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Abstract. We consider models for elasto-plasticity which are based on fully nonlinear

elastostatics and rate-independent evolution laws for the plastic deformation and suitable

hardening parameters. Accounting for finite strains leads to the multiplicative decompo-

sition of the strain tensor and to a flow rule formulated on a Lie group. Our analysis

is based on a recently developed energetic approach to general rate-independent material

models which only uses two energy functionals, namely the elastic stored energy and the

dissipation distance which plays the role of a metric on the space of internal variables.

The evolution law can be reformulated as a static stability condition combined with an

energy inequality. This work surveys results on the existence of solutions of an intrinsically

associated incremental problem which has the form of a minimization problem. Existence

of solutions for the time-continuous problem remains open except for the one dimensional

case.
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1 Introduction

The mathematical theory of linearized elasto-plasticity was developed in the 1970s

by J.J. Moreau [Mor76] and further developed subsequently up to efficient numer-

ical implementations, see, e.g., [Joh76, HaR95]. This theory relies on the additive
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decomposition

ε = 1
2 (Du + DuT) = εelast + εplast

of the linearized strain tensor ε, where u : Ω → Rd denotes the displacement.

Moreover, the energy is assumed to be a quadratic functional such that the problem

takes the form of a quasi-variational inequality. More general approaches including

nonlinear hardening laws and viscoplastic effects can be found in [BeF96, Alb98,

ACZ99, Che01a, Che01b]. A first local existence result for smooth solutions in

finite-strain elasto-plasticity is obtained in [Nef02].

This work surveys current mathematical developments in the theory of elasto-

plasticity which allows for large strains and which is based on the multiplicative

decomposition

F = Dy = FelastFplast. (1.1)

The main feature here is that, as in finite strain elasticity also called geometri-

cally nonlinear elasticity, the nonlinearities arise from the multiplicative group of

invertible matrices. The main question is to understand the interaction of func-

tional analytical tools, mainly based on linear function spaces, and these algebraic

nonlinearities.

Here, y : Ω → Rd is the deformation of the body Ω ⊂ Rd. The energy E stored

in a deformed body depends only on the elastic part Felast of the deformation tensor

and suitable hardening parameters p ∈ Rm, but not on the plastic part Fplast, which

is contained in SL(Rd), or another Lie group G contained in GL+(Rd) = {G ∈
Rd×d | det G > 0 }. The energy functional takes the form

E(t, y, (Fplast, p)) =
∫
Ω

Ŵ (x,Dy(x)Fplast(x)−1, p(x))dx − 〈`(t), y〉

where the external loading `(t) is given via

〈`(t), y〉 =
∫
Ω

fext(t, x) · y(x)dx +
∫
Γ

gext(t, x) · y(x)da.

To model the plastic effects one prescribes either a plastic flow law or, equivalently,

a dissipation potential ∆ : Ω × T(G × Rm) → [0,∞]. We consider ∆(x, ·, ·) as

an infinitesimal metric which defines the global dissipation distance D(x, ·, ·) on

G × Rm. Thus, the second ingredient of the material model is the dissipation

distance between two internal states Pj = (F
(j)
plast, pj) : Ω → SL(d) × Rm:

D(P1, P2) =
∫
Ω

D(x, (F
(1)
plast(x), p1(x)), (F

(2)
plast(x), p2(x)))dx.

Allowing for finite strains we are forced to avoid convexity of the stored-energy

density Ŵ . It rather has to be polyconvex or quasiconvex and frame indifferent, see

[Bal77]. These notions work well together with the philosophy that F = Dy is an

element of GL+(Rd), i.e., we set W (F ) = ∞ for detF ≤ 0. The aim of this work is
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to show that these assumptions can be connected naturally with the multiplicative

decomposition (1.1) and the Lie group structure for G = Fplast.

We follow the work in [MiT99, MTL02, Mie02a, Mie03a, MiR03] which shows

that rate-independent evolution for elastic materials with internal variables (“stan-

dard generalized materials”) can be formulated by energy principles as follows: A

pair (y, P ) : [0, T ] × Ω → Rd × SL(Rd) × Rm is called a solution of the elasto-

plastic problem associated with E(t, ·, ·) and D, if stability (S) and the energy

inequality (E) holds:

(S) For all t ∈ [0, T ] we have E(t, y(t), P (t)) ≤ E(t, ỹ, P̃ ) + D(P (t), P̃ ).

(E) For all s, t ∈ [0, T ] with s < t we have

E(s, y(s), P (s)) + Diss(P, [s, t]) ≤ E(t, y(t), P (t)) −
∫ t

s
〈 ˙̀(τ, y(τ)〉dτ .

So far, we are not able to provide existence results for (S)& (E) in the present

elasto-plastic setting. However, analogous models in phase transformations [MTL02,

MiR03], in delamination [KMR02], in micromagnetism [Kru02, RoK02], and in frac-

ture [FrM98, DMT02] have been treated with mathematical success. In these works

two major restrictions had to be made: (i) E has to be convex in the strains (leading

to infinitesimal strains) and (ii) the internal variable P has to lie in a closed convex

subset of a Banach space. In finite-strain elasto-plasticity these two assumptions

are clearly violated.

Since most of the above-mentioned existence results are based on time-incre-

mental approximations we devote this work to an existence theory for the following

incremental problem (IP). We consider this as a first step for finding solutions of

(S)& (E) and comment on the problem of treating the time-continuous problem.

(IP) Incremental problem. For given t0 = 0 < t1 < . . . < tN = T and P0

find (yk, Pk) ∈ Argmin{ E(tk, y, P )+D(Pk−1, P ) | (y, P ) }, k = 1, . . . , N.

Here “Argmin” denotes the set of all minimizers. Hence, (IP) consists of k min-

imization problems which are coupled via the dissipation distance. Similar in-

cremental minimization problems are also used in the engineering community, cf.

[OrR99, OrS99, MSS99, ORS00, MiL03, MSL02, HaH03]. Hence, it is justified to

study the mathematical properties of (IP) even though its relation to (S)& (E) is not

clear. In fact, existence and nonexistence for (IP) relates to questions of formation

of microstructure, localization or failure, see the discussions in [CHM02, Mie03a].

In Section 6 we introduce the notions of finite-strain elasto-plasticity in detail

and establish the relation between the classical flow rules of elasto-plasticity with

our energetic formulation (S)& (E). For a more extensive and mechanical treatment

we refer to [Mie03a]. In Section 4 study the incremental problem (IP) in specific

function spaces. First we establish a rather general result which says that any solu-

tion (yk, Pk)k=1,...,N is stable in the sense of (S) and satisfies a two-sided discretized

energy inequality replacing (E).
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The key feature of the analysis of (IP), with E and D as given above, is to

realize that the internal variables P = (Fplast, p) occur under the integral over the

body Ω only in a local fashion. Hence, it is possible to minimize in (IP) pointwise

in x ∈ Ω with respect to P (x). This leads to the condensed energy density

W cond(Pold;F ) = min{ Ŵ (FG−1, p) + D(Pold, (G, p)) | (G, p) ∈ SL(Rd) × Rm }.

The first major assumption for our existence theory is that W cond((1, p∗); · ) :

Rd×d → R∞ := R ∪ {∞} is polyconvex. The second major assumption is that

W cond and the dissipation distance D are coercive:

W cond((1, p∗);F ) ≥ c|F |qF −C and D((1, p∗), (G, p)) ≥ c|G|qG−C.

If the growth exponents satisfy 1
qF

+ 1
qG

≤ 1
q < 1

d , then existence of solutions

(yk, F
(k)
plast, pk) for (IP) is obtained with yk ∈ W1,q(Ω, Rd) and F

(k)
plast ∈ LqG(Ω, Rd×d).

In Section 5 we supply a specific two-dimensional example in which all assump-

tions can be checked explicitly and are fulfilled for suitable parameter values. Thus,

we provide a first existence theory for a multi-dimensional elasto-plastic incremental

problem in the geometric nonlinear case. Moreover, we discuss a one-dimensional

example to highlight the difficulties in proving existence of solutions for the time-

continuous problem (S)& (E) by letting the step-size of the time discretization tend

to 0. Only by exploiting the very specific properties of the one-dimensional case,

we obtain a convergence result for the incremental solution which implies that the

time-continuous problem (S)& (E) has a solution as well.

In Section 6 we speculate about the solvability of (IP) and (S)& (E) after

regularizing the elastic energy by adding a gradient term in the form

∫
Ω

κ‖DG‖r dx or
∫
Ω

κ‖(curl G)GT‖r dx.

We expect existence results for (IP), but solvability of (S)& (E) remains widely

open.

2 Elasto-plasticity at finite strain

Here we describe the framework of multiplicative elasto-plasticity as developed in

[Mie02a, Mie03a], where more details on the mechanical modeling are given.

We consider an elastic body Ω ⊂ Rd which is bounded and has a Lipschitz

boundary ∂Ω. A deformation is a mapping y : Ω → Rd such that the deformation

gradient F (x) = Dy(x) exists for a.e. x ∈ Ω and satisfies

F (x) ∈ GL+(d) = {F ∈ Rd×d | detF > 0 }.

The internal plastic state at a material point x ∈ Ω is described by the plastic tensor

G = Fplast ∈ GL+(d) and a possibly vector-valued hardening variable p ∈ Rm. We
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shortly write P = (G, p) to denote the set of all plastic variables. The major

assumption in finite-strain elasto-plasticity is the multiplicative decomposition of

the deformation gradient F into an elastic and a plastic part

F = FelastFplast = FelastG. (2.1)

The main feature of this decomposition is that the elastic properties will depend

only on Felast, whereas previous plastic transformations through G are completely

forgotten. However, the hardening variable p will record changes in G and may

influence the elastic properties.

The deformation process is governed by two principles. First we have energy

storage which gives rise to the equilibrium equations and second we have dissipation

due to plastic transformations which give rise to the plastic flow rule. Energy storage

is described by the Gibbs energy

E(t, y, P ) =
∫
Ω

W (x,Dy(x), P (x))dx − 〈`(t), y〉,

where 〈`(t), y〉 =
∫
Ω

fext(t, x) · y(x) dx +
∫
ΓNeu

gext(t, x) · y(x) da(x) denotes the

process-time dependent loading. The major constitutive assumption is the multi-

plicative decomposition

W (x, F, (G, p)) = Ŵ (x, FG−1, p). (2.2)

From now on we drop the variable x for notational convenience. However, the whole

theory and analysis works in the inhomogeneous case as well.

The dissipational effects are usually modeled by prescribing yield surfaces.

For our purpose it is more convenient and mathematically clearer to start on the

other side, namely the dissipation metric. In mechanics this metric is called dis-

sipation potential, since the dissipational friction forces are obtained from it via

differentiation with respect to the plastic rates. We emphasize that the natural

setup for the plastic transformation G ∈ GL+(d) is that of an element of a Lie

group G ⊂ GL+(d). A usual assumption is plastic incompressibility, which gives

G = SL(d) = {G | det G = 1 }. However, G = GL+(d) or a single-slip system

G = {1 + γe1 ⊗ e2 | γ ∈ R } may also be possible. A dissipation potential is a

mapping

∆ : Ω × T(G × Rm) → [0,∞],

which is called a dissipation metric, if it is continuous and if ∆(x, (G, p), ·) is convex

and positively homogeneous of degree 1, i.e.,

∆(x, (G, p), α(Ġ, ṗ)) = α∆(x, (G, p), (Ġ, ṗ)) for α ≥ 0.

(Again we drop the variable x for notational convenience.) This condition leads to

rate-independent material behavior. Together with the multiplicative decomposi-

tion (2.1) one assumes plastic indifference

∆((GĜ, p), (ĠĜ, ṗ)) = ∆((G, p), (Ġ, ṗ)) for all Ĝ ∈ G.
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This amounts to the existence of a function ∆̂ : Rm × Rm × g → [0,∞] such that

∆((G, p), (Ġ, ṗ)) = ∆̂(p, ṗ, ĠG−1).

Here g = T1G is the Lie algebra associated with the Lie group G, and strictly

speaking ĠG−1 is the right translation of Ġ(t) ∈ TG(t)G to g = T1G.

An important feature of our theory is the induced dissipation distance D on

G × Rm defined via (recall P = (G, p))

D(P0, P1) = inf{
∫ 1

0
∆(P (s), Ṗ (s))ds|P ∈ C1([0, 1],G×Rm), P (0) = P0, P (1) = P1 }.

It is important to note that we don’t assume symmetry (i.e., ∆(P,−Ṗ ) = ∆(P, Ṗ ))

which would contradict hardening. Thus, D(·, ·) will not be symmetric either. How-

ever, we will often use the triangle inequality

D(P1, P3) ≤ D(P1, P2) + D(P2, P3),

eeq which follows immediately from the definition. Plastic difference implies that

thedissipation distance satisfies

D((G1, p1), (G2, p2)) = D((1, p1), (G2G
−1
1 , p2)). (2.3)

Integration gives the bulk dissipation distance between two internal states Pj : Ω →
G×Rm via

D(P0, P1) =
∫
Ω

D(P0(x), P1(x))dx.

To make the energetic formulation mathematically rigorous we define the set

of kinematically admissible deformations via

F = { y ∈ W1,q(Ω; Rd) | y|ΓDir
= yDir }, (2.4)

where ΓDir = ∂Ω\ΓNeu is a part of the boundary with positive surface measure.

Moreover, yDir = Y |ΓDir
where Y ∈ C1(Ω; Rd) with DY (x) ∈ GL+(d) for all x ∈ Ω.

The integrability power q in W1,q will be chosen larger than d in order to apply

the theory of polyconvexity. The loading can then be considered as a function

` : [0, T ] → W1,q(Ω, Rd)∗, where ∗ denotes the dual space (space of all continuous

linear forms).

The set of admissible internal states is simply

P = {P : Ω → G × Rm | P measurable }. (2.5)

Because of the image space, which is a manifold, it is not clear whether it is reason-

able to consider P as a subset of a Banach space like LqG(Ω, Rd×d) × Lqp(Ω, Rm)

or as a general manifold equipped with a metric associated with D. The abstract

theory in Section 3 will address the interplay between the topology on Z = F × P
and the metric D.
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Definition 2.1. A process (y, P ) : [0, T ] → F × P is called a solution of the

elasto-plastic problem defined via E(t, ·, ·) and D, if the stability condition (S) and

the energy inequality (E) holds:

(S) For all t ∈ [0, T ] we have

E(t, y(t), P (t)) ≤ E(t, ỹ, P̃ ) + D(P (t), P̃ ) for all (ỹ, P̃ ) ∈ F × P.

(E) For all s, t ∈ [0, T ] with s < t we have

E(t, y(t), P (t))+Diss(P, [s, t]) ≤ E(s, y(s), P (s))−
∫ t

s
〈 ˙̀(r), y(r)〉dr.

(2.6)

Here −
∫ t

s
〈 ˙̀, y〉 dr =

∫ t

s
〈`, ẏ〉 dr − 〈`, y〉|ts is called the reduced work of the

external forces, since E denotes the Gibbs energy instead of the Helmholtz energy.

The dissipation reads

Diss(P, [s, t]) = sup{∑N
j=1 D(P (tj−1), P (tj)) | N ∈ N, s ≤ t0 < . . . < tN ≤ t }

for general processes, which equals Diss(P, [s, t]) =
∫ t

s

∫
Ω

∆(P (r, x), Ṗ (r, x)) dx dt

for differentiable processes.

The major advantage of the energetic formulation via (S) and (E) is that

neither derivatives of the constitutive functions W and ∆ nor of the solution (Dy, P )

are needed. Nevertheless, (S) and (E) are strong enough to determine the physically

relevant solutions. We refer to [MiT01] for uniqueness results under additional

convexity assumptions. Moreover, it is shown in [Mie03a] that sufficiently smooth

solutions (y, P ) of (S) and (E) satisfy the classical equations of elasto-plasticity,

namely the equilibrium equation

−div T (t, x) = fext(t, x) in Ω,

y(t, x) = yDir(x) on ΓDir,

T (t, x)ν(x) = gext(t, x) on ΓNeu,





and the flow rule

0 ∈ ∂sub
Ṗ

∆(P (t, x), Ṗ (t, x)) − Q(t, x), (2.7)

where T = ∂
∂F W (Dy, P )) = ∂

∂Felast

Ŵ (DyG−1, p)G−T is the first Piola-Kirchhoff

stress tensor, ∂sub
Ṗ

∆(P, Ṗ ) denotes the subgradient of the convex function ∆(P, · ) :

TP (G × Rm) → [0,∞] and Q ∈ T∗
P (G × Rm) is the thermodynamically conjugated

driving force to P = (G, p), i.e.,

Q = − ∂
∂(G,p)W (F, (G, p)) = (G−TFT ∂

∂Felast

Ŵ (FG−1, p)G−T,− ∂
∂pŴ (FG−1, p)).

Using the elastic domain Q(P ) = ∂sub
Ṗ

∆(P, 0) ⊂ T∗
P (G×Rm), the Legendre-Fenchel

transform shows that (2.7) is equivalent to the differential inclusion

Ṗ ∈ ∂XQ(P )(Q) = NQQ(P ), (2.8)
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where χQ(P ) is the indicator function and NQQ(P ) denotes the exterior normal cone.

If Q(P ) is given by a yield function φ in the form Q(P ) = {Q | φ(P,Q) ≤ 0 } and
∂

∂Qφ(P,Q) 6= 0 at φ(P,Q) = 0, then the flow rule (2.7) or (2.8) can be reformulated

via the Karush-Kuhn-Tucker conditions:

Ṗ = λ ∂
∂Qφ(P,Q), λ ≥ 0, φ(P,Q) ≤ 0, λφ(P,Q) = 0.

3 Abstract setup of rate-independent problems

We show here that the energetic formulation derived above is a special case of an

abstract formulation for rate-independent processes. This theory was developed in

[MiT99, MiT01, MTL02] and takes its most nonlinear form in [MaM03]. Other ap-

plications are in the theory of shape-memory alloys [GMH02, MiR03], in ferromag-

netism [Kru02, RoK02] or in fracture or delamination [DMT02, FrM98, KMR02].

However, we will see in the subsequent sections that the present state of the theory

is not fully applicable in the theory of multiplicative elasto-plasticity.

We start with a topological space Z and denote convergence in this space

by zk
Z→ z. The rate-independent system consists of two ingredients which both

are considered to be energetic quantities. The time-dependent energy functional

E : [0, T ] × Z → R∞ describes the energy-storage mechanism of the system. The

dissipation distance D : Z×Z → [0,∞] describes how the system dissipates energy.

The latter is taken to be the minimal amount of dissipated energy when the system

changes from one state into another. Hence, D should satisfy the triangle inequality:

D(z1, z3) ≤ D(z1, z2) + D(z2, z3) for all z1, z2, z3 ∈ Z,

but we allow for the value ∞ and do not enforce symmetry, i.e., we allow for

D(z0, z1) 6= D(z1, z0) which is important for elasto-plasticity. For any given curve

z : [0, T ] → Z we define the dissipation on [s, t] via

DissD(z; [s, t]) = sup{
∑N

1 D(z(τj−1), z(τj)) | N∈N, s=τ0<τ1< · · ·<τN=t }. (3.1)

Definition 3.1. A curve z : [0, T ] → X is called a solution of the rate-independent

model (E ,D), if global stability (S) and energy inequality (E) holds:

(S) For all t ∈ [0, T ] and all ẑ ∈ Z we have E(t, z(t)) ≤ E(t, ẑ) + D(z(t), ẑ).

(E) For all t0, t1 with 0 ≤ t0 < t1 ≤ T we have

E(t1, z(t1)) + DissD(z; [t0, t1]) ≤ E(t0, z(t0)) +
∫ t1

t0
∂tI(t, z(t))dt.

The stability condition (S) represents the fact that, while holding the pro-

cess time t fixed, the system is in a stable state, which means that changing z(t)

into z̃ does not release more stored energy than has to be paid by the dissipation

mechanism: E(t, z(t))−E(t, ẑ) ≤ D(z(t), ẑ). The energy inequality (E) says that
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the present stored energy plus the dissipated energy has to be less than the initial

energy plus the work of the external forces.

Rate-independency manifests itself by the fact that the problem has no in-

trinsic time scale. It is easy to show that z is a solution of (E ,D), if and only

if the reparametrized curve z̃ : t 7→ z(α(t)), with α̇ > 0, is a solution of (Ẽ ,D),

where Ẽ(t, z) = E(α(t), z). In particular, the stability (S) is a static concept and

the energy estimate (E) is rate-independent, since the dissipation defined via (3.1)

is scale invariant like the length of a curve.

The major importance of the energetic formulation is that neither the given

functionals D and E(t, ·) nor the solutions z : [0, T ] → Z must be differentiable. In

fact, to make sense of such derivatives we would need to impose that Z is a (Banach)

manifold or a suitable subset of a Banach space. Although this will be the case in

many applications, it is better to avoid these concepts as long as possible.

A traditional “linear setup” is obtained, if we assume that Z is a closed convex

subset of a Banach space X, that E(t, ·) is strictly convex and that D has the from

D(z0, z1) = ‖z1−z0‖X . Then the energetic formulation (S) & (E) is equivalent to

the differential inclusion

0 ∈ ∂sub[‖ · ‖X ](ż(t)) + ∂sub[E(t, z(t))+χZ(·)](z(t)) for a.a. t ∈ [0, T ],

where ∂sub denotes the subdifferential for convex functions. We refer to [CoV90,

Vis01] for such doubly nonlinear problems and to [MiT01] for exact proofs of the

implications between the different formulations.

To develop an existence theory for the problem (S)&(E), one needs to specify

conditions on Z, E and D. We will not discuss the complete existence theory here,

mainly because of the fact that in the case of elasto-plasticity the theory is not yet

finished. Nevertheless, we give the main flavor of the theory and show how certain

major steps work together. The main approach to the energetic formulation is based

on time discretization and exploiting the fact that the backward Euler step can be

formulated as a minimization problem.

To this end we choose discrete times 0 = t0 < t1 < . . . < tN = T . For a given

initial datum z0 ∈ Z we formulate the time-incremental problem.

(IP) For z0 ∈ Z with E(0, z0) < ∞ find z1, . . . , zN ∈ X such that

zk ∈ Argmin{ E(tk, z) + D(zk−1, z) | z ∈ Z } for k = 1, . . . , N.

Here “Argmin” denotes the set of all minimizers. Note that the size of the time step

does not enter here, which is due to rate-independence. Of course, the existence

of minimizers is nontrivial in general. However, the following result shows that

any solution satisfies a discretized version of (S)& (E) and thus justifies (IP) as

an approximation to (S)& (E). The stability condition (S) can be reformulated as
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(t, z(t)) ∈ S for all t ∈ [0, T ], where the stable set S is given via

S := { (t, z) ∈ [0, T ] × X | E(t, z) ≤ E(t, ẑ) + D(z, ẑ) for all ẑ ∈ X }.

Theorem 3.2. Assume (0, z0) ∈ S, then each solution (zk)k=0,...,N of (IP) satisfies

the following properties. For k = 1, . . . , N

the state zk is stable at time tk, i.e., (tk, zk) ∈ S, and∫ tk

tk−1

∂sE(s, zk)ds ≤ E(tk, zk)−E(tk−1, zk−1)+D(zk−1, zk) ≤
∫ tk

tk−1

∂sE(s, zk−1)ds.

This result shows that (IP) is intrinsically linked with (S)& (E). Its proof is

a simple application of the minimization property of zk together with the triangle

inequality for D, cf. [MiT99, MTL02, MaM03].

To obtain existence for (IP) one typically makes the following assumptions:

First we assume that the time dependence through the loading is controlled:

|∂tE(t, z)| ≤ C1 for all (t, z) ∈ [0, T ] ×Z. (3.2)

With this we define the set of energetically reachable states

R := { (t, z) ∈ [0, T ] ×Z | E(t, z) + D(z0, z) ≤ E(0, z0) + C1t + 1 } (3.3)

and RZ := { z ∈ Z | ∃ t ∈ [0, T ] with (t, z) ∈ R}. (3.4)

Then, the major assumptions are read

(a) R is a compact subset of [0, T ] ×Z;

(b) E : R → R∞ is lower semicontinuous;

(c) D : RZ ×RZ → [0,∞] is lower semicontinuous.

(3.5)

If the assumptions (3.2) and (3.5) hold, (IP) has a solution (zk)k=0,...,N which

satisfies (tk, zk) ∈ R. To show this one just uses induction over k and employs

Theorem 3.2 and the triangle inequality in each step.

Finally we address the question whether the solutions of (IP) can be used

to construct a solution of (S)& (E) as a limit of incremental solutions when the

temporal step size tends to 0. In [MaM03] the following result was obtained.

Theorem 3.3. Let the assumptions (3.2) and (3.5) hold and assume that the

topology on Z is compatible with the metric D in the following way:

If (tk, zk), (t, z) ∈ R ∩ S, tk → t and min{D(z, zk),D(zk, z)} → 0, then zk
Z→ z.

Assume further that ∂tE : R → [−C1, C1] is continuous and that the stable set S is

closed (both in the topology of Z).

Then, the problem (S)& (E) has a solution z : [0, T ] → Z which is obtained as

pointwise limit of a subsequence of piecewise constant interpolants Z l : [0, T ] → Z
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of solutions to (IP) for nested partitions with step size tending to 0, that is, for

all t ∈ [0, T ] we have Z lm(t)
Z→ z(t) for m → ∞. Moreover, the energy inequal-

ity (E) is an equality and E(t, z(t)) = limm→∞ E(t, Zlm(t)) and Diss(z, [s, t]) =

limm→∞ Diss(Zlm , [s, t]) for all s, t ∈ [0, T ] with s < t.

The major difficulty is to establish the closedness of S, since it is defined only

implicitly. A typical positive result is obtained when D and E are continuous on R.

In many applications Z is a Banach space and it is easy to show that S is closed in

the strong topology, but there R is not compact. In the weak topology R would be

compact, but since E and D are not weakly continuous it is difficult to show that S
is closed. In Section 5 we give an example for elasto-plasticity where this dilemma

can be studied explicitly.

4 Incremental problems in elasto-plasticity

Until now, no existence theory for the time continuous problem (S) & (E) is avail-

able, except for the case d = 1 given in the second part of Section 5. However,

in computational plasticity [OrR99, MSS99, ORS00, MSL02, HaH03, MiL03] incre-

mental problems are a fundamental tool and hence deserve a mathematical treat-

ment in their right. It was realized in [OrR99, ORS00, CHM02, Mie03a] that ex-

istence of solutions for (IP) is not to be expected in general situations. In fact,

nonexistence can be connected either with failure of the material due to localiza-

tion (e.g. in shear bands) or fracture or with formation of microstructure in material

domains of positive measure. Here we present constitutive assumptions which al-

low us to prove existence of solutions for each incremental step, even though the

abstract theory of Section 3 is not applicable.

We let Z = F × P, according to (2.4) and (2.5), and choose a time dis-

cretization 0 = t0 < . . . < tN = T . The incremental problem assumes are more

specific form as the states z = (y, P ) have two components and only one of them

appears in the dissipation. For a stable initial state (y0, P0) ∈ F × P we consider

the incremental problem

(IP) For k = 1, . . . , N find (yk, Pk) ∈ F × P such that

(yk, Pk) ∈ Argmin{ E(tk, y, P ) + D(Pk−1, P ) | (y, P ) ∈ F × P }.
(4.1)

The main point is to show that the set of global minimizers (Argmin{· · · }) is

nonempty, i.e. we have to find zk = (yk, Pk) ∈ F × P such that Ik(zk) ≤ Ik(z)

for all z ∈ Z, where

Ik(y, P ) :=
∫
Ω
[W (Dy(x), P (x)) + D(Pk−1(x), P (x))]dx − 〈`(tk), y〉. (4.2)

In fact, there are two ways to attact the problem. The first approach uses
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that y does not appear in the dissipation. One can define a reduced functional

Ered : [0, T ] × P → R∞; (t, P ) 7→ min{ E(t, y, P ) | y ∈ F }

and then apply the abstract theory with Z = P to this new functional. This

approach leads to the gneral problem that E red is defined only implicitly, that the

derivative ∂tEred may not exist or may not be continuous.

We use a second approach which relies on the special structure that P ∈ P
occurs under the integral only with its point values and no derivatives appear.

Hence, we can minimize with respect to P for each point x ∈ Ω separately. We

define the condensed energy density

W cond(Pold;F ) = min{W (F, P ) + D(Pold, P ) | P ∈ G × Rm },

the condensed functional

Icond
k (y) =

∫
Ω

W cond(Pk−1(x); Dy(x))dx − 〈`(tk), y〉.

and choose a measurable update function

P upd : (G × Rm) × Rd×d → G × Rm with

P upd(Pold;F ) ∈ Argmin{W (F, P ) + D(Pold, P ) | P ∈ G × Rm }.

Lemma 4.1. If ỹ ∈ F minimizes Icond
k and if P̃ (x) = P upd(Pk−1(x); Dỹ(x)),

then (ỹ, P̃ ) minimizes Ik. Moreover, (y, P ) ∈ F×P minimizes Ik if and only if y

minimizes Icond
k and P (x) ∈ Argmin{W (Dy(x), ·) + D(Pk−1(x), ·) | P ∈ G × Rm }.

Hence, each step in (IP) reduces to a classical variational problem of nonlinear

elasticity. We now state our main assumptions which are formulated in terms of

W cond and D. Thus, the assumptions are quite implicit, since in practice only the

stored-energy density W and the dissipation potential ∆ are given. In the next

section we provide an example where all these conditions are satisfied. Note that

the multiplicative decomposition (2.2) and the plastic indifference of the dissipation

(2.3) implies W cond((Gold, pold);F ) = W cond((1, pold);FG−1
old).

(a) W cond((1, ·); ·) : Rm × Rd×d → [0,∞] and D(·, ·) : (G×Rm)2 → [0,∞]

are lower semi-continuous.

(b) For each p ∈ Rm the function W cond((1, p), ·) : Rd×d → [0,∞]

is polyconvex.

(c) There exist C, c > 0, p∗ ∈ Rm and exponents qF , qG, qp ≥ 1 such that

D((1, p∗), (G, p)) ≥ c|G|qD+c|p|qp−C and W cond((1, p);F ) ≥ c|F |qF −C

for all (F,G, p) with D((1, p∗), (G, p)) < ∞.

(d) P upd((1, ·); ·) : Rm × Rd×d
+ → G × Rm is Borel measurable.

(4.3)
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The following result is established in [Mie03b].

Theorem 4.2. Let the assumptions in (4.3) be satisfied such that 1
qF

+ 1
qG

≤ 1
q < 1

d

holds, where q occurs in the definition of F ⊂ W1,q(Ω, Rd) in (2.4).

Then, for each P0 ∈ P with D((1, p∗), P0) < ∞ and ` ∈ C0([0, T ],W1,q(Ω, Rd)∗)

the incremental problem (IP), see (4.1), has a solution ((yk, Pk))k=1,...,N with

yk ∈ F and Pk = P upd(Pk−1; Dyk(·)) ∈ P ∩ (LqG(Ω, Rd×d) × Lqp(Ω, Rm)).

Obviously, the result is proved by induction over k = 1, 2, . . . , N . According to

Lemma 4.1, the k-th minimization problem for Ik (cf. (4.2)) reduces to minimization

of Icond
k : y 7→

∫
Ω

Wk(x,Dy(x))dx − 〈`(tk), y〉 with

Wk(x, F ) = W cond(Pk−1(x);F ) = W cond((1, pk−1(x));FGk−1(x)−1).

Clearly, Wk : Ω × Rd×d → [0,∞] is measurable in x and lower semi-continuous in

F , by (4.3c) it satisfies the lower bound

Wk(x, F ) ≥ c|FGk−1(x)−1|qF − C ≥ c|F |q − C|Gk−1(x)|q∗ − C.

Moreover, (4.3b) gives polyconvexity of Wk(x, ·), since W cond is polyconvex and the

minors of the product FG−1
k−1 are linear combinations of products of the minors

of F and G−1
k−1. Hence, suitable existence results for polyconvex functionals apply.

Induction works since q∗ ≤ qG holds.

We note that Ik : F × P → R∞ is not weakly lower semicontinuous because

of the geometric nonlinearity coming from the multiplicative decomposition, i.e.,

W (F, (G, p)) = Ŵ (FG−1, p). It is shown in [FKP94, LDR00] that weak lower semi-

continuity of Ik implies that the map (F,G, p) 7→ W (F, (G, p))+D(Pk−1(x), (G, p))

is cross-quasiconvex, which in turn implies convexity in P = (G, p). However, this

can only be achieved if Felast 7→ Ŵ (Felast) is convex, but this contradicts the stan-

dard axioms of finite-strain elasto-plasticity, see [CHM02] and below. Of course,

lower semi-continuity of Ik is not necessary and, as shown above, we may obtain

minimizers without it.

5 Two examples

The crucial assumption of the above theory is the polyconvexity of W cond. Since

polyconvexity is in general hard to check, it is nontrivial to find a multi-dimensional

example. Our example only works for the dimension d = 2, since it depends on the

fact that everything can be calculated explicitly. We consider the isotropic energy

density

W :

{
R2×2 → R∞,

F 7→ 1
α (να

1 +να
2 ) + V (detF ),

(5.1)
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where ν1, ν2 ≥ 0 are the two singular values of F (i.e., the eigenvalues of (F TF )1/2)

and V : R → [0,∞] is convex, continuous and satisfies V (δ) = ∞ for δ ≤ 0. For the

plastic variables we take P = (G, p) ∈ SL(2) × R with the dissipation metric

∆(G, p, Ġ, ṗ) =

{
A′(p)ṗ for ṗ ≥ ‖ĠG−1‖,
∞ else.

(5.2)

Here, A(p) = eαp/
√

2 and ‖ξ‖2 =
∑

ξ2
ij . The associated dissipation distance satisfies

D((1, p0), E(s), p1)) =

{
eα(p0/

√
2+|s|) − eαp0/

√
2 for p1 ≥ p0+

√
2|s|,

∞ else,

where E(s) = diag(es, e−s). Moreover, the condensed stored-energy density takes

the explicit form

W cond((1, p);F ) = V (ν1ν2) − eαp/
√

2 +





2
α

√
να
1 (να

2 +bp) for να
1 ≥ να

2 + bp,
1
α

√
να
1 +να

2 +bp for |να
1 −να

2 | ≤ bp,
2
α

√
να
2 (να

1 +bp) for να
2 ≥ να

1 + bp,

where bp = αeαp/
√

2. The update functions can also be given explicitly. For details

we refer to [Mie02a, HMM03, Mie03a, Mie03b].

By explicit calculations, it is shown in [Mie02b] that W cond((1, p); ·) is polcon-

vex for α ≥ 2. Moreover, we have the lower bounds

D((1, p∗), (G, p)) ≥ c(‖G‖α − 1) and W cond((1, p);F ) ≥ c(‖F‖α/2 − bp)

for all F ∈ R2×2, p∗, p ∈ R and G ∈ SL(2) with D((1, p∗), (G, p)) < ∞. Thus, this

two-dimensional example satisfies the assumptions (4.3) for α ≥ 2 with exponents

qF = α/2 and qG = α. Hence, Theorem 4.2 is applicable if 1
2 = 1

d > 1
q ≥ 1

qW
+ 1

qD
=

3
α holds. Summarizing we obtain the following existence result.

Theorem 5.1. Let d = 2 and G = SL(2). With α > 6 let W : R2×2 → [0,∞] and

∆ : T(G×R) → [0,∞] be defined via (5.1) and (5.2), respectively. Assume that there

exists a p∗ ∈ R, such that the initial condition P0 ∈ P satisfies D((1, p∗), P0) < ∞
and let q = α/3.

Then, for each ` : [0, T ] → (W1,α/3(Ω, R2))∗ the incremental problem (IP)

(see (4.1)) has a solution ((yk, Pk))k=1,...,N ∈ (F×P)N . Moreover, there exists a

constant C which depends only on α, `, and P0, but not on the partition t1, . . . , tN
nor on the solution such that

‖yk‖W1,α/3 + ‖Gk‖Lα + ‖eαpk/
√

2‖L1 ≤ C for k = 1, . . . , N.

As a second example we treat the one-dimensional situation, which seems to

be trivial regarding the existence of solutions for the incremental problem. Here
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the major simplification is that polyconvexity is equal to convexity. However, the

purpose of this example is to address the question of convergence of the incremen-

tal solutions towards a solution of the time-continuous problem (S)& (E). We will

see, that general arguments, as given in Theorem 3.3, are not sufficient. Only in

using the special one-dimensional structure, we are able to prove convergence (of a

subsequence) and obtain finally an existence result for (S)& (E).

Again we treat a special case, but the analysis easily generalizes to far more

general constitutive laws W and ∆. We let

W (F ) = 1
α (Fα+F−α) for F > 0 and ∞ else,

G = GL+(1) = (0,∞), P = (G, p) ∈ G × R, and

∆((G, p), (Ġ, ṗ)) = αeαpṗ for ṗ ≥ |Ġ/G| and ∞ else.

From this we find the condensed stored-energy density

W cond((1, p);F ) = 1
α





2
√

1+bpFα − bp for Fα ≥ bp + F−α,

Fα + F−α for |F α−F−α| ≤ bp,

2
√

1+bpF−α − bp for F−α ≥ bp + Fα,

∞, for F ≤ 0

with bp = αeαp. We see that W cond((1, p); ·) is strictly convex for α ≥ 2 and that

the theory of Section 4 applies for α > 3, since the exponents in condition (4.3) are

qF = α/2 and qG = α. Thus, (IP) has a unique solution for each partition of [0,T].

We now want to discuss the connection to the abstract theory of Section 3.

Therefore, we restrict ourselves to the most simple nontrivial case. Let Ω = (0, 1) ⊂
R1, α = 6 and F = { y ∈ W1,2(Ω) | y(0) = 0 }. The loading takes the form

〈`(t), y〉 =
∫ 1

0
hext(t, x)y(x)dx + σ1(t)y(1) =

∫ 1

0
Hext(t, x)y′(x)dx

where Hext(t, x) = σ1(t)+
∫ 1

x
hext(t, x̃)dx̃ with Hext ∈ C1([0, T ]×Ω). Moreover, we

let P = { (G, p) ∈ L6(Ω)2 | G ≥ 0 a.e. } and (G0, p0) ≡ (1, 0) .

With this definition it is clear that R ⊂ [0, T ] ×RZ for some bounded closed

set RZ in W1,2(Ω) × L6(Ω)2. It can be shown that R is also closed in the strong

topology. However, on the one hand compactness of R in the strong topology

fails since R contains “L∞”-neighborhoods. On the other hand, compactness of

R in the weak topology fails, since this is equivalent to the weak lower semi-

continuity of E(t, ·, ·) + D(Pk−1, ·) on F × P, which is not satisfied due to lacking

cross-quasiconvexity.

As shown in [Mie03a, Mie03b], it is possible to characterize the stable set for

this example explicity:

S = { (t, y,G, p) | (y′(x), G(x), p(x)) ∈ M(Hext(t, x)) for a.a. x ∈ Ω },
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where M(H) = { (F,G, p) |
∣∣(F

G )α−(F
G )−α

∣∣ ≤ αeαp, (F
G )α−1−(F

G )−α−1 = GH }.
Again we see that S is closed in the strong topology but not in the weak topology,

since the sets M(H) ⊂ R3 are not convex.

This shows that the abstract theory of Section 3 is not applicable. Neverthe-

less, it is possible to show that the incremental solutions converge to a solution of

the time-continuous problem (S)& (E). Here we use that the compactness of R is

solely used for the purpose of extracting converging subsequences. We can dispense

with compactness if convergence can be shown by other means. In the present

one-dimensional setting we can use the fact that the problem decouples into “zero-

dimensional” plasticity problems for each x ∈ Ω. Moreover, each of these problems

is almost scalar such that monotonicity arguments can be used which imply conver-

gence. As a conclusion the following existence and convergence result is obtained

in [Mie03b].

Theorem 5.2. For the above problem there exists a solution (y,G, p) of (S) & (E)

(cf. (2.6)) with (y,G, p) ∈ C0([0, T ],W1,∞(Ω) × L∞(Ω)2). Moreover, there exists a

constant C > 0 such that for each time discretization 0 = t0 < t1 < · · · < tN = T

the unique solution (yk, Gk, pk)k=0,...,N of the incremental problem (4.1) satisfies

‖y(tk)−yk‖W1,∞ + ‖G(tk)−Gk‖L∞ + ‖p(tk)−pk‖L∞ ≤ C max{ tn−tn−1 |n=1, ..., k }

for k = 1, . . . , N .

The connection with the abstract theory is immediate if we equip Z = F ×P
with the strong topology of W1,∞(Ω)×L∞(Ω). Then, essentially all the assumptions

hold, except for the compactness of R. In particular, S is closed, E and D are lower

semicontinuous and ∂tE is continuous.

6 Gradient theories

As we have seen in Sections 4 and 5, the above functionals E(t, ·) and D(·, ·) are not

weakly lower semi-continuous on spaces of the form W1,q ×Lr. The major problem

is the nonconvexity of the multiplicative term Dy G−1 and of the Lie group structure

underlying D. One possible way out of these problems, which is also often used in

engineering, cf. [Gur02, Sve02], consists in adding a regularizing term involving the

gradient terms of the plastic tensor Fplast = G. (Sometimes these gradient terms are

also called “nonlocal terms”.) Such terms introduce a length scale into the problem

which prevent the formation of arbitrarily fine microstructures which are one of the

main obstructions to existence of minimizers.

In this section we just want to indicate how terms involving the gradient DG

(a tensor of third order) may help to establish existence for (IP) and for (S)& (E).

Most of the results given here are derived in [MiM03].
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We consider the same dissipation distance D and D as above. However, the

energy functional now takes the form

E(t, y,G) =

∫

Ω

U(x,Dy,G,DG)dx − 〈`(t), y〉,

where, for simplicity, we assume that the density U takes one of the two cases

Ugrad(F,G,A) = Ŵ (FG−1)+κ‖A‖r,

Ucurl(F,G,A) = Ŵ (FG−1)+κ‖AantiG
T‖r,

with κ > 0 and r > d. Note that A has the dimension of 1/length and hence κ

must have a dimension like (length)r. Here Aanti denotes the anti-symmetric part

of the tensor A, such that (DG)anti = curl G. The density Ucurl involves the tensor

(curl G)GT, which is known to be the physically most relevant tensor for measuring

the density of geometrically necessary dislocations [Gur02, Sve02].

The major difference to the previous theory, is that the set R now provides

a priori bounds for DG or curl G in Lr(Ω, Rd×d) as well. For U = Ugrad the set R
is bounded in [0, T ] × Z with Z = W1,q(Ω, Rd) × W1,r(Ω, Rd×d) × Lqp(Ω, Rm). In

particular, weak lower semi-continuity of E on Z can now be established, since the

dangerous product DyG−1 is under control. If

yk ⇀ y in W1,q(Ω, Rd) and Gk ⇀ G in W1,r(Ω, Rd×d),

then M(DykG−1
k ) ⇀ M(DyG−1) in L1(Ω)md , where M(F ) denotes the vector of all

minors of the matrix F . To show this, we use the product rule for minors and that

Gk converges strongly to G. Moreover, the dissipation D which does not involve

derivatives of G will be continuous with respect to this convergence.

More precisely, the incremental problem (IP) now consists in minimizing the

functional

Ik : (y,G) 7→
∫
Ω

Wk(x,Dy,G,Dg)dx − 〈`(tk), y)〉 (6.1)

with the density Wk(x, F,G,A) = U(x, F,G,A) + Dcond
k (x,G) where the incremen-

tally condensed distance Dcond
k is given by

Dcond
k (x,G) = min{D((Gk−1(x), pk−1(x)), (G, p) | p ∈ Rm }.

The above arguments indicate that Ik for U = Ugrad is weakly lower semi-continuous

on W1,q(Ω, Rd)×W1,r(Ω, Rd×d). Coercivity can be obtained with arguments as in

Section 4. Thus, the gradient regularization provides an existence theory for (IP)

under rather general and easily checkable conditions.

For the case U = Ucurl the situation is more difficult. Using det G ≡ 1 we

first observe G−1 = adG and find that the minors Ms(FG−1) of order s are exactly
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those minors in Md

(
 

F

G

!

)
which contain s rows from F and d−s rows from G.

Now, if

yk ⇀ y in W1,q(Ω, Rd),

Gk ⇀ G in LqG(Ω, Rd×d), and

curl Gk ⇀ curl G in Lqc(Ω, Rd×d×d),

for suitable exponents q, qG and qc > 1, then Ms(DkG−1
k ) ⇀ Ms(DG−1) and

Ms(Gk) ⇀ Ms(G).

Thus, under suitable coercivity assumptions on U and Dcond
k the functional Ik

in (6.1) can be shown to be weakly lower semi-continuous on a weakly closed subset

Z of the Banach space

W1,q(Ω, Rd) × {G ∈ LqG(Ω, Rd×d) | curl G ∈ Lqc(Ω, Rd×d×d) }

for suitable exponents q, qG and qc. However, for this we additionally need that

G 7→ Dcond
k (x,G) is polyconvex, since only curl G is controlled.

Thus, the curl regularization is also strong enough to handle the difficult mul-

tiplicative term Dy G−1. But only under the nontrivial condition that Dcond
k (x, ·)

is polyconvex we obtain existence for (IP).

Finally, we remark that both regularizations are not strong enough to do

the limit from (IP) to (S)& (E). The major problem here is that the dissipation

D only controls distances of the plastic variables P = (G, p) ∈ P. However, in

finite-strain elasto-plasticity there may be more than one global minimizer y ∈ F
of E(t, ·, P ). Thus, the compatibility condition between the topology on Z = F ×P
and the dissipation distance D , as stated in Theorem 3.3, does not hold. Of course,

temporal oscillations between several global minimizers without any dissipation are

unphysical and should be eliminated by adjusting the model in a suitable manner.
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[Rou02] T. Roub́ıček. Evolution model for martensitic phase transformation in

shape-memory alloys. Interfaces Free Bound., 4, 111–136, 2002.

[Sve02] B. Svendsen. Continuum thermodynamic models for crystal plasticity

including the effects of geometrically necessary dislocations. J. Mech.

Physics Solids, 50, 1297–1329, 2002.

[Vis01] A. Visintin. A new approach to evolution. C.R.A.S. Paris, 332, 233–

238, 2001.

22


