considered as a Gamma limit of the operators Aε, when

looking at their quadratic forms. It is interesting to note that doing the Gamma limit in

the static part and simply projecting the kinetic part to V already suffices to obtain the

correct dynamical limit equation. We do not know under which general conditions such

a procedure works. Similar ideas have been used in [BB04] where general unstructured

networks are considered. Under suitable structure conditions on the network geometry

and the interaction forces a space-dependent wave equation is derived.

In Section 5 we study the transport of energy which occurs according to the group

velocity of the microscopic wave pattern. The classical WKB method (cf. [Bri60]) shows

that macroscopically modulated pulses of the harmonic traveling waves (1.4) propagate

with the group velocity cgroup = ∇θω(θ). For studying macroscopic energy transport we

have to know how much energy is located at which point, in which wave length and in

which energy band, i.e., in which of the 2m eigenpairs (ω,Φ) associated with θ.
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For this purpose it is convenient to reformulate the Fourier transformed version of (1.5)

as a first order system in diagonal form:

∂

∂τ
Ûε(τ, η) =

i

ε
Ω̂(εη)Ûε(τ, η), with Ω̂(θ) = diag(ω1(θ), . . . , ω2m(θ)), (1.7)

where ωj+m = −ωj for j = 1, . . . , m.

The relevant tools for studying the macroscopic spatial distribution of microscopic os-

cillations is the Wigner transform W ε[Uε(τ ; ·)] or the Husimi transform Hε[Uε(τ ; ·)] and
their limits, the matrix-valued Wigner measure µ(τ ). This theory is recalled in Section

5.2 and in Section 5.4 we derive the energy-transport equation for the diagonal entries

µj(τ ) = limε→0 W
ε[Uε

j (τ )], j = 1, . . . , 2m, of the Wigner measure:

∂τµj(τ ; y, θ) = ∇θωj(θ)·∂yµ(τ ; y, θ) for (τ, y, θ) ∈ R×Rd×TΓ∗ . (1.8)

The energy density e(τ, y) at a macroscopic point y at time τ is then recovered via

e(τ, y) =
∫

TΓ∗

2m∑
j=1

µj(τ ; y, dθ) =
∫

TΓ∗

2m∑
j=1

µj(0; y+τ∇θωj(θ), dθ).

energy-transport equations of this type are well established in the theory of propaga-

tion of oscillations in partial differential equations, see [GL93, MMP94, RPK96, GMMP97,

TP04], however, their usage for discrete system has not yet been explored systematically.

In [Mac02, Mac04] some results in this direction are obtained. One problem with the above

transport equation is that it only holds if the group-velocity mapping is θ → ∇θωj(θ) differ-
entiable. If ∇θωj is not continuous on a singular set S ⊂ TΓ∗ , then (1.8) can still be derived

under the additional restriction that there is no energy located in S, i.e., µj(τ,Rd×S) = 0

for all τ , see Theorem 5.6. As in our situation of a perfect periodic crystal there is no

transport between different wave vectors, it is sufficient to have this condition for the

initial data at τ = 0. Such singularities occur generically in all crystal models, as near

the wave vector θ = 0 the acoustic branches of the dispersion relation have expansions

ωj(θ) = (〈Qjθ, θ〉+O(|θ|3))1/2 for some positive definite matrix Qj ∈ Rd×d.

In Section 5.3 we provide a generalization of the Wigner measure which we call Husimi

measure. This generalization allows us to generalize the transport equation (1.8) to situa-

tions where the group velocity is only continuous. As the Husimi transform has the major

advantage that it maps functions from L2(Rd) into nonnegative functions on L1(Rd×TΓ∗)

there is the possibility to test with arbitrary continuous functions. We show in Section 3

that all the functions ωj are Lipschitz and piecewise analytic. Hence, the singular sets Sj

have Lebesgue measure 0 and so has S = ∪2m
1 Sj. Finally, there exists a compactification

K of TΓ∗\S such that all ∇θωj have continuous extensions ∇̃θωj : K → Rd.

In Theorem 5.7 we show that (1.8) can be generalized to an energy-transport equation

on Rd×K under the following two conditions: First, the functions ∇θωj must behave

nicely near S, for instance it is sufficient when |D2ωj(θ)| ≤ C/dist(θ, S) for all θ ∈ TΓ∗\S.

Second, because the Husimi transform is less precise in locating the energy in terms of the
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Figure 1.1: Green’s function for t=200: displacements xγ (left) and energies eγ (right).

corresponding wave vectors, we have to assume that the energy does not concentrate as

fast as ε1/2 on S, i.e., for all R > 0 we need∫
dist(θ,S)<ε1/2R

1
(2επ)d

|Ûε(θ/ε)|2dθ −→ 0 for ε → 0.

In Section 6 we underpin and illustrate the abstract theory via several examples. Section

6.1 discusses the question of the convergence of Husimi and Wigner measures for a simple

one-dimensional problem with dispersion relation ω(θ) = 2| sin(θ/2)| for θ ∈ R/2πZ. We

show that the for initial conditions which concentrate at θ = 0, the corresponding transport

equation may not be satisfied. Moreover, if we take out S = {0}, compactify by introducing

the left and right limits at 0+ and 0− and extend ∇ω by +1 and −1, respectively, we find

that the corresponding Wigner and Husimi measures may be different.

In Section 6.2 we show some simulations for the linear harmonic chain

ẍγ = xγ−1 − 2xγ + xγ+1, γ ∈ Z,

which was studied also in [Fri03] by completely different methods, namley the explicit

representation of the solution via oscillatory integrals. The left picture in Figure 1.1 shows

the displacements xγ for the Green’s function (with intial condtions xγ(0) = δγ and ẋ(t)γ =

0 at time t = 200). The right picture displays the energies eγ = 1
2
ẋ2γ +

1
4
(xγ−xγ+1)

2 +
1
4
(xγ−xγ−1)

2 for the same solution. The middle line shows the distribution predicted by

the Wigner measure, namely the semicircle law e(τ, y) = 1
τπ

√
1− (y/τ )2. It turns out that

the convergence towards the Wigner measure is weak and that the fluctuations around the

local mean value satisfy an arcsin distribution.

In Section 6.4 we analyze the standard discretization

ẍγ = −4xγ + xγ+(0,1) + xγ+(0,−1) + xγ+(1,0) + xγ+(−1,0)

for the wave equation ∂2τu = ∆yu and show that the macroscopic energy distribution

e(τ, ·) : R2 → [0,∞) for the Green’s function is singular along a closed curve strictly inside

its support which is the circle obtain from the macroscopic wave speeds c with |c| = 1, see

Figures 6.4 and 6.5.
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In Section 6.6 we finally compare the energy-transport equation obtained via the Wigner

measure with Whitham’s modulation equation (1.2). A formal calculation shows that in

the intersection of their applicability both theories lead to the same partial differential

equation for the transport of the microscopic wave-vector and the energy.

2 Fourier transform and lattices

We introduce our conventions and notations concerning Fourier transforms and lattices.

In particular, we give all the normalizing constants. For u ∈ L2(Rd) we define the Fourier

transformation F = Fy→η via

û(η) = (Fu)(η)
def
=
∫
y∈Rd e

−iy·ηu(y)dy, η ∈ Rd
∗ = Lin(Rd,R)

implying ‖Fu‖∗ = (2π)d/2‖u‖. The inverse Fourier transform F−1 = F−1
η→y then reads

u(y) = (F−1û)(y) = (2π)−d
∫
η∈Rd∗

eiy·ηû(η)dη, y ∈ Rd,

with the norm relation ‖F−1û‖ = (2π)−d/2‖û‖∗.
A d–dimensional lattice Γ ⊂ Rd is an additive subgroup of Rd which has the form

Γ = { γ = k1g1 + · · · + kdgd | k = (k1, . . . , kd) ∈ Zd }

where {g1, . . . , gd} is a set of linearly independent vectors. The dual lattice Γ∗ is defined

via

Γ∗ := { θ ∈ Rd
∗ | ∀α ∈ Γ : θ · α ∈ 2πZ },

For the primal lattice Γ the unit cell UΓ is given by

UΓ := { γ = k1g1 + · · ·+ kdgd | kj ∈ [0, 1) for j = 1, . . . , d) }.

While this definition of UΓ depends on the choice of the generating vectors {g1, . . . , gd},
the volume VΓ := vol(UΓ) of the unit cell of Γ depends on Γ alone.

For the dual lattice it is common to a use the Brillouin zone BΓ∗ as the unit cell,

BΓ∗ = { η ∈ Rd
∗ | ∀γ∗ ∈ Γ∗ \ {0} : |η| < |η−γ∗| } ⊂ Rd

∗.

Hence, BΓ∗ is an open bounded subset of Rd
∗ which contains η = 0 in its interior. Moreover,

for the volume we have the relation

vol(UΓ) vol(BΓ∗) = (2π)d.

The dual torus TΓ∗ associated with the lattice Γ is defined as the compact manifold

TΓ∗ := Rd
∗/Γ∗ = { θ := (η+Γ∗) ⊂ Rd

∗ | η ∈ Rd }.

7



For each lattice TΓ∗ is a d–dimensional torus diffeomorphic to Td := (S1)d. It is important

to distinguish the dual torus TΓ∗ from the Brillouin zone BΓ∗ , the first being a compact

manifold without boundary and the latter being a subset of Rd
∗. However, TΓ∗ can be

obtained from the closure of the Brillouin zone by identifying the boundary hypersurfaces

with their opposites.

For x = (xγ)γ∈Γ ∈ �2(Γ) we define the periodic function X̃ = FΓ∗x via

X̃(θ) = (FΓ∗x)(θ)
def
= cΓ∗

∑
γ∈Γ e

−iθ·γxγ

for θ ∈ TΓ∗ = Rd
∗/Γ∗. The minus sign in e−iθ·γ is chosen for later consistency with the

continuous Fourier transform. Choosing cΓ∗ = vol(TΓ∗)
−1/2 we obtain

‖X̃‖2L2(TΓ∗)
=
∑

γ∈Γ |xγ|2 = ‖x‖�2 .

Using the length scale parameter ε > 0 we may associate with each x ∈ �2(Γ) a function

X̂ = Bεx ∈ L2(Rd
∗) via

X̂(η) = (Bεx)(η) def
=

{
εd/2X̃(εη) for η ∈ 1

ε
BΓ∗ ,

0 else.

Again, we have ‖Bεx‖L2(Rd∗) = ‖x‖�2 . Later on we will use θ to denote the microscopic wave

vectors in TΓ∗ and we use η ∈ Rd
∗ to denote the macroscopic wave vectors which are dual

to the macroscopic space variable y = εγ ∈ Rd.

The function X̂ can be transformed into a functionX = Sεx ∈ L2(Rd) by inverse Fourier

transform

X = Sεx = (2π)2/dF−1(Bεx). (2.1)

By construction, Sε : �2(Γ) → L2(Rd) has the following useful properties

‖Sεx‖L2(Rd) = ‖x‖�2(Γ),

(Sεx)(y) = vol(BΓ∗)
−1/2(2π

ε

)d/2∑
γ∈Γ xγsincΓ(

y
ε
−γ),

(2.2)

where sincΓ is the “sinc function” associated with the lattice Γ. It is defined via sincΓ :=
(2π)d

vol(BΓ∗)
F−1XBΓ∗ , where X is the indicator function. In particular, it satisfies the relations

sincΓ(γ) = δγ and

∫
Rd

sincΓ(y−γ)sincΓ(y−β)dy =
(2π)d

vol(BΓ∗)
δγ−β (2.3)

for all β, γ ∈ Γ.

Thus, we have defined the four equivalent descriptions x ∈ �2(Γ), X̃ = FΓ∗x ∈ L2(TΓ∗),

X̂ = Bεx ∈ L2(Rd
∗) and X = Sεx ∈ L2(Rd). The definition of the transformations are such

that they are norm invariant. The first two representations x ∈ �2(Γ) and X̃ ∈ L2(TΓ∗) are

more useful for extracting microscopic information, whereas the other two representiations

X̂ ∈ L2(Rd
∗) andX ∈ L2(Rd) are more useful to study macroscopic properties. We illustrate

the four equivalent descriptions in Figure 2.1.
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Figure 2.1: The four equivalent descriptions of a sequence on a lattice: x ∈ �2(Γ),

X̃ = FΓ∗x ∈ L2(TΓ∗), X = Sεx ∈ L2(Rd) and X̂ = Bεx ∈ L2(Rd
∗).

3 Harmonic lattice dynamics

We consider a d-dimensional polycrystal whose atoms are placed at lattice sites in the

discrete set Γ̃ ⊂ Rd. The atoms at α̃ ∈ Γ̃ have the mass meα and interact with the

neighboring atoms via linearized interaction forces such that the atomistic, Newtonian

model for the displacement ueγ ∈ Rn takes the form

meγüeγ = −
∑
eα∈eΓ

Ãeγ,eαueα.

Usually n = d but we may also assume n < d for problems where motion only occurs in

subspaces. Also n > d might be relevant if further order parameters are taken into account.

Throughout we assume that the crystal is periodic with respect to a lattice group Γ.

Note that in general Γ ⊂ Γ̃ where Γ is an additive group (Bravais lattice), while Γ̃ is the set

of positions of atoms, which need not have a group structure. Associated with the lattice

is the semi-closed unit cell UΓ. The periodicity of the crystal is expressed by the fact that

the masses and the interactions of the atoms are the same after translating by a lattice

vector γ ∈ Γ:

meα+γ = meα, Ã
eα+γ,eβ+γ = Ã

eα,eβ (3.1)

for all α̃, β̃ ∈ Γ̃ and all γ ∈ Γ.
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Thus, by factoring the lattice sites Γ̃ with respect to the lattice group we obtain an

elementary cell C = Γ̃/Γ which is assumed to consist of finitely many points, let us say

k ∈ N. We identify C with the mass points in the unit cell UΓ, i.e., C ≈ C0
def
= Γ̃ ∩ UΓ. In

particular, we have C0 = {α̃1, . . . , α̃k} ⊂ Γ̃ and Γ̃ decomposes into a disjoint union of cells

Cγ = γ+C .

For each cell Cγ we define the displacement vector xγ ∈ Rkn, a mass matrix Mγ ∈ Rkn×kn

and interaction matrices Aγ,bγ =∈ Rkn×kn via

xγ = (ueαj+γ)j=1,...,k, Mγ = diag(meαj+γ)j=1,...,k, Âγ,bγ = (Ãeαi+γ,eαj+bγ)i,j=1,...,k.

By periodicity we have Mγ = M with M
def
= M0 and Âγ,bγ = Aγ−bγ with Aγ

def
= Â0,γ.

Using m = kn we arrive at the following general system

Mẍγ = −
∑

β∈ΓAγ−βxβ = −
∑

α∈ΓAαxγ+α for γ ∈ Γ. (3.2)

Note that the mass matrix M ∈ Rm×m is the symmetric and positive definite. If the

interaction matrices Aα satisfy Aα = 0 for all α ∈ Γ with |α| > R we say that the system

has finite-range interaction. In the case of infinite interaction we assume sufficiently rapid

decay, e.g. ‖Aα‖ ≤ C0e
−b|α| with b > 0.

If the interaction matrices Ãeα,eγ ∈ Rd×d satisfy Ãeα,eγ = ÃT
eγ,eα, then we also have AT

α =

A−α ∈ Rm×m. This will be taken for granted from now on. Then, our system is in an

infinite-dimensional Hamiltonian system with kinetic energy K(ẋ) and potential energy

U(x) given by

K(ẋ) = 1
2

∑
γ∈Γ〈ẋγ,Mẋγ〉 and U(x) = 1

2

∑
γ∈Γ
∑

α∈Γ〈xγ, Aαxα+γ〉,

where 〈 · , · 〉 denotes the scalar product in Rm (or Cm). Clearly, the total energy Ĥ def
= K+U

is conserved and (3.2) has the Lagrangian form

d

dt
(

∂

∂ẋγ
K(ẋ)) +

∂

∂xγ
U(x) = 0.

Introducing the momenta pγ = Mẋγ we also have the Hamiltonian form

ẋγ =
∂

∂pγ
H(x, p), ṗγ = − ∂

∂xγ
H(x, p),

where H(x, p) = K(M−1p) + U(x).
The linear system (3.2), which is translationally invariant with respect to Γ, admits

special solutions in the form of plane waves

xγ(t) = eiωteiθ·γΦ with Φ ∈ Cm, (3.3)

where θ ∈ Rd
∗ is the wave vector, ω is the frequency, and “·” denotes the dual pairing

between Rd
∗ and Rd . Clearly, xγ in (3.3) solves (3.2) if and only if

(ω2M−A(θ))Φ = 0 where A(θ) =
∑

α∈ΓAαe
iθ·α.
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We call A the dispersion matrix, and later on the symbol. We always have the symmetries

A(θ) = A(θ)∗ = A(−θ)T (where ∗ denotes complex conjugation together with transposition
T).

There may be further symmetries in the crystal which we do not formalize here. For

instance, reflection symmetries of the lattice are given by two linear operators Rd ∈ Rd×d

and Rm ∈ Rm×m, which are involutions (i.e., R2
d = 1Rd , R2

m = 1Rm), Rd maps Γ onto itself,

and the mass and the interaction matrices satisfy

RmMRm = M, RmAγRm = ARdγ .

Then, the dispersion matrix satisfies RmA(R∗
dθ)Rm = A(θ).

Using the dual lattice Γ∗, it is immediate that A is periodic with A(θ+ζ) = A(θ) for

all θ ∈ Rd
∗ and ζ ∈ Γ∗. Hence, A should be considered as a mapping from the torus

TΓ∗ = Rd
∗/Γ∗ into H(Cm), where for any linear complex space V ⊂ Cm we let H(V )

def
=

{A ∈ Lin(V, V ) | A = A∗ }.
We now make the first essential assumption, namely the stability condition:

A(θ) is positive semidefinite for all θ ∈ TΓ∗ ,

∃ c > 0 ∀ θ ∈ BΓ∗ : A(θ) ≥ c|θ|2,
dimkerA(0) = d0 ∈ {0, 1, ..., m}.

(3.4)

From this it follows that for each θ ∈ TΓ∗ there exists m pairs ±ωj(θ), j = 1, . . . , m,

of frequencies. Throughout this paper, we will order the nonnegative frequencies such

that 0 ≤ ω1(θ) ≤ . . . ≤ ωj(θ) ≤ . . . ≤ ωm(θ). The frequencies ωj for j = 1, . . . , d0 will

correspond to macroscopic behavior, since they satisfy ωj(θ) = O(|θ|). These frequencies

are called “acoustic” in contrast to the “optical” or “photonic” frequencies ωj with j =

d0+1, . . . , m. For the usual crystal model with n = d the dimension d0 usually equals the

space dimension d, since the rigid translation ueγ ≡ u◦ ∈ Rd is a solution which implies∑
eα∈eΓ Ãeγ,eαu

◦ = 0. Thus, for each u◦ ∈ Rd the vector v = (u◦, . . . , u◦) ∈ Rkd = Rm lies in

the kernel of A(0) =
∑

γ∈ΓAγ.

For V
def
= kerA(0) and V ⊥ def

= {w ∈ Cm | 〈v, w〉 = 0 for all v ∈ V } we have dimV = d0
and denote by PV ∈ H(Cm) the orthogonal projection onto V . Usually, the subspace V

corresponds to the translational degrees of freedom of the cells as a whole, whereas the

subspace V ⊥ corresponds to the internal degree of freedoms of the cells.

Using the fundamental stability assumption (3.4) we obtain the following result.

Lemma 3.1 Assume that A ∈ C2(TΓ∗ ,H(Cm)) and that (3.4) holds. Using the decompo-

sition Cm = V ⊕ V ⊥ the dispersion matrix A(θ) has the block structure

A(θ) =

(
A11(θ) A12(θ)

A∗
12(θ) A22(θ)

)
=

(
O(|θ|2) O(|θ|)
O(|θ|) O(1)

)
for θ → 0 in BΓ∗ .
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Moreover, there exists CV > 0 such that for all w ∈ V ⊥, v ∈ V and θ ∈ BΓ∗ we have

1
CV

(|θ|2|v|2 + |w|2) ≤ 〈A(θ)(v+w), v+w〉 ≤ CV (|θ|2|v|2 + |w|2). (3.5)

Proof: From V = kerA(0) we conclude A11(0) = A12(0) = 0. However, (3.4) implies

A(θ) ≥ 0 for all θ ∈ BΓ∗ , which gives DθA11(0) = 0.

For v ∈ V , w ∈ V ⊥, and θ ∈ BΓ∗ we have now |〈A(θ)v, w〉| ≤ |A12(θ)
∗v| |w| ≤

C12|θ| |v| |w| and 〈A22(θ)w,w〉 ≥ c22|w|2 for suitable constants c22, C12 > 0. For α ∈ (0, 1)

we estimate

〈A(θ)(v+w), v+w〉 = (1−α)〈A(θ)(v+w), v+w〉+ α〈A(θ)(v+w), v+w〉
≥ (1−α)c|θ|2(|v|2+|w|2) + α

[
〈A11(θ)v, v〉+2Re〈A12(θ)w, v〉+〈A22(θ)w,w〉

]
≥ c|θ|2|v|2 + α

[
〈A11(θ)v, v〉 − c|θ|2|v|2

]
− 2αC12|θ||v||w|+

[
(1−α)|θ|2 + αc22

]
|w|2

≥ c|θ|2|v|2 − 2αC12|θ||v||w|+ αc22|w|2.

Choosing α < c22c/C
2
12 we obtain the desired result.

The appearance of the nontrivial kernel is often due to the Galileian invariance which

leads to d0 = d. For a monoatomic system with m = d the variables xγ ∈ Rd simply

denotes the displacement of the particle with position γ ∈ Γ ⊂ Rd. Galileian invariance

then means V = Cm and we have

A(0) =
∑

γ∈ΓAγ = 0, A1[η] =
∑

γ∈Γ γ·ηAγ = 0,

and A2[η] =
∑

γ∈Γ(γ·η)2Aγ ≥ c > 0 for all η ∈ Rd,
(3.6)

where A1[η] = DA(0)[η] and A2[η] = D2A(0)[η, η].

Because of ‖Aβ‖ ≤ Ce−b|β| the symbol matrix A depends smoothly on θ ∈ TΓ∗ , but

this does not imply that all ωj are smooth functions, since multiple eigenvalues may occur.

General spectral theory for Hermitian matrices implies that θ → ωj(θ)
2 is always Lipschitz

continuous. We now show that in fact θ → ωj(θ) is Lipschitz which is nontrivial for θ ≈ 0,

since ωj(θ) = O(|θ|) for j = 1, . . . , d0.

Choose θ such that ωj is smooth in this point and choose a direction η ∈ Rd
∗. Then we

let A′(θ) = DA(θ)[η] and ω′
j(θ) = Dωj(θ)[η]. With Φ′

j = DΦj(θ)[η] we have

(A−ω2
jM)Φj = 0 and (A − ω2

jM)Φ′
j = (A′−2ωjω

′
jM)Φj .

Taking the scalar product with Φj in both equations gives

|ω′
j|2 ≤

〈A′ Φj,Φj〉2
4〈AΦj ,Φj〉 〈MΦj ,Φj〉

.
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Our assumptions on A(θ) imply

〈A(θ)(v+w), v+w〉 ≥ 1

CV
(|θ|2|v|2 + |w|2),

〈M(v+w), v+w〉 ≥ 1

CM
(|v|2 + |w|2),

〈A′(θ)(v+w), v+w〉 ≤ C ′(|θ||v|2 + |v||w|+ |w|2).

Hence, we conclude |ω′
j |2 ≤ 3

4
(C ′)2CMCV and obtain Lipschitz continuity.

In the special case of a mono-atomic crystal with m = d we have V = Rd and A(0) =∑
β∈ΓAη = 0. If additionally Aβ = AT

β ≤ 0 holds for β %= 0 (which is the case for attracting

potentials), we can show that sup{ |∇ωj(θ)| | θ ∈ TΓ∗ } is approached near θ = 0, i.e., the

macroscopic group velocities have maximal modulus. With

A′(θ) = DA(θ)[η] =
∑

β �=0(β·η) sin(β·θ)(−Aβ)

and (sinα)2 ≤ 2(1− cosα) we obtain

〈A′(θ)Φ,Φ〉2 =
∑

β �=0(β·η) sin(β·θ)〈−AβΦ,Φ〉)2

≤ (
∑

(β·η)2〈−AβΦ,Φ〉)(
∑

2[1− cos(φ·β)]〈−AβΦ,Φ〉)
= 〈D2A(0)[η, η]Φ,Φ〉2〈A(θ)Φ,Φ〉.

With the above discussion this implies

|Dωj(θ)[η]|2 ≤
1

2

〈D2A(0)[η, η]Φj,Φj〉
〈MΦj ,Φj〉

and we will see later, that the right-hand side is achieved in the long-wave limit θ → 0.

Including repelling interaction forces (i.e., Aβ %≤ 0), we may have group velocities with

|∇ωj(θ∗)| > lim supθ→0 |∇ωj(θ)|. As an example consider m = d = 1 with

ω(θ)2 =
5∑

m=1

am2(1− cos(mθ)), where a1 = 0, a2 = 3, a3 = 5, a4 = −2, a5 = 1.

We find limθ→0 |ω′(θ)| = 5
√
2 ≈ 7.071 < ω′(θ∗) ≈ 7.132 for θ∗ = 2.59.

4 Weak convergence to a wave equation

We will associate with our lattice model a macroscopic partial differential equation. It

relates to linear elasto-dynamics in most cases, namely when V = kerA(0) has dimension

d0 = d and is given by the rigid translations of the unit cell. However, in certain degenerate

cases we might also have dimV > d.

We define macroscopic spatial and temporal variables

y = εγ ∈ Rd and τ = εt ∈ R

13



and use the norm preserving isomorphism Sε defined in Section 2 between �2(Γ,Rm) and

PεL2(Rd,Rm) where Pε is the orthogonal projection defined via

F(PεZ)(η) = X 1
ε
BΓ∗

(η)FZ(η). (4.1)

Thus, a function x : R → �2(Γ,Rm) solves the microscopic problem (1.3) if and only if

Z : R → L2(Rd, Rm) with Z(τ ) = ε(Sεx)(τ/ε) solves

MZ ′′ +AεZ = 0 and Z(τ ) ∈ PεL2(Rd,Rm), (4.2)

where ′ = d
dτ

and Aε ∈ Lin(L2(Rd,Rm) is defined via Fourier transform and the rescaled

symbol Aε through

F(AεZ)(η) = Aε(η)(FZ)(η) and Aε(η)
def
=

{
ε−2A(εη) for εη ∈ BΓ∗ ,

0 else.

Note that the scalings were done such that the energies are preserved, i.e.,∑
Γ

(
〈ẋγ,Mẋγ〉 +

∑
Γ〈xγ , Aαxγ+α〉

)
=
∫

Rd〈Z ′,MZ ′〉+ 〈Z,AεZ〉dy.

Clearly, Aε is again a pseudo-differential operator, and it is obtained by the Fourier

symbol Aε. We now want to study to which limit this operator converges under the

assumption that we are looking at solutions with finite energy.

According to our stability assumption (3.4) the splitting Cm = V⊕V ⊥ with V = kerA(0)

gives rise to the block structure A =
(

A11

A∗
12

A12

A22

)
, such that the Schur complement

B(θ)
def
= A11(θ)− A12(θ)

∗A22(θ)
−1A12(θ) ∈ H(V ) (4.3)

is well-defined. Then, Lemma 3.1 implies that Bε(η)
def
= ε−2B(εη) converges to Q(2)(η, η) =

1
2
D2B(0)[η, η] for ε → 0, uniformly on compact sets in Rd

∗, where

Q(2)(η1, η2) =
1

2
D2A11(0)[η1, η2]− DA12(0)

∗[η1]A22(0)
−1DA12(0)

∗[η2] ∈ H(V )

is a bilinear mapping which satisfies Q(2)(η1, η2) = Q(2)(η2, η1)
∗. Hence, Q(2) corresponds

to a second order differential operator for functions Z : Rd → V :

A0Z
def
= −Q(2)(∇,∇)Z = −div(E [DZ]),

where the fourth order tensor E ∈ Lin(Lin(Rd, V ),Lin(Rd, V )) is defined via

E(a⊗η1)η2 = Q(2)(η1, η2)a for all η1, η2 ∈ Rd
∗ and a ∈ V. (4.4)
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Our aim is to show that the macroscopic equation associated to (4.2) is the hyperbolic

system

MVZ
′′ +A0Z = 0 with Z(τ, y) ∈ V, (4.5)

where MV = PVM |V ∈ Lin(V, V ). Assuming that the kernel of A(0) is given just by

Galileian invariance (see (3.6)) this equation is exactly the wave equation of linearized

elasticity.

The definition of the operator A0 does not just use the quadratic part of the projection

A11 = PV A|V . The Schur complement B(θ) ≤ A11(θ) leads to a weakening. This weak-

ening is well known as the effective macroscopic properties of a crystal are obtained by

minimization with respect to the internal microscopic degrees of freedom lying in V ⊥. In

fact, we have

〈B(θ)v, v〉 = min{ 〈
(

A11(θ) A12(θ)

A∗
12(θ) A22(θ)

)(
v

w

)
,

(
v

w

)
〉 | w ∈ V ⊥ }.

This result can also be phrased in terms of Gamma convergence for the associated

potential energies. Define the quadratic form

Uε : L2(Rd,Rm)→ [0,∞];Z →
{ ∫

Rd
1
2
〈Z,AεZ〉dy for Z ∈ Lε,

∞ else,

and set U0(Z) =
∫

Rd
1
2
〈Z,A0Z〉dy =

∫
Rd

1
2
〈DZ,EDZ〉dy for Z ∈ H1(Rd, V ) and U0(Z) = ∞

else.

Proposition 4.1 For ε → 0 we have the Gamma convergence Uε Gamma−−−−→ U0, i.e., for

each sequence (Zε)ε with Zε ⇀ Z we have lim infε→0 Uε(Zε) ≥ U0(Z) and for each Z ∈
L2(Rd,Rm) there exists a recovery sequence ẑε with ẑε ⇀ Z and Uε(ẑε) → U0(Z).

Proof: The result is immediate if we transform all functionals into Fourier variables.

Note that F is linear and hence preserves weak converge. Then, it is sufficient to consider

each η ∈ Rd
∗ separately. But now it is easy to see that on the finite dimensional space

Cm the quadratic functional Uε : z → 1
2
〈Aε(η)z, z〉 Gamma converges to U0 with U0(z) =

1
2
Q(2)(z, z) for z ∈ V and ∞ else.

In this special situation where the dynamical part of the problem is given by the simple

multiplication operator M it can now be shown that the Gamma limit of the static part is

in fact enough to go to the limit also in the dynamical situation.

Theorem 4.2 Let (xε0, x
ε
1)ε>0 be a sequence of initial data for (1.3) in (�2(Γ,Rm))2 with

corresponding solutions xε : R → �2(Γ,Rm) of (1.3) with (xε(0), ẋε(0)) = (xε0, x
ε
1). Assume

that there exists C∗ > 0 such that

ε‖xε0‖�2 + eε ≤ C∗ for ε ∈ (0, ε0), where eε = K(xε1) + U(xε0).
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Then, the transformed initial data

(Zε0 , Z
ε
1)

def
= (εSεxε0,Sεxε1) are bounded in H1(Rd,Rm)× L2(Rd,Rm).

If the stability condition (3.4) holds and the initial data converge weakly, i.e.,

Zε0 ⇀ Z0 in H1(Rd,Rm) and Zε1 ⇀ Z1 in L2(Rd,Rm) for ε → 0, (4.6)

then (Z0, Z1) ∈ H1(Rd, V )×L2(Rd, V ) and the following holds:

If Z ∈ C0(R,H1(Rd, V ))∩C1(R,L2(Rd, V )) is the unique solution of (4.5) with Z(0) = Z0

and Z ′(0) = Z1, then for all τ ∈ R we have

εSεxε(τ/ε) ⇀ Z(τ ) in H1(Rd, V ),

Sεẋε(τ/ε) ⇀ Z ′(τ ) in L2(Rd, V ).

}
for ε → 0.

Moreover, the limiting energy ẽ = 1
2
〈〈MZ̃ ′(τ ), Z̃ ′(τ )〉〉 + 1

2
〈〈E[DZ̃],DZ̃〉〉, which is indepen-

dent of τ , satisfies ẽ ≤ lim infε→0 e
ε ≤ C∗.

We continue to use the notation 〈〈·, ·〉〉 for the scalar product on L2(Rd,Cm), i.e., 〈〈Z1, Z2〉〉 def
=∫

Rd〈Z1(y), Z2(y)〉dy.
Proof: We consider the solutions Zε of (4.2) which are given via Zε(τ ) = εSεxε(τ/ε) and
satisfy (cf. (2.2))

‖Zε(τ )‖ = ε‖xε(τ/ε)‖ and 1
2
〈〈M∂τZ

ε, ∂τZ
ε〉〉 + 1

2
〈〈AεZ

ε, Zε〉〉 = eε.

Note that Ẑε(τ ) = FZ(ε)(τ ) has support in 1
ε
BΓ∗ and that (3.5) implies

1
CV

(|η|2|v+w|2 + ε−2|w|2) ≤ 〈Aε(η)(v+w), v+w〉 ≤ CV (|η|2|v+w|2 + ε−2|w|2)

for all v ∈ V, w ∈ V ⊥ and η ∈ 1
ε
BΓ∗ . Together with

〈〈AεZ
ε, Zε〉〉 = (2π)−d

∫
εη∈BΓ∗

〈Aε(η)Ẑε(η), Ẑε(η)〉dη

we find a constant C2 > 0 such that

eε

C2
≤ ‖∂τZε(τ )‖2 + ‖DZε(τ )‖2 + 1

ε2
‖(I−PV )Z

ε‖2 ≤ C2e
ε ≤ C∗C

∗.

As (εxε0)ε∈(0,ε0) is bounded (Zε(0))ε∈(0,ε0) is bounded as well. By ‖∂τZε(τ )‖2 ≤ C∗C
∗

we conclude ‖Zε(τ )‖ ≤ C3(1+|τ |), independently of ε ∈ (0, ε0). This establishes the

boundedness of (Zε(τ ), ∂τZ
ε(τ )) in H1(Rd,Rm)×L2(Rd,Rm). Moreover, every weak limit

Z(0)(τ ) must satisfy (I−PV )Z
(0)(τ ) = 0 as ‖(I−PV )Z

ε(τ )‖ ≤ C4ε.

The weak limit exists for all τ ∈ R if it exists for τ = 0, since the evolution oper-

ator (xε(0), ẋε(0)) → (xε(τ ), ẋε(τ )) is a bounded, linear operator, and hence is weakly

continuous.
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Thus, it remains to be shown that the function τ → Z(0)(τ ) satisfies the limit equation

(4.5). For this purpose we consider the weak form of (4.2), namely

0 =
∫
τ∈R

〈〈Zε(τ ),M∂2τϕ(τ ) +Aεϕ(τ )〉〉dτ (4.7)

for all ϕ ∈ C2
c(R,H2(Rd,Rm)). To study the limit ε → 0 we choose special testfunctions ϕε

as follows. For ψ ∈ C2
c(R,H2(Rd, V )) let ϕε(τ ) = ψ(τ ) +Kεψ(τ ) with Kε : H2(Rd, V ) →

H(2)(Rd, V ⊥) defined via

(FKεψ)(η) = −A22(εη)
−1A∗

12(εη)XBΓ∗(εη)(Fψ)(η).

By construction we obtain (I−PV )Aε(ψ+Kεψ) ≡ 0 as well as

‖PVAε(ψ+Kεψ)−A0ψ‖H−1(Rd) → 0. (4.8)

The latter convergence is easily checked by Fourier transform. It is equivalent to∫
Rd∗
XBΓ∗(εη)(1+|η|2)−1|B(ε, η)(Fψ)(η)|2dη → 0,

where B(ε, η) = 1
ε2

B(εη) − Q(2)(η, η), see (4.3). Since B(ε, η) → 0 for η fixed and ε → 0,

|B(ε, η)| ≤ C|η|2 for εη ∈ BΓ∗ and ψ ∈ H2(Rd, V ), Lebesgue’s dominated convergence

theorem gives (4.8).

Now we are able to pass to the limit ε→ 0 in (4.7) and find

0 =
∫
τ∈R

〈〈Z(0)(τ ),M∂2τψ(τ ) +A0ψ(τ )〉〉dτ.

Since ψ was an arbitrary testfunction, this implies (4.5).

5 Energy transport via the group velocity

In dispersive wave equations one has to distinguish the local phase velocity of a oscillatory

wave and its group velocity. For plane waves with xγ(t) = ei(ωjt+θ·γ)Φj the vector cphase =
ωj

θ2
θ is called the phase velocity as we may rewrite the wave in the form xγ(t) = ei(cphaset+γ)·θ.

The group velocity is defined as cgroup = ∇θωj(θ). For slowly modulated pulses of the

form xγ(t) = A(εt, εγ)ei(ωjt+θ·γ)Φj with a smooth profile A : R → C it is known that A

satisfies the transport equation ∂τA = cgroup · ∇yA to lowest order in ε. Hence, the energy

which is macroscopically localized in the pulse via |A(τ, y)|2 is transported with the group

velocity. On the time scale t = τ/ε there will be no dispersive effects which take place

only on time of the order 1/ε2, see [SW00, GM04b]. Our task here is to make this picture

rigorous for arbitrary initial conditions which may contain energy in all kind of microscopic

wave vectors and without any smoothness assumptions on envelopes.

Of course the problem is linear and these waves do not interact. However, the local

energy is a quadratic function of the local state. Hence, we lose many nice tools of linear

functional analysis, in particuluar the weak-convergence property.
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5.1 Local energy densities

For general lattice models it is not obvious how to associate for a given solution to each

particle the current local energy. The first naive choice would be

eγ(t) =
1
2
〈Mẋγ(t), ẋγ(t)〉+ 1

2
〈A0xγ(t), xγ(t)〉+ 1

4

∑
β �=0〈Aβxγ+β(t), xγ(t)〉,

but it is not clear that this term is always nonnegative. Of course, if the interactions in

the crystal are composed from attracting springs (pair interactions), such that the static

energy is U(x) = 1
2

∑
Γ

∑
β∈I |Bβ(xγ−xγ−β)|2 with I ⊂ Γ finite, we may define the energy

at the lattice point γ as the kinetic energy plus half of the energy in each interacting spring

in γ+I .

More generally, we may assume that the operator A : x → (
∑

β Aβxγ+β)γ∈Γ can be

written in the form A = L∗L, where L : �2(Γ,Rm) → �2(Γ,Rm)p is again given in

the form (Lx)γ = (
∑

β L
1
βxγ+β , . . . ,

∑
β L

p
βxγ+β), where all sums are supposed to be fi-

nite (or with exponentially decaying kernels). The relation A = L∗L then means Aβ =∑p
j=1

∑
δ∈Γ(L

j
β−δ)

TLjδ. Then, we can set

eγ(t) =
1
2
〈Mẋγ(t), ẋγ(t)〉+ 1

2
|(Lx)γ|2. (5.1)

It is not clear, whether every stable interaction operators A can be written in the form

L∗L with a finite number p of components Lj with exponentially decaying kernels. For

pairwise interaction attractive springs with (Bγ)β∈I as above, this factorization works with

(Lx)γ =
(
Bβ(xγ−xγ−β)

)
β∈I.

Similarly, we may associate with the rescaled macroscopic function Zε : τ → εSεx(τ/ε)
a continuous energy density

Eε(τ, y) = Eε2 ((Zε(τ ), ∂τZε(τ )), (Zε(τ ), ∂τZε(τ )))(y) ≥ 0 with

Eε2((z0, z1), (v0, v1))(y) = 1
2
〈M1/2z1(y),M

1/2v1〉+ 1
2
〈(A1/2

ε z0)(y), (A1/2
ε v0)(y)〉.

where A1/2
ε is defined as positive semi-definite square root of Aε, e.g., F(A1/2

ε Z)(η) =

Aε(η)1/2FZ(η). Note that Eε : Rd → [0,∞) will have spatial oscillations on the length

scale ε, but again Eε(τ, ·) ∈ L1(Rd) ⊂M(Rd) is bounded.

As there is a problem that A(·)1/2 is in general no longer smooth, one may also use the

decomposition A = L∗L, if available. We associate to L the symbol L(θ) =
∑

β e
−iγ·θLβ ∈

Cpm×m such that A(θ) = L(θ)∗L(θ). Using the Fourier transform and Lε(η) = 1
ε
L(εη) we

define Lε via F(LεZ) = LεFZ. Now the analog of the discrete energy in (5.1) can be

defined as

Ẽε(τ, y) = 1
2
〈M∂τZ

ε, ∂τZ
ε〉+ 1

2
|LεZε|2.

However, none of the two above constructions leads to a direct control over the energy

transport. Instead, we will use the theory of Wigner and Husimi transforms to control the

energy transport. Before developing this theory we decompose the sequence of solutions
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Zε into one part which converges strongly to the weak limit Z̃ and a fluctuating part Uε

which converges weakly to 0, namely

Zε(τ ) = Sε(τ ) + T ε(τ ) with Sε(τ ) = PεZ̃(τ ),

with Pε from (4.1). Clearly we have

Sε(τ )→ Z̃(τ ) ∈ H1(Rd,Rm) and T ε(τ ) ⇀ 0 ∈ H1(Rd,Rm).

If we insert this splitting into the energy density Eε as defined above we obtain for fixed

τ
Eε(·) = AεSS + 2AεST + AεTT ∈ L1(Rd) with

AεSS = Eε((Sε, ∂τSε), (Sε, ∂τSε))
AεST = Eε((Sε, ∂τSε), (T ε, ∂τT ε))
AεTT = Eε((T ε, ∂τT ε), (T ε, ∂τT ε)).

With the techniques used in the proof of Theorem 4.2 we easily obtain

A1/2
ε Sε →A1/2

0 Z̃ in L2(Rd,Rm) and A1/2
ε T ε ⇀ 0 in L2(Rd,Rm).

Using the definition of A0 and E this yields

AεSS → 1
2
〈∂τ Z̃,M∂τ Z̃〉+ 1

2
〈DZ̃,EDZ̃〉 in L1(Rd).

This density is the energy distribution which associates with the macroscopic kinetic energy

and the macroscopic deformation. Second, since fn ⇀ 0 and gn → g in L2(Rd) implies

fngn
∗
⇀ 0 in L1(Rd), we conclude AεST

∗
⇀ 0. Hence, to understand the limit of the total

energy distribution it is sufficient to study the energy associated with the fluctuation part

T ε which is due to pure microscopic behavior.

A similar splitting of the energy holds if we consider Ẽε instead of Eε. Thus, in the

sequel we restrict to the fluctuation part which converges weakly to 0.

5.2 Wigner and Husimi transforms and measures

The Wigner and Husimi transforms apply to a vector-valued function and they measure

correlations between the components on a scale of microscopic wave lengths. The Wigner

measure associated with a family (f ε)ε of functions is a limit object which measures how

much oscillations occur at a given macroscopic point y ∈ Rd with a given microscopic

wave vector θ ∈ Rd
∗. We refer to [GL93, MMP94, RPK96, GMMP97, TP04, Mac04] for

general references on this subject. Here, we just recall the main definitions, properties and

formulae.

We define the matrix-valued Wigner transform of f ∈ L2(Rd,Cm) via

W ε[f ](y, θ)
def
=

1

(2π)d

∫
v∈Rd

f(y−ε

2
v)⊗f(y+

ε

2
v) eiv·θ dv ∈ Cm×m, (5.2)

19



where ⊗ denotes the tensor product of two vectors. We mention explicitly here that here

y ∈ Rd stands for the macroscopic space variable in Rd, whereas θ ∈ Rd denotes the

microscopic wave vector as it is dual to the integration variable v which is multiplied by

ε. Later on θ will be restricted to lie in TΓ∗ .

Note that W ε[f ] is in general not L1(Rd×Rd
∗,Cm×m), but it is well-defined as a distri-

bution. For instance, the Fourier transform with respect to y leads to

Ŵ ε[f ](η, θ)
def
= Fy→ηW ε[f ](η, θ) = 1

(2πε)d
(Ff)( θ

ε
+η

2
)⊗Ff( θ

ε
−η

2
). (5.3)

This formula is the basis of most of the energy-transport theory for Wigner measures. It

also gives the nice estimate

sup{ ‖Ŵ ε[f ](η, ·)‖L1(Rd∗) | η ∈ Rd
∗ } ≤ ‖f‖2L2(Rd), (5.4)

which can be used to show that W ε[f ] is a well-defined distribution.

The next two relations show that the Wigner transform is a kind of measure on Rd×Rd
∗

whose marginal distributions are just the classical ones. Integration (in a certain principal

sense) with respect to η ∈ Rd
+ or y ∈ Rd gives the identities∫

θ∈Rd∗
W ε[f ](y, θ)dθ = f(y)⊗f(y) for a.e. y ∈ Rd,∫

y∈Rd W
ε[f ](y, θ)dy = 1

(2επ)d
(Ff)(θ/ε)⊗Ff(θ/ε) for a.e. θ ∈ Rd

∗.
(5.5)

The major disadvantage of the Wigner transform is that it is not integrable. In contrast,

the Husimi transform leads to true matrix-valued measures, but it loses the exact energy

location as expressed in (5.5). The Husimi transform is based on the wave packets (cf.

[CF78])

Hε[f ](y, θ)
def
= 1

2d/2(επ)3d/4

∫
Rd f(z)e

−|y−z|2/(2ε) e−iz·θ/ε dz = 1
(επ)d/4F

[
f G2ε(· −y)

](
θ
ε

)
,

where the Gaussian kernel Gα is defined via Gα(y) = (απ)−d/2 e−|y|2/α. The Husimi trans-

form is simply the tensor product of these wave packet with itself and takes the form

Hε[f ](y, θ)
def
= Hε[f ](y, θ)⊗Hε[f ](y, θ).

By its definition it is obvious that Hε[f ] takes values in Cm×m
≥0 . Moreover, some elementary

manipulations show the identity∫
Rd

∫
Rd∗

trHε[f ](y, θ)dθdy = ‖Hε[f ]‖2L2(Rd×Rd∗)
= ‖f‖2L2(Rd).

From Hε[f ](y, θ) ∈ Cm×m
≥0 we know |(Hε[f ])l,n| ≤ (Hε[f ])

1/2
n,n|(Hε[f ])

1/2
l,l almost everywhere

in Rd×Rd
∗. Hence, by the Cauchy-Bunyakovski-Schwarz inequality we conclude∫

Rd×Rd∗

m∑
l,n=1

|(Hε[f ])l,n(y, θ)|dθdy ≤ m‖f‖2L2(Rd,Cm). (5.6)

20



Thus, the major advantage of the Husimi transform is that it defines a bounded quadratic

mapping from L2(Rd,Cm) into L1(Rd×Rd
∗,Cm×m

≥0 ).

However, this advantage leads to a smearing out of the information in physical and wave-

vector space. In fact, the Husimi transform can be obtained from the Wigner transform

via convolution by suitable Gauss kernels, viz.,

Hε[f ] = W ε[f ] ∗Gε
y ∗Gε

θ i.e.,

Hε[f ](y, θ) = 1
(επ)d

∫
z∈Rd

∫
ϑ∈Rd∗

W ε[f ](z, ϑ)e−(|y−z|
2+|θ−ϑ|2)/εdϑdz.

(5.7)

The Gauss kernels have a width of
√
ε and thus, the localized information in W ε[f ] is

slightly smeared out in physical space Rd
y and in the microscopic wave-vector space Rd

∗,θ.

The corresponding counterparts to (5.3) and (5.5) read

Ĥε[f ](η, θ)
def
= Fy→ηHε[f ](·, θ)(η) = Fy→η

(
W ε[f ] ∗Gε

y ∗Gε
θ

)
(η, θ)

= Ĝε
y(η)

[
Ŵ ε[f ](η, ·) ∗Gε

θ

]
(θ)

= e−ε|η|2/4

(2επ)d

∫
ϑ∈Rd∗

Ff(ϑ
ε
+η

2
)⊗Ff(ϑ

ε
−η

2
)Gε(ϑ−θ)dϑ.

(5.8)

Moreover, for almost all y ∈ Rd and θ ∈ Rd
∗ we have∫

θ∈Rd∗
Hε[f ](y, θ)dθ =

∫
Rd f(z)⊗f(z)Gε(z−y)dz,∫

y∈Rd H
ε[f ](y, θ)dy =

∫
Rd∗

1
(2επ)d

(Ff)(ϑ/ε)⊗Ff(ϑ/ε)Gε(ϑ−θ)dϑ.
(5.9)

Note that L1(Rd×Rd
∗,Cm×m) is a weak∗ dense subspace of the matrix-valued Radon

measures M(Rd×Rd
∗,Cm×m). The set of these measures forms exactly the dual space

of C0
0(R

d×Rd
∗,Cm×m), the set of continuous functions which decay at infinity. Thus, by

the Banach-Alaoglu theorem every bounded sequence in L1(Rd×Rd
∗,Cm×m) has a weak∗

convergent subsequence and the limit is called the Wigner measure associated with the

sequence. While the existence of limit objects is easy for the Husimi transform, the same

result for the Wigner transform is nontrivial. The major result on the Wigner transform

W ε is that for all bounded sequences (f ε)ε∈(0,ε0) in L2(Rd) there exists a subsequence (εk)

such that W (εk)[f (εk)] has a limit which is called Wigner measure. It can be shown (cf.

[GL93, GMMP97]) that all limit points of the two families (W ε[f ε])ε and (Hε[f ε])ε lie in

M(Rd×Rd
∗,Cm×m

≥0 ) and are the same.

To formulate the following result we define the notions of a tight family and an ε–

oscillatory family. A bounded family (f ε)ε is called tight for ε→ 0, if

lim sup
ε→0

∫
|y|>R

|f ε(y)|2dy R→∞−−−→ 0. (5.10)

The bounded family (f ε)ε is called ε–oscillatory for ε → 0, if for each continuous, com-

pactly supported ϕ : Rd → C we have

lim sup
ε→0

∫
|η|>R/ε

|F(ϕf ε)(η)|2dη R→∞−−−→ 0. (5.11)
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Hence, tightness means that no mass escapes to ∞ in physical space, and ε–oscillatoryness

means that no mass escapes to ∞ in Fourier space faster than 1/ε.

We will use the following precise statement on the existence of Wigner measures.

Theorem 5.1 Let (f ε)ε∈(0,ε0) be a bounded family in L2(Rd,Cm). Then, there exists a

subsequence (εk)k∈N with εk → 0 for k →∞ and a matrix-valued, bounded Radon measure

µ ∈M(Rd×Rd
∗,Cm×m) such that the following holds:

1. ∀B ⊂ Rd×Rd
∗ measurable: µ(B) ∈ Cm×m

≥0 ,

2. W (εk)[f (εk)]
D−→ µ (in the sense of distributions) and

H(εk)[f (εk)]
∗
⇀ µ in M(Rd×Rd

∗,Cm×m),

3. f (εk)⊗f (εk)
∗
⇀ νphys =

∫
Rd∗

µ(·, dη) in M(Rd,Cm×m) and

1
(2επ)d

Ff (εk)( ·
ε
)⊗Ff (εk)( ·

ε
)

∗
⇀ νFourier =

∫
Rd µ(dy, ·) in M(Rd

∗,Cm×m).

If in addition the sequence (f ε)ε is tight and ε–oscillatory, then∫
Rd νphys(dy) =

∫
Rd∗

νFourier(dθ) = limε→0 ‖f ε‖2L2(Rd,Cm)
.

For a proof of these results we refer to the above-mentioned references.

This condition of ε–oscillatoryness roughly means that the oscillations do not occur on

scales finer than that of order ε. For our lattice problem this condition is satisfied by

construction. In particular, the Fourier transforms of our solutions Zε = εSεxε have a

compact support lying in 1
ε
BΓ∗ ⊂ 1

ε
BR∗(0) for some R∗ > 0.

Lemma 5.2 Let Zε be a bounded sequence in L2(Rd,Ck) with sppt(FZε) ⊂ 1
ε
BR∗(0), then

(5.11) is satisfied, i.e. Zε is ε–oscillatory.

If sppt(FZε) ⊂ 1
ε
BΓ∗ then any Wigner measure µ ∈ M(Rd×Rd

∗,Cm×m
≥0 ) has support in

Rd×BΓ∗.

Proof: Let R > R∗ and C∗ = lim supε→0 ‖FZε‖2 < ∞. For ϕ ∈ C0
c(R

d) we have∫
|η|>R/ε |F(ϕZε)(η)|2dη =

∫
|η1+η2|>R/ε |Fϕ(η1)|2|FZε(η2)|2d(η1, η2)

≤
∫
|η1|>(R−R∗)/ε

|Fϕ(η1)|2dη1
∫
|η2|<R∗/ε

|FZε(η2)|2dη2,

where we used FZε(η) = 0 for |η| ≥ R∗/ε. The first factor tends to 0 for ε → 0 due to

Fϕ ∈ L2(Rd
∗), and the second factor is bounded by C∗. This proves the first assertion.

For the second assertion we use the representation (5.3) for Ŵ ε[Zε, Zε]. For εη %∈ BΓ∗
and any ζ and ε at least one of the two vectors η/ε + ζ/2 and η/ε − ζ/2 does not lie in

BΓ∗ , since this set is convex. This shows that Ŵ ε[Zε] has support in Rd
∗×BΓ∗ and hence
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spptW ε[Zε] ⊂ Rd×BΓ∗ . Clearly, this support property is preserved in the limit ε → 0,

which proves the second assertion.

Because of the second part of the previous lemmawe consider the Wigner and the Husimi

transform as functions on Rd×TΓ∗ . We use the notation W ε
Γ[f ] if we want to emphasize the

fact, that W ε[f ] is considered to be a periodic function of θ ∈ TΓ∗ . Because of convolution

with Gε
θ the same support property does not hold for the Husimi transform. However, we

define the periodic variant by replacing the Gaussian kernel by its periodic counterpart.

Thus, we set

Hε
Γ[f ](y, θ)

def
=
∑

β∈Γ∗ H
ε[f ](y, θ+β) and Gε

Γ(θ)
def
=
∑

β∈Γ∗ G
ε(θ+β).

Then, we also have the formula Hε
Γ[f ] = W ε

Γ[f ] ∗ Gε
y ∗Gε

Γ, where the convolution with Gε
Γ

is now done on the additive group TΓ∗ . Moreover, Hε
Γ[f ] remains a measure with values in

Cm×m
≥0 and

∫
Rd×TΓ∗

trHε
Γ[f ](y, θ)dθdy = ‖f‖2

L2(Rd)
.

5.3 Concentrations on singular sets and Husimi measures

Below we need to control the speed with which the energy is concentrated at certain

singular sets S ⊂ TΓ∗ . We say that the sequence ρε ∈ M(TΓ∗) concentrates on S in the

order εα with α > 0, if there exists R > 0 such that

lim sup
ε→0

ρε({ θ | dist(x, S) ≤ εαR }) > 0,

where “dist” denotes the standard distance on the torus TΓ∗ . Of course, concentration in

the order εα implies concentration in the order εβ if 0 < β < α.

For Wigner transforms W ε[f ε] and Husimi transforms Hε[f ε] we say that they concen-

trate on S in the order εα if the measures ρεW and ρεH, respectively, concentrate in the sense

above, where ρεW and ρεH are defined through the densities δε : θ → 1
(2επ)d

|Ff ε(θ/ε)|2 and

δε ∗Gε, respectively.

As an example consider a sequence (f ε)ε>0 which has a nontrivial weak limit f0 %= 0

in L2(Rd), then the sequence W ε[f ε] concentrates on S = {0} in the order ε1. To see

this we argue as in Section 5.1 to obtain Ff ε ⇀ Ff0 and |Ff ε|2 ∗
⇀ |Ff0|2 + g where

|F(f ε−f0)|2 ∗
⇀ g ≥ 0. Thus for each R > 0 we find

ρεW({ θ | |θ| ≤ εR }) =
∫
|θ|≤εR

1
(2επ)d

|(Ff ε)(θ/ε)|2dθ = 1
(2π)d

∫
|η|≤R |(Ff ε)(η)|2dη,

which implies lim supε→0 ρ
ε
W({|θ| ≤ εR}) ≥ 1

(2π)d

∫
|η|≤R |(Ff0)(η)|2 dη > 0 for sufficiently

large R.

Lemma 5.3 Let α ∈ (0, 1
2
], S ⊂ TΓ∗, take a bounded sequence ρεW in M(TΓ∗) and define

ρεH = ρεW ∗Gε
Γ. Then, ρεW concentrates on S in the order εα if and only if ρεH does so.
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If ρεW concentrates on S in the order εβ for some β > 1/2, then, in general, ρεH concentrates

on S in the order ε1/2 only. Just consider ρεW = δs for some s ∈ S.

Proof: Let SεR = { θ | dist(x, S) ≤ εαR } and aε(r) =
∫
dist(0,θ)>r

Gε
Γ(θ)dθ, then

ρεH(S
ε
R) =

∫
TΓ∗

XSε
R
ρεH(dθ) =

∫
TΓ∗

ΞεR(θ)ρ
ε
W(dθ) with ΞεR = XSε

R
∗Gε

Γ.

Using the triangle inequality for “dist” we find the estimates

1− aε(dist(θ, TΓ∗\SεR)) ≤ ΞεR(θ) ≤ aε(dist(θ, SεR)).

For θ ∈ SεR/2 we have dist(θ, TΓ∗\SεR) ≥ εαR/2 and ΞεR(θ) ≥ 1−aε(εαR/2) implying

ρεH(S
ε
R) ≥ (1−aε(εαR/2))ρεW(SεR/2).

Because of α ≤ 1/2 we have aε(εαr) → c(r) ∈ [0, 1) for ε → 0 (in fact c(r) = 0 if

α < 1/2). This implies lim supε→0 ρ
ε
H(S

ε
R) ≥ (1−c(R/2)), lim supε→0 ρ

ε
W(SεR/2). Hence, ρεH

concentrates if ρεW does.

Similarly for θ %∈ SεR1
with R1 > R we have dist(θ, SεR) ≥ εα(R1−R) and obtain

ρεH(S
ε
R) ≤

∫
Sε

R1

1ρεW(dθ) +
∫
TΓ∗\Sε

R1

aε(εα(R1−R))ρεW(dθ)

≤ ρεW(SεR1
) + aε(εα(R1−R))ρ∗,

with ρ∗ = sup{ ρεW(TΓ∗) | ε > 0 }. Thus, we conclude δRH = lim supε→0 ρ
ε
H(S

ε
R) ≤ δWR1

+

c(R1−R)ρ∗ with δWR1
= lim supε→0 ρ

ε
W(SεR1

). For α < 1/2 we have c(R1−R) = 0 and the

desired result δWR1
≥ δHR is immediate. In the case α = 1/2 we use that c(r) → 0 for r →∞.

Hence, we choose R1 so large that c(R1−R)ρ∗ < δHR /2 and conclude δWR1
≥ δHR /2. In both

cases we see that concentration of ρεH implies that of ρεW

The need of the study of concentrations near singular sets arises from the fact that the

dispersion relations ω → ωj(θ) are in general not smooth. To handle the problem we use

the following properties. Each ωj : TΓ∗ → R is Lipschitz continuous, but in general not

in C1(TΓ∗ ,R). However, differentiability can be lost only at smooth subsurfaces (points,

lines, surfaces), see [Hag98]. Let Tj ⊂ TΓ∗ be the open subset of differentiability points of

ωj and set

T
def
= ∩kj=1Tj ⊂ TΓ∗ and S

def
= TΓ∗ \ T.

Then, each Tj , and hence T, are open and have full measure in TΓ∗ . In particular, the

singular set S consists of finitely many lower-dimensional analytic surfaces.

On T the functions ∇θ ωj are defined and bounded. Hence, there exists a compactifi-

cation K such that all functions ∇θωj, j = 1, . . . , k can be extended continuously to K.

We denote these continuations by ∇̃θωj. Below, we illustrate this construction by two

examples.

The main advantage of the Husimi transform is that we are able interprete functions in

L1(TΓ∗) (which is the same as L1(T) as S has measure 0) as measures on K. To this end
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let φ : T → K be the continuous, injective, and dense embedding. Now every testfunction

Ψ ∈ C0(K) defines via ψ = Ψ ◦ φ a continuous, bounded function on T, in particular

ψ ∈ L∞(T). Thus, we can embed L1(Rd×TΓ∗ ,Ck×k) into M(Rd×K,Ck×k) via the linear

mapping Φ defined by

〈Φh,Ψ〉 =
∫

Rd×K
Ψ(y, κ):(Φh)(dy, dκ)

def
=
∫

Rd×T
Ψ(y, φ(θ)):h(y, θ)dydθ,

where h ∈ L1(Rd×TΓ∗ ,Ck×k), Ψ ∈ C0
0(R

d×K,Ck×k), and “:” denotes the scalar product in

Ck×k. The last integral could also be taken over Rd×TΓ∗ , as the difference has Lebesgue

measure 0.

Thus, our final Husimi measures will be defined on M(Rd×K,Ck×k) as limit of the

embedded Husimi transforms, i.e., ΦHε[f ε]
∗
⇀ µH. We call the latter measure a Husimi

measure.

Example 5.4 In Section 6.3 we consider the bi-atomic chain. Using the parameters m =

6, m̃ = 10, k = κ = 1, κ̃ = 2 (see Figure 6.3, right), the eigenvalues ω1 and ω2 touch at

θ = 0 and θ = ±π. Thus, T1 = T2 = T = (−π, 0) ∪ (0, π) and S = {0, π = −π}. As

compactification we may take K = [−π, 0−] ∪ [0+, π] which is the disjoint union of two

compact intervals. Clearly, the group velocities ∇ωj have continuous extensions to this

compactifications.

Example 5.5 In two or higher-dimensional problems the singularity at θ = 0 becomes

worse. In Section 6.5 we consider the square lattice, where TΓ∗ = (S1)2 which is the

two-torus. For k = 1/2 we obtain the explicit dispersion relations

ω1(θ) =
√

2− cos θ1− cos θ2 and ω2(θ) =
√

4− cos θ1− cos θ2−2 cos θ1 cos θ2.

Obviously, T1 = T2 = T = TΓ∗ \ {0} and S = {0} and the frequencies have the expansions

ωj =
√

(1+2j)/2|θ| + O(|θ|3). Thus, K is obtained by inserting a small circle instead

of θ = 0. More precisely, one introduces polar coordinates near θ = 0; e.g., for 0 <

|θ| ≤ 1 we write θ = r(cos ρ, sin ρ) with r ∈ (0, 1] and ρ ∈ S1. Then, K is obtained by

adding the points (r, ρ) = (0, ρ) for ρ ∈ S1. In particular, the gradients satisfy ∇θωj(θ) =√
(1+2j)/2 1

|θ| θ + O(|θ|2) for θ → 0. Obviously, there are unique extensions onto K with

∇̃θωj((r, ρ))→
√

(1+2j)/2(cos ρ, sin ρ) for r → 0.

5.4 Energy transport via Wigner and Husimi measures

In this section we present two versions of the energy-transport equation. The first result

concerns the classical Wigner measures and is formulated on Rd×TΓ∗ , but has the additional

assumption that the Husimi or Wigner transforms do not concentrate on the singular set

S at all. This is a simple adaption of the theory developed in [GMMP97]. In the second

result we use the Husimi measure introduced above and thus we are able to allow for some
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concentration of the energy on the singular set S. The order of concentration must be

slower than ε1/2 and the functions ∇θωj need to behave suitably well near S.

To study the energy associated with the solutions (Zε(τ ), ∂τZ
ε(τ )) it is advantageous

to transform the system into diagonal form, when written in Fourier space:

∂τ Û (τ, η) =
i

ε
Ω̂(εη)Û(τ, η), Û (0, ·) = Û0 ∈ L2(Rd,C2m) (5.12)

with Ω̂(θ) = diag(ω1(θ), . . . , ω2m(θ)) ∈ R2m×2m. This is obtained from (4.2) written in

Fourier space as

M∂2τ Ẑ(τ, η) + Aε(η)Ẑ(τ, η) = 0. (5.13)

Since ωj(θ)
2, j = 1, . . . , m are the eigenvalues of M−1/2Aper(θ)M

−1/2, we let Ω(θ) =

diag(ω1(θ), . . . , ωm(θ)) and find a family of unitary matrices (Q(θ))θ∈TΓ∗ such that

M−1/2A(θ)M−1/2 = Q(θ)∗Ω(θ)2Q(θ).

Hence, (5.13) transforms into (5.12) with

Û(τ, η) =

(
1/2 −i/2

1/2 i/2

)(
Ω(εη)Q(εη)M1/2Ẑ(τ, η)

Q(εη)M1/2∂τ Ẑ(τ, η)

)
and Ω̂(θ) =

(
Ω(θ) 0

0 −Ω(θ)

)
.

The transformation was done such that

|Û(τ, η)|2 = 1
2
〈M∂τ Ẑ(τ, η), ∂τ Ẑ(τ, η)〉+ 1

2
〈Aε(η)Ẑ(τ, η), Ẑ(τ, η)〉,

which shows that |U |2 is an energetic quantity. Applying the Wigner transform to U(τ ) =

F−1Û (τ, ·), we see that W ε[Uε] allows us to control the energy located in physical space

via

eεW(τ, y) = |Uε(τ, y)|2 =
∫
TΓ∗

tr
(
W ε[Uε(τ )](y, θ)

)
dθ.

This energy distribution is a replacement for Eε or Ẽε defined in Section 5.1.

The difference between Eε, Ẽε and eεW arises because of the transformation via Q(θ)

in Fourier space. This gives rise to pseudo differential operators which lead to a certain

nonlocality on the microscopic level which disappears in the limit ε → 0. In the case that

A(θ) = L(θ)∗L(θ) with smooth L holds, the connection between the energies can be made

more exact. For solutions Zε we define the vectors

V ε =

(
M1/2∂τZ

ε

LεZε

)
∈ L2(Rd,Rm)1+p, (5.14)

then we have Ẽε(τ, y) = 1
2
|V ε(t, y)|2, V̂ ε = FV ε =

(
M1/2∂τ

bZε

1
ε

L(εη) bZε

)
and |V̂ ε|2 = 2|Ûε|2.

We now state our first result which is based on the Wigner measure. Recall that S ⊂ TΓ∗
is the singular set where ∇θωj is not defined.
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Theorem 5.6 Let (Uε)ε>0 be a family of solutions of (5.12) such that sppt(Ûε) ⊂ 1
ε
BΓ∗,

that Uε ⇀ 0 in L2(Rd,C2m) and that there is no concentration on the singluar set S, i.e.,

lim supε→0

∫
dist(θ,S)<r

1
(2επ)d

|Ûε(θ/ε)|2dθ −→ 0 for r → 0.

Further, assume that for all j = 1, . . . , 2m the Wigner transforms W ε
Γ[U

ε
j (0, ·)] of the initial

data converge to the Wigner measure µ0j ∈M(Rd×TΓ∗).

Then, for all τ ∈ R and all j = 1, . . . , 2m we have the convergence

W ε
Γ[U

ε
j (0, ·)]

D−→ µj(τ ; ·) ∈M(Rd×TΓ∗),

where µj satisfies (in the sense of distributions) the transport equation

∂τµj(τ ) = ∇θωj(θ) · ∂yµj(τ ) and µj(0) = µ0j . (5.15)

Remarks

1. Note that all µj(τ ) satisfy
∫

Rd×S
µj(τ ; dy, dθ) = µ(τ ;Rd×S) = 0, such that it is

irrelevant that ∇ωj is not defined on S.

2. The same statement of the theorem holds also for the Husimi transform. Then, the

convergence is better, namely weak∗ in M(Rd×S). We keep the formulation of the result

in terms of the Wigner transform to conform with [GMMP97] and to provide a simple

proof. Of course, Theorem 5.7 includes the present result as a special case.

3. The solution of (5.15) is uniquely defined via transport in y with speed ∇θωj(θ), i.e.,
µj(τ, y, θ) = µ0j (y+∇θωj(θ), θ). More precisely, this means that for all Ψ ∈ C0

0(R
d×TΓ∗) we

have ∫
Rd×TΓ∗

Ψ(y, θ)µj(τ ; dy, dθ) =
∫

Rd×T
Ψ(y−τ∇θωj(θ), θ)µ0j (dy, dθ).

Integration over TΓ∗ can be replaced by one over T = TΓ∗\S because of µ0j (R
d×S) = 0.

4. If we additionally assume that the sequence (Uε)ε is tight, then we know that∫
Rd×T

∑2m
j=1 µj(τ ; dy, dθ) = limε→0

∫
Rd |Uε(y)|2dy.

Proof: We sketch the main arguments of this comparable simple proof. The exact details

are given in the proof of the following theorem.

Via (5.3) and (5.13) we obtain the differential equation

∂τ ŵ
ε(τ, ζ, θ) = i∆ε(θ, ζ) ŵ

ε(τ, ζ, θ)

with ∆ε(θ, ζ)
def
= 1

ε

[
ωj(θ+

ε
2
ζ))− ωj(θ− ε

2
ζ)
] (5.16)

where ŵε = Fy→ζW ε[Uε
j (τ, ·)]. The explicit solution reads

ŵε(τ, ζ, θ) = ei∆ε(ζ,θ)τ ŵε(0, ζ, θ) for (τ, η, θ) ∈ R×Rd
∗×TΓ∗ .

27



By (5.4) we know that (wε(τ ))ε is uniformly bounded in L∞(Rd
∗,L

1(TΓ∗)). We choose

testfunctions ψ ∈ L1(Rd
∗,C

0(TΓ∗)) with the additional property ψ ∈ C0
c(R

d
∗×T). On the

compact support sppt(ψ) ⊂ Rd
∗×T the convergence

∆ε(ζ, θ) −→ ζ · ∇θωj(θ) for ε→ 0,

is uniform as ωj is twice differentiable on T and as ζ is bounded. Define

ĝε(τ, ζ, θ) = eiζ·∇θ ωj (θ) τ ŵε(0, ζ, θ)

as an intermediate approximation. Then, with (5.4) we have, for ε → 0,∣∣ ∫
Rd∗×T

ψ(ζ, θ)ei∆ε(θ,ζ) τ ŵε(0, ζ, θ)dζ dθ −
∫

Rd∗×T
ψ(ζ, θ)ĝε(τ, ζ, θ)dζ dθ

∣∣
≤ |τ | sup

(θ,ζ)∈sppt(ψ)
|∆ε(θ, ζ)−ζ·∇θωj(θ)|

∫
Rd∗
‖ψ(ζ)‖C0

c(T)
‖ŵε(0, ζ)‖L1(TΓ∗)dζ → 0.

Moreover, since (ζ, θ) → ψ(ζ, θ)eiζ·∇θ ωj(θ) τ is in the set of admissible testfunctions for the

convergence of Wigner transforms (see [GMMP97, Rem.1.3]), the convergence ŵε(0)
D−→ µ0j

implies ∫
Rd∗×T

ψ(ζ, θ)ĝε(τ, η, θ)dζ dθ
ε→0−−→

∫
Rd∗×T

ψ(ζ, θ)eiζ·∇θωj (θ) τµ0j (dη, dθ).

If we define µj(τ ) through the right-hand side we first see that the transport equation

(5.15) holds and with the above estimate we have∫
Rd∗×T

ψ(ζ, θ)ei∆ε(θ,ζ) τ ŵε(0, ζ, θ)dζ dθ
ε→0−−→

∫
Rd∗×T

ψ(ζ, θ)µj(τ ; dη, dθ).

Finally we remark that the set of testfunctions ψ, we have considered so far, is dense in

the set of all necessary testfunctions. This establishes the desired result.

As a consequence of the above result we obtain an exact characterization of the weak∗
limit of eεW defined as eεW(τ, y) = |Uε(τ, y)|2. Starting with the Wigner measures µj(0) ∈
M(Rd×T) of the initial data, the energy eεW(τ ) is obtained by∫

Rd Ψ(y)eεW(τ ; dy) =
∫

Rd×T

∑2m
j=1 Ψ(y−τ∇θωj(θ))µ0j (dy, dθ). (5.17)

Before we turn to the second result we want to highlight a general feature of the above

proof and of the proof to come. In showing convergence of the approximations f ε(τ ) =

W ε
Γ[U

ε
j (τ )] or f ε(τ ) = Hε

Γ[U
ε
j (τ )] towards the limit µj(τ ) it is advantageous to introduce

an intermediate approximation gε(τ ) which is a solution of the limit equation, initially

derived for µj only, with the ε-dependent initial data f ε(0). As the limit equation does not

depend on ε and we know that the initial data converge, i.e., f ε(0) ; µi(0), it is easy to
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conclude gε(τ ); µj(τ ), where the converge is in general as weak as the convergence of the

initial data. In a second step, one then shows f ε(τ )−gε(τ ) → 0, where one needs to exploit

the convergence of the Fourier symbols, i.e., ∆ε(ζ, θ) → ζ·∇θωj(θ). This convergence is

usually more explicit and error bounds can be obtained in suitable weak function spaces,

see [TP04].

Our second result involves the Husimi measure and allows for certain energy concentra-

tions on the singular set S. Thus, the above result is not applicable for our lattice models if

energy is concentrated in mesoscopic wave lengths of order
√
ε, since the point θ = 0 always

lies in the singular set because of the acoustic waves. The following result shows, that in

certain cases we can still go to the limit if we use the compactification K of T = TΓ∗\S.

Recall that we consider Husimi transforms Hε
Γ[U

ε
j ] as measures inM(Rd×K) via the iden-

tification Φ. To emphasize this embedding we set Hε
K
[f ] = ΦHε

Γ[f ] ∈M(Rd×K) and recall

the definition∫
Rd×K

Ψ(y, κ)(Hε
K[U

ε
j ])(dy, dκ) =

∫
Rd×T

Ψ(y, φ(θ))Hε
Γ[U

ε
j ](y, θ)dydθ,

where Ψ ∈ C0
0(R

d×K) is a testfunction and φ : T → K is the continuous, injective embed-

ding with dense range.

Theorem 5.7 Assume that K is a compactification of T such that all ∇θωj have contin-

uous extensions ∇̃θωj . Moreover, assume

∃C∗ > 0 ∃σ ∈ (0, 1] ∀ j ∈ {1, ..., m} ∀ θ1, θ2 ∈ T :

|∇θωj(θ1)−∇θωj(θ2)| ≤ C
( dist(θ1, θ2)

min{dist(θ1, S), dist(θ2, S)}

)σ
.

(5.18)

Let (Uε)0<ε<1 be a family of solutions of (5.12) such that Uε ⇀ 0 in L2(Rd,C2m), sppt(Ûε) ⊂
1
ε
BΓ∗ and that it does not concentrate on the singular set S in the order ε1/2, i.e, for all

R > 0 we have ∫
dist(θ,S)<ε1/2R

1
(2επ)d

|Ûε(θ/ε)|2dθ −→ 0 for ε → 0.

Further, assume that for all j = 1, . . . , 2m the Husimi transforms Hε
K
[Uε
j (0, ·)] of the initial

data converge to the Husimi measure µ0j ∈M(Rd×K).

Then, for all τ ∈ R and all j = 1, . . . , 2m we have the convergence

Hε
K[U

ε
j (τ, ·)]

∗
⇀ µj(τ ; ·) ∈M(Rd×K),

where µj satisfies the transport equation

∂τµj(τ ) = ∇̃θωj(κ) · ∂yµj(τ ) with µj(0) = µ0j (5.19)

in the sense of distributions, i.e., for all Ψ ∈ C0
0(R

d×K) we have∫
Rd×K

Ψ(y, κ)µj(τ ; dy, dκ) =

∫
Rd×K

Ψ(y−τ∇̃θωj(κ), κ)µ0j (dy, dκ). (5.20)
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Remarks.

1. For eqn. (5.20) we do not need any differentiable structure for K as transport occurs

only in the y direction but not in κ ∈ K.

2. The assumptions about the concentration and about the Lipschitz continuity of ∇θωj
can not be dispensed with as we show in Section 6.1.

Proof: The proof follows the same strategy as the one above. This time we use the

Fourier transformed version of the Husimi transform and show convergence using suitable

testfunctions and taking special care of the wave vectors near S. In Step 1 we cut out

the wave vectors near S by using the nonconcentration condition. Thus, it suffices to

study a simplified measure hε(τ ) instead of the full Husimi transform Hε
K[U

ε
j (τ )]. In Step

2 we introduce the intermediate approximation gε(τ ) solving (5.19) but having the initial

condition hε(0) and show its weak∗ convergence to the solution µj(τ ) defined in (5.20). In

Step 3 we estimate hε(τ )− gε(τ ) by using their explicit representations in Fourier space.

Step 1. Throughout the proof we fix j ∈ {1, ..., 2m} and define the measures ρεW and

ρεH = ρεW ∗Gε
Γ on TΓ∗ such that ρεW has the density θ → 1

(2επ)d
|Ûε
j (0; θ/ε)|2 where Ûε

j (τ ) =

FUε
j (τ ). By our assumption of nonconcentration on S, there exists Rε > 0 with Rε → ∞

for ε → 0 such that

rε = ρεW(Sε) −→ 0 for ε → 0, where Sε = { θ | dist(θ, S) < ε1/2Rε }.

With Lemma 5.3 we may choose Rε such that we also have ρεH(Sε) → 0 for ε → 0.

Define the characteristic functions

pε = XTε: TΓ∗ → R with Tε = TΓ∗\Sε and qε = XBε:Rd
∗ → R with Bε =

1
ε
(BΓ∗\Sε)

and let hε(τ ) = pεH
ε
Γ[U

ε
j (τ )] ∈ L1(Rd×TΓ∗). Then we have

‖hε(τ )−Hε
Γ[U

ε
j (τ )]‖L1 = ρεH(Sε) → 0.

Next we show that we may assume that Ûε
j has support in Bε. Define V ε(τ ) ∈ L2(Rd,C)

via FV ε(τ, ζ) = qε(ζ)[FUε
j (τ )](ζ), then we have

‖Uε
j (τ )− V ε(τ )‖2L2 = ρεW(Sε) = rε → 0.

By (5.6) the corresponding Husimi transforms satisfy

‖hε(τ )− pεH
ε
Γ[V

ε(τ )]‖L1 ≤ ‖Hε
Γ[U

ε
j (τ )]−Hε

Γ[V
ε(τ )]‖L1

≤
(
‖Uε

j (τ )‖L2 + ‖V ε(τ )‖L2

)
‖Uε

j (τ )− V ε(τ )‖L2 ≤ Cr
1/2
ε → 0.

Thus, the original family (Hε
Γ[U

ε
j ])ε and the two families (hε)ε and (pεH

ε[V ε])ε generate

the same Husimi measure. Hence, from now on it is sufficient to study the convergence of

hε under the additional assumption that Uε
j = V ε holds.
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Step 2. To prove convergence to µj(τ ) we introduce an intermediate approximations

gε(τ ) ∈ L1(Rd×TΓ∗) which is defined such that it solves the limit equation (5.20) with the

ε-dependent initial datum hε(0) ∈ L1(Rd×TΓ∗). It is given by

gε(τ ; y, θ) = hε(0; y + τ∇θωj(θ), θ).

For this definition we do not need continuity of ∇θωj. Now, the assumptions that the initial

measures Φhε(0) converge weak∗ in M(Rd×K) to µj(0) immediately implies Φgε(τ )
∗
⇀

µj(τ ) in M(Rd×K) by linearity and boundedness. Here, µj(τ ) is the solution defined via

(5.20). This is the only step, where we need the convergence in the compactification and

rely on the continuity of the extension ∇̃θωj.
The Fourier transform ĝε = Fy→ζgε satisfies

ĝε(τ ; ζ, θ) = eiζ·∇θ ωj(θ)τ ĥε(0, ζ, θ).

Similarly, for ĥε(τ ; ·, θ) = Fy→ζhε(τ ; ·, θ) we have the explicit formula

ĥε(τ ; ζ, θ) = e−ε|ζ|2/4pε(θ)
(2επ)d

∫
TΓ∗

Ûε
j (0,

ϑ
ε
+ζ

2
)Ûε

j (0,
ϑ
ε
− ζ

2
) ei∆ε(ζ,ϑ)τ Gε

Γ(ϑ−θ)dϑ,

where ∆ε is defined in (5.16).

Step 3. Since (gε)ε and (hε)ε are bounded families in L1(Rd×TΓ∗), the desired conver-

gence Φgε(τ )−Φhε(τ ) ∗
⇀ 0 in M(Rd×K) follows, if we show

∀Ψ ∈ C :
∫

Rd×TΓ∗
Ψ(y, θ)[gε(τ ; dy, dθ)−hε(τ ; dy, dθ)]→ 0 for ε → 0, (5.21)

for a dense subset C ⊂ C0
0(R

d,L∞(TΓ∗)). For this, note that using the embedding φ :

T = TΓ∗\S → K testfunctions ΨK ∈ C0
0(R

d×K) turn into Ψ ∈ C0
0(R

d,L∞(TΓ∗)) via

Ψ(y, θ) = ΨK(y, φ(θ)). We choose C to be the set of those Ψ such that Ψ̂ = Fy→ζΨ
satisfies

∫
ζ∈Rd∗

‖Ψ̂(ζ, ·)‖L∞(TΓ∗) dζ < ∞. E.g., all Ψ ∈ Wd+1,1(Rd,L∞(TΓ∗)) satisfy this

condition and, clearly, these functions are dense in C0
0(R

d×TΓ∗).

Using Fourier transform and the explicit representations of ĝε and ĥε the term to be

estimated in (5.21) takes the form

Fε =
1

(2επ)d

∫
θ∈Tε

∫
(ζ,ϑ)∈Mε

Ψ̂(ζ, θ)e−ε|ζ|
2/4Gε

Γ(θ−ϑ)
(
eiζ·∇θ ωj(θ)τ−ei∆ε(ζ,ϑ)τ

)
· Ûε

j (0,
ϑ
ε
+ ζ

2
)Ûε

j (0,
ϑ
ε
− ζ

2
)dζ dϑdθ,

where Mε = { (ζ, ϑ) ∈ Rd
∗×TΓ∗ | ϑε−

ζ
2
∈ Bε and ϑ

ε
+ ζ

2
∈ Bε }.

Using (5.4) we have for almost all ζ ∈ Rd
∗ the estimate

1
(2επ)d

∫
ϑ∈TΓ∗

|Uε
j (0,

ϑ
ε
+ ζ

2
)Ûε

j (0,
ϑ
ε
− ζ

2
)|dϑ ≤ ‖Uε

j (0)‖2L2(Rd).
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Hence, by Hölder’s estimate in the (L1,L∞) version we find

|Fε| ≤
∫
ζ∈Rd∗

‖Υε(ζ, ·)‖L∞(TΓ∗) dζ ‖U
ε
j (0)‖2L2(Rd) with

Υε(ζ, ϑ) =
∫

θ∈TΓ∗

Ψ̂(ζ, θ)e−ε|ζ|
2/4Gε

Γ(θ−ϑ)XTε(θ)XMε(ζ, ϑ)
(
eiζ·∇θ ωj(θ)τ−ei∆ε(ζ,ϑ)τ

)
dθ,

where the characteristic functions XTε and XMε are due to the construction in Step 1. We

now have

‖Υε(ζ, ·)‖L∞(TΓ∗) ≤ ‖Ψ̂(ζ, ·)‖L∞(TΓ∗)‖‖υε(ζ, ·)‖L∞(TΓ∗) with

υε(ζ, ϑ) = XMε(ζ, ϑ)
∫
θ∈TΓ∗

Gε
Γ(θ−ϑ)XTε(θ)min{2, |ζ·∇θωj(θ)−∆ε(ζ, ϑ)||τ |}dθ.

Because of ‖υε(ζ)‖∞ ≤ C = 2vol(TΓ∗) we obtain the majorant ‖Υε(ζ)‖∞ ≤ C‖Ψ̂(ζ)‖∞
which is independent of ε. Thus, it suffices to show the pointwise convergence ‖υε(ζ)‖∞ → 0

for ε → 0 where ζ ∈ Rd
∗ is fixed.

For fixed ζ and ε we only need to consider ϑ with (ζ, ϑ) ∈ Mε because of the prefactor

XMε . For such ϑ we have dist(ϑ+ε(α−1
2
)ζ, S) ≥ ε1/2Rε − ε|ζ| ≥ 1

2
ε1/2Rε for sufficiently

small ε. Hence, using the continuity (5.18) of ∇θωj outside of S we have for θ %∈ Sε

|ζ·∇θωj(θ)−∆ε(ζ, ϑ)| ≤ |ζ|
∫ 1
α=0

|∇θωj(θ)−∇θωj(ϑ+ε(α−1
2
)ζ)|dα

≤ |ζ|
∫ 1
0
C∗

(
2

ε1/2Rε
dist(θ, ϑ+ε(α−1

2
ζ)
)σ

dα ≤ 2C∗|ζ|
εσ/2Rσ

ε

(
dist(θ, ϑ)σ + (ε|ζ|)σ

)
.

This estimate can now be inserted into the definition of υε. As for each σ ≥ 0 there exists

Cσ > such that∫
TΓ∗

Gε
Γ(θ−ϑ)dist(θ, ϑ)σ dθ ≤ Cσε

σ/2 for all ε > 0 and ϑ ∈ TΓ∗ .

Hence, with Rε →∞ we conclude the desired pointwise convergence from

υε(ζ, ϑ) ≤ 2C∗|ζ|
(Cσ
Rσε

+
(ε1/2|ζ|

Rε

)σ) −→ 0.

Thus, |Fε| ≤ C
∫

Rd∗
‖Υε‖∞dζ → 0 for ε → 0 follows from Lebesgues dominated-convergence

theorem.

Step 4. The above three steps conclude the proof. Step 2 gives Φgε(t)
∗
⇀ µj(τ ) and Step

3 gives Φgε(τ )−Φhε(τ )
∗
⇀ 0. According to Step 1 we have Φhε(τ )−ΦHε

Γ[U
ε
j ](τ )

∗
⇀ 0, which

follows from ‖hε(τ )−Hε
Γ[U

ε
j ](τ )‖L1(Rd×TΓ∗) → 0. Thus, Hε

K
[Uε
j ](τ ) = ΦHε

Γ[U
ε
j ](τ )

∗
⇀ µj(τ )

in M(Rd×K) follows.

It is to be expected that the above results can be sharpened by making specific assump-

tions on the singular set and by using suitable smooth coordinate changes near S. Then,

normal and tangential modes can be distinguished and suitable two-scale Wigner measures

may be constructed, see [LT05, FL03]. Another way to compactify the measures near an
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isolated singularity like θ = 0 in lattices is the H-measure introduced in [Tar90]. For this,

one needs to introduce the extended vector V ε as given in (5.14), whose Fourier transform

V̂ ε satisfies

∂τ V̂
ε(τ, η) = 1

ε
Vε(εη)V̂

ε with V(θ) =

(
0 −M−1/2L(θ)∗

L(θ)M−1/2 0

)
.

As V(·) is smooth in θ = 0 this construction is more suitable to study energy concentrations

there.

Remark 5.8 The above analysis was especially simple, since our problem is exactly peri-

odic and hence does not allow for slow variations of the symbol matrix on the macroscopic

spatial variable y = εγ. According to [ST03] it is possible to generalize the theory to

situations where such a macroscopic variation occurs. Assume that the mass matrix M as

well as the interaction matrices Aβ depend on y smoothly. Then we consider the infinite

system

M(εγ)ẍγ = −
∑
β∈Γ

Aβ(εγ)xγ+β for γ ∈ Γ.

Then we obtain the y–dependent symbol matrix A(y, θ) =
∑

β e
iβ·θAβ(y) which again is

assumed to be positive semi-definite and satisfying (3.6) in a uniform manner with constant

kernel V . From (A(y, θ)− ω2M(y))Φ = 0 we then obtain dispersion relations ω = ωj(y, θ)

which also depend on y.

It is then possible to show that Wigner measures still exist and that they satisfy the

generalized transport equation

∂τµj(τ, y, θ) = ∇θωj(y, θ)·∂yµj(τ, y, θ)−∇yωj(y, θ)·∂θµj(τ, y, θ), (5.22)

where now also transport in the direction of θ occurs. In such situations it is not possible

to resolve the singularities of the dispersion relation by the compactification given above.

The compactification destroys the differentiable structure and thus can no longer be used.

In fact, it is well-known that new phenomena occur in such energy crossings, since energy

can be transfered from one branch to another, cf. [FL03, LT05, ST03].

6 Some examples

6.1 A counterexamples for the transport equation

In this section we want to discuss a few postive and negative results concerning the deriva-

tion of the energy-transport equations in Theorems 5.6 and 5.7. For this, we consider

the nonsmooth dispersion relation ω(θ) = 2| sin(θ/2)| on TΓ∗ = S1 = R/(2πZ). The sin-

gular set is S = {0} and we may use the compactification [0, 2π] with the smooth ex-

tension ∇̃ω = cos(κ/2). However, to avoid confusion with the neighborhood of S, we
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use K = ([−π, 0−] ∪ [0+, π])∼, where ∼ denotes the identification of −π with π. The

“continuous” extension of ω′ is given via

∇̃ω(κ) =

{
cos(κ/2) for κ ∈ [0+, π],

− cos(κ/2) for κ ∈ [−π, 0−].

Thus, the generalized energy-transport equation we have derived in Theorem 5.7 tasks the

form

∂τµ(τ, dy, dκ) = ∇̃ω(κ)∂yµ(τ, dy, dκ) on R×K. (6.1)

We consider the solutions of ∂τ Û
ε = i

ε
ω(εη)Ûε with the initial conditions

Ûε
0 (η) = ε(1−β)/2

(
a+XBε(εη) + a−X−Bε(εη)

)
where Bε = [εβ, 2εβ ],

where we assume 0 < β. Clearly, the Wigner and the Husimi transforms concentrate on

S = {0} in the order εβ . From solving the linear system we expect that the waves associated

with ±Bε travel with speed c± = ∇θω(0±) = ±1. Thus, the expected limit measure is

µ(τ ) = |a+|2δ0+(dκ)δ−c+τ(dy) + |a−|2δ0−(dκ)δ−c−τ (dy). (6.2)

We now discuss under which conditions we obtain this result for the Wigner and for the

Husimi measure.

In this specific simple example we may study the distributional limit of the Wigner

measures on R×K and retrieve the classical Wigner limit a subsequent identification of

0+ and 0−. For the computations we replace the space K simply by TΓ∗ and realize the

compactification by chosing the set of testfunction ψ such that ψ(ζ, ·) is continuous on all

of TΓ∗\{0}, where we assume that the limits ψ(ζ, 0+) and ψ(ζ, 0−) exists. After applying

a testfunction ψ̂ ∈ C0
0(R∗×K) to ŵε we have to study the limit of

1
2επ

∫
R×K

ψ̂(ζ, κ)ei∆ε(ζ,κ)τ
∑

σ1,σ2∈{+,−}

aσ1aσ2

εβ−1 Xσ1Bε(κ+ε ζ
2
)Xσ2Bε(κ−ε ζ

2
)dζ dκ. (6.3)

Using the transformation κ+εζ/2 = εβθ1 and κ−εζ/2 = εβθ2, each of the four terms takes

the form

εβ−1
∫

|θ1|,|θ2|≤2̂
ψ(εβ−1(θ1−θ2), ε

β(θ1+θ2)/2)e
i(ω(εβθ1)−ω(εβθ2))τ/εXσ1[1,2](θ1)Xσ2[1,2](θ2)dθ

For β > 1 we now see that the integrals tend to 0, which means wε(τ ) = W ε[Uε(τ )]→ 0 in

the sense of distributions. This is due to the effect that the corresponing initial conditions

Uε are not tight, they are spreading out too fast in physical space.

For β = 1 we can pass to the limit easily, when taking care of the possibly different

values ψ̂(ζ, 0+) and ψ̂(ζ, 0−):

1
2π

∫
θ1+θ2>0

ψ̂(θ1−θ2, 0
+)ei(|θ1|−|θ2|)τXσ1[1,2](θ1)Xσ2[1,2](θ2)dθ

+ 1
2π

∫
θ1+θ2<0

ψ̂(θ1−θ2, 0
−)ei(|θ1|−|θ2|)τXσ1[1,2](θ1)Xσ2[1,2](θ2)dθ.
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For σ1 = σ2 we arrive at

1
2π

∫
ψ̂(θ1−θ2, 0

σ1)eiσ1(θ1−θ2)τXσ1[1,2](θ1)Xσ1[1,2](θ2)dθ =
∫ 1
−1 ψ̂(s, 0

σ1)eiσ1sτ 1
π
(1−|s|)ds,

which tells us that the energy located at 0σ1 , which is proportional to |aσ1|2, is transported
with the group velocity c = σ11. Inverse Fourier transform leads to the first two terms in

the following expression for the limiting Wigner measure:

µW(τ ) = limW ε[Uε(τ )] = |a+|2S(y−τ )δ0+(dκ) + |a−|2S(y+τ )δ0−(dκ)

+Re
(
a+a−

[
(R+(τ, y)δ0++(R−(τ, y)δ0−

])
,

where S(x) = 1
x2 (sin(x/2))

2. The third term arises from the two cases with σ1 %= σ2.

Now, time dependence occurs through σ1(θ1+θ2)τ , while ψ̂(·, 0±) still depends on θ1−θ2.

Thus, all energy is concentrated in the two wave number 0+ and 0−, but all wave speeds

c ∈ [−1, 1] are realized. Hence, the measure µH(τ ) doesn’t satisfy the transport equation

(6.1).

The case β ∈ (0, 1) is better behaved. To study the limit in (6.3) we keep ζ and

substitute κ = εβϑ. Because of β ∈ (0, 1) we have ∆ε(ζ, ε
βϑ) → sign(ϑ)ζ and find the limit∫

R

(
ψ̂(ζ, 0+)eiζτ |a+|2 + ψ̂(ζ, 0−)e−iζτ |a−|2

)
dζ,

which corresponds to the desired resulting Wigner measure µW(τ ) = µ(τ ) as given in (6.2).

We also want to study the same convergence question for the Husimi transform for the

problem above. The action of Hε[Uε(τ )] on a testfunction ψ is again studied in terms of

the Fourier transform, which leads to four terms of the form

1
2εβπ

∫
R×TΓ∗×TΓ∗

ψ̂(ζ, ϑ)Gε
Γ(ϑ−κ)e−ε|ζ|

2/4ei∆ε(ζ,κ)τXσ1Bε(κ+ε ζ
2
)Xσ2Bε(κ−ε ζ

2
)dϑdζdκ.

Introducing the scalings κ = εβθ and ϑ = ε1/2η and proceeding as above, we derive, for

β ∈ (0, 1), the limit measure

µH(τ ) = ρ+δ0+(dκ)δ−τ (dy) + ρ−δ0−(dκ)δ+τ (dy) with ρ± = (1−αβ)|a±|2 + αβ |a∓|2,
where αβ = 0 for β ∈ (0, 1/2), α1/2 =

∫
η∈R

∫ −1
θ=−2 G

1(η−θ) dθ dη ≈ 0.02464, and αβ = 1/2

for β ∈ (1/2, 1).

Thus, we make the following observations. Theorem 5.7 is applicable to the case β ∈
(0, 1/2) where we obtain the correct limiting measure, µH(τ ) = µ(τ ) as given in (6.2). For

the critical case β = 1/2 we still obtain a solution of the transport equation (6.1), but it

is not the desired one, since the smearing out of the energy via the Gaussian kernel led

to a wrong partition of the energy. The same happens for β ∈ (1/2, 1), where the faster

concentration rate leads even to equals contributions on both sides. A similar effect can

be established in the case β = 1, where µH(τ ) is again a symmetrized version of µW(τ ).

It is also interesting to observe that due to the compactification, the Wigner measure

µW and the Husimi measure µH do no longer need to be the same, as is seen for β ≥ 1/2.
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6.2 The harmonic chain

The simplest example is the harmonic chain with nearest-neighbor interaction. After nor-

malizing all constants it takes the form

ẍj = xj+1 − 2xj + xj−1 for j ∈ Z. (6.4)

The lattice is Γ = Z and the dual lattice is Γ∗ = 2πZ with the Brillouin zone BΓ∗ = (−π, π),

cf. [Bri46].

The dispersion relation reads ω2 = 2(1− cos θ) = 4(sin(θ/2))2. This gives ω1,2(θ) =

±ω(θ) with ω(θ) = 2| sin(θ/2)| and non-smoothness occurs only at θ = 0. The compact-

ification K of S1 \ {0} is simply a closed interval [0, 2π] where θ > π should be identified

with θ−2π ∈ (−π, 0].

Because of ω(k)2 = k2 + O(k4)k→0, the macroscopic wave equation takes the form

Zττ = Zyy . The energy transport is governed by the two equations

∂τµ1 = ω′(k)∂yµ1, ∂τµ2 = −ω′(k)∂yµ2 for (τ, y, k) ∈ R2×K. (6.5)

Since we are mainly interested in the total energy e(τ, y) =
∫

K
µ1+µ2 dθ, it suffices to

consider µ̂ = trµ = µ1+µ2 ∈M(R2×K) which now satisfies

∂2τ µ̂ = (ω′(θ))2∂2y µ̂.

This is a second order equation in τ and y, containing θ as a parameter.

0.5
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1.5
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0.02

–200 –100 100 200

Figure 6.1: Displacement (left) and energy distribution (right) for the harmonic chain.

The full line (right) gives e(τ, y) for τ = 200.

We illustrate the results with some simulations. In Figure 6.1 we display the solution

of (6.4) with initial data

xj(0) = 2 for j > 0, xj(0) = 0 for j ≤ 0, and ẋj(0) = 0,

at time t = 200. We clearly see that the propagation speeds are ±1, since the fronts have

reached the atoms at j = ±200. Moreover, in the sense of weak convergence the function
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Figure 6.2: The dipole solution at t = 200: displacement (left) and energy distribution

(right).

is close to the step function

Z(τ, y) =


2 for y > τ,

1 for |y| < τ,

0 for y < −τ,

which is the unique solution of Zττ = Zyy with initial data Z(0, y) = 1 + sign(y) and

∂τZ(0, y) = 0. The convergence is rather slow and near the fronts there is a overshooting

of about 40 %, which can be explained by the help of the Airy function.

Here, we want to explain the energy distribution given in the right of Figure 6.1. The

circles indicate the energies in the atoms and the full line gives the function e(τ, ·) calculated
via Wigner measures. We obtain e(τ, y) = 1+(y/τ )2

πτ
√

1−(y/τ )2
. In Figure 1.1 we show the Green’s

function obtained from the initial data xj(0) = δj and ẋj(0) = 0. The Wigner measure

for the energy distribution satisfies a semicircle law, namely e(τ, y) = 1
τπ

√
1− (y/τ )2. In

Figure 6.2 we displayed the so-called dipole solution obtained as a difference of two Green’s

functions, i.e., xj(0) = δj − δj−1 and ẋj(0) = 0. For the method to calculate the functions

e(τ, cdot) explicitly, we refer to Section 6.4.

It is interesting to note that the convergence against the Wigner measure is again a real

weak limit. In fact, it can be shown that the family of energy distribution (Eε(τ ))ε gener-

ates a Young measure Y (τ ) ∈ YM(R, [0,∞)) which is, for each τ and y, an “arcsin” distri-

bution with the mean value e(τ, y) (from the Wigner measure) and a width C∗(y/τ )
2e(τ, y).

The constant C∗ however, depends of the kind of definition of local energy (see eγ, E
ε and

Ẽε in Section 5.4). If we average over several particles, then C∗ decreases like the inverse

of the particle size.

We also refer to [Fri03] for a very detailed study of the solution of (6.4) using a careful

analysis of the explicit form of the solution in terms of oscillatory integrals. There, the

region near y = 0 is studied where the presence of the wave number θ = ±π leads to

so-called binary oscillations which form a rather rigid, synchronized structure.

37



6.3 The bi-atomic chain

We consider two types of atoms having weights m and m̃ respectively. Their equilibrium

positions are j ∈ Z and they are placed alternatingly such that m2j = m and m2j+1 = m̃.

Between adjacent masses there are linear springs with constant k (nearest neighbor in-

teraction). Additionally, we consider forces between next-nearest neighbors with Hooke’s

constants κ and κ̃ between mass point with mass m and m̃, respectively. Thus, the equa-

tions for the displacements yj are

mj ÿj = k(yj−1−2yj+yj+1) + κj(yj−2−2yj+yj+2)

with κ2γ = κ and κ2γ+1 = κ̃. We define xγ = (y2γ, y2γ+1) for γ ∈ Z and obtain

Mẍγ + A−1xγ−1 + A0xγ + A1xγ+1 = 0 for γ ∈ Z with

M =

(
m

0

0

m̃

)
, A−1 =

(
−κ

0

−k

−κ̃

)
, A0 =

(
2k+2κ

−k

−k

2k+2κ̃

)
, A1 =

(
−κm
−k

0

−κ̃

)
.

The symbol matrix reads

A(θ) =

(
2k + 2κ(1− cos θ) −k(1+e−iθ)

−k(1+eiθ) 2k + 2κ̃(1− cos θ)

)
.

Hence, assumption (3.4) is satisfied with 1 = d = dimV if k, k+2κ, k+2κ̃ > 0, where

V = kerA(0) = span
(
1
1

)
. The dispersion relation reads

[mω2 − 2(k+κ(1− cos θ))][m̃ω2 − 2(k+κ̃(1− cos θ))] = 2k2(1+ cos θ).

For θ ≈ 0 we find the frequencies ω2
1 = k+κ+eκ

m+em
θ2 +O(θ4) and ω2

2 = 2k(m+em)
mem

+O(θ2). This

provieds the macroscopic wave speed cmacro = [(k+κ+κ̃)/(m+m̃)]1/2 and the macroscopic

wave equation
m+ em
2

∂2τ Z = k+κ+eκ
2

∂2y Z.

For θ = ±π we have 1+ cos θ = 0 and the frequencies ωj are given via ω2 = (2k+4κ)/m

and ω = (2k+4κ̃)/m̃. Hence, eigenvalue crossings at θ = ±π are easily constructed, see

Figure 6.3 (right), where the parameters m = 6, m̃ = 10, k = κ = 1, and κ̃ = 2 have been

used.
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Figure 6.3: Two typical dispersion relations for the bi-atomic chain.
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6.4 Energy distribution in scalar models

For simplicity we restrict in this section to scalar models, but in arbitrary space dimensions.

Assume that we have

ẍγ = −
∑
|β|≤R

aβxγ+β for γ ∈ Γ, (6.6)

with aβ such that ω(θ)2 =
∑

β aβe
iβ·θ is real and nonnegative. The Green’s function

associated with (6.6) is the unique solution associated with the initial conditions xγ(0) = δγ
and ẋγ(0) = 0. We want to study the energy distribution for this system, the total energy

being just a0.

In Fourier space the system has the initial conditions X̃(0) ≡ cΓ∗ and ∂τX̃(0) = 0 and

transforming it into the normal form (5.12) we find

∂τ Û
ε(τ, η) = i

ε

(
ω(εη)
0

0
−ω(εη)

)
Ûε(τ, η) with Ûε(0, η) = εd/2

2vol(TΓ∗)1/2

(
ω(εη)
ω(εη)

)
. (6.7)

These initial conditions immediately define the initial Wigner-Husimi measures µj(0) =
1

4vol(TΓ∗)
ω(θ)2dθδ0(dy) as ω(θ+ ε

2
ζ)ω(θ− ε

2
ζ) → ω(θ)2. There is no concentration on any

singular set, we rather have a smooth density on TΓ∗ . According to Theorem 5.6, the

evolution of the energy is given via µ(τ ) defined via∫
Rd×TΓ∗

Ψ(y, θ)

2∑
1

µj(τ ; dy, dθ) =
1

2vol(TΓ∗)

∫
TΓ∗

Ψ(−τ∇θω(θ), θ)ω2(θ)dθ,

where we used ω(−θ) = ω(θ). Under the assumption that the mapping θ → c = ∇θω(θ)
from TΓ∗ → C ⊂ Rd has the inverse θ = Θ(c), we obtain by the transformation rule, that

µ(τ ) can be represented by the density

m(τ, y) =

{
1
τdg(y/τ ) for y ∈ τY,

0 else,
where g(c) =

ω(Θ(c))2

2vol(TΓ∗)| detD2ω(Θ(c))| .

In the case of multivaluedness of c = ∇θω(θ) this is easily generalized by adding up the

contribution of each preimage of c. However, the zeros of detD2ω(Θ(c)) will generate

singularities

One special case was already discussed in Section (6.2). There the mapping ∇θω(θ) =
sign(θ) cos(θ/2) is indeed invertible and we obtain

g(c) = ω(θ)2

4π|ω′′(θ)| =
2(1− cos θ)
2π| sin θ/2| =

2
π
| sin(θ/2)| = 2

π

√
1−c2

We now illustrate that in the general case the invertiblity breaks down, which leads to

densities g ∈ L1(Y ) which have singularities arising from the caustics associated with the

multivaluedness of ∇θω(θ).
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Figure 6.4: Dispersion relation (left) and the wave-vector domain Y = sppt(g) (right) with

the singular set of g.

As an example consider the square lattice with nearest-neighbor interaction:

ẍγ = −4xγ + xγ+β1 + xγ−β1 + xγ+β2 + xγ−β2,

where β1 = (1, 0) and β2 = (0, 1). This equation arises as a numerical approximation of the

linear wave equation ∂2τu = ∆yu, which is the macroscopic limit in the sense of Section 4.

Note that the macroscopic equation is isotropic while the microscopic system is anisotropic.

This will be reflected in the properties of the density g.

The dispersion relation is given as

ω(θ)2 = 4− 2 cos θ1 − 2 cos θ2 for θ ∈ TΓ∗ = R2/(2πZ)2 .

We find C = { c ∈ R2 | |c| < 1 } where the boundary corresponds to the macroscopic wave

speeds associated with the limit θ → 0. The mapping ∇θω is not 1-1, as D2ω(θ) vanishes

on a closed smooth curve C. Thus, almost all points have either 1 or 3 preimages, see Figure

6.4. The image of C under the mapping ∇θω forms the cusp-like figure inside C . Along

this curve the density has a singularity which is also seen in the numerical approximation

displayed in Figure 6.5. The cusps occur exactly in the points with |c1| = |c2| = 1/2. In

these points the strongest singularities in g occurs and, thus, lead to dominant patterns

with microscopic wave vectors with |θ1| = |θ2| = π/2.

With the same idea we are able to find the asymptotic behavior of the energy for any

fixed initial distribution, like the dipole solution considered in Section 6.2. Any solution

x(t) of (6.6) with initial fixed initial condition (x(0), ẋ(0)) = (x(0), x(1)) ∈ �2×�2 can be

considered as a sequence of solutions, since letting τ = εt and y = εγ just leads to a

rescaling of space and time. We may fix τ = τ∗ and then set ε = τ∗/t which leads to

y = τ∗γ/t. For t → ∞ we obtain the desired macroscopic limit. In (6.7) we obtain the

initial data

Û (0, θ/ε) = εd/2
(
f1(θ)
f2(θ)

)
with

(
f1(θ)
f2(θ)

)
= 1

2vol(TΓ∗)

(ω(θ) eX(0)(θ)−i eX(1)(θ)

ω(θ) eX(0)(θ)+i eX(1)(θ)

)
,

40



0.33

0.67

1.0
0.33

0.67
1.0

0

1

2

3

4

5

g(c)

c1

c2
0.5

1.0

0.5

1.0

0

5

10

15

g(c)

c1

c2

Figure 6.5: The energy density g (one quarter): the support can be seen on the left and

the singular behavior is displaced to the right.

where X̃(j)(θ) =
∑

γ x
(j)
γ e−iγ·θ for j = 1, 2. Thus, the initial Wigner measures are given by

µj(0) = fj(θ)
2dθδ0(dy) and the macroscopic density distribution has again the self-similar

structure e(τ, y) = 1
τdg

∗(y/τ ) where g∗ is given implicitly by∫
Rd

ψ(c)g∗(c)dc =

∫
TΓ∗

(
ψ(−∇θω(θ))f1(θ)2+ψ(∇θω(θ))f2(θ)2

)
dθ

for all testfunctions ψ ∈ C0
0(R

d).

6.5 Square lattice

We consider equal atoms placed at Z2. The masses are 1 and the nearest-neighbor forces

have constant 1. Additionally, we have next-nearest neighbor interaction (along the diag-

onals of squares) with constant k.

With e1 =
(
1
0

)
, e2 =

(
0
1

)
, e+ =

(
1
1

)
, e− =

(
1
−1
)
we find for the displacements xγ ∈ R2, γ ∈

Γ = Z2 the coupled system

ẍγ = 〈e1, xγ−e1−2xγ+xγ+e1〉e1 + 〈e2, xγ−e2−2xγ+xγ+e2〉e2
+k

2
〈e+, xγ−e+−2xγ+xγ+e+〉e+ + k

2
〈e−, xγ−e−−2xγ+xγ+e−〉e−

= −
∑

|α|≤
√
2Aαxγ+α

where the interaction matrices are given by

A0 =

(
2+2k 0

0 2+2k

)
, A±e1 =

(
−1 0

0 0

)
, A±e2 =

(
0 0

0 −1

)
,

A±e+ = −k
2

(
1 1

1 1

)
, A±e− = −k

2

(
1 −1
−1 1

)
.
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The dispersion matrix A(θ) takes the form

A(θ) = 2

(
1− cos θ1 + k(1− cos θ1 cos θ2) k sin θ1 sin θ2

k sin θ1 sin θ2 1− cos θ2 + k(1− cos θ1 cos θ2).

)

This leads to the quadratic part Q(2)(η, η) =

(
η21 + k(η21+η22) 2kη1η2

2kη1η2 η22 + k(η21+η22)

)
and the
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Figure 6.6: The two dispersion relations for the two-dimensional lattice (one half of TΓ∗ is

displayed only).

macroscopic wave equation

Z ′′ = div

(
k(∇ · Z)

(
1 0

0 1

)
+ k(DZ+DZT) + (1−2k)

(
∂y1Z 0

0 ∂y2Z

))
.

For k = 1/2 this gives exactly linearized, isotropic elasticity with Lamé constants µ = 1/2

and λ = 1/2. For k %= 1/2 the wave equation is anisotropic.

6.6 Comparison with Whitham’s modulation equation

In Whitham’s theory of modulated waves, one assumes that the solution behaves locally

as a periodic wave which is modulated on a macroscopic scale. For each macroscopic point

the wave pattern is taken from a family of waves which is described by a finite-dimensional

set of parameters. The question is then, how these parameters evolve on the macroscopic

scale.

The strength of Whitham’s theory is that it is applicable also in nonlinear problems,

see [HLM94, FV99, DHM04]. Here we want to compare its impact in the linear setting

with the corresponding result obtained from the energy-transport equation for the Wigner

measure.
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The modulated wave train is constructed from the explicit periodic solutions

xγ(t) = Fγ + vt+ a ei(θ·γ+ωt)Φ, (6.8)

where F ∈ Lin(Rd, V ) denotes the macroscopic strain, v ∈ V is the macroscopic speed,

a > 0 is the amplitude, θ ∈ BΓ∗ is the wave vector and ω ∈ R is the frequency.

A modulated wave train is now given in the form

xγ(t) =
1

ε
U(τ, y) + a(τ, y) eiΨ(τ,y)/εΦ(τ, y),

where τ = εt, y = εγ and the deformation U and the microscopic phase Ψ are given such

that U(0, 0) = 0, Φ(0, 0) = 0, and

∂τU(τ, y) = v(τ, y), ∂yU(τ, y) = F (τ, y), ∂τΦ(τ, y) = ω(τ, y), ∂yΦ(τ, y) = θ(τ, y).

Moreover, at each macroscopic point (τ, y) it is assumed that θ, ω and Φ are related by the

y–dependent microscopic eigenvalue problem A(y, θ)Φ− ω2MΦ = 0 ∈ Cm. From now on,

we fix a smooth branch ω = Ω(y, θ) of the dispersion relation and assume that Φ = Φ̃(y, θ)

with the normalization 〈M(y)Φ,Φ〉 = 1. Note, however, that the formal derivation of

Whitham’s equation will need ω to be an independent parameter. We will always write Ω

if we relate to a particular branch.

Since the analysis in this section is purely formal, we treat a harmonic lattice system

whose material parameter may be modulated on the macroscopic scale as well:

M(εγ)ẍγ = −
∑
β∈Zd

Aβ(εγ)xγ+β ; A(y, θ)
def
=
∑
β

eiθ·βAβ(y). (6.9)

The aim is to find an evolution equation for the function F, v, θ, ω and a.

First we provide the easiest method for deriving Whitham’s modulation equation for-

mally and refer to [DHM04] for further information. Since the lattice dynamics is given

via a Hamiltonian, the equation can be obtained by making the Lagrangian Lε with

Lε(γ, x, ẋ) = 1
2
〈M(εγ)ẋγ, ẋγ〉 −

∑
|β|≤R

1
2
〈Aβ(εγ)xγ, xγ+β〉

stationary, i.e., a function t → x(t) ∈ �2(Γ) is a solution of (6.9) if and only if it is a critical

point of
∫ t2
t1

∑
γ∈Γ Lε(γ, x(t), ẋ(t))dt. We now insert the ansatz

xγ(t) = X(y, F, v, a; θγ+ωt) with X(F, v, θ, ω, a;ψ) = Fγ + vt+ aeiψΦ(y, θ, ω)

into
∫ τ2/ε
τ1/ε

∑
Γ Lε(γ, x(t), ẋ(t))dt, where F, v, a, θ and ω are assumed to depend on the slow

variables. We now use the clear separation of the microscopic and macroscopic scales, due

to ε 0 1. In
∫ t2
t1

∑
Γ L(γ, x(t), ẋ(t)) dt integration over the fast phase variable ψ ∈ S1

can be done explicitly. Moreover, the discrete sum over εγ ∈ εZd ⊂ Rd is a Riemann

approximation for an integral over Rd.
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This motivates the usage of the averaged Lagrangian

L(y, F, v, θ, ω, a) = 1
2π

∫
ψ∈S1〈M(y)(∂vX + ω∂φX), (∂vX + ω∂φX)〉

−
∑

|β|≤R〈Aβ(y)X,X(θ·β + ·)〉dψ

An explicit calculation leads to the following simple formula

tsL(y, F, v, θ, ω, a) =
1

2

[
〈M(y)v, v〉+ ω2|a|2 − (E(y)F ):F − Ω(y, θ)2|a|2

]
, (6.10)

where E is the tensor defined in (4.4). The Whitham equation is now obtained by making

the functional

(U ,Ψ, a) →
∫ τ2
τ1

∫
y∈Rd L(y,∇yU , ∂τU ,∇yΨ, ∂τΨ, a)dydτ

stationary. This leads to the equations

∂τ
(
∂vL

)
+ div

(
∂FL

)
= 0, ∂τ

(
∂ωL

)
+ div

(
∂θL
)
= 0, ∂aL = 0.

Inserting the special form of L given in (6.10) we immediately see that the first equation

is exactly the equation for linear elastodynamics derived in Section 4:

M(y)∂2τU = div
[
E(y)∇yU

]
.

The third equation reads simply (ω2−Ω(y, θ)2)a = 0 and thus provides the dispersion

relation.

The most interesting part of Whitham’s theory is obtained from the second equation.

Using the variables θ and ω instead of the phase Ψ it takes the form

∂τθ = ∇yω, ∂τ (ω|a|2) = div(−∂θL) = div
(
Ω|a|2∇θΩ

)
. (6.11)

Defining the new variable e∗ = ω|a|2 and using the dispersion relation we obtain the two

conservation laws

∂τθ(τ, y) = ∇y[Ω(y, θ(τ, y))], ∂τe∗(τ, y) = div [e∗(τ, y)∇θΩ(y, θ(τ, y))], (6.12)

which express the fact that the energy as well as the wave vector is transported with the

group velocity.

We want to compare this result with the energy-transport equation for the Wigner

measure. To this end we restrict to Wigner measures which arise from modulated waves

of the type considered in Whitham’s theory. To simplify the presentation we subtract of

the macroscopic deformation U and restrict to the oscillating wave train defined via ã and

θ̃ as given functions of (τ, y). It is easy to see that such a modulated pattern generates the

Wigner measure

µ(τ, y, θ) = e∗(τ, y)δθ∗(τ,y)(dθ),
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where δb denotes the Dirac measure with mass 1 in the point b.

This measure has to solve the energy-transport equation of Section 5.4, namely (5.22).

This is equivalent that for all test function φ ∈ C1
c(R×Rd×TΓ∗) the following identities

hold (all integrals
∫∫∫

extend over R×Rd×TΓ∗):

0 =
∫∫∫

φ(∂τµ−∇θΩ · ∂yµ+∇yΩ · ∂θµ)d(τ, y, θ)
=

∫∫∫
[−µ∂τφ− µdivy(φ∇θΩ)−∇θφ · ∇yΩµ] d(τ, y, θ)

=
∫∫∫

[−∂τφ−∇yΩ · ∇θφ+∇yφ · ∇θΩ]µd(τ, y, θ)

=
∫∫

R×Rd[−∂τφ(τ, y, θ∗) −∇yΩ(y, θ∗) · ∇θφ(τ, y, θ∗)

+∇yφ(τ, y, θ∗) · ∇θΩ(y, θ∗)]e∗(τ, y)d(τ, y).

Since φ is a free testfunction, it is possible for each pair φ̃1, φ̃2 ∈ C1
c(R×Rd) to find a

function φ such that

φ̃1(τ, y) = φ(τ, y, θ∗(τ, y)) and φ̃2(τ, y) = ∇θφ(τ, y, θ∗(τ, y)) ∈ Rd
∗.

This implies ∇yφ|θ=θ∗ = ∇yφ̃1 − φ̃2 · ∇yθ∗ and ∂τφ|θ=θ∗ = ∂τ φ̃1 − φ̃2 · ∂τθ∗, and hence

0 =
∫∫

R×Rd [−φ̃2 · ∇yΩ− (∂τ φ̃1−φ̃2·∂τθ∗) + (∇yφ̃1−φ̃2·∇θ∗) · ∇θΩ]e∗d(τ, y)

Since φ̃1 and φ̃2 are free, we arrive at the same two conservation laws as in (6.12):

∂τθ∗(τ, y) = ∇yΩ +∇yθ∗∇θΩ = ∇y

(
Ω(y, θ∗(τ, y))

)
,

∂τe∗(τ, y) = div
(
e∗(τ, y)∇θΩ(y, θ∗)

)
.
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