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Abstract: We use the energetic formulation for rate–independent inelasticity which is based
in the dissipation distance on the internal state. From this the incremental problems inherit
a variational form which can be used to derive suitable relaxations. As a result we obtain a
similar energetic formulation on the set of Young measures which then describes the evolution
of microstructure.
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1 Introduction

The theory of elastoplasticity at finite strain has undergone a rapid development
in the last few decades, see for instance [SO85, Sim88, MS92, Mie96, OS99]. It
can be understood as a special case of general inelastic material behavior (cf.
[ZW87, Mie00]). For this general setting of inelasticity a new energetic formu-
lation was introduced in [MTL98, MTL02, CHM01, Mie03]. This framework
has the major advantage that it doesn’t make any assumption on the smooth-
ness of the processes to be described; hence, it is particularly suited to describe
systems where formation of microstructure takes place. We note that this phe-
nomenon can be seen as a phase transformation where the deformation gradients
as well as the internal variables have jumps in space and time. To minimize the
macroscopic energy in such situations the systems develop spatial oscillations
on microscopic scales which need to be described by macroscopic quantities. In
general, simple averages are not enough and therefore we use Young measures
to describe these oscillations. The measures describe for each material point (or
representative volume element) the joint distribution of the deformation gradient
and the internal variables. The major task is then to find an evolution equation
for these Young measures. Here we derive such equations via relaxation of the
original model. Thus we provide a rather abstract evolution law which has all
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mathematically desirable properties but which is very complicated to use in prac-
tice. For more details, in particular to the specific application to elastoplasticity
at finite strain, we refer to [Mie02, Mie03, Mie01].

2 Rate–independent inelasticity

We consider a body Ω ⊂ R
d which undergoes a deformation ϕ : Ω 7→ R

d

such that the deformation gradient F(x) = Dϕ(x) ∈ R
d×d lies in GL+(Rd) =

{ F ∈ R
d×d | detF > 0 }. Additionally there is a vector–valued internal vari-

able z = (z1, . . . , zn) ∈ Z ⊂ R
n which describes the properties of the material.

The elastic properties are given by the dependence of the elastic potential ψ on
(x,F, z) via ψ = ψ̂(x,F, z). For fixed (x, z) we assume that the function ψ̂(x, ·, z):

GL+(Rd) 7→ [0,∞) is coercive (i.e., ψ̂(x,F, z) → ∞ if (detF)−1 + |F| → ∞) and
quasicconvex. In addition, we describe boundary conditions and external load-
ings such that the total energy of a given state (ϕ, z) : Ω 7→ R

d × R
n at time t

is
E(t,ϕ, z) =

∫
Ω
ψ̂(x,Dϕ(x), z(x))dx− 〈`(t),ϕ〉,

where `(t) denotes the external loading and ϕ lies in the set F of admissible
deformations

F = { ϕ : Ω 7→ R
d | ϕ|ΓDir

= ϕDir, Dϕ(x) ∈ GL+(Rd) on Ω }.

A basic assumption of our rate–independent model will be that a solution process
has to be in a stable elastic equilibrium for all t ∈ [0, T ], i.e. ϕ(t, ·) : Ω 7→ R

d

is a (local) minimizer of E(t, ·, z(t, ·)) on F . Changes of the internal variables
during a slow loading or unloading process will give rise to internal friction which
dissipates energy via the dissipation rate

∆ = ∆̂(x, z, ż) ≥ 0 where ż(t, x) = ∂
∂t
z(t, x).

It is assumed that there are no other dissipation mechanisms in the model.

We call ∆ : Ω×TZ 7→ [0,∞] the dissipation potential [ZW87]. Rate–independency

is obtained by assuming homogeneity in ż of degree 1, namely ∆̂(x, z, αż) =

α∆̂(x, z, ż) for α ≥ 0. Furthermore, we assume that ∆̂(x, z, ·) : TzZ 7→ [0,∞]

is convex and that ∆̂ satisfies ∆̂(x, z, v) ≥ c|v| for some c > 0. Considering a
process z : [0, T ]×Ω 7→ Z the dissipation on an interval [t0, t1] is then

Diss(z; [t0, t1]) =
∫ t1

t0

∫
Ω

∆(x, z(t, x), ż(t, x))dxdt.

For each x ∈ Ω the dissipation potential ∆̂(x, ·, ·) defines a distance metric on Z
via

D̂(x; z0, z1) = inf{
∫ 1

0
∆̂(x, z(s), ż(s))ds

| z ∈ C1([0, 1], Z), z(0) = z0, z(1) = z1 }.
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This defines also a metric on the set of internal states Z = { z : Ω 7→ R
n | z

measurable } by setting D(z0, z1) =
∫
Ω
D̂(x; z0(x), z1(x))dx for z0, z1 ∈ Z.

3 Energetic formulation of the model

Our model is completely described by the two constitutive relations ψ = ψ̂(x,F, z)

and ∆ = ∆̂(x, z, ż) and by the loadings `(t).

Definition 3.1 A process (ϕ, z) : [0, T ] 7→ F×Z is called a solution of the above
rate–independent model, if (S) and (E) hold:

(S) [Stability] For all t ∈ [0, T ] we have

E(t,ϕ(t), z(t)) ≤ E(t, ϕ̂, ẑ) + D(z(t), ẑ) for all (ϕ̂, ẑ) ∈ F×Z.

(E) [Energy inequality] For all t0, t1 with 0 ≤ t0 < t1 ≤ T we have

E(t1,ϕ(t1), z(t1)) + Diss(z, [t0, t1]) ≤ E(t0,ϕ(t0), z(t0)) −
∫ t1

t0
〈 ˙̀(t),ϕ(t)〉dt.

The stability condition (S) has a clear mechanical interpretation. Letting ẑ =
z(t) we have D(z(t), ẑ) = 0 and the condition implies that ϕ(t) is the global
minimizer of E(t, ·, z(t)) on F , which gives the elastic equilibrium. Moreover,
changing the internal variable from z(t) to ẑ (and adjusting ϕ̂ optimally) the
dissipation must be at least as large as the elastic energy release. The inter-
nal variable z will change (and dissipate energy) as soon as the elastic energy
release is large enough to compensate for the dissipation. Thus, (S) is equiv-
alent to a principle of maximal dissipation. The energy inequality (E) has an
obvious interpretation, since the work of the external forces is given by the last
term. This abstract setting has applications in many rate–independent contin-
uum models. We refer to [MTL98, KMS99, GMH01, MTL02] for applications to
phase transformations in shape memory alloys. Finally we note that the ener-
getic formulation using (S) & (E) is equivalent to the classical local flow rules,
when the solution processes are sufficiently smooth, see [Mie02, Mie03].

One of the major advantages of the energetic formulation (S) & (E) is that it
immediately gives rise to a natural incremental algorithm where each step is
realized as a variational minimization problem.

We discretize the time interval [0, T ] via 0 = t0 < t1 < . . . < tN = T and give a
stable initial condition (ϕ0, z0) ∈ F×Z:
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(IP) [Incremental Problem]
For k = 1, . . . , N find iteratively (ϕk, zk) ∈ F×Z such that

(ϕk, zk) ∈ argmin
(ϕ,z)∈F×Z

E(tk,ϕ, z) + D(zk−1, z).

The fact that (IP) is very useful is manifested through the following result which
states that incremental solutions are always stable and satisfy a discretized ver-
sion of the energy inequality; for the simple proof see [MT01, MTL02].

Theorem 3.1 If (ϕk, zk)k=1,...,N is a solution of (IP), then for k = 1, . . . , N we
have

(i) stability of (ϕk, zk) at time tk, i.e.,
E(tk,ϕk, zk) ≤ E(tk, ϕ̂, ẑ) + D(zk, ẑ) for all (ϕ̂, ẑ),

and (ii) the discretized energy estimate

E(tk,ϕk, zk) − E(tk−1,ϕk−1, zk−1) + D(zk−1, zk) ≤∫ tk

tk−1

∂
∂t
E(s,ϕk−1, zk−1)ds = E(tk,ϕk−1, zk−1)−E(tk−1,ϕk−1, zk−1).

Another important feature of (IP) is the local occurrence of z (i.e. no gradients
appear in the integrand defining E+D). This can be used to work out the
minimization in z pointwise. We define the reduced potential Ψred via

Ψred(zold;x,F) = min
z∈Z

[
ψ̂(x,F, z)+D̂(x, zold, z)

]

and choose z = Ẑnew(x,F, zold) such that this is a minimizer in the definition of

Ψred. The new constitutive function Ψred is uniquely defined by ψ̂ and ∆̂ and
it contains the most important information on the combined effect of the elastic
and plastic behavior of the material. Now we have

E red
zk−1

(tk,ϕ) := minz∈Z

[
E(tk,ϕ, z) + D(zk−1, z)

]

=
∫

Ω
Ψred(zk−1(x);x,Dϕ(x))dx− 〈`(tk),ϕ〉.

eeq Thus, the kth step of (IP) is solved if we find a minimizer of E red
zk−1

(tk, ·) on F .

Then, (ϕk, zk) with zk(x) = Ẑnew(x,Dϕk(x), zk−1(x)) is the desired minimizer in
(IP).

The minimization problem for E red
zk−1

(tk, ·) has the standard form of a problem of

nonlinear elasticity, where Ψred(zk−1(x);x, ·) plays the role of the elastic potential.
By construction we have frame indifference, i.e. Ψred(z;x,F) = Ψred(z;x,RF) for
all R ∈ SO(Rd). However, other properties like the coercivity with respect to F
are not nontrivial and depend on hardening properties.
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If coercivity fails, the solvability of (IP) is not guaranteed, and we have to expect
fracture or localization (shear bands), cf. [Mie03].

Similarly, quasi– and rank–one convexity may no longer hold for Ψred(z;x, ·) and
we have to expect the formation of microstructure in infimizing sequences, see
[OR99, CHM01]. As a result, (IP) and consequently (S) & (E) may not have a
solution. It is this case for which our theory below is developed.

4 Relaxation

Formation of microstructure occurs, if the minimization problem (IP) has no
solution, cf. [BJ87, CHM01]. If the incremental problem (IP) has no solution,
we may consider the following approximate incremental problem.

(AIP)ε Given z0 ∈ Z find (ϕε
k, z

ε
k) ∈ F×Z with

E(tk,ϕ
ε
k, z

ε
k) + D(zε

k−1, z
ε
k) ≤ ε+ E(tk,ϕ, z) + D(zε

k−1, z)

for all (ϕ, z) ∈ F×Z.

Obviously, this problem has, for all ε > 0, a solution and the question is how the
solutions (ϕε

k, z
ε
k) behave for ε → 0. We cannot expect pointwise convergence

but certain macroscopic quantities should have limits for ε → 0. To define an

abstract notion of relaxation we introduce a generalized convergence “
W
−→” on an

enlarged space W. This space is connected to F×Z via a continuous embedding
J : F×Z 7→ W. Moreover, generalized functionals E : [0, T ]×W → R and
D : W×W → [0,∞] replace the elastic functional E and the dissipation distance
D. We define the associated incremental problem for the inital datum w0 ∈ W

and the time discretization 0 = t0 < t1 < . . . < tN = T as follows.

(RIP) [Relaxed incremental problem]
For k = 1, . . . , N find iteratively wk ∈ W such that

wk ∈ argmin
w∈W

E(tk, w)+D(wk−1, w).

We do not ask for the conditions D(J (0, z0),J (0, z1)) = D(z0, z1) and E(t,J (ϕ, z)) =
E(t,ϕ, z). Hence, the relaxation will not be an extension.

Definition 4.1 A 4–tuple (W,J ,E,D) as defined above is called a lower (or
upper) incremental relaxation of (F×Z, E ,D) if the following four condi-
tions hold:
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(R1) [Solvability] For each w0 ∈ W the relaxed incremental problem (RIP) has
a solution.

(R2) [Minimality] J (F×Z) is dense in W.

(R3) [Incremental consistency] If (ϕk, zk)k=1,...,N is a solution of (IP), then
J (ϕk, zk)k=1,...,N solves (RIP); and vice versa, if (wk)k=1,...,N satisfies wk =
J (ϕk, zk) and solves (RIP), then (ϕk, zk)k=1,...,N solves (IP).

(R4)low [Lower incremental relaxation] For each solution (wk)k=1,...,N of (RIP),

there exist solutions (ϕε
k, z

ε
k)k=1,...,N of (AIP)ε with J (ϕε

k, z
ε
k)

W
−→ wk for

ε→ 0.

(R4)upp [Upper incremental relaxation] If (ϕε
k, z

ε
k)k=1,...,N solves (AIP)ε and

J (ϕε
k, z

ε
k)

W
−→ wk, then (wk)k=1,...,N solves (RIP).

Our definition implies that the relaxed problem has to be of the same energetic
kind as the original one; we just give up the clear distinction between ϕ ∈ F
and z ∈ Z. Condition (R1) forces us to consider only useful relaxations, namely
those which have solutions. If the original problem is already solvable, then we
can choose W = F×Z, E = E and D = D, since no relaxation is necessary.
Condition (R2) says that the new state space W should not be unnecessarily big.
Condition (R3) is very important as it says that the relaxation must maintain
classical solutions, if they exist for (IP) or if they are found by solving (RIP).
Conditions (R4)low and (R4)upp link the evolution of (F×Z, E ,D) to that of
(W,E,D) via the approximate incremental problem (AIP)ε.

Moreover the relaxed incremental problem (RIP) can be interpreted as the incre-
mental problem associated to the following relaxed energetic formulation: The
function w : [0, T ] 7→ W is called a solution process of the relaxed problem
(W,E,D) if (S) and (E) are satisfied:

(S) Stability For all t ∈ [0, T ] and all w̃ ∈ W we have

E(t, w(t)) ≤ E(t, w̃) + D(w(t), w̃).

(E) Energy inequality For all 0 ≤ t1 < t2 ≤ T we have

E(t1, w(t2)) + Dissrel(w; [t1, t2]) ≤ E(t1, w(t1)) −
∫ t2

t1
〈 ˙̀(s),Φ(w(s))〉ds.

Here ϕ = Φ(w) is the macroscopic deformation ϕ associated to the limit w ∈ W.
The relaxed dissipation is given by

Dissrel(w; [t1, t2]) = sup
M∑

j=1

D(w(τj−1), w(τj))
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where the supremum is taken over all M ∈ N and all discretizations t1 ≤ τ0 <
τ1 < . . . < τM−1 < τM ≤ t2.

A further desirable property for relaxations is the consistency for the time con-
tinuous problem:

(R5) [Time consistency] If (ϕ, z) : [0, T ] 7→ F×Z solves (S) & (E), then
J (φ, z) : [0, T ] 7→ W solves (S) & (E); and vice versa, if w : [0, T ] 7→ W sat-
isfies w(t) = J (ϕ(t), z(t)) and solves (S) & (E), then (ϕ, z) : [0, T ] 7→ F×Z
solves (S) & (E).

Another way to define relaxations for rate independent problems of the type
(S) & (E) is proposed in [The01]. This definition avoids totally the usage of
incremental problems and works directly with (S) & (E) and (S) & (E.) An
application of this theory to phase transformation is given in [MTL02, The01].

5 Young measures

A special relaxation can be given by using Young measures which were introduced
into the field of continuum mechanics in [BJ87] and were further developed in
the last 15 years, see [Rou97, Mül99]. One particular instance of this relaxation
was studied in [MT99, GMH01, MTL02], where phase transformations in shape
memory alloys were studied.

We refer to [Bal89, Ped97, Rou97, Mie99] for the basic notions of Young measures
and repeat here only the definitions. Denote by Prob(Z) the set of all probability
measures on Z. The Young measures on Ω with values in Z are given by

YM(Ω, Z) := { µ : Ω 7→ Prob(Z) | µ is weakly measurable }.

We say that the sequence (zj)j∈N generates the Young measure µ (written

zj YM
−→ µ) if for each x0 ∈ Ω and sufficiently small ε and every function g ∈

C0(Z,R) we have

∫
|x0−x|<ε

g(zj(x))dx→
∫
|x0−x|<ε

∫
Z
g(z)µ(x, dz)dx for j → ∞.

A function x 7→ z(x) can be considered as a Young measure by letting µ(x) = δz(x)

where δa denotes the point mass in a, i.e. δa(A) = 1 if a ∈ A and 0 else.

Given a (dissipation) metric D̂ : Z×Z 7→ [0,∞], we have to generalize it to a
metric D on the space of Young measures which satisfies D(δz0

, δz1
) = D(z0, z1)

for all z0, z1 ∈ Z. Moreover, it should fit to the microscopic observation that
microscopic changes from z0 to z1 can be arranged in the mesoscopic region in
an optimal way. We start with the Wasserstein metric DWass on Prob(Z) which
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associates to D̂. For given ν0, ν1 ∈ Prob(Z) we want to transport the mass,
which at the beginning is distributed according to ν0, in such a way that the
final distribution is ν1 and that the dissipation cost is minimal. Denoting by
σ ∈ Prob(Z×Z) a probability measure such that σ(dz0, dz1) gives the amount
of mass which from a neighborhood of z0 is transported into a neighborhood
of z1, we have to infimize with respect to σ under the given initial and final
distributions:

DWass(ν0, ν1) = inf
{ ∫

Z×Z
D̂(z0, z1)σ(dz0, dz1)

∣∣∣ σ ∈ Prob(Z×Z),
∫

Z
σ(·, dz1) = ν0,

∫
Z
σ(dz0, ·) = ν1

}
.

The Wasserstein metric has a dual representation (which is well–known in prob-
ability theory) using Lipschitz continuous functions, cf. [Rac91, Mie99]:

DWass(ν0, ν1) = sup{
∫

Z
g(z) ν1(dz)−

∫
Z
g(z) ν0(dz)

| g ∈ C0(Z,R), Lip bD(g) ≤ 1}

where Lip bD(g) = supz1,z2∈Z |g(z1)−g(z2)|/D̂(z1, z2). Hence, DWass can be under-
stood as the restriction of a Banach–space norm to the convex set Prob(Z).

For two Young measures µ0, µ1 ∈ YM(Ω, Z) we set

D(µ0, µ1) =
∫

x∈Ω
DWass(x, µ0(x), µ1(x))dx,

which is an integral over a local function in the macroscopic variable x ∈ Ω.

There is a special case of Young measures, namely those which are generated
by sequences which are gradients of functions, like the deformation gradients
in continuum mechanics Fj = Dϕj ∈ R

d×d. The Young measures obtained as
limits from gradients form a subset of all Young measures and are called gradient
Young measures (GYM). They are characterized as follows (cf. [KP94, Ped97,
Rou97]):

γ ∈ GYM(Ω,Rd×d) ⇐⇒{
There exists ϕ : Ω 7→ R

d such that for a.e. x ∈ Ω we have

(a) Dϕ(x) =
∫

Rd×d G γ(x, dG) and (b) γ(x) ∈ Probgrad(Rd×d),

where

Probgrad(Rd×d) =
{
ν ∈ Prob(Rd×d)

∣∣∣ for all quasiconvex Q : R
d×d 7→ R we have

Q(
∫

Rd×d G ν(dG)) ≤
∫

Rd×d Q(G) ν(dG)
}
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We shortly write γ ∈ GYMϕ(Ω,Rd×d) if (a) and (b) hold. The above condition
(b) is essential as it reflects the information of compatibility of different gradi-
ents. For instance, ν = θδA+(1−θ)δB with θ ∈ (0, 1) and A,B ∈ R

d×d lies in
Probgrad(Rd×d) if and only if rank(A−B) ≤ 1.

6 Separate relaxation

We propose a relaxation which uses the weak convergence in F ⊂ W1,p(Ω,Rd),
and the Young measures µ ∈ YM(Ω, Z) to replace z. Hence, in the abstract
relaxation setting we let

w = (ϕ, µ) ∈ F×YM(Ω, Z) =: W, J (ϕ, z) = (ϕ, δz),

(ϕj, µj)
W
−→ (ϕ∞, µ∞) ⇐⇒

{
ϕj ⇀ ϕ∞ in W1,p(Ω,Rd),

∀ g ∈ C0(Z) :
∫

Z
g(z)µj(dz)

∗
⇀
∫

Z
g(z)µ∞(dz) in L1

loc(Ω).

.

The relaxed functionals are abstractly defined as Young–measure relaxation sep-
arately for E and D:

E(t,ϕ, µ) = inf{ lim inf
m→∞

E(t,ϕm, zm) | J (ϕm, zm)
W
−→ (ϕ, µ) },

D(µ0, µ1) = inf{ lim inf
m→∞

D(z0,m, z1,m) | J (ϕj,m, zj,m)
W
−→ (ϕj, µj) }.

These functionals are given as the smallest possible limit of all sequences of
classical functions producing the correct limit in W. This abstract setting is
not very useful for practical purposes unless the form of E and D is made more
specific. However, we obtain a general result in terms of relaxation.

Theorem 6.1 Under suitable technical assumptions the relaxation defined via
W, J , E and D satisfies the properties (R1)—(R3) in Definition 4.1 as well as
(R5).

To make the above relaxation useful we need integral representations of the re-
laxed functionals. These follow from abstract results as given in [Rou97, MTL02].

Theorem 6.2 Under suitable technical assumptions the relaxed functionals have
the form

E(t,ϕ, µ) =
∫

Ω
Ψrel(x,Dϕ(x), µ(x))dx− 〈`(t),ϕ〉,

D(µ0, µ1) =
∫

Ω
DWass(x, µ0(x), µ1(x))dx,
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where the relaxed potential is given by Ψrel(x,F, ν) =

inf
{ ∫

(0,1)d ψ̂(x,F+Dφ(y), z(y))dy
∣∣∣ φ ∈ W1,∞

0 ((0, 1)d),

ν(A) = vol({ y | z(y) ∈ A }) for all A ⊂ Z
}
.

Unfortunately the definition of Ψrel is rather complicated. Note that it is not ob-
tained by integrating ψ(x,F, z) with respect to ν(dz), since F is the macroscopic
strain while ν relates to microscopic fluctuations in z ∈ Z which have a coun-
terpart in microscopic fluctuations of the strain. The definition of Ψrel shows
that minimization with respect to the combined microscopic arrangements in
(the representative volume element) (0, 1)d of the internal variable z and the
fluctuation strain Dφ is necessary.

Example 6.1 To illustrate the above concept we consider the case d = 1, Z = R,
and ψ̂(F, z) = (F−z)2. We obtain Ψrel(F, ν) = [F−

∫
R
z ν(dz) ]2, since in the

definition of the relaxed potential we may choose any z : (0, 1) 7→ R generating ν

and then define φ via φ(0) = 0 and φ′(y) = z(y)−
∫ 1

0
z(s)ds. Using

∫ 1

0
z(s)ds =∫

R
z ν(dz) the result follows. Moreover, we have

Ψrel(F, ν) =
∫

R
ψ̂(F, z) ν(dz) −

( ∫
R
z2ν(dz) −

[ ∫
R
z ν(dz)

]2)

which shows that Ψrel is strictly less than the “averaged” energy density, if ν is
not a Dirac mass.

Remark 6.1 Up to now the relaxed elastic potential can be computed only
in a few cases, e.g., for applications in phase transformations in shape mem-
ory alloys, where Z = {1, 2, . . . , n} is the discrete set of possible phases, cf.
[MTL02, GMH01]. There Prob(Z) can be identified with the polytope P n =
{ (θ1, . . . , θn) ∈ R

n | θj ≥ 0,
∑n

1 θj = 1 } and YM(Ω, Z) = L∞(Ω, P n). The
dissipation distance D takes the form D(µold, µnew) =

∫
Ω
‖θnew(x)−θold(x)‖dx for

a suitable polyhedral vector norm ‖ · ‖ on R
n.
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