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1 Introduction

For superconductors of type II the phenomenon of vortex pinning plays an important
role in technological applications. Several models have been proposed for this effect, see
[KHS63, Bea64, Bos94]. In [DGL99, Pri96] some of these models are analyzed. In this
work we want to contribute to the analysis for the two-dimensional, rate-independent
model proposed in [Cha00], which has the special feature that vortex movement and
creation is an activated process occurring only when a threshold value of the magnetic field
is reached. For analytical studies of related rate-dependent models we refer to [CRS96,
SS99, ES00].

For our model let Ω ⊂ R2 be a simply connected bounded Lipschitz domain (see
[BP04] for the case that Ω has holes which needs different boundary conditions). Denote
by H̃ : Ω → R the magnetic field perpendicular to the plane. The vortex tube density
ω : Ω→ R is related to H̃ via the constitutive relation

ω = Ã(H̃) := αH̃ − div(β∇H̃),

where α and β are material parameters and λ =
√
β/α is called the penetration depth.

In the classical Bean model (cf. [Bea64]) one has β = 0, however, our approach does not
work for this case. The modeling assumption in [Cha00] is now that the vortex tubes will
not move if the modulus of the induced current J = (∇H̃)⊥ = (−∂2H̃, ∂1H̃, 0)> ∈ R3

is smaller than a critical value Jc and that they move immediately if |J | = Jc. The
movement is then described by a mobility function m : [0, T ]×Ω→ R which plays the role
of a Lagrange multiplier. The full problem has then the following form:

∂tω = div(m∇H̃) with ω = Ã(H̃),

m ≥ 0, Jc − |∇H̃| ≥ 0, (Jc − |∇H̃|)m = 0

}
in [0, T ]× Ω,

H̃(0, ·) = H0 on Ω and H̃(t, x) = Hext(t) on [0, T ]× ∂Ω.

(1.1)
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The first equation expresses the conservation of the vortex-tube density which is driven
by the current J . The second line contains the variational inequalities which model the
pinning as an activated process. The magnetic field outside of Ω is assumed to be constant,
since the external current is 0, i.e., 0 = Jext = (−∂2Hext, ∂1Hext, 0)>.

The aim of this work is to rewrite the problem in an energetic formulation which
provides a much easier approach to the existence and uniqueness theory. As the main
unknown, we use H = H̃−GHext(t), where G : Ω→ R is defined in (2.1), and choose the
state space X = H1

0(Ω). We define the energy functional E : [0, T ]×X → R via

E(t, H) =

∫

Ω

1

2
A(H)(x)H(x)− αHext(t)H(x) dx

and a dissipation functional for v = ∂tH via

Ψ(v) = sup

{∫

Ω

A(Ĥ)(x)v(x)dx

∣∣∣∣ Ĥ ∈ H1
0(Ω), |∇Ĥ| ≤ Jc

}
. (1.2)

Here A denotes the self-adjoint operator A : H1
0(Ω)→ H−1(Ω), H 7→ Ã(H). By definition

Ψ is 1-homogeneous, i.e.,

∀λ ≥ 0 ∀ v ∈ X : Ψ(λv) = λΨ(v), (1.3)

and convex. This implies the triangle inequality

∀ v1, v2 ∈ X : Ψ(v1 + v2) ≤ Ψ(v1) + Ψ(v2). (1.4)

Note that Ψ(H1 − H0) has the physical dimension of an energy and can be interpreted
as the minimal amount of energy dissipated due to vortex movement when changing the
state from H0 to H1.

We show that (1.1) is formally equivalent to the differential inclusion

0 ∈ ∂Ψ(∂tH) + DE(t, H) ⊂ X∗, (1.5)

where ∂Ψ(v) is the set-valued subdifferential defined in (2.6). Moreover, the differential
inclusion is equivalent to the following energetic formulation:

For all t ∈ [0, T ] we have

(S) E(t, H(t)) ≤ E(t, Ĥ) + Ψ(Ĥ −H(t)) for all Ĥ ∈ X (1.6)

(E) E(t, H(t)) +

∫ t

0

Ψ(∂tH(t))dt = E(0, H(0))−
∫ t

0

∫

Ω

∂τHext(τ)H(τ, x) dx dτ.

Under the simple assumption Hext ∈ C1([0, T ],R) we show that (1.5) and (1.6) have,
for each H(0) = H0 ∈ H1

0(Ω) which satisfies (S) at time 0, a unique solution H ∈
CLip([0, T ], X). The reformulation of problem (1.1) into (1.5) and (1.6) will be discussed
in Section 2. Note that the variational inequality stated in [DGL99, Thm. 4.1] is different
from our energetic formulation, which has a much more direct physical interpretation, see
the discussion.

In Section 3 we provide a self-contained existence and uniqueness proof which is a
slight generalization of the theory in [MT04]. It is based on time-discretization and the
incremental minimization problem

E(tk, H) + Ψ(H −Hk−1)→ minimum
H∈X

.

We believe that the simplicity of the approach will allow for several generalizations such
that more general models in super-conductivity can be studied.
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2 Reformulation of the model

We denote by ∗〈·, ·〉X the duality between the dual X∗ = H−1(Ω) and X = H1
0(Ω). By the

general assumption that α, β ∈ (0,∞) are fixed, we see that Ã(H) = αH − ∇ · (β∇H)
defines a self-adjoint operator

A :

{
X → X∗,

H 7→ Ã(H),

i.e. ∗〈A(H2), H1〉X = ∗〈A(H1), H2〉X . In fact, we may also assume α ∈ L∞(Ω) and
β ∈ L∞(Ω,R2×2

sym) with α, β ≥ δ > 0 for some δ > 0. We also define the auxiliary function
G ∈ H1(Ω) via

Ã(G) = 0 in Ω and G|∂Ω ≡ 1. (2.1)

The choice was done such that for H = H̃ −GHext with H̃(t, x) = Hext(t) for x ∈ ∂Ω we
have

H(t, x) = 0 for (t, x) ∈ [0, T ]× ∂Ω and Ã(∂tH̃) = Ã(∂tH).

With this definition the first equation in (1.1) can be written in weak form as

− ∗〈A(∂tH), Ĥ〉X =

∫

Ω

m∇(H +GHext) · ∇Ĥdx for all Ĥ ∈ X. (2.2)

The conditions involving the Lagrange multiplier (or mobility factor) can be written more
precisely in terms of convex analysis. For this introduce the set

C = { Ĥ ∈ X | |∇Ĥ| ≤ Jc a.e. in Ω } ⊂ X. (2.3)

Obviously, C is closed, convex and bounded. Note that 0 ∈ C, but C has empty interior
in X. We define the set-valued normal cone NC via

NC(H) :=

{
{ v∗ ∈ X∗ | ∗〈v∗, H − Ĥ〉X ≥ 0 for all Ĥ ∈ C } for H ∈ C,

∅ for H 6∈ C.

With this we postulate the following differential inclusion:

−A(∂tH) ∈ NC
(
H + (G− 1)Hext(t)

)
⊂ X∗ for a.e. t ∈ [0, T ]. (2.4)

Proposition 2.1 If the pair (H̃,m) with H̃ ∈W1,1([0, T ],H1(Ω)) and m ∈ L1([0, T ],L2(Ω))
is a solution of (1.1), then H = H̃ −GHext solves (2.4).

Proof: We first eliminate the Lagrange multiplicator m in (1.1). For H̃ ∈ C we set

M(H̃) :=

{
v∗ ∈ H−1(Ω)

∣∣∣∣∣
∃m ∈ L2(Ω) : m ≥ 0 and (Jc−|∇H̃|)m = 0 a.e.,

∗〈v∗, ϕ〉X =
∫

Ω
m∇H̃ · ∇ϕdx for all ϕ ∈ X

}
(2.5)

andM(H̃) := ∅ for H̃ 6∈ C. For each constant h we have M(H̃) =M(H̃ − h). With this
definition (1.1) takes the form −Ã(∂tH̃) ∈ M(H̃ −Hext(t)) for a.e. t ∈ [0, T ].
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Using H̃ = H + GHext and Ã(G) = 0, we see that the assertion holds if we are able
to show that M(H) ⊂ NC(H) for all H ∈ X. For H /∈ C we have M(H) = NC(H) = ∅.
Thus, assume H ∈ C and take v∗ ∈ M(H), we then have to show

∗〈v∗, H − Ĥ〉X ≥ 0 for all Ĥ ∈ C.

By the definition of M(H) there exists m ∈ L2(Ω) with m ≥ 0, (Jc−|∇H|)m = 0 and

∗〈v∗, H − Ĥ〉X =
∫

Ω
m∇H · (∇H −∇Ĥ)dx.

In the last integral the integrand is in fact pointwise nonnegative a.e.. In fact, if m(x) = 0
this is obvious, and if m(x) > 0 then |∇H| = Jc which implies

∇H · (∇H −∇Ĥ) = |∇H|2 −∇H · ∇Ĥ ≥ (Jc)
2 − Jc|∇Ĥ| ≥ 0,

since Ĥ ∈ C. Thus, we have ∗〈v∗, H − Ĥ〉X ≥ 0 as desired.

In fact, we believe that the problems (1.1) and (2.4) are equivalent. However, so far
we were unable to prove M(H) = NC(H) in general.

It is now easy to reformulate (2.4) in several ways by using the Legendre transform, see
[Vis94, Mon93, MT04]. Introduce the convex characteristic function XC via XC(H) = 0
for H ∈ C and ∞ else and its Legendre-Fenchel transform X ∗C = LXC via

(LXC)(v∗) = sup{ ∗〈v∗, ϕ〉X − XC(ϕ) | ϕ ∈ X }.

Moreover, define the subdifferential ∂f for any convex function f : Y → R ∪ {∞} via

∂f(y) = { v∗ ∈ Y ∗ | ∀ŷ ∈ Y : f(ŷ) ≥ f(y) + 〈v∗, ŷ − y〉 }, (2.6)

where Y will be either X or X∗. Then, the following standard relations hold:

(a) NC(H) = ∂XC(H),

(b) v∗ ∈ ∂XC(H)⇔ H ∈ ∂X ∗C (v∗).

Using (a) and (b) we see that (2.4) is equivalent to H + (G− 1)Hext ∈ ∂X ∗C (−A∂tH):
Exploiting the symmetry C = −C and applying A we arrive at

−(AH − αHext) ∈ A
(
∂X ∗C (A∂tH)

)
⊂ X∗, (2.7)

where we have used ÃG = 0 and Ã1 = α.

Lemma 2.2 Let Ψ : X → [0,∞) be defined via Ψ(v) = sup{ ∗〈AH, v〉X |H ∈ C }, then
Ψ(v) = X ∗C (Av) and ∂Ψ(v) = A∂X ∗C (Av) for all v ∈ X.

Proof: By this definition we easily find X ∗C (v∗) = sup{ ∗〈v∗, H〉X | H ∈ C }. Thus we
have Ψ(v) = X ∗C (Av) and the result for the subdifferential follows from the chain rule and
A = A∗.

Finally we define the energy functional

E(t, H) =
1

2
∗〈AH,H〉X −

∫

Ω

αH(x)Hext(t)dx

and obtain the main result of this section, since DE(t, H) = AH − αHext.

4



Proposition 2.3 Equation (2.7) is equivalent to

0 ∈ ∂Ψ(∂tH) + DE(t, H) for a.e. t ∈ [0, T ]. (2.8)

Such equations are called “doubly nonlinear” in [CV90], where also a general existence
theory is developed for the rate-dependent case.

Using the rate-independence of our model, which is the same as the 1-homogeneity
of Ψ (see (1.3)), and the triangle inequality for Ψ in (1.4) it is easy to see that (2.8) is
equivalent to the two conditions

(S)loc ∗〈DE(t, H), v〉X + Ψ(v) ≥ 0 for all v ∈ X,
(E)loc ∗〈DE(t, H), ∂tH〉X + Ψ(∂tH) = 0.

}
(2.9)

Since E(t, ·) : X → R is also convex, we arrive at the energetic formulation

(S) E(t, H(t)) ≤ E(t, Ĥ) + Ψ(Ĥ −H(t)) for all Ĥ ∈ X,
(E) E(t, H(t)) +

∫ t
0

Ψ(∂tH(τ)) dτ = E(0, H(0))−
∫ t

0

∫
Ω
∂tHext(τ)αH(τ, x) dx dτ

The stability condition (S) has the obvious interpretation, that a state H(t) can only
occur if for no other state Ĥ we can release more energy than is dissipated by the moving
vortices. Obviously, (S)loc is the same as 0 ∈ ∂Ψ(0) + DE(t, H(t)). Using Lemma 2.2 we
find

∂Ψ(0) = AC = {AH |H ∈ C } ⊂ X∗ (2.10)

and thus, (S)loc, and hence (S), is equivalent to A−1DE(t, H(t)) = A−1(AH − αHext) =
H + (G− 1)Hext ∈ C. This is of course the condition |∇H̃| ≤ Jc.

The energy balance (E) just states that the total stored energy E(t, H(t)) at time t
is the initial energy plus the work of the boundary conditions through the external field
Hext minus the dissipated energy.

For more exact proofs of these equivalences we refer to [MT04].

3 Existence and Uniqueness

To formulate the main result most conveniently we recall ∂Ψ(0) = AC.

Theorem 3.1 Let Hext ∈ C1([0, T ]) and H0 be given with H0 +(G−1)Hext(0) ∈ C. Then,
(2.8) has a unique solution H ∈ CLip([0, T ], X) with H(0) = H0.

This result is a special case of several well-established theories. In fact, we simplified the
problem by assuming C1 smoothness of Hext which would not be necessary. However, in
rate-independent systems we may always rescale time to gain smoothness. For instance,
combining Theorem 3.1 and Prop. 3.5 in [Kre99] proves our result. Moreover, in [Vis94]
or [Mon93] corresponding results can be found. Nevertheless, we find it worthwhile to
provide an independent short proof which is based on the energetic formulation (S) and
(E), and thus is closer to the underlying physics. We follow the more general approach in
[MT99, MT04], however we have to work around their hypothesis Ψ(v) ≥ c‖v‖ which is
not true in our situation.
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We introduce the set S(t) of stable states at time t via

S(t) = {H ∈ X | E(t, H) ≤ E(t, Ĥ) + Ψ(Ĥ −H) for all Ĥ ∈ X }.

The condition (S) is equivalent to H(t) ∈ S(t). As seen at the end of Section 2 we have

S(t) = (1−G)Hext(t) + C,

which shows that S(t) is a closed, convex, bounded set depending smoothly on t ∈ [0, T ].

Proof: [ of Theorem 3.1 ] The proof relies on time discretization. For n ∈ N subdivide
[0, T ] equidistantly into 2n intervals via tnk = kT/2n for k = 0, 1, . . . , 2n. We let Hn

0 = H0

and define Hn
k iteratively via

Hn
k+1 = arg min

{
E(tnk+1, H) + Ψ(H −Hn

k )
∣∣ H ∈ X

}
. (3.1)

Since E is strictly convex, the minimizer exists and is unique. Moreover, we have

(A) Hn
k ∈ S(tnk) for n ∈ N and k ∈ {0, 1, . . . , 2n},

(B) E(tnk , H
n
k ) + Ψ(Hn

k −Hn
k−1) ≤ E(tnk−1, H

n
k−1) +

∫ tnk
tnk−1

∂sE(s,Hn
k−1) ds

For (A) use that (i) Hn
k is a minimizer and that (ii) Ψ satisfies the triangle inequality:

E(tnk , Ĥ) + Ψ(Ĥ−Hn
k ) = E(tnk , Ĥ) + Ψ(Ĥ−Hn

k−1) + Ψ(Ĥ−Hn
k )− Ψ(Ĥ−Hn

k−1)
(i)

≥ E(tnk , H
n
k ) + Ψ(Hn

k−Hn
k−1) + Ψ(Ĥ−Hn

k )−Ψ(Ĥ−Hn
k−1)

(ii)

≥ E(tnk , H
n
k ).

For (B) we again use that Hn
k is a minimizer

E(tnk , H
n
k ) + Ψ(Hn

k−Hn
k−1) ≤ E(tnk , H

n
k−1) = E(tnk−1, H

n
k−1) +

∫ tnk
tnk−1

∂sE(s,Hn
k−1) ds.

The stability in (A) is equivalent to

∗〈DE(tnk , H
n
k ), v〉X + Ψ(v) ≥ 0 for all v ∈ X, (3.2)

and the minimization property shows that for v = Hn
k − Hn

k−1 equality holds. Thus, we
have

∗〈A(Hn
k−Hn

k−1), Hn
k−Hn

k−1〉X = ∗〈DE(tnk , H
n
k )−DE(tnk , H

n
k−1), H

n
k−Hn

k−1〉X
(3.2)
= −Ψ(Hn

k−Hn
k−1)− ∗〈DE(tnk−1, H

n
k−1), H

n
k−Hn

k−1〉X
−
∫ tnk
tnk−1

∗〈∂sDE(s,Hn
k−1), H

n
k−Hn

k−1〉X ds

(3.2)

≤ 0 + ‖Hn
k−Hn

k−1‖X‖∂tHext‖C0‖α‖X∗(tnk−tnk−1).

Since the operator A is positive definite, we obtain the a priori Lipschitz bound

‖Hn
k −Hn

k−1‖X ≤ C1|tnk − tnk−1|.

We now define the piecewise linear interpolants Hn : [0, T ] → X with Hn(tnk) = Hn
k ,

then we know ‖ ∂tHn(t)‖X ≤ C1 for a.a. t ∈ [0, T ]. Thus, the Arzelà-Ascoli theorem for
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C0([0, T ], X) yields a subsequence (not renumbered) and a limit function H : [0, T ]→ X
such that for all t ∈ [0, T ] we have Hn(t) ⇀ H(t) in X as n→∞, where ⇀ denotes weak
convergence. Moreover H is Lipschitz continuous with ‖∂tH(t)‖ ≤ C1 a.e. in [0,T].

Keeping t∗ = k∗T/2n∗ fixed, then for all n ≥ n∗ we have Hn(t∗) ∈ S(t∗). Since S(t∗) is
closed and convex we conclude H(t∗) ∈ S(t∗). Since

{
k∗T/2n∗ ∈ [0, T ]

∣∣ n∗ ∈ N and k∗ ∈
{0, . . . , 2n∗}

}
is dense in [0, T ], since H : [0, T ] → X is Lipschitz continuous and since

S(t) depends continuously on t, we conclude H(t) ∈ S(t) for all t ∈ [0, T ].
Finally we consider the energy equation. Let t∗ be as above and add the discrete

energy estimates (B) for n = n∗ over k = 1, . . . , k∗. Note that in the case k = 1 we use
the fact that H0 = Hn

0 lies in S(0). We find

E(t∗, Hn∗(t∗)) +
∫ t∗

0
Ψ(∂tH

n∗(τ))dτ ≤ E(0, H0)−
∫ t∗

0
∂tHext(τ)

∫
Ω
αH

n∗
(τ)dxdτ (3.3)

where Hn∗ is the piecewise linear interpolant from above while H
n∗

is the piecewise
constant interpolant with H

n∗
(t) = Hn

k−1 for t ∈ [tnk−1, t
n
k). The right-hand side is weakly

continuous and on the left-hand side E(t, ·) is convex and continuous and hence weakly
lower semi-continuous. It remains us to show the following lemma.

Lemma 3.2 Assume the sequence (Hn)n∈N as above, then
∫ t

0

Ψ(∂tH(τ)) dτ ≤ lim inf
n→∞

∫ t

0

Ψ(∂tH
n(τ))dτ .

Proof: The sequence (Hn)n∈N is bounded in CLip([0, T ], X) = W1,∞([0, T ],H1(Ω)), which
is continuously embedded into the Hilbert space H = H1([0, T ], X). Thus, the sequence
converges weakly in H to the limit H constructed above. For this note, that the sequence
is also bounded in H and hence it has a weakly converging subsequence. Since H is
compactly embedded in Y = L2([0, T ],L2(Ω)) = L2([0, T ]×Ω) this subsequence converges
strongly in Y. However, the convergence invoked from the Arzelà-Ascoli theorem also
implies strong converge in Y. Thus, the weak limit in H is unique and equal to H.

We now define the functional I : H → R via I(H) :=
∫ t

0
Ψ(∂tH(τ)) dτ . Since

Ψ : H1 → [0,∞) is convex we get immediately the convexity of I. Further the upper
estimate Ψ(v) ≤ C‖v‖H1 implies the strong continuity of I. Together with convexity this
implies sequential weak lower semi-continuity of I on H, which is the desired result.

Hence we can go to the limit in (3.3) and find

0 ≥ µ(t) where

µ(t) := E(t, H(t)) +
∫ t

0
Ψ(∂tH(τ)) dτ − E(0, H0) +

∫ t
0
∂tHext(τ)

∫
Ω
αH(τ, x) dx dτ.

This provides one side of the energy balance.
As H is Lipschitz, we can differentiate µ and obtain, after a cancellation, µ̇(t) =

∗〈DE(t, H(t)), ∂tH〉X + Ψ(∂tH(t)) which is nonnegative by the stability of H(t). Thus,
µ(t) ≤ 0, µ(0) = 0 and µ̇(t) ≥ 0 imply µ ≡ 0. Hence, we have established (E) as well.

Finally we have to show uniqueness which follows again from the variational inequal-
ities (2.9). Let Hj, j = 1, 2 be two solutions, then for each v by subtracting (S)loc from
(E)loc we have ∗〈DE(t, Hj), ∂tHj − v〉X + Ψ(∂tHj) − Ψ(v) ≤ 0. Testing with v = ∂tH3−j
and adding both inequalities gives

1
2

d
dt ∗〈A(H1−H2), H1−H2〉X = ∗〈DE(t, H1)−DE(t, H2), ∂t(H1−H2)〉X ≤ 0.

If H1(0) = H2(0), this implies H1(t) = H2(t) and uniqueness is established.
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4 Discussion

We have reformulated the mean-field model (1.1) for vortex pinning in superconductivity
which was formulated in terms of the magnetic field H̃ and the mobility m, the latter being
a Lagrange multiplier for the unilateral constraint |∇H̃| ≤ Jc. The reformulations involve
either the differential inclusion (2.4) are the doubly nonlinear inclusion (2.8). However,
we want to emphasize that the energetic formulation via (S) and (E) is physically most
relevant. First it uses the energy functional E which denotes the energy stored into the
system. Moreover, it involves the dissipation potential Ψ which measures the energy
dissipation through changes of H, i.e., through the movement and nucleation of vortices.
The stability condition (S) expresses the fact that vortices will move immediately, if the
energy dissipated via Ψ is less than the gain in the energy E . This is the easiest way to
describe systems with activation thresholds. The energy balance (E) is the usual energy
conservation. The present energy plus the dissipated energy equals the initial energy plus
the work done by the external forces.

Note that the subdifferential equation (2.8) can also be written as the variational
inequality

∀ v ∈ X : ∗〈AH(t)− αHext(t), v − ∂tH(t)〉X + Ψ(v)−Ψ(∂tH(t)) ≥ 0. (4.1)

To see this, just subtract (E)loc from (S)loc, see (2.9). Variational inequalities of this type
where also derived in [BP04] but the physical interpretation of stability (S) and the energy
balance (E) are not highlighted there. Our variational inequality is different from the one
stated in [DGL99, Thm. 4.1], which reads in our notation

∫ s
0 ∗〈A∂tφ(t), φ(t)−H(t)〉X + ∗〈∂tHext(t), φ(t)−H(t)〉X dt

≤ 1
2 ∗〈A(φ(s)−H(s)), φ(s)−H(s)〉X − 1

2 ∗〈A(φ(0)−H(0)), φ(0)−H(0)〉X

for all φ ∈ H1([0, T ], X) with |∇φ(t, x)| ≤ Jc a.e. For a proof of the equivalence of these
two variational inequalities we refer to [MT04, Mie05].

It should be noted that the theory in Section 7 of [MT04] can be generalized to prove
strong convergence with

‖Hn(t)−H(t)‖X ≤ C(τn)1/2 with τn = T/2n.

Moreover, the time-incremental minimization problems (3.1) can be used to introduce
spatial discretization by replacing X by a finite-dimensional subspace Xh, see [DGL99,
Sect. 6]. We expect that the related convergence results for space-time discretizations
obtained for elastoplasticity (see [HR99, AC00]) also hold in the present situation.
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