
On the energy release rate in finite–strain elasticity

Dorothee Knees Alexander Mielke

Weierstrass Institute for Applied Analysis and Stochastics

Mohrenstr. 39, 10117 Berlin, Germany
knees, mielke@wias-berlin.de

Abstract

Griffith’s fracture criterion describes in a quasistatic setting whether or not a pre-

existing crack in an elastic body is stationary for given external forces. This fracture

criterion can be reformulated in terms of the the energy release rate (ERR), which is

the derivative of the deformation energy of the body with respect to a virtual crack

extension.

In this note we consider geometrically nonlinear elastic models with polyconvex

energy densities and provide a mathematical framework which guarantees that the

ERR is well defined. Moreover, without making any assumptions on the asymptotic

structure of the elastic fields near the crack tip, we derive rigorously two formulas for

the ERR, namely a generalized Griffith formula and the J-integral. For simplicity we

consider here a straight crack in a two dimensional domain. The presented techniques

are also applicable to smooth interface cracks, for which we give an example in the

last section.
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1 Introduction

In this note we study the behavior of elastic bodies with preexisting cracks when subjected

to static exterior loadings. Various fracture criteria are discussed in the literature, among

which Griffith’s classical energy criterion is frequently used in order to predict whether or
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not a preexisting crack will grow under the applied loads. We use the following version of

the Griffith criterion [1, 2, 3]:

A crack is stationary, if the total potential energy

in the current configuration is minimal compared to (1.1)

the total potential energy of all admissible neighboring configurations.

Assuming that the possible crack path is known a priori (e.g. an interface crack), the

Griffith criterion can be reformulated in terms of the energy release rate. The energy

release rate is defined as the derivative of the deformation energy with respect to the crack

length.

We model the elastic behavior of the bodies in the framework of finite strain elastic-

ity with polyconvex energy densities which may take the value ∞ as soon as unphysical

deformation gradients occur. There is a large number of papers, where formulas for the

energy release rate are derived for different nonlinear elastic models. These formulas are

the Griffith formula (based on the Eshelby tensor) and the well-known Cherepanov–Rice

or J–integral. To obtain these formulas, it is usually assumed that the deformation fields

are “smooth enough” or that the stress fields have a certain asymptotic behavior near the

crack tip. However, these smoothness assumptions are not justified yet in the nonlinear

case and in particular in the finite strain case. A rigorous analysis without making any

additional assumptions on the smoothness of the elastic fields was carried out in [4, 5] for

a class of power-law models and recently in [6] for models from finite–strain elasticity. It

is the purpose of this paper to present and discuss the conditions from [6] on the energy

density W , which guarantee that the energy release rate is well defined in the finite–strain

case, and to point out the main differences between the linear case and the finite–strain

case. We emphasize that we require neither additional smoothness of the deformations

nor a certain asymptotic structure of the stresses near the crack tip in order to prove our

results.

The paper is organized as follows. In the next section we fix the notation, recall the

Griffith fracture criterion and give a definition of the energy release rate. Furthermore, we

summarize shortly results from linear elasticity. In section 3 we formulate the assumptions

on the elastic energy density W which guarantee the existence of minimizers. In addition

we introduce an assumption on the derivative of W , which implies that the modulus of

the Eshelby tensor can be bounded by the energy W . We give examples of polyconvex

energy densities which satisfy this additional assumption. Section 4 is devoted to the
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presentation and discussion of our formulae for the energy release rate. Since minimizers

may be nonunique, one can give different interpretations of what is meant by “admissible

neighboring configuration” in the Griffith criterion: is it sufficient that the different cracked

domains are “close” to each other or does one also require that minimizers on domains

with extended cracks are “close” to a particular minimizer on the original domain? These

different interpretations are reflected in our formulas for the ERR and are an essential

difference between the finite-strain case and the case of linear elasticity. This will be

discussed in detail in section 4. In section 5 we finally apply our results to an interface

crack in three dimensions.

2 The Griffith fracture-criterion

We give now a precise definition of the notions occurring in the Griffith criterion (1.1).

Let Ω0 ⊂ R
d be a body with preexisting crack. The total energy is the sum of the

deformation energy and a dissipation energy, which describes the amount of energy which

is needed to create the new crack surface. We assume here that the dissipation energy D
is proportional to the area (in 3D) or length (in 2D) of the crack surface: D(C0) = 2γ |C0|.
The material dependent constant γ > 0 is the fracture toughness and C0 denotes the

crack. Let W : R
d×d → R∞ be the elastic energy density and Vad(Ω0) the set of admissible

deformations ϕ : Ω0 → R
d, i.e. Vad(Ω0) consists of those deformations which satisfy the

Dirichlet boundary conditions. By f : Ω0 → R
d we denote given volume forces. The

deformation energy I(Ω0) with respect to the domain Ω0 is then given by

I(Ω0) = min{ I(Ω0, ϕ) ; ϕ ∈ Vad(Ω0) }, (2.1)

where

I(Ω0, ϕ) =

∫

Ω0

W (∇ϕ) dx− 〈f, ϕ〉.

Under suitable assumptions on W and f , which we specify in section 3, problem (2.1)

possesses at least one minimizer ϕ0. With these notations, the total potential energy

Π(Ω0) of a domain Ω0 with crack C0 can be written as

Π(Ω0) = I(Ω0) + 2γ |C0| .

We now have to give an interpretation for the notion admissible neighboring configuration.

In general, the crack path is not known a priori and in the most general case, a domain Ω∗
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Figure 1: Domain Ωδ with crack Cδ

with crack C∗ defines an admissible neighboring configuration if Ω∗ = Ω0 and the crack C0 is

contained in C∗. This general point of view includes the kinking and branching of cracks.

DalMaso et al. proposed and investigated a rate independent evolution formulation for

crack propagation in nonlinear elastic materials with quasiconvex energy densities, based

on this general point of view [7]. In our paper, we have a different point of view. We assume

that the crack path is known a priori and we are interested in a (computable) criterion with

which one may decide whether or not a given crack is stable. In this section, we consider the

simplest situation assuming that the crack is a straight line in a two-dimensional domain

and that it can grow straight on, only.

For δ ∈ R let Sδ = { x ∈ R
2 ; x2 = 0, x1 ≤ δ }. We make the following assumption on

the geometry:

A0 Ω̃ ⊂ R
2 is a bounded domain with Lipschitz-boundary and with 0 ∈ Ω̃. Furthermore,

there exists a constant δ0 > 0 such that ∂Ω̃∩Sδ is a single point for every δ ∈ [−δ0, δ0].
Let Ωδ = Ω̃\Sδ and Cδ = Ω̃ ∩ Sδ for |δ| ≤ δ0. The boundary of Ωδ is split as follows:

∂Ωδ = ΓD ∪ ΓN ∪ Cδ, where ΓD and ΓN are open. Moreover, Cδ, ΓD and ΓN are

pairwise disjoint, ΓD and ΓN are independent of δ and ΓD is not empty. See fig. 1.

The parts ΓD and ΓN are the Dirichlet- and Neumann-boundary, respectively. We call Ω0

with initial crack C0 the reference configuration. In our context, the pairs (Ωδ, Cδ) describe

admissible neighboring configurations if δ > 0 is small. In this case, the Griffith criterion

reads: if Π(Ω0) < Π(Ωδ) for small δ > 0, then the crack is stationary. This is equivalent to

If (I(Ω0) − I(Ωδ))/δ < 2γ for δ > 0, then the crack is stationary.

Taking the limit δ ց 0, we arrive at the definition of the energy release rate:

Definition 2.1 (Energy release rate). The energy release rate ERR(Ω0) related to the

domain Ω0 is defined as

ERR(Ω0) = lim
δց0

δ−1
(

I(Ω0) − I(Ωδ)
)

.
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The energy release rate gives the amount of deformation energy which is set free at an

infinitesimal extension of the crack. The final formulation of the Griffith criterion reads as

follows:

If ERR(Ω0) < 2γ, then the crack is stationary. (2.2)

For a geometry as described in A0 and a linear elastic material with energy density

W (ε(u)) = 1
2
(Aε(u)) : ε(u), where u : Ω → R

2 is the displacement field, ε(u) = 1
2
(∇u +

∇u⊤) are the linearized strains and A is the fourth order elasticity tensor, the energy

release rate can be expressed as follows (if f = 0)

ERR(Ω0) =

∫

Ω0

(

∇u⊤0 DεW (ε(u0)) −W (ε(u0))I
)

: ∇ ( θ0 ) dx (2.3)

=

∫

Γ

(

∇u⊤0 DεW (ε(u0)) −W (ε(u0))I
)

~n · ( 1
0 ) ds. (2.4)

Here, u0 is the unique minimizer of the corresponding energy functional, θ ∈ C∞
0 (Ω̃,R) is an

arbitrary function with θ = 1 near the crack tip, Γ an arbitrary path around the crack tip

and ~n the interior unit normal vector on Γ. Formula (2.3) is the so–called Griffith formula

and (2.4) the Cherepanov–Rice or J–integral. The J–integral and its generalizations was

first introduced and investigated by Eshelby [8] and applied in fracture mechanics by

Cherepanov [9] and Rice [10]. A mathematical justification of formulas (2.3)–(2.4) was

carried out in [11] for traction free crack faces and in [12] for non-interpenetration conditions

on the crack faces. In the linear case, the energy release rate can also be expressed in terms

of stress intensity factors, see for example [13].

The formulas proposed in literature for nonlinear elastic models have a similar structure

and are based on the Griffith integral

G(ϕ, θ) =

∫

Ω0

(

∇ϕ⊤DW (∇ϕ) −W (∇ϕ)I
)

: ∇ ( θ0 ) dx−
∫

Ω0

θf · ∂x1
ϕ dx, (2.5)

which involves the Eshelby tensor

E(∇ϕ) = −∇ϕ⊤DW (∇ϕ) +W (∇ϕ)I.

As already discussed in the introduction, in the nonlinear case the formulas for the ERR are

derived under additional smoothness assumptions for minimizers, which are not justified

yet, in general. We present now sufficient conditions on the energy density which allow for

a rigorous derivation of these formulas without making any additional assumption on the

smoothness of the deformation fields.
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3 Assumptions on the elastic energy density W

We use the following notation: M
d×d denotes the set of the real d × d-matrices and M

d×d
+

are those with positive determinant. For elements A,B ∈ M
d×d the inner product is given

by A : B =
∑d

k=1

∑d
s=1AksBks and |A| =

√
A : A. By cof A we denote the cofactor matrix

and I is the identity in M
d×d.

For a function W : M
d×d → R, DW (A) ∈ M

d×d is the derivative of W with respect

to A ∈ M
d×d, i.e. DW (A)ks = ∂W (A)

∂Aks
for 1 ≤ k, s ≤ d and D2W (A) ∈ M

(d×d)×(d×d) is

the Hessian of W with (D2W (A))ksjr = ∂2W (A)
∂Aks∂Ajr

, k, s, r, j ∈ {1, . . . , d}. Furthermore,

D2W (A)[B] ∈ M
d×d with D2W (A)[B]ks =

∑d

j=1

∑d

r=1D
2W (A)ksjrBjr.

Let d ∈ {2, 3}, Ω ⊂ R
d. For a deformation ϕ : Ω → R

d we denote by F (x) = ∇ϕ(x) ∈
M

d×d the deformation gradient. The elastic energy density W shall be frame indifferent and

we require that W (F ) = ∞ if detF ≤ 0 and W (Fn) → ∞ for every sequence (Fn)n∈N ⊂
M

d×d
+ with |Fn| + (detFn)

−1 → ∞. These requirements are not satisfiable with convex

energy densities but with polyconvex energy densities. Thus our first assumption is that

the energy density W is a polyconvex function. We use the notation from Docaorogna’s

book [14] and define T (F ) = (F, detF ) ∈ R
5 if d = 2 and T (F ) = (F, cof F, detF ) ∈ R

19

if d = 3. Moreover, we set τ(d) = 5 if d = 2, τ(d) = 19 if d = 3.

A1 Polyconvexity: W : M
d×d → [0,∞] is polyconvex, i.e. there exists a function g :

R
τ(d) → [0,∞] which is continuous and convex and W (F ) = g(T (F )) for every

F ∈ M
d×d. Moreover, W (F ) = ∞ if detF ≤ 0.

Ogden materials, neo-Hookean and Mooney–Rivlin materials have polyconvex energy den-

sities. In order to be able to apply Ball’s existence theorem, we need also a coercivity

assumption for W .

A2 Coercivity: There exist constants β ∈ R, p ≥ 2, r1 ≥ p

p−1
, r2 > 1, α1 > 0, α2, α3 ≥ 0

with α2 > 0 and α3 > 0 if p ≤ d such that for every F ∈ M
d×d we have

W (F ) ≥ α1 |F |p + α2 |cof F |r1 + α3 |detF |r2 + β. (3.1)

Remark 3.1. If d = 3 and p > 3 in A3, then estimate (3.1) implies that there are

constants α̃i > 0 and β̃ ∈ R such that W (F ) ≥ α̃1 |F |p + α̃2 |cof F |
p
2 + α̃3 |detF |

p
3 + β̃ for

every F ∈ M
d×d.

In addition we assume that the forces and boundary data are given according to
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A3 Data: p ≥ 2, q = p

p−1
, gD ∈W 1− 1

p
,p(ΓD,R

d), h ∈
(

W 1− 1

p
,p(ΓN)

)′
and f ∈ Lq(Ω̃,Rd).

For |δ| ≤ δ0 the set of admissible deformations is defined as

Vad(Ωδ) = {ϕ ∈W 1,p(Ωδ) ; ϕ
∣

∣

ΓD
= gD }.

The following existence theorem is due to J. Ball [15], see also [16]:

Theorem 3.2. Let p ≥ 2 and let A0–A3 be satisfied. For every δ ∈ [−δ0, δ0] there exists

an element ϕδ ∈ Vad(Ωδ) with

I(Ωδ, ϕδ) ≤ I(Ωδ, ψ) =

∫

Ωδ

W (∇ψ) dx−
∫

Ωδ

f · ψ dx− 〈h, ψ
∣

∣

ΓN
〉ΓN

(3.2)

for every ψ ∈ Vad(Ωδ).

As one can see from the formulas for the linear case, the energy release rate is related

to a volume integral which involves the Eshelby tensor E(F ) = −F⊤DW (F ) + W (F )I.

Up to now we did not impose any upper bound on W or DW which would guarantee

that the Eshelby tensor is integrable for minimizers. We therefore require the following

multiplicative stress control condition to be satisfied [17]:

A4 W : M
d×d → [0,∞] is differentiable on M

d×d
+ and there exists a constant κ1 > 0 such

that for every F ∈ M
d×d
+

∣

∣F⊤DW (F )
∣

∣ ≤ κ1(W (F ) + 1). (3.3)

Condition A4 was first introduced and discussed in [17, 18]. It follows from this condition

that if I(Ωδ, ϕ) < ∞ for some ϕ ∈ Vad(Ωδ), then the corresponding Eshelby tensor is an

element from L1(Ωδ) and the Griffith integral (2.5) is finite for every θ ∈ C∞
0 (Ω̃). Note

that an upper bound on W of the type W (F ) ≤ c(1 + |F |p) or |DW (F )| ≤ c(1 + |F |p−1)

would not be appropriate, since we assume that W (F ) = ∞ if detF ≤ 0.

For technical reasons we need also an assumption on D2W :

A5 W : M
d×d → [0,∞] is twice differentiable on M

d×d
+ and there exists a constant κ2 > 0

such that for every F ∈ M
d×d
+ and every B ∈ M

d×d

∣

∣F⊤(D2W (F )[FB])
∣

∣ ≤ κ2(W (F ) + 1) |B| . (3.4)
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This assumption can slightly be weakened, see [6]. Compressible Mooney–Rivlin materials

with an energy density of the form

W (F ) =







a1 |F |2 + a2 |cof F |2 + a3(detF )2 − a4 log(detF ) for F ∈ M
3×3
+

∞ else
,

satisfy A1, A2, A4 and A5 if ai > 0 for every i. Moreover, let

W (F ) =







W1(F ) + Γ(detF ) for F ∈ M
d×d
+

∞ else

and assume that W1 : M
d×d → R is a convex, twice differentiable function of p–growth

for some p > 1. This means that there exist constants c, ci > 0 such that c1 |F |p − c2 ≤
W1(F ) ≤ c(1 + |F |p), |DW1(F )| ≤ c(1 + |F |p−1) and |D2W1(F )| ≤ c(1 + |F |p−2). Fur-

thermore, let Γ : (0,∞) → [0,∞) be convex, twice differentiable, Γ(s) → 0 for s → 0

and |sΓ′(s)| + |s2Γ′′(S)| ≤ c(Γ(s) + 1) for every s > 0 and some constant c > 0. Then

the assumptions A1, A4 and A5 are satisfied for W . The proof relies on the identi-

ties DF (detF ) = cof F and F⊤ cof F = (detF )I, which imply that F⊤DF (Γ(detF )) =

detF Γ′(detF )I.

The following convergence theorem for Eshelby tensors is proved in [6] and is the key for

our further analysis.

Theorem 3.3 (Weak convergence of Eshelby tensors). [6] Let Ω ⊂ R
d be a bounded, open

subset of R
d. Let further W : M

d×d → [0,∞] satisfy assumptions A1, A4 and A5, let

p ≥ 1 and let (ϕn)n∈N0
⊂W 1,p(Ω) be a sequence with

T (∇ϕn) ⇀ T (∇ϕ0) weakly in L1(Ω),

J(∇ϕn) → J(∇ϕ0) =

∫

Ω

W (∇ϕ0) dx <∞ for n→ ∞.

Then the Eshelby tensors E(∇ϕn) converge weakly in L1(Ω):

E(∇ϕn) ⇀ E(∇ϕ0) weakly in L1(Ω).

4 Energy release rate in finite strain elasticity

We are now ready to formulate our main theorem on the energy release rate for a two

dimensional body with a straight crack.
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Theorem 4.1 (Griffith formula). [6] Let d = 2, p ≥ 2, let A0–A5 be satisfied and assume

that infϕ∈Vad(Ω0) I(Ω0, ϕ) <∞. Let finally θ ∈ C∞
0 (Ω̃) with θ = 1 near the crack tip (0, 0)⊤.

The energy release rate ERR(Ω0) is well defined and a generalized Griffith formula is valid:

ERR(Ω0) = max{G(ϕ, θ) ; ϕ minimizes I(Ω0, ·) over Vad(Ω0) }, (4.1)

where

G(ϕ) := G(ϕ, θ) = −
∫

Ω0

E(∇ϕ) : ∇ ( θ0 ) dx−
∫

Ω0

θf · ∂x1
ϕ dx. (4.2)

Formulas (4.1) and (4.2) are independent of the choice of θ.

The energy release rate can also be expressed through the J–integral. Since there is no

regularity result available, which would allow us to speak about traces or restrictions of

the Eshelby tensor on paths surrounding the crack tip, we have the following theorem for

almost every path, only. We define BR(x0) = { x ∈ R
d ; |x− x0| < R }.

Theorem 4.2 (J–integral). [6] Let the assumptions from the previous theorem be satisfied.

Let R0 > 0 such that BR0
(0) ⊂ Ω̃. Assume furthermore, that ∂x1

f = 0 on BR0
(0). For

every minimizer ϕ0 of I(Ω0, ·) and almost every R ∈ (0, R0) we have

G(ϕ0) = −
∫

∂BR(0)

(

E(∇ϕ0)~n
)

· ~e1 + (ϕ0 · f)(~n · ~e1) ds, (4.3)

where ~n is the interior unit normal vector on ∂BR(0) and ~e1 = (1, 0)⊤ is tangential to the

crack.

Let us give some comments on our results. Assume first that the minimizer of I(Ω0, ·) is

unique. In this case, formulas (4.1)–(4.3) coincide with formulae for the ERR proposed in

the literature, see e.g. [19, 3, 10], and have the same structure as in the linear case. In the

general nonlinear case, however, there may exist several minimizers of I(Ω0, ·) and it is an

open problem, whether G(ϕ0) = G(ϕ1) for different minimizers ϕ0 and ϕ1 of I(Ω0, ·).
The Griffith criterion as formulated in (2.2) relies on global energy minimization and

it is not excluded that the body jumps from one configuration with minimal energy into

a different configuration with the same energy and the crack starts to develop from this

configuration. If one has ERR(Ω0) < 2γ for a particular problem, then it is guaranteed

that the crack is always stationary, regardless which minimizer is realized. On the other

hand, if the Griffith criterion is formulated in the following way

G(ϕ0) < 2γ ⇒ the crack is stationary (4.4)
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for a particularly chosen minimizer ϕ0 (e.g. the one calculated with a FEM-code), then

there might exist an other minimizer ϕ1 with G(ϕ1) > 2γ. Criterion (4.4) states that the

crack will not propagate even though there might be a further configuration (namely ϕ1)

with the same energy, in which the crack would grow. Thus, criterion (4.4) can be regarded

as a local version of the Griffith criterion, whereas (2.2) is a global one. In fact, it is a

modeling assumption whether one trusts in a local fracture criterion of the form (4.4) or

whether one prefers a global criterion like (2.2). These two different criteria result from

different interpretations of the notion admissible neighboring configuration in (1.1). Are

two configurations close to each other if Ωδ is close to Ω0 (→ global criterion (2.2)) or is

it required in addition that the minimizer ϕδ of I(Ωδ, ·) is close to a particularly chosen

minimizer ϕ0 (→ local criterion (4.4)).

This discussion might become clearer by considering the following problem. Let ϕ0 be

an arbitrary minimizer of I(Ω0, ·). For ψ ∈ Vad(Ωδ) we define

Iϕ0
(Ωδ, ψ) := I(Ωδ, ψ) +

∫

Ωδ

|ϕ0 − ψ|p dx.

Obviously, Iϕ0
(Ω0, ϕ0) = I(Ω0, ϕ0) and ϕ0 is the unique minimizer of Iϕ0

(Ω0, ·). Let

Iϕ0
(Ωδ) = minψ∈Vad(Ωδ) Iϕ0

(Ωδ, ψ). Assuming A0–A5 one can prove the following [6]:

lim
δ→0

1
δ
(Iϕ0

(Ωδ) − Iϕ0
(Ω0)) = G(ϕ0, θ) = G(ϕ0) (4.5)

for every θ ∈ C∞
0 (Ω̃) with θ = 1 near the crack tip. Here, G is the expression from (4.2).

The original energy I(Ω0, ·) is modified in such a way that minimizers for the domain with

the extended crack are close (in the Lp–sense) to the chosen minimizer ϕ0 on Ω0. Relation

(4.5) reveals that G(ϕ0) can be considered as a local energy release rate.

Proof. Let us give a short sketch of the proofs of theorems 4.1 and 4.2. For a detailed proof

we refer to [6]. Analogously to the linear elastic case we introduce the following mapping:

Tδ : Ωδ → Ω0 : x 7→ Tδ(x) = x− δθ(x) ( 1
0 ) , (4.6)

where θ ∈ C∞
0 (Ω̃) with θ = 1 near the crack tip. If |δ| < δ0 is small enough, then Tδ is

a diffeomorphism from Ωδ to Ω0 which maps Cδ to C0, see [20]. Let {ϕδ ; δ ∈ [0, δ0] } be

minimizers corresponding to I(Ωδ, ·). For every δ > 0 we have

1
δ

(

I(Ω0, ϕ0) − I(Ωδ, ϕ0 ◦ Tδ)
)

≤ 1
δ

(

I(Ω0) − I(Ωδ)
)

≤ 1
δ

(

I(Ω0, ϕδ ◦ T−1
δ ) − I(Ωδ, ϕδ)

)

. (4.7)
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Like in [17, 18] one verifies that

lim
δց0

1
δ

(

I(Ω0, ϕ0) − I(Ωδ, ϕ0 ◦ Tδ)
)

= G(ϕ0, θ). (4.8)

Since the minimizer ϕ0 was chosen arbitrarily, it follows from (4.7) and (4.8) that

lim inf
δց0

1
δ

(

I(Ω0) − I(Ωδ)
)

≥ sup{G(ϕ0, θ) ; ϕ0 minimizes I(Ω0, ·) }. (4.9)

Using the convergence theorem 3.3 for Eshelby tensors one proves that the supremum in

(4.9) is attained and can be replaced by “max”.

In addition one can show that the sequence (ϕδ ◦ T−1
δ )δ∈(0,δ0) is a minimizing sequence

for I(Ω0, ·) and contains a subsequence which converges weakly in Vad(Ω0) to a minimizer

ϕ0 of I(Ω0, ·). Using again the convergence theorem for Eshelby tensors 3.3, we obtain for

this subsequence that

lim
n→∞

1
δn

(

I(Ω0, ϕδn ◦ T−1
δn

) − I(Ωδn , ϕδn)
)

= G(ϕ0, θ)

≤ max{G(ϕ, θ) ; ϕ minimizes I(Ω0, ·) }. (4.10)

By contradiction it follows that the previous inequality holds true for the whole sequence.

Combining (4.7) with (4.9) and (4.10) finishes the proof of theorem 4.1.

Theorem 4.2 is proved with Fubini’s theorem and the fundamental lemma of the calculus

of variations and uses the fact that G(ϕ0, θ) is independent of the function θ if ϕ0 is a

minimizer of I(Ω0, ·), see [6].

We emphasize that theorems 4.1 and 4.2 are derived without making any smoothness

assumptions on the minimizers.

Remark 4.3. The normal stress h ∈ (W 1− 1

p
,p(ΓN))′ does not appear explicitly in the

formula for G(ϕ0, θ). This follows from (4.8) and the properties of the mapping Tδ: for

every x ∈ ΓN and every δ we have Tδ(x) = x, which implies that

〈h, ϕ0〉ΓN
− 〈h ◦ Tδ, ϕ0 ◦ Tδ〉

∣

∣

Tδ(ΓN )
= 0.

Remark 4.4. Let ϕ0 be a minimizer of I(Ω0, ·) and assume that there are minimizers ϕδ

of I(Ωδ, ·) for δ ∈ (0, δ0] such that the whole sequence ϕδ ◦T−1
δ converges weakly in Vad(Ω0)

to ϕ0. Then ERR(Ω0) = G(ϕ0, θ). This assumption on ϕ0 is a weakened version of the

assumptions made in [19, 21] and many other references on the dependence of minimizers

on the crack parameter δ. In the nonlinear setting with nonconvex energies it is an open

problem under which conditions such assumptions are satisfied.
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Figure 2: Matrix with embedded fiber and crack front Γ0

5 A 3D example: Fiber embedded in a matrix

The methods of our proof are not restricted to the two–dimensional case. As a three–

dimensional example we consider a compound consisting of a matrix with an embedded

fiber of a different material. The geometry is given as follows: Let Σ,Σ1,Σ2 ⊂ R
2 be

bounded domains with Lipschitz boundaries, Σ1 ⋐ Σ and Σ2 = Σ\Σ1. Let furthermore

Γ12 = ∂Σ1. The region Σ1 shall represent the cross section of the fiber, whereas Σ2 is the

cross section of the matrix. For δ ∈ R we define Sδ = { x ∈ R
3 ; (x1, x2) ∈ Γ12, x3 ≤ δ }.

Let Ω̃ = Σ × (−ℓ, ℓ) for some ℓ > 0 and let the domains Ωδ be defined as Ωδ := Ω̃\Sδ.
Furthermore, Cδ = Ω̃ ∩ Sδ and Γδ = Γ12 × {δ}. We call the domain Ω0 the reference

configuration with crack C0 and crack front Γ0. The fiber is defined through Ω̃1 = Σ1 ×
(−ℓ, ℓ), whereas the matrix is given by Ω̃2 = Σ2 × (−ℓ, ℓ). We assume that the crack front

stays perpendicular to the fiber axis and thus is given by Γδ. With these assumptions,

the domains Ωδ with crack Cδ are admissible neighboring configurations of Ω0 for small

parameters δ > 0. Let finally ∂Ω̃ = ΓD ∪ ΓN , where ΓD and ΓN are open, independent of

δ and ΓD 6= ∅, see fig. 2.

The fiber and the matrix are assumed to consist of hyperelastic materials with polyconvex

elastic energy densities Wi : M
d×d → [0,∞]. We assume that the energy densities Wi satisfy

the coercivity assumption A2 with possibly different growth exponents pi, ri1 and ri2. Let

p = min{p1, p2}, r1 = min{r1
1, r

2
1} and r2 = min{r1

2, r
2
2}. (If pi > 3 we may choose ri1 = pi/2

and ri2 = pi/3 due to remark 3.1). The energy density describing the compound is defined

as

W (x, F ) =







W1(F ) if x ∈ Ω̃1,

W2(F ) if x ∈ Ω̃2

(5.1)

and satisfies for almost every x ∈ Ω̃ the coercivity assumption A2 with p, r1 and r2.

Assume that the data is chosen according to A3. Like in the two-dimensional case we

12



define Vad(Ωδ) = {ϕ ∈ W 1,p(Ωδ) ; ϕ
∣

∣

ΓD
= gD } and consider the following minimization

problems for small δ ≥ 0:

Find ϕδ ∈ Vad(Ωδ) such that for every ψ ∈ Vad(Ωδ) we have

I(Ωδ, ϕδ) ≤ I(Ωδ, ψ) =

∫

Ωδ

W (x,∇ψ(x)) dx−
∫

Ωδ

f · ψ dx− 〈h, ψ
∣

∣

ΓN
〉ΓN

.

Again, Ball’s theorem guarantees the existence of minimizers ϕδ ∈ Vad(Ωδ). Let I(Ωδ) =

minψ∈Vad(Ωδ) I(Ωδ, ψ) and let the energy release rate be defined as

ERR3D(Ω0) = lim
δց0

1
δ

(

I(Ωδ) − I(Ω0)
)

.

The criterion for a stationary crack reads now

ERR3D(Ω0) < 2γ |Γ0| ⇒ the crack is stationary.

In order to calculate the energy release rate we introduce the following mapping between

Ωδ and Ω0:

Tδ : Ωδ → Ω0, x 7→ x− δθ(x)~e3,

where ~e3 = (0, 0, 1)⊤ and θ ∈ C∞
0 (Ω̃) is a function with θ = 1 in an open neighborhood of

the crack front Γ0. Exactly in the same way as in the two-dimensional case one arrives at

the following formula for ERR3D(Ω0):

Theorem 5.1. Let W : Ω̃ × M
d×d → [0,∞] be polyconvex and coercive as described above

and assume that A4 and A5 are satisfied by both, W1 and W2. If infψ∈Vad(Ω0) I(Ω0, ψ) <∞,

then

ERR3D(Ω0) = max{G(ϕ, θ) ; ϕ minimizes I(Ω0, ·) },

where

G(ϕ, θ) = −
∫

Ω0

E(∇ϕ) : ∇ (θ~e3) dx−
∫

Ω0

θf · ∂x3
ϕ dx.

Again, G(ϕ0, θ) is independent of θ for minimizers ϕ0 of I(Ω0, ·).
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6 Conclusions

We showed that the energy release rate is well defined in the framework of finite–strain

elasticity provided that the elastic energy density satisfies, in addition to polyconvexity, the

stress control assumptions A4 and A5. The energy release rate can be expressed through

a generalized Griffith formula and the well–known J–integral. Furthermore, we discussed

the main difference between the formulas for the linear elastic case, where the minimizers

are unique, and the finite–strain case with possibly several minimizers. We also presented

an example for an interface crack in a compound of two different materials.

Up to now, the two sides of the crack are allowed to penetrate into each other, which may

lead to unphysical solutions. Without any essential changes, our analysis can be applied

to the case where non–interpenetration conditions are included in the spaces Vad(Ωδ).

It only has to be ensured that the mapping Tδ introduced in (4.6) preserves the non–

interpenetration conditions. Moreover, the analysis can be extended to smooth, curved

cracks, which will be investigated in a forthcoming paper.
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[5] M. Thomas and A.-M. Sändig. Energy release rate for interface-cracks in compounds

of p-Laplacian type — Griffith formula and J-integral. Bericht SFB404 2006/13,

Universität Stuttgart, 2006.

[6] D. Knees and A. Mielke. Energy release rate for cracks in finite-strain elasticity. WIAS

Preprint No. 1100, Weierstrass Institute for Applied Analysis and Stochastics, Berlin,

2006. (accepted for publication in Math. Meth. Appl. Sci.).

[7] G. Dal Maso, G. A. Francfort, and R. Toader. Quasistatic crack growth in nonlinear

elasticity. Arch. Ration. Mech. Anal., 176(2):165–225, 2005.

14



[8] J. D. Eshelby. On the force on an elastic singularity. Proc. R. Soc. Lond. Ser. A,

244:87–112, 1951.

[9] G. P. Cherepanov. Crack propagation in continuous media. J. Appl. Math. Mech.,

31:503–512, 1967. Translation from Prikl. Mat. Mekh. 31:476-488, 1967.

[10] J. Rice. A path independent integral and the approximate analysis of strain concen-

tration by notches and cracks. J. Appl. Mech., 35(2):379–386, 1968.

[11] P. Destuynder and M. Djaoua. Sur une interpretation mathématique de l’intégrale de
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non linéaire, 8:119–157, 1991.

[18] J. M. Ball. Some open problems in elasticity. In Paul Newton, editor, Geometry,

mechanics, and dynamics. Volume in honor of the 60th birthday of J. E. Marsden,

pages 3–59, New York, 2002. Springer.

[19] M.E. Gurtin. On the energy release rate in quasi-static elastic crack propagation. J.

Elasticity, 9:187–195, 1979.

15



[20] M. Giaquinta and S. Hildebrandt. Calculus of Variations I. Springer-Verlag, Berlin,

Heidelberg, 1996.

[21] H. Stumpf and K.Ch. Le. Variational principles of nonlinear fracture mechanics. Acta

Mech., 83(1/2):25–37, 1990.

16


