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We study how Hamiltonian structures reduce from a microscopic lattice model
under the transition to a macroscopic continuum model. Thus, we provide tools
for constructing effective macroscopic Hamiltonians. In particular, we are inter-
ested in the case of modulations of plane waves having a microscopic structure.
Embedding the discrete system into a continuum one and using additional micro-
scopic phase variables we are led to a completely equivalent continuous system
that has additional first integrals associated with the translationally invariants in
space and phase variables. The phase velocity of the microstructure and the group
velocity of modulating pulse can then be factored out and suitable scalings lead to
a singularly perturbed system. Arguing formally the Hamiltonian converges to a
generalized Γ-limit that governs the macroscopic modulation equation. Only for a
system without microstructure we are able to make the limit rigorous in showing
weak convergence to a nonlinear Klein-Gordon equation.

The derivation of macroscopic equations for discrete models (or continuous
models with microstructure) can be seen as a kind of reduction of the infinite
dimensional system to a simpler subclass. If we choose well-prepared initial con-
ditions, we hope that the solution will stay in this form and evolve according
to a slow evolution with macroscopic effects only. We may interprete this as
a kind of (approximate) invariant manifold, and the macroscopic equation de-
scribes the evolution on this manifold, the functions A defining kind of coordi-
nates. We refer to [Mie91] for exact reductions of Hamiltonian systems and to
[DHM06, GHM06a, Mie06b, GHM06b] for the full details.

1. Derivation of nlS via Hamiltonian two-scale reduction

As the easiest example we consider the one-dimensional Klein-Gordon chain

ẍj = xj+1 − 2xj + xj−1 − axj − bx3
j , j ∈ Z.

The sum of the kinetic and potential energy gives the Hamiltonian

H(x, ẋ) =
∑

j∈Z

(
1
2 ẋ2

j+
1
2 (xj+1−xj)

2+a
2x2

j+
b
4x4

j

)
.

We embed the discrete chain on Z into the cylinder Ξ = R×S
1, where S

1 contains
the additional microscopic phase variable. The continuous Hamiltonian system is

(1)
∂2

t u = ∆(1,0)u − au + bu3 with a > 0, u ∈ L2(Ξ),

and ∆(ε,δ)u(η, φ) := u(η+ε, φ+δ) − 2u(η, φ) + u(η−ε, φ−δ).

Introducing p = ∂τu this is a canonical Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2p2 + 1

2

(
∇(1,0)u

)2
+ a

2u2 + b
4u4 dηdφ.

1



This system contains the KG chain exactly, because it decouples completely into
an uncountable family of KG chains just displaced by (η, φ) ∈ [0, 1)×S

1. Moreover,
(1) is invariant under translations in the spatial direction η as well as in the phase
direction φ. This leads to the two first integrals Isp(u, p) =

∫
Ξ

p ∂ηu dη dφ and

Iph(u, p) =
∫
Ξ p ∂φudηdφ. Using the symmetry transformation

(ũ, p̃) = T sp
ct T ph

(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph

the associated canonical Hamiltonian system Ωcan(ũt, p̃t) = DH̃(ũ, p̃) on L(Ξ)2 is
still fully equivalent to a family of uncoupled KG chains.

Introducing a suitable scaling, which anticipates the desired microscopic and
macroscopic behavior, will exposes the desired limit. For this we let

(ũ(η, φ), p̃(η, φ)) = (εU(εη, φ−θη), εP (εη, φ−θη)),

which keeps the canonical structure (after moving a factor ε arising from dy = εdη
into the time parametrization τ = ε2t). We obtain the new Hamiltonian

Hε(U, P ) =
∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2
+

(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2
)
+ b

4U4 dydφ,

where ∇(ε,θ)U(y, φ) = U(y+ε, φ+θ)−U(y, φ). The modulation ansatz now reads

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (Re A(y)eiφ, ω ReA(y)eiφ) + O(ε),

and leads to Hε(Rε(A)) = HnlS(A)+O(ε) and DRε(A)∗ΩcanDRε(A) = Ωred+O(ε)
with

HnlS(A) =
∫

R
ωω′′|Ay|

2 + 3b
8 |A|4 dy and Ωred = 2iω.

Thus, the macroscopic limit is the one-dimensional nonlinear Schrödinger equation

2iωAτ = −2ωω′′Ayy + 3
2b|A|2A.

A rigorous justification of this micro-macro transition is given in [GM04, GM06].

2. A weak convergence result

For static problems there is a rich literature concerning the Γ-convergence of
potential energy functionals of discrete models to continuum models (cf. [FJ00,
FT02, BG02, BLM06]). Here we want to summarize some first results for dy-
namic problems that rely on weak convergence. In [Mie06a] it was shown that
linear elastodynamics can be derived from a general linear lattice model. How-
ever, this result used exact periodicity and linearity in an essential way. The
abstract approach presented in [Mie06b] has its main advantage in the flexibil-
ity, which allows for applications in nonlinear and macroscopically heterogeneous
settings.

In particular, it can be applied to polyatomic Klein–Gordon chains, which we
also allow to have large-scale variations in the stiffness and masses. The KG chains
under consideration are assumed to have a periodicity of N on the microscopic
level, may change also on the macroscopic scale y = εj, and are all bounded
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from below by a positive constant. The KG chain is then given by the canonical
Hamiltonian system on ℓ2 × ℓ2 via

(2) Hdiscr
ε (x,p)=

∑
j∈Z

(
p2

j

2m[j](εj)+
a[j](εj)

2 (xj+1−xj)
2+

ε2b[j](εj)

2 x2
j+

ε2c[j](εj)

4 x4
j

)
,

where [j] = j mod N . To derive a suitable continuum model we embed ℓ2× ℓ2 into
Zε ⊂ Z = Z0 = H1(R) × L2(R) via

(u, v) = Eε(x,p) with (u(εj), v(εj)) = (xj , pj) for all j ∈ Z

with Zε = { (u, v) ∈ Z | u|[εj,εj+ε] affine, v|(εj−ε/2, εj+ε/2) constant }

Theorem [Mie06b] Let (xε, pε) : [0, T/ε] → ℓ2 × ℓ2 be solutions of the canonical

Hamiltonian system associated with Hdiscr
ε in (2). If for τ = 0 we have

(
I 0
0 M(·, ·/ε)

)
Eε

(
xε(τ/ε)
εpε(τ/ε)

)
⇀

(
u(τ)

M∗(·)v(τ)

)
in Z,

then this convergence holds for all τ ∈ [0, T ], where (u, v) : [0, T ] → Z is a solution

of the macroscopic wave equation arising from the canonical Hamiltonian system

with H0(u, v) =
∫

R

1
2M∗(y)v

2 + A∗(y)
2 (u′)2 + B∗(y)

2 u2 + C∗(y)
4 u4 dy, where M∗(y) =

1
N

∑N
k=1 mk(y) and similarly for B∗(y) and C∗(y), whereas A∗(y) = 1/

∑N
k=1

1
ak(y)

is the harmonic mean.
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