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Abstract. We study finite-strain elastoplasticity in a new formulation proposed
in [Mie02b,CHMO02,Mie02a]. This theory does not need smoothness and is based on
energy minimization techniques. In particular, it gives rise to robust algorithms. It
is based on two scalar constitutive functions: an elastic potential and a dissipation
potential which give rise to an energy functional and a dissipation distance.

Here we study these dissipation distances in some detail and present situa-
tions where they are quite explicitly available. These include isotropic plasticity of
Prandtl-Reuf type and examples from two-dimensional single-crystal plasticity. We
put special emphasis on the geometric nonlinearities arising from the underlying
matrix groups which lead to optimization problems on Lie groups.

1 Introduction

In the recent papers [Mie02b,CHMO02,Mie02a] a new energetic formulation
for finite strain elasto—plasticity was proposed. It is based on computational
algorithms used in engineering, cf. [OR99,0RS00,HH02,ML01,MSL01]. This
theory is based on the elastic potential ¥ and the dissipation potential A as
the underlying constitutive functions:

¥ = (F,P,p) and A = A(P,p,P,p) >0

where F = Dy = F¢Fy, is the total deformation gradient, P = F;ll the
inverse plastic deformation and p € R™ denote the hardening variables. The
plastic tensor P is usually assumed to have determinant 1, i.e. P is an element
of the special linear group SL(d) = {P € R?? | det P = 1}. Consequently,
A is defined on the tangent bundle of the manifold SL(d)xR™. The axiom
of plastic indifference implies

~ ~

O(F,P,p) =4(FP,p),  A(P,p,P,p)=A(p,P'P,p).
This means that the underlying mathematical structure is that of the Lie

group SL(d), a fact which was first emphasized in [Mie02b]. Rate—indepen-
dency is expressed by the fact, that A is homogeneous of degree 1 in the rate

(P,p), see (Sy3) in Section 2.1.
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The full global energetic formulation relies heavily on the (global) distance
D(x,-,-), called dissipation distance, which is generated via the infinitesimal
metric A(z,-,-) on SL(d)xR™ as follows the distance D((Po,pg) (P1,p1))
is the infimum of the dissipation fo P(s),p(s), P(s),p(s))ds over all paths
(P,p) € C'([0, 1],SL(d) xR™) with (P(j), p(j)) = (P;,p;) for j = 0, 1. Con-
sider now a body 2 C R?, a deformation ¢ : 2 +— R? as well as internal
states (P;,p;) : 2 — SL(d)xR", then integration over (2 gives the total
energies

E(t,@,P,p) = [, $(De(x), P(x),p(x)) dz — (£(t), o),
D((Po, po), Pl,pl = Jo D((Po(2),po(2)), (P1(2), p1 (x))) da,

where £(t) denotes the external loading depending on the process time t €
[0,7]. A triple (p,P,p) : [0,T]x2 — RIxSL(d)xR™ is called a solution
process if it satisfies the following stability condition (S) and the energy
inequality (E):

(S) [Stability] For all ¢ € [0,7] and all comparison states (@, P, ) we have

E(t, (1), P(1),p(t) < E(t, &, P, ) + D((P(t),p(1)), (P, ).

(E) [Energy inequality] For all 0 < ¢; < ¢, < T we have

E(ta, p(t2), P(t2),p(t2)) + Diss((P,p); [t1,1t2])
< E(t,p(t), P(t), pt)) — t?w(s),cp(s))ds,

where Diss((P, p); [t1,t2]) ft2 fg z,(P,p), (P,p))dzds.

Note that (S) & (E) characterlze the process completely and that this
formulation does not involve any derivatives, neither of F = De, P and p
(with respect to t or z) nor of the constitutive functions ¢ and A. It is shown
in [Mie02a] that this formulation is consistent with the usual flow rules of
finite plasticity if the solution of (S) & (E) is sufficiently smooth. In fact,
using the Legendre transform there is a one-to-one correspondence between
A and an associative flow rule for a suitable yield surface.

The purpose of this work is the investigation of the global dissipation
distance D in cases when we have no hardening or just a scalar variable mea-
suring the total hardening. The major object studied here is a left—invariant
metric D : SL(d)x SL(d) — [0, 0] generated by A : sl(d) — [0, o] via

D(Py,Py) := inf /1 AP#)"'P(t)dt | P(-) € C'([0,1],SL(d)),
0 P(0) =Py, P(1) =P

In this work we only investigate the two—dimensional case, so we consider
SL(2), the three-dimensional Lie group of 2x2 matrices with determinant 1.
A few results for the three-dimensional case are given in [Mie02b].
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For the isotropic case with d = 2 we derive an explicit formula for D. This
case is characterized by

~ /
Ae) = (Sle+€T? + 2 1e—€TP) ", where [nf? = trace(n")

and a > 0, 8 € [0, 0] are material parameters. In this case D(Py,Py) can be
shown to depend solely on the two invariants of Q = Py Py, i.e., the trace
and the norm of Q.

_ Second we report on results for the case of single crystal plasticity where
A is characterized via slip systems S*, a = 1,...,m as follows

A~(§) = min {Z KaYa | € = Z VoS with v, > O} ,

a=1 a=1

with the usual convention that the minimum is +oo0 if the set is empty. These
cases lead to functions A which are piecewise linear. As a consequence one has
to expect that geodesic curves which minimize the dissipation distance have
corners. Physically these corners correspond to switches between different slip
systems.

The case of a square lattice leads to the four slip systems £S! = + (8 é)

and +S? = ﬂ:((l] 8), which is analyzed in detail in [Mit02a]. It is shown that

for all geodesic curves P: [0,1] — SL(2) the invariant rate £(t) = P(t)"'P(t)
is piecewise constant and takes values only in {+S', £8%, +1(S'+S?)}. More-
over, the number of switches can be bounded from above by 5.

As is shown in [Mit02a], one easily obtains the solution for a parallelogram
lattice from the solution for the square lattice. We also address the case of a
hexagonal lattice where NV = 6 slip systems are present.

Finally we conclude with the calculation of the dissipation distance in the
case of a scalar hardening variable.

2 Elastoplasticity with hardening parameters

2.1 Constitutive laws

Multiplicative elastoplasticity uses the split F = Dy = FqFp1, where Fpy
is an internal variable which is assumed to be generated by movements of
dislocations and is such that it maps the crystallographic lattice onto itself.
Only the remainder Fg = FF;ll is the part which accounts for elastic energy

and stresses. To simplify notation we introduce P = F;ll as an internal
variable together with suitable hardening parameters p € R™, i.e.

z=(P,p) € &xR™, with & C GL4 (R?).
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Here & is a Lie group contained in GLy (R?) which might be different from
model to model. We let g denote the associated Lie algebra. Typically one
chooses ® = SL(R?) = { F| det F = 1}. However, & = GL, (R?) or, if only
one slip system with [n| = |d| = 1 and n-d = 01is active, 8 = {I+ad®n|a €
R} might also be suitable.

The hardening parameters can include isotropic or kinematic hardening,
see [Mie02a] and below.

For the constitutive function @ and A we now specify the associated sym-
metry conditions. They involve the material symmetry group & C SO(R?)
and they are supposed to hold true for all (z, F,P,p) € 2xGL, (R?)x&xR™:

(Sy1) Objectivity (frame indifference):

~ ~

P(z, RF,P,p) = ¢(z,F,P,p) for all R € SO(3);
(Sy2) Plastic indifference:

¥(2,FG*,GP,p) = §(z,F,P,p) and

Az, GP,p,GP,p) = Az, P,p,P,p) for all G € &;

(Sy3) Rate independency:
Az, P,p,aP,ap) = all(z,P,p, P, p) for a > 0;
(Sy4) Material symmetry:

¥(z,F,PS, 7sp) = ¢(z,F, P, p) and
A(z,PS, 7sp, PS, 7sp) = Az, P,p,P,p) forall S € &.

Here 7g € R™*™ denotes a linear representation of the material symmetry
group & on the hardening parameters in R™. It satisfies 75,5, = 75,75, -

The special assumption for elastoplasticity is_the “plastic indifference”
(Sy2) which leads to the multiplicative split in ) as well as to the correct
time rates in the flow rules. We find

~ ~

w(m7F7P7p)=¢(x7FP7p)7 A\(Z.JPJp’PJp):5(x7p7P_1P7p)‘ (1)

The consequence of the other symmetries will be studied along with the
examples treated below.

2.2 Associative flow rules

We will not need the associated flow rules in order to study the energetic
formulation of elastoplasticity. However, they give some insight into the un-
derlying structures. In particular, they are very helpful in finding the paths
which minimize the dissipation distance between two points. This minimiza-
tion is closely related to the Pontrjagin Maximum Principle (PMP), which
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uses the dual stress variables in the same way as the flow rules in elastoplas-
ticity. We define the thermodynamically conjugate variables

Q= -9, F,P,p) = -FT58-¢(2,FP,p) € Tp& = P Tg* C R¥*7,
q= —%Tﬁ(m,F;P;p) = _%J(manap) € RT

Here g* denotes the dual Lie algebra which is the set of linear mappings
from g into R and similarly R7* denotes the dual space of R™. This notation
makes the distinction between the primal internal variables (P,p) € &xR™
and the dual (thermodynamically conjugate) variables (PTQ,q) € g*xR™
more transparent. R

The elastic domain Q(z, P, p) associated with A(z,P,p,-,-) is the set of
all thermodynamic forces (Q, ¢) which are not large enough to overcome the
dissipational friction:

Q(z,P,p) = [0p 5 A(x, P, p,-,-)](0,0)
={(Q,q) | Q:V+qv < A(z,P,p, V,v) for all (V,v) € TpBxR™ }.
Using (Sy2) and the Lie group structure implying Tp® = Pg leads to
Qa, P,p) = {(Q,0) | Q:(PE)+qv < Az, p,€,) for all (€,v) € gxR™ }
={(Q0)(PTQ,q) € 9, Al,p,)](0,0) } C THEXR!".
Defining @(x,p) = Q(z,1,p) = [6(5’@)5(@",1), -,)](0,0) C g*xR™ we find
(Q,q9) € QP,p) <= (P'Q,q) € Ap). (2)

The plastically indifferent objects A(p,-,-) : gxR™ [0, 0] and Q) C
g* xR} are in one—to—one correspondence to each other. On the one hand we
have Q(p) = [0(¢,5) AP, -,-)](0,0). On the other hand, for given convex Q(p)

the function A(p,-) is obtained by Legendre transformation of Xg(p)» 1-€-

Ap.&v)= sup (pé+vg)=  sup  [mé+vg—Ay, (M9 (3)
(m,9)€Q(p) (m,q)€g* xR
The flow rule in the thermodynamically conjugate space now takes the form
(Q,q) € [8(15,1-))A(P,p, - -)](P,p). Using the above transformation for P this
is equivalent to

(PTQ,q) € [0e.5)Alp, -, )|(P~'P,5) C g*xR™. (4)

Via the Legendre transform we obtain the formulation in the internal variable
space:

(P_lp,p) S 8X@(z,p) (PTQa(I) = N(PTQ,q)@($7p) - ngm7 (40’)

where N, C denotes the outer normal cone at z to the convex set C. This is
the well-known associative flow rule of multiplicative elastoplasticity. It con-
tains the “plastically indifferent” plastic rate PP as well as the “plastically

indifferent” conjugate force PTQ = —FeTla%elfgb(a:, Fe,p).
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3 Dissipation distances in the case without hardening

To facilitate the subsequent discussion we first consider the case without
hardening, so A = A(P,P) = A(P~'P) is defined via a norm-like function
A : g+ [0,00]. This situation is discussed in [Mie02b] in some detail. The
dissipation distance satisfies

D(Py,Py) = D(1,P'Py) =: D(P;'Py),

and D: & — [0, 0] satisfies D(1+e€) = eA(€) + O(e2) for € — 0. By defi-
nition, D(ef) < A(&) for all £ € g. Hence for P = ef1 - ... - ek the triangle
inequality yields the estimate D(P) < Zle A(E;)- It is important to observe

that, in general, D(e€) < A(£) which indicates that the matrix exponential
curves t — eté are not the paths of minimal dissipation.

As the dissipation distance is defined via a variational problem, its com-
putation may be fairly complicated. For practical purposes one would like
to know situations where D is available at reasonable computational cost.
We will present several such cases, in particular in the case of single crystal
plasticity. R

The definition of the dissipation distance D still contains some redun-
dancy because we assume rate independence (Sy3). A simple reparametriza-
tion argument shows that it suffices to consider only curves P: [0,1] — & for
which A(P~'P) is constant. Therefore, if we set U= {& € g| A(£) <1}, we
immediately obtain the following characterization:

~

D(Po,Py) =inf ¢ T > 0| there exists P € C"([0, 7], ®) such that
P-'P €U, P(0) = Py, P(T) = P,

Thus D is characterized via the solution of a time—optimal control problem.
The underlying ODE is P(t) = P(t)£(t), £(-) € U a.e., with time being
the cost functional. The advantage of this point of view is that standard
results and tools from optimal control theory can be applied immediately.
For example, if U C g is compact convex, then distance minimizing paths
t — P(t) always exist within the class of absolutely continuous functions,
i.e., P7'P is L*, but not necessarily C°. Thus shortest paths may have
corners, cf. [Mie02b] for an example. Typically, corners appear when the
boundary of U is not strictly convex. In particular, this always happens in
the case of single crystal plasticity where A is piecewise linear, so U is a
convex polyhedron. We note that U need not have interior points, it suffices
that U generates g as a Lie algebra.

The Pontrjagin Maximum Principle (PMP) as a first order neces-
sary condition for optimality is a powerful tool for finding shortest paths. For
systems on Lie groups it takes a particularly simple form, cf. [Jur95,Mit95],
for example. In some sense the (PMP) is the flow rule, but our point of view
will give additional geometric insight.
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3.1 The (PMP) and its relation to the flow rule

Given U C g we define the optimal Hamiltonian H: g* — R, as follows:

H(n) = renelul}(né)-
Let Q = {neg*|H(n)>—-1}.If Uis convex and U = —T, then Q is simply
the polar of U.

Now let I be an interval and assume that P: I — & is a length minimizing
path. Set £ = P~'P € L*(I,U). Then the (PMP) yields an absolutely
continuous curve 7(t) € g* with the following properties:

(0) Nontriviality: n # 0 in I,

(1) Adjoint equation: Ad(P~1(¢))*n(t) = const € g*,

(2) Minimizing condition: 7(t):£(t) = min {n(t) £ €€ U},
(3) Constant Hamiltonian: #H(n(t)) = const, either —1, or 0.

These conditions relate to the classical flow rules as follows: by (3) the curve
n(t) evolves on a level set of H, either {H = 0}, or {H = —1} = 8Q. The lat-
ter is the yield surface, this becomes even more evident if one compares (3)
with Eqn. (2). Although H(n) = 0 is possible, this occurs only under very
degenerate circumstances—it never occurs, for example, if U contains a zero-
neighborhood. The flow rule (cf. Eqn. (4a)) is encoded in (1) and (2). The
latter implies that £(t) € OH(n(t)). We stated the adjoint equation (1) al-
ready in integrated form using the adjoint action of & on g, resp., the induced
action on g*. For & = SL(d) and g = sl(d) the adjoint action is simply con-
jugation: Ad(P)¢ = PEP L. Identifying sl(d)* with sl(d) via the trace form
1n:€ = tr(n"€) one may also write Ad(P~1)*n =P TnPT.

3.2 The isotropic two—dimensional case

This case relates to isotropic plasticity of Prandtl-Reuf type using the von
Mises flow rule. The plastic tensor P lies in & = SL(d) and the material
symmetry—group is & = O(d), see (Sy4). From (Sy2) and (Sy4) one obtains
that A(¢) = ARERT) for all £ € sl(d), R € SO(d). If one considers Rie-

mannian metrics then A(€) can be put into the general form

A(€) = (al€gym|*+B1€ansi|D'/? With &gy = LE+ET), Eany = S(E—ET). (5)

It is shown in [Mie02b] that a curve is a shortest path if and only if it has
the form

P(t) = P(0) Mg, (t€) where Ms(€) = eform~8anuie(l+)8umu,
As a consequence, the dissipation distance associated with A from (5) reads

D(P) = min{ A(¢) | P = Mg/a(8) }.
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For symmetric, positive definite matrices P = PT > 0 we find
D(P) = va|logP| = va (logP:logP)"/%.

Using the polar decomposition P = RU with R € SO(d) and U = UT > 0
together with the triangle inequality we arrive at the explicit estimate

min{D(R), D(U)} < D(P) < D(R) + D(U),

where D(U) = 1V/a|log(UTU)| = 1\/a|log(PTP)|. Thus we see that for
large shears P = 1 +~vn ® m the dissipation distance D(P) grows at most
like log |y| for v — oo.

An important role in isotropic plasticity plays the case of zero plastic
spin. This is realized by @« = 1 and 8 = oo in (5), or more precisely, on
sl(d) = T1(SL(d)) we set

A . — |£sym| if £anti = 0;

Ano spin(€) = { oo otherwise.
The associated geodesic curves are P(t) = P(0)et(e~wel with o = o7 and
w = —w'. Note that P(t)"'P(t) = e"“ge! is not constant but gives a
constant and finite A = A(P(t)~'P(t)) = |o|. In particular, P(0)~'P(¢) can
reach every matrix in SL(d), not just symmetric ones. We find

Do spin(P) =minX{ |o| | ¢ = ¢ and there exists w = —wT . (6)
such that P = e “e%

For d = 2 the dissipation distances ﬁno spin €an be calculated more explicitly.
For P € SL(2) we have

l~)n0 spin(P) = min {p > 0| there exists v € R such that
N(p,7) = P:P and T(p,7) = tr P}

where the functions N and T are defined via

sinh v for £ > ()

NG
C(t) = coshv/t for t >0, and  S(t) =4 1 fort =0
cosy/—t fort <0, sin V1
ﬁ fort <0

as T(p,7) = 2(cosy C(p*—7) + ysiny S(p*—7?)), and
N(p,v) =2(1+2p°[S(p*—7*)1").
It actually suffices to consider v € [0,/7%24p?] in the minimum defining

Do spin- For instance, for a rotation R = (f:fn¢¢ 33;3) with ¢ € [—m, 7], we

get D(R) = /[¢[(27+]|4]). In particular, for ¢ = 7 we have D(—-1) = /37
which is obtained with p = v/37 and v = 27 and the geodesic curve P(t) =

ellT—wetw with o = (g _Op) and w = (_07 g)
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3.3 Single—crystal plasticity

In single—crystal plasticity the plastic flow occurs through plastic slip induced
by movements of dislocations. Let S* = d*®n®*, a = 1,...,m, be the m slip
systems where n® is the unit normal to the a-th slip plane and d® is the slip
direction with |[d*| =1 and d*-n® = 0. All plastic flow has the form

P=PY"  v,8"

where the slip rates v, are taken to be positive. This means we formally
distinguish the slip systems S® and —S.

The crystal symmetry group & C O(d) is discrete and associates a permu-
tation g € Perm(m) to each R € & such that mgz = 7mr o g (composition
of permutations) and

(RA®, Rn®) = (d™®) n™(@)) o gm() = RG*RT.

The set of all slip systems { S*|a = 1,...,m } determines the associated
Lie algebra g (and hence the Lie group ® C GL,(d)) as the smallest Lie
algebra containing all slip systems:

S:=span{S, |a=1,...,m} Cg=T16.

Note that g may be strictly bigger than S, as is seen in Example 1 where
dimS = 2 < dimg = 3. From d® - n® = 0 we know tr(S®) = 0 and hence
g C sl(d) and & C SL(d).

We now postulate the dissipation metric and then show that it gives rise
to the classical single—crystal flow rule for the resolved shear stresses 7, in
each slip system. With € = P~'P the dissipation is

A(g) = min{ E;nzl KaYa | Yo >0, §= E;n:1 'Yasa}

where ko > 0 are given threshold parameters, see [OR99,Gur00]. Since
A(S®) = Kq, the associated set {A < 1}is U = conv({k3;'S* |a =1...m}).
Computing the dissipation distance IN)(P) can be considered as an opti-
mal factorization problem: find k € N, ¢1,...,t € R", and &, ...&, €
{k,1S* | @ =1...m} such that P = eé1 ... et & and 3, [tx| is minimal.

The associated elastic domain @(P) is formulated in the thermodynam-

ically conjugate variables Q = —81:1/#\. The invariant form Q using n =
devPTQ is given by

Q={nesld)*|ka+S*n<0fora=1,...,m}.

Hence the elastic domain is characterized by one yield condition for each slip
system S¢. Denoting by 7, = S®:n the resolved shear stress, the slip system
S@ becomes active (4 > 0) only if 74 = K > 0.
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Ezample 1. [Square lattice in d = 2.] Consider d = 2 and

Z((a B)):{|/6|+|’7| if a =0,

7« o0 otherwise.

This corresponds to the four slip systems {+S!,+82} with S! = ({ 1)

Fig. 1. The set U, the yield surface dQ, and the flow rule for four 2D-slip systems

and S? = (9 7). Here we have U = conv(+S!,+8?) C sl(2). The Lie al-
gebra sl(2) is a 3-dimensional vector space. For visualization purposes we

use the basis H = ((1) _01), T = S!' +8% and U = S! — S2. The set

{€ € 51(2) | det(&) =0, & # 0} of all possible slip systems is the boundary
of a Lorentzian double cone. Figure 1 shows this double cone and the set U.
The horizontal plane RH + RT is the set of symmetric matrices (in s((2))
while the vertical axis is the set of skew-symmetric matrices. Using a dual
basis for sI(2)* we depicted the yield surface 0Q (which is a cylinder over a
diamond square) and some integral curves of the flow rule. A careful analysis
of the information provided by the (PMP) shows that for all geodesic curves
t — P(t) the curve £(t) = P(t) 'P(t) € U is piecewise constant, and

£(t) € {isl,is%%<sl+s2),%<s1—s2)}.

Actually one obtains much more detailed information about the switching
behavior of £(t). We say that £(t) is a bang-bang control if it switches
only between the vertices of U. Otherwise, we call £(t) a singular control.
From the (PMP) we obtain two types of bang-bang controls:

alternating: £(t) alternates between S', —S? (or between —S!,S?2), and the
time 7 between successive switches is constant, 7 € (0,2v/2).
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cycling: £(t) switches cyclically from vertex to vertex (of U), either clockwise
or anti-clockwise. Again the time between successive switches is constant,

7 € (0,v2).
There are two types of singular controls:

trivial: £(t) = £1(S'—S?) is constant;

singular: £(t) switches between £S', £S%, and +1(S!+S2), but the switch-
ing patterns are more complicated although not arbitrary, see [Mit02a]
for the details.

These singular controls are difficult to observe in numerical simulations. De-
pending on the discretization scheme it is most likely, that only the bang-
bang-controls are detected.

It is therefore important to emphasize that the singular controls do pro-
vide geodesics. For example, P(t) = e5(5'+5) is length minimizing for all .
More important, the set of Pg € SL(2) such that a length-minimizing path
from 1 to Py is either alternating or cycling, is compact and not even a neigh-
borhood of 1. It also turns out that the trivial controls (£ = +1(S'-S?)
constant) do not generate length minimizing paths. So geodesics have £(t) €
{£S!, £8%, £3(S'+5?)}.

For a fully detailed analysis of D we refer to [Mit02a]. There it is shown
that geodesics have at most 5 switches and which switching patterns have to
be considered. We would like to emphasize that in the present example D is
algorithmically available, and its computation is inexpensive.

Similar results can be obtained for more general slip systems.

-2
2 -1 0 1 2

Fig. 2. The set U and the yield surface 0Q for the hexagonal lattice
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Ezample 2. [Hexagonal lattice.] Here we consider 6 slip systems along the
sides of an equilateral triangle. A suitable setting is U = conv(£S!, £82, +83)

with S' = (§ 3),8% = RS'RT, §° = RTS'R, where R = (_&n7/2 /2 ),
The polytope U has the combinatorial structure of an octahedron, it is shown
in Figure 2. There are 6 vertices, 8 (triangular) faces, and 6 + 8 — 2 = 12
edges (Euler’s formula for polyhedra). The “top” and “bottom” triangles

+ conv(S?, 82, S?) are equilateral while the other triangles are isosceles. The
polar @ is the dual polytope of U. Therefore its combinatorial structure is
that of a cube with 8 vertices, 6 (quadrilateral) faces, and 8 + 6 — 2 = 12
edges, cf. Figure 2 which also shows some integral curves of the flow rule. The
overshooting tips indicate the flow direction and which switches occur. As in
the previous example one obtains from the (PMP) that £(t) = P(t)"'P(¢) is
piecewise constant for length-minimizing P(¢). Apart from the 6 possibilities
we get from the vertices of U there are an additional 6 possibilities (each
corresponding to a vertex of @, resp., a face of U) plus 6 possibilities corre-
sponding to (some) edges of U, resp. @ Thus we have a total of 18 possible
values for &. Generically, £(t) cycles through the vertices of a single face of U
in a certain order. For example, on the “top” face conv(S!, S?,S3) the switch-
ing sequence is S* ~» S3 ~ S2---; on the “lateral” face conv(S!, —S%, —S3)
the switching sequence is S* ~ —S?% ~» —S3. ... There are trivial cases (i.e. £
constant) corresponding to the vertices of Q. Nevertheless, it turns out that
none of these is optimal. Finally, we also get more complicated singular cases.
We will provide the details in the forthcoming paper [Mit02b]. Although com-
putation of D is technically more difficult than for the square lattice, all the
obstacles can be overcome.

Considering the previous two examples it is natural to ask whether it
is true in general that for arbitrary 2D-slips systems the length minimizing
paths have piecewise constant £ = P~'P. This is actually true, but it is by no
means obvious because it is definitely not true for arbitrary polyhedra U C
5[(2) For exa‘mplea let gl = (; _01)7 &2 = (_12 _01)7 £3 = _£—1r7 £4 = _£-2r7
and U = conv(&,,...,&,). Since tr(&}&k) = —2 for j # k, we can write
Q = conv(ny,...,n,) with n,; = %gj. Here it may happen, for instance, that
&(t) € conv(&,,&,) varies arbitrarily. The geometric reason for this is that
RE+RE, C sl(2) is a 2-dimensional subalgebra. Speaking in geometric terms,
degeneracies occur if one of the edges of the polytope U lies in a 2-dimensional
subalgebra of sl(2). It is well-known that the 2-dimensional subalgebras in
s[(2) are precisely the tangent planes of the double cone (depicted in Fig. 1).
Thus for slip systems these degeneracies never occur because for two elements
S!, 82 of the double cone the segment conv(S?, §2) is tangential to the cone iff
S! and S? are collinear. Moreover, for general slip systems the combinatorial
structure of the polytope U = conv(S!,...,S™) gives an apriori bound for
the number of possible values of &. If, say, U has fy vertices, fi edges and
fa faces, then the number of possible values of £ is bounded by fo + f1 + fo-



Dissipation distances in multiplicative elastoplasticity 13

We get at most one singular control for each edge of Q (i.e., each face of U)
and each edge of Q, resp. U. As fo — f1 + f2 = 2 (Euler’s polyhedra formula)
fo+tfit f2=2(fo+ f2—1).

4 Isotropic hardening

Finally we want to address the question of hardening. In general this is a
difficult question since many hardening variables may be needed, in particular
in the case of latent hardening [OR99,0RS00]. On the other hand, systems
without any hardening are too soft to withstand any nontrivial stresses, since
the reduced functionals (cf. [OR99,CHM02,Mie02a]) grow only logarithmic
at infinity.

Here we propose a simple model of isotropic hardening using a scalar
variable only. In the case of isotropic material this reduces to the classical
isotropic Prandtl-Reuf-von Mises model. Thus, we consider the internal vari-
ables (P, p) € &x[0,00) with an infinitesimal dissipation potential A of the
form

~ o _ [ AP-IP)if A(PIP) < a(p)p,
A((®,p), (P,p)) = { ( &) ) othe(rwise, )<
where a : [0, 00[—]0, 00| is assumed to be continuous. Here A : g — [0, 0]
is convex and homogeneous of degree 1. By D:& — [0, oo] we denote the
global dissipation distance associated with A. Moreover, by A* g* = [0,00]
we denote its polar function, i.e., A*(n) := max{ & | Al€) <1 }.

The left-invariant elastic domain Q(p) is given by

QW) ={(m,q) € gxR|g <0, A*(n) +¢ < 1+a(p)}.

We see that hardening is obtained if a(p) is increasing in p. Denoting by A
the primitive function of a (i.e., A(p) = [J a(s)ds) we obtain the following
formula for the global dissipation distance:

D(Py'Py) + A(p1) — A(po) if p1 < po+D(Py'Py),

B(Po, ). (Pr,p)) = { / i 31 < o

We refer to [Mie02a] for more general cases.
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