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Abstract

We consider rate–independent models which are defined via two function-
als: the time–dependent energy–storage functional I : [0, T ] × X → [0,∞]
and the dissipation distance D : X ×X → [0,∞]. A function z : [0, T ] → X

is called a solution of the energetic model, if for all 0 ≤ s < t ≤ T we have

stability: I(t, z(t)) ≤ I(t, z̃) +D(z(t), z̃) for all z̃ ∈ X;

energy inequality: I(t, z(t))+DissD(z, [s, t]) ≤ I(s, z(s))+
∫ t
s
∂τI(τ, z(τ)) dτ .

We provide an abstract framework for finding solutions of this problem.
It involves time discretization where each incremental problem is a global
minimization problem. We give applications in material modeling where z ∈
Z ⊂ X denotes the internal state of a body. The first application treats
shape–memory alloys where z indicates the different crystallographic phases.
The second application describes the delamination of bodies glued together
where z is the proportion of still active glue along the contact zones. The third
application treats finite–strain plasticity where z(t, x) lies in a Lie group.
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1 Introduction

Many evolution equations can be written in the abstract form

0 ∈ ∂Ψ(ż(t)) + DI(t, z(t)), (1.1)

where z ∈ X is the state variable, I is the energy–storage functional, Ψ : X → [0,∞]
is a convex dissipation functional, and ∂Ψ means the set–valued subdifferential (see
[2] for this doubly nonlinear form). Rate–independency is realized by assuming that
Ψ is homogeneous of degree 1.

We replace the above differential inclusion by a weaker energetic formulation,
which is also more general since it allows for z–dependent dissipation functionals.
For given I : [0, T ] × X → [0,∞] and a given dissipation distance D : X × X →
[0,∞] satisfying the triangle inequality, we impose the energetic conditions of global
stability (S) and the energy inequality (E) instead of (1.1). A function z : [0, T ]→ X
is called a solution of the energetic model, if for all 0 ≤ s < t ≤ T we have

(S) I(t, z(t)) ≤ I(t, z̃) +D(z(t), z̃) for all z̃ ∈ X;
(E) I(t, z(t)) + DissD(z, [s, t]) ≤ I(s, z(s)) +

∫ t

s
∂τI(τ, z(τ))dτ .

Here, DissD(z, [s, t]) is called the dissipation of z on the interval [s, t] and is defined
as the supremum of

∑N

j=1D(z(tj−1), z(tj)) over all N ∈ N and all discretizations
s = t0 < t1 < . . . < tN = t.

Assuming D(z0, z1) = Ψ(z1−z0), convexity of I(t, ·) and further technical as-
sumptions, this energetic formulation is equivalent to (1.1), see [16]. However, the
latter form is more general as it applies to nonconvex problems and it doesn’t need
differentiability of t 7→ z(t) nor of z 7→ I(t, z). A related energetic approach to
equations of the type (1.1) is presented in [20], however, it remains unclear whether
that method applies to the rate–independent case.

In Section 2 we discuss the abstract setting in more detail and in Section 3
we provide existence results for solutions for given initial values z(0) = z0. The
existence theory is based on time–incremental minimization problems of the form

zk ∈ argmin{ I(tk, z)+D(zk−1, z) | z ∈ X }

and the BV bound for z : [0, T ]→ X obtained via the dissipation functional satisfy-
ing D(z0, z1) ≥ cD ‖z0−z1‖. However, one needs additional compactness properties,
if X is infinite dimensional. Here we propose a version where I satisfies coercivity
with respect to an embedded Banach space Y , i.e., I(t, z) ≥ −C1+c1‖z‖αY with
c1, C1, α > 0, where Y is compactly embedded in X.

For the case of D having the form D(z0, z1) = Ψ(z1−z0) this theory was devel-
oped in [16]. The case of general D can be found in [10].

The flexibility of the energetic formulation allows for applications in continuum
mechanics, where z : Ω → Z plays the rôle of internal variables in the material oc-
cupying the body Ω ⊂ Rd. Note that Z may be a manifold containing the internal
variables like phase indicators, plastic or phase transformations, damage, polariza-
tion or magnetization. By Z we denote the set of all admissible internal states. The
elastic deformation is ϕ : Ω→ Rd and F denotes the set of admissible deformations
ϕ.
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Energy storage is characterized via the functional E : [0, T ]×F×Z → R, where
t ∈ [0, T ] is the (quasi–static) process time, which drives the system via changing
loads. In typical material models, E has the form

E(t, ϕ, z) =
∫
Ω
W (x,Dϕ(x), z(x))dx− 〈`ext(t), ϕ〉,

where W is the stored–energy density and `ext(t) denotes the external loadings.
Dissipation is characterized by an infinitesimal Finsler metric ∆ : Ω × TZ →

[0,∞], such that the curve z : [t0, t1]→ Z dissipates the energy

Diss (z, [t0, t1]) =
∫ t1

t0

∫
Ω
∆(x, z(t, x), ż(t, x))dxdt.

The global dissipation distance D(z0, z1) is then the infimum over all curves connect-
ing z0 with z1. The relation to the abstract theory above is obtained by eliminating
the elastic deformation via

I(t, z) = inf{ E(t, ϕ, z) | ϕ ∈ F } for z ∈ Z and I(t, z) = +∞ else.

Obviously, the functional I is now fairly complicated and it is important to have
rather general conditions in the abstract theory.

In Section 4 we illustrate the usefulness of the abstract approach by discussing
three quite different applications; however, the theory is used in other areas as well,
e.g., in fracture mechanics [4, 3] and in micro–magnetics [8, 19].

Our first model describes phase transformations in shape–memory alloys as
discussed in [15, 17, 18, 5]. Here z : Ω → Z indicates either the microscopic
distribution of the phases or a mesoscopic average of the microscopic distribution.
In the first case we choose Z = Zp = {e1, . . . , ep} ⊂ Rp, where ej denotes the j–th
unit vector in Rp and in the second case we choose Z = convZp. In both cases the
dissipation distance is given by a volume integral measuring the amount of volume
which is transformed into another phase: D(z0, z1) =

∫
Ω
∆(z1(x)−z0(x)) dx, where

∆ : Rp → [0,∞[ is convex and homogeneous of degree 1. This leads naturally to the
basic space X = L1(Ω,Rp) and Z = { z ∈ X | z(x) ∈ Z a.e. }.

Including in E an interfacial energy proportional to the area of the interfaces
between regions of different phases provides a reduced energy I which is coercive
in Y = BV(Ω,Rp), see [9]. For an existence result in the case without interfacial
energy we refer to [17].

The second application describes the delamination of a body Ω which is glued
together along n hypersurfaces Γj, j = 1, . . . , n. The internal state z : Γ =
∪n1Γj → [0, 1] denotes the percentage of glue along Γ which remains in effect.
The dissipation is given by a material constant cD times the destroyed glue, i.e.,
D(z0, z1) = cD

∫
Γ
z0(x)−z1(x) da(x) for z1 ≤ z0 and D(z0, z1) = +∞ else. The

basic underlying space is L1(Γ) and now compactness arises via the trace operator
H1(Ω)→ L2(Γ) which makes the reduced energy functional I weakly continuous.

The final application is devoted to the modeling of elasto–plasticity with fi-
nite strains. There the internal variable z = (P, p) consists of the plastic trans-
formation P ∈ SL(d) and hardening parameters p ∈ Rk. Invariance under previ-
ous plastic deformations leads to dissipation metrics which are left–invariant, i.e.,
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∆((P, p), (Ṗ , ṗ)) = ∆((I, p), (P−1Ṗ , ṗ)). This geometric nonlinearity clearly shows
that we need general dissipation distances D avoiding any linear structure. In single–
crystal plasticity ∆ is piecewise linear in P−1Ṗ ∈ sl(d) which leads to Banach
manifolds and the dissipation metric is then a left–invariant Finsler metric. For
applications in this context see [1, 13, 12].

2 Abstract Setup of the Problem

We start with a Banach space X which is not assumed to be reflexive, since our
applications in continuum mechanics (cf. Section 4) naturally lead to spaces of the
form L1(Ω,Rk). The first ingredient of the energetic formulation is the dissipation
distance D : X ×X → [0,∞] satisfying the triangle inequality:

D(z1, z3) ≤ D(z1, z2) +D(z2, z3) for all z1, z2, z3 ∈ X.

We don’t enforce symmetry, i.e., we allow for D(z0, z1) 6= D(z1, z0) as in Section
4.2. We assume that there is a constant cD > 0 such that D(z0, z1) ≥ cD‖z1−z0‖X
for all z0, z1 ∈ X. The latter condition is in fact the one which determines the
appropriate function space X for a specific application. Moreover, D is assumed to
be s–weakly lower semicontinuous. (We continue to use the abbreviation s–weak for
“sequentially weak”.) We call D(z0, z1) the dissipation distance from z0 to z1.

For a given curve z : [0, T ]→ X we define the total dissipation on [s, t] via

DissD(z; [s, t]) = sup{∑N

1 D(z(τj−1), z(τj)) |N∈N, s=τ0<τ1< · · ·<τN=t }. (2.1)

The second ingredient is the energy–storage functional I : [0, T ]×X → [0,∞],
which is assumed to be bounded from below and then normalized such that it takes
only nonnegative values. Here t ∈ [0, T ] plays the rôle of a (very slow) process time
which changes the underlying system via changing loading conditions. For fixed time
t, the map I(t, ·) : X → [0,∞] is assumed to be s–weakly lower semicontinuous, i.e.,
zj ⇀ z implies I(t, z) ≤ lim infj→∞ I(t, zj). Moreover, we assume that for all z with
I(t, z) <∞ the function t 7→ I(t, z) is Lipschitz continuous with |∂tI(t, z)| ≤ CI .

Definition 2.1 A curve z : [0, T ]→ X is called a solution of the rate–independent
model (D, I), if global stability (S) and energy inequality (E) holds:

(S) For all t ∈ [0, T ] and all ẑ ∈ X we have I(t, z(t)) ≤ I(t, ẑ) +D(z(t), ẑ).
(E) For all t0, t1 with 0 ≤ t0 < t1 ≤ T we have

I(t1, z(t1)) + DissD(z; [t0, t1]) ≤ I(t0, z(t0)) +
∫ t1

t0
∂tI(t, z(t))dt.

The definition of solutions of (S)&(E) is such that it implies the two natural
requirements for evolutionary problems, namely that restrictions and concatenations
of solutions remain solutions. To be more precise, for any solution z : [0, T ] → E
and any subinterval [s, t] ⊂ [0, T ], the restriction z|[s,t] solves (S)&(E) with initial
datum z(s). Moreover, if z1 : [0, t] → E and z2 : [t, T ] → E solve (S)&(E) on the
respective intervals and if z1(t) = z2(t), then the concatenation z : [0, T ]→ E solves
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(S)&(E) as well. Under a few additional assumptions, it is shown in [16] that (S)
and (E) together imply that, in fact, the energy inequality is in an equality, i.e., for
0 ≤ t0 < t1 ≤ T we have

I(t1, z(t1)) + DissD(z; [t0, t1]) = I(t0, z(t0)) +
∫ t1

t0
∂tI(t, z(t))dt. (2.2)

Rate–independency manifests itself by the fact that the problem has no intrinsic
time scale. It is easy to show that z is a solution for (D, I) if and only if the

reparametrized curve z̃ : t 7→ z(α(t)), with α̇ > 0, is a solution for (D, Ĩ), where
Ĩ(t, z) = I(α(t), z). In particular, the stability (S) is a static concept and the
energy estimate (E) is rate–independent, since the dissipation defined via (2.1) is
scale invariant like the length of a curve.

The major importance of the energetic formulation is that neither the given
functionals D and I(t, ·) nor the solutions z : [0, T ] → X need to be differentiable.
In particular, applications in continuum mechanics often have low smoothness. Of
course, under additional smoothness assumptions on D and I the weak energetic
form (S)&(E) can be replaced by local formulations in the form of differential inclu-
sions like (1.1) ([2, 20]) or variational inequalities. See [16] for a discussion of the
implications between these different formulations.

3 Time Discretization and Existence

The major task is now to develop an existence theory for the initial value problem,
i.e., to find a solution in the above sense which additionally satisfies z(0) = z0. In
general, we should not expect uniqueness without imposing further conditions like
smoothness and uniform convexity of I(t, ·) and D, see [16].

The stability condition (S) can be rephrased by defining the stable sets

S(t) := { z ∈ X | I(t, z) ≤ I(t, ẑ) +D(z, ẑ) for all ẑ ∈ X }.

Then, (S) simply means z(t) ∈ S(t) for all t ∈ [0, T ]. The properties of the stable
sets turn out to be crucial for deriving existence results.

One of the standard methods to obtain solutions of nonlinear evolution equa-
tions is that of approximation by time discretizations. To this end we choose discrete
times 0 = t0 < t1 < . . . < tN = T and seek zk which approximates the solution z at
tk, i.e., zk ≈ z(tk). Our energetic approach has the major advantage that the values
zk can be found incrementally via minimization problems. Since the methods of the
calculus of variations are especially suited for applications in material modeling this
will allow for a rich field of applications.

To motivate the following incremental variational problem consider the nonlin-
ear parabolic problem h(∂tu) = div(ADu) + g, where we assume h′(v) ≥ 0. The
associated fully implicit incremental problem reads

h( 1
tk−tk−1

(uk−uk−1)) = div(ADuk) + g(tk).

With H(v) =
∫ v

0
h(w)dw we see that uk must be a minimizer of the functional

Jk(uk−1; ·) : u 7→
∫
Ω
(tk−tk−1)H( 1

tk−tk−1

(u−uk−1)) + 1
2
〈ADu,Du〉 − g(tk)udx.
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In the simplest rate–independent case the function h is given by the signum function
which impliesH(v) = |v|. Hence, the length tk−tk−1 of the k–th time step disappears
in the functional Jk. In our more general setting the incremental problem takes the
following form:

(IP) For z0 ∈ X with I(0, z0) <∞ find z1, . . . , zN ∈ X such that

zk ∈ argmin{ I(tk, z) +D(zk−1, z) | z ∈ X } for k = 1, . . . , N. (3.1)

Here “argmin” denotes the set of all minimizers. Using the s–weak lower semi–
continuity of D and I and the coercivity I(t, z)+D(zk−1, z) ≥ cD‖z−zk−1‖ we obtain
the following result.

Theorem 3.1 The incremental problem (3.1) always has a solution. Each solution
satisfies, for k = 1, . . . , N , the following properties:

(i) zk is stable for time tk, i.e., zk ∈ S(tk);
(ii)

∫
[tk−1,tk]

∂sI(s, zk)ds ≤ I(tk, zk)− I(tk−1, zk−1) +D(zk−1, zk)
≤

∫
[tk−1,tk]

∂sI(s, zk−1)ds;
(iii) I(tk, zk) +

∑k

j=1D(zj−1, zj) ≤ I(0, z0) + CIT ;

(iv) ‖zk‖ ≤ ‖z0‖+(I(0, z0)+CIT )/cD.

The assertions (i) and (ii) are the best replacements for the conditions (S) and (E)
in the time–continuous case.

For each discretization P = {0, t1, . . . , tN−1, T} of the interval [0, T ] and each
incremental solution (zk)k=1,...,N of (IP) we define two piecewise constant functions
which attain the values zk at tk and are constant in–between: ZP is continuous from
the left and ẐP is continuous from the right. Summing the estimates (ii) in Theorem
3.1 over k = j, . . . ,m we find the following two–sided energy estimate.

Corollary 3.2 Let P be any discretization of [0, T ] and (zk)k=0,...,N a solution of
(IP), then for 0 ≤ j < m ≤ N we have the two–sided energy inequality

I(tj, ZP (tj)) +
∫ tm

tj
∂sI(s, ZP (s))ds≤ I(tm, ZP (tm)) + DissD(ZP , [tj, tm])

≤ I(tj, ZP (tj)) +
∫ tm

tj
∂sI(s, ẐP (s))ds.

The existence of solutions can now be established by taking a sequence (P (l))l∈N

of discretizations whose fineness δ(l) = max{ t(l)j −t
(l)
j−1 | j = 1, . . . , N (l) } tends to 0.

Moreover we assume that the sequence is hierarchical with P (l) ⊂ P (l+1). The
associated solutions of (IP)(l) define z(l) := ZP (l). The construction of a solution of
(S)&(E) consists now of two parts.

First we use the dissipation bound (iii) of Theorem 3.1 to obtain an a priori
bound in BV([0, T ], X):

cD
∫
[0,T ]

‖dz(l)‖X ≤ DissD(z
(l), [0, T ]) ≤ I(0, z0) + CIT.
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Then, Part (iv) in Theorem 3.1 and the following additional compactness condition
(3.2) allows us to apply a selection principle in the spirit of Helly.

For all R > 0 and all t ∈ [0, T ] the sets

Rt
R := { z ∈ X | D(z0, z) ≤ R, I(t, z) ≤ R } are s–weakly compact.

(3.2)

Thus, we can extract a subsequence (ln)n∈N such that for all t ∈ [0, T ] the se-
quence z(ln)(t), n ∈ N, converges weakly to a limit z(∞)(t) with DissD(z

(∞), [0, T ]) ≤
lim infn→∞DissD(z

(ln), [0, T ]).
Second we need to show that z(∞) is a solution of (S)&(E). Using Corollary 3.2

it is easy to give conditions which guarantee that z(∞) satisfies (E) for t0 = 0 and
t1 = T , and by (2.2) this is sufficient. To obtain stability of z(∞) there are essentially
two different ways. If additional compactness properties allow us to conclude that
the convergence of z(ln)(t) to z(∞) also happens in the strong topology, then we are
in the good case. Then it suffices to know that the set

S[0,T ] = { (t, z) ∈ [0, T ]×X | z ∈ S(t) } = ∪t∈[0,T ](t,S(t))

is closed in the strong topology. If strong convergence cannot be deduced, one needs
to show that S[0,T ] is s–weakly closed. This property is quite hard to obtain, since
even under nice convexity assumptions on I(t, ·) the sets S(t) are generally not
convex.

The following theorem provides two alternative sets of assumptions which en-
ables us to turn the above construction into a rigorous existence proof.

Theorem 3.3 Let D and I be given as above and satisfy (3.2). If one of the condi-
tions (a) or (b) is satisfied, then for each z0 ∈ X with I(0, z0) <∞ there is at least
one solution z ∈ BV([0, T ], X) of (S)&(E) with z(0) = z0.

(a) The set S[0,T ] is s–weakly closed and z 7→ ∂tI(t, z) is s–weakly continuous.

(b) The sets Rt
R in (3.2) are compact, the set S[0,T ] is closed, and z 7→ ∂tI(t, z) is

continuous (all in the norm topology of X).

Simple nontrivial applications of this theorem with either condition (a) or (b)
are as follows: Let X = L1(Ω) with Ω ⊂ Rd bounded and choose the dissipation
distance D(z0, z1) = cD‖z1−z0‖X = cD

∫
Ω
|z1(x)−z0(x)|dx. As a first case consider

I1(t, z) =
∫
Ω
α(x)|z(x)|β−g(t, x)z(x)dx+ γ,

where α(x) ≥ α0 > 0, β > 1, and g ∈ C1([0, T ],L∞(Ω)). The sets Rt
R are closed

convex sets which lie in the intersection of an L1–ball and an Lβ–ball. Hence, we
obtain the s–weak compactness condition (3.2). Yet, Rt

R is not strongly compact in
L1(Ω). The stable sets for I1 are given by

S1(t) = { z ∈ L1(Ω) | |z(x)|β−2z(x) ∈ [ g(t,x)−cD
α(x)β

, g(t,x)+cD
α(x)β

] for a.a. x ∈ Ω },

which shows that they are s–weakly closed since they are convex and closed. Hence,
condition (a) is satisfied.
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As a second case consider the nonconvex energy functional

I2(t, z) =
∫
Ω
1
2
|Dz(x)|2+f(t, x, z(x))dx for z ∈ H1(Ω) and +∞ else,

where f : [0, T ] × Ω × R → R and ∂tf are continuous and bounded. Now, Rt
R is

already compact in L1(Ω) since it is closed and contained in an H1–ball. With these
properties, it can be shown that condition (b) of Theorem 3.3 holds.

4 Applications in Continuum Mechanics

The flexibility of the energetic formulation allows for applications in continuum
mechanics. We consider an elastic body which is given through a bounded domain
Ω ⊂ Rd with sufficiently smooth boundary. The elastic deformation is given by the
mapping ϕ : Ω → Rd, and the set of all admissible deformations is denoted by F ,
which implements the displacement boundary conditions.

The variable z ∈ Z includes all the internal variables like phase indicators,
plastic or phase transformations, damage, polarization or magnetization. A func-
tion z : Ω → Z gives the internal state of the material, and Z denotes the set of
all admissible internal states. Note that Z may be a manifold with (nonsmooth)
boundary. In plasticity we have Z = SL(d) × Rk, in phase transformations we let
Z = { z ∈ [0, 1]k | ∑p

1 z
(j) = 1 }, and in micro–magnetism z is the magnetization

satisfying |z(t, x)| = m0 > 0. Moreover, below we will also consider an application
where z is not defined on all of Ω but at certain parts of the boundary.

Energy storage is characterized via the functional E : [0, T ]×F ×Z → R which
is the sum of the total elastic energy and the potential energies due to exterior
loadings (Gibbs’ energy):

E(t, φ, z) =
∫
Ω
W (x,Dφ(x), z(x))dx− 〈`ext(t), φ〉.

Here t ∈ [0, T ] is the (quasi–static) process time which drives the system and the
external loads are 〈`ext(t), φ〉 =

∫
Ω
fext(t, x) · φ(x)dx+

∫
Γtract

gext(t, x) · φ(x)da(x).
Dissipation is characterized via the metric ∆ : Ω× TZ → [0,∞] such that the

curve z : [0, T ]→ Z dissipates the energy

Diss (z, [t0, t1]) =
∫ t1

t0

∫
Ω
∆(x, z(t, x), ż(t, x))dxdt on [t1, t2].

For each material point x ∈ Ω, the infinitesimal metric ∆(x, ·, ·) : TZ → [0,∞]
defines a global distance function D(x, ·, ·) : Z × Z → [0,∞] and on Z we obtain
the global dissipation distance

D(z0, z1) =
∫
Ω
D(x, z0(x), z1(x))dx

= inf{Diss (z, [t0, t1]) | z ∈ CLip([0, 1],Z), z(0) = z0, z(1) = z1 }.

The rate–independent problem for this material model is defined as in the above
abstract part, but now the elastic deformation appears as an additional variable,
which, however, does not generate any dissipation.
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Definition 4.1 A pair (φ, z) : [0, T ] → F × Z is called a solution of the rate–
independent problem associated with D and E if the global stability (S) and the
energy inequality (E) hold:

(S) For all t ∈ [0, T ] and all (φ̂, ẑ) ∈ F × Z we have

E(t, φ(t), z(t)) ≤ E(t, φ̂, ẑ) +D(z(t), ẑ).
(E) For all t0, t1 with 0 ≤ t0 < t1 ≤ T we have

E(t1, φ(t1), z(t1))+DissD(z; [t0, t1]) ≤ E(t0, φ(t0), z(t0))+
∫ t1

t0
∂tE(t, φ(t), z(t))dt.

The connection with the above abstract theory is obtained by minimization
with respect to the deformations φ ∈ F , since the stability condition implies that
φ(t) must be a minimizer of E(t, ·, z(t)). We define the associated I via

I(t, z) = inf{ E(t, ϕ, z) | ϕ ∈ F } for z ∈ Z and +∞ else.

While this elimination is suitable for an abstract treatment, the practical approx-
imation of solutions via the incremental approach is better done by keeping the
deformation and eliminating the internal variable in each incremental step. In fact,
in (IP) we now have to find

(φk, zk) ∈ argmin{ E(tk, φ̂, ẑ) +D(zk−1, ẑ) | (φ̂, ẑ) ∈ F × Z }. (4.1)

In this minimization problem the internal variable occurs only locally under the
integral over Ω and hence can be eliminated pointwise. Defining the local reduced
constitutive functions

Ψred(zold;x, F ) := min{W (x, F, z) +D(x, zold, z) | z ∈ Z },
Znew(zold;x, F ) ∈ argmin{W (x, F, z) +D(x, zold, z) | z ∈ Z },

(4.2)

and the reduced functional E red(zold; t, φ) =
∫
Ω
Ψred(zold; Dφ) dx − 〈`ext(t), φ〉 the

solution of (4.1) is equivalent to finding φ ∈ argmin{ E red(zk−1; tk, φ̂) | φ̂ ∈ F } and
then letting zk = Znew(zk−1; Dφk). For more details we refer to [12].

4.1 Phase transformations in shape–memory alloys

We assume that, in each microscopic point y, an elastic material is free to choose one
of p crystallographic phases and that the elastic energy density W is then given by
Wj(Dφ). If the model is made on the mesoscopic level, then the internal variables
are phase portions z(j) ∈ [0, 1] for the j–th phase. We set Z = { z ∈ [0, 1]p ⊂
Rp | ∑p

1 z
(j) = 1 } and X = L1(Ω,Rp). The material properties are described by

a mixture function W : Rd×d × Z → [0,∞], see [11, 17, 5]. The dissipation can
be shown to have the form D(z0, z1) = ψ(z1−z0) with ψ(v) = max{σm · v | m =
1, . . . ,M } ≥ Cψ|v|, where σm ∈ Rp are thermodynamically conjugated threshold
values.

So far we are unable to prove existence results for this model in its full generality.
However, the case with only two phases (p = 2) has been treated in [17] under the
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additional assumption that the elastic behavior is linear and both phases have the
same elastic tensor. In that case, one sets z = (θ, 1−θ) with θ ∈ [0, 1]. It can be
shown that I is a quadratic functional in θ ∈ L1(Ω, [0, 1]) ⊂ L2(Ω). It then follows
that the compactness condition (3.2) holds and condition (a) in Theorem 3.3 can
be verified using the H–measure to handle the weak convergence of the nonconvex
terms.

A microscopic model is treated in [9]. There no phase mixtures are allowed,
i.e., we assume z ∈ Zp := {e1, e2, . . . , ep} ⊂ Rp, where ej is the j–th unit vector.
Thus, the functions z ∈ Z are like characteristic functions which indicate exactly
one phase at each material point. The dissipation is assumed as above, but now
the elastic energy contains an additional term measuring the surface area of the
interfaces between the different regions:

E(t, φ, z) =
∫
Ω
W (Dφ, z)dx+ σ

∫
Ω
|Dz| − 〈`ext(t), φ〉,

where σ is a positive constant and
∫
Ω
|Dz| is

√
2 times the area of all interfaces.

Here Z = { z : Ω→ Zp |
∫
Ω
|Dz| <∞} and we set E(t, φ, z) = +∞ for z 6∈ Z.

Hence, after minimization with respect to φ we still have I(t, z) ≥ γ+σ
∫
Ω
|Dz|.

This term provides for Rt
R (cf. (3.2)) an a priori bound in BV(Ω,Rp) and hence we

conclude compactness in X = L1(Ω,Rp). Under the usual additional conditions for
the elastic stored–energy densitiesWj we obtain for each z0 ∈ Z a solution (φ, z) with
φ ∈ L∞

w (]0, T [ ,W1,2(Ω,Rd)) and z ∈ BV([0, T ],L1(Ω,Rp)) ∩ L∞
w∗(]0, T [ ,BV(Ω,Rp))

with z(t) ∈ Z for all t ∈ [0, T ], see [9].

4.2 A delamination problem

Here we give a simple model for rate–independent delamination and refer to [7] for
a better model and the detailed analysis.

Consider a body Ω ⊂ Rd which is given by an open, bounded, and path–
connected domain. Assume that the interior of the closure of Ω differs from Ω by
a finite set of sufficiently smooth hypersurfaces Γj, j = 1, . . . , n. This means that
with Γ :=

⋃n

j=1 Γj we have int(cl(Ω)) = Ω∪ Γ. We assume that the two sides of the
body are glued together along these surfaces and that the glue is softer than the
material itself. Upon loading, some parts of the glue may break and thus lose its
effectiveness. The remaining fraction of the glue which is still effective is denoted
by the internal state function z : Γ→ [0, 1].

We let Z = { z : Γ → [0, 1] | z measurable } ⊂ X = L1(Γ). The dissipation
distance D(z0, z1) is proportional to the amount of glue that is broken from state z0
to state z1:

D(z0, z1) = cD
∫
Γ
z0(y)−z1(y)da(y) for z0 ≥ z1 and +∞ else.

Here we explicitly forbid the healing of the glue by setting D equal ∞, if z0 6≥ z1.
The energy is given by the elastic energy in the body, the elastic energy in the

glue, and the potential of the external loadings:

E(t, φ, z) =
∫
Ω
W (Dφ)dx+

∫
Γ
z(y)Q(y, [[φ]]Γ(y))da(y)− 〈`ext(t), φ〉,
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where for y ∈ Γ the vector [[φ]]Γ(y) denotes the jump of the deformation φ across
the interface Γ and Q(y, ·) is the potential for the elastic properties of the glue.

For simplicity we assume further that W provides linearized elasticity and Q
is quadratic is well, then there is a unique minimizer φ = Φ(t, z) ∈ H1(Ω,Rd) of
E(t, ·, z). It can be shown that the mapping Φ(t, ·) : Z ⊂ L1(Γ)→ H1(Ω,Rd) is com-
pact, which implies that the functional I(t, ·) : Z → [0,∞[ is s–weakly continuous
with respect to the L1–topology on Z. For the latter argument it is essential that
z appears only linearly in the definition of E(t, φ, z). Theorem (3.3) with condition
(a) provides the existence of solutions.

4.3 Elasto–plasticity

The above theory can be applied to linearized elasto–plasticity, see [1, 13]. Here
we want to report on recent results concerning elasto–plasticity with finite strain.
However, for this application the abstract existence theory is not yet available.

Elasto–plasticity with finite strains is based on the multiplicative decomposition
of the deformation gradient F = Dφ in the form Dφ = FelastP

−1 where the plastic
transformation P lies in the Lie group SL(d) = {P ∈ Rd×d | detP = 1 }. The
internal variable has the form z = (P, p) ∈ Z where p ∈ Rk denotes the hardening
parameters. We refer to [1, 13, 12] for mechanical motivations and mathematical
details. For simplicity, we mention here only the case without hardening where
z = P ∈ SL(d) =: Z and refer to [6, 12] for more general cases.

The important point in finite–strain elasto–plasticity is that the dissipation dis-
tance must be invariant under previous plastic deformations, i.e., D(QP0, QP1) =
D(P0, P1) for all Q ∈ SL(d). Equivalently, the infinitesimal metric ∆ : TZ → [0,∞]
is left–invariant, i.e., ∆(P, Ṗ ) = ∆(I, P−1Ṗ ). This implies that the dissipation dis-
tance is characterized by a norm ∆(I, ·) on sl(d) = TISL(d) and that D(P0, P1)
behaves logarithmically in P−1

0 P1 which introduces strong geometric nonconvexi-
ties. So far, even the solution of the incremental problem (IP) is not understood
completely. Even in simple cases one has to expect non–attainment in (IP), which
leads to the formation of microstructure. The easiest way to see the problems is to
study the reduced energy density Ψred in (4.2). If this density is not quasi–convex,
then there are loadings such that (IP) has no solution and relaxation techniques
have to be employed, cf. [14].
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