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0 Introduction

Even relatively simple dynamical systems generated by ordinary differential equations (ODEs)
can generate rather complicated chaotic dynamics, see e.g. [KaHa95] and references therein.
This dynamics becomes much more complicated in the case of dynamical systems extended
in space, e.g., generated by dissipative partial differential equations (PDEs) in large and
unbounded domains, due to the formation of spatially-chaotic patterns. More generally, such
systems may display interactions between spatially and temporally chaotic modes which leads
to the so-called spatio-temporal chaos. One of the most challenging problems in this field is
the one of turbulence which displays statistical behavior in temporal and spatial directions,
whose correlations decay with distance in space and time, see e.g., [Tem88, Man90, Man95,
GEP98, Bun99].

However, despite the fact, that there are many statistical approaches to turbulence and
spatio-temporal chaos, there seem to be very few mathematically rigorous results concerning
the nature of spatio-temporal chaos in deterministic systems. Indeed, one of the few known
mathematical descriptions of that phenomenon was suggested in [BuSi88], see also [PeSi88,
AfFe00] and references therein. There, a spatially discrete system is constructed such that it
admits an infinite-dimensional hyperbolic, invariant subset Γ of its phase space. This set is
homeomorphic to the multidimensional Bernoulli scheme {0, 1}Z

n+1
and the Bernoulli shifts

are conjugated to the spatio-temporal shifts on the hyperbolic set Γ. The existence of such
hyperbolic sets was rigorously verified only for some very special classes of lattice dynamical
systems and its existence for dynamical systems in continuous media was a long-standing
open question.

In the present paper, we give a positive answer on this question. To be more precise, we re-
strict ourselves to consider extended dynamical systems generated by the systems of reaction-
diffusion equations, or shortly reaction-diffusion systems (RDSs) in the full unbounded, phys-
ical space Ω = R

n:
∂tu = ∆xu− f(u) in R

n, and u
∣∣
t=0

= u0. (0.1)

Here u(t, x) = (u1(t, x), · · · , uk(t, x)) is an unknown vector-valued function, ∆x is a Laplacian
with respect to x = (x1, · · · , xn) ∈ Ω and f : R

k → R
k is a smooth, nonlinear interaction

function.
It is well-known that, under natural assumptions on the nonlinearity f eqn. (0.1) has a

unique global solution in an appropriate phase space Φ (usually, Φ = L∞(Rn) or the so-called
uniformly local spaces Φ = L2

b(R
n), see Section 1 for the definitions) and, consequently, it

generates a (dissipative) semigroup {St | t ≥ 0 } in Φ via

Stu0 = u(t), u solves (0.1) with u(0) = u0. (0.2)

It is also well-known that, in many cases, the asymptotic behavior of the trajectories of that
semigroup as t → ∞ can be described in terms of the so-called global attractor A ⊂ Φ
which is, by definition, a compact (in the appropriate local topology) invariant set which
attracts as t → ∞ the images of all bounded subsets of Φ. Thus, on the one hand the
attractor A (if it exists) captures all of the nontrivial dynamics of the system considered
and, on the other hand, it is usually essentially smaller than the initial phase space Φ (see
[BaVi89, BaVi90, EfZe01, Mie02, Tem88, Zel03b, Zel04], and the references therein).

In particular, in the case of bounded domains Ω, the above attractor A is usually finite-
dimensional (in the sense of Hausdorff and fractal dimension). Therefore, in spite of the
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infinite-dimensionality of the initial phase space, the reduced limit dynamics on the attractor
is finite-dimensional and can be effectively studied using the methods of the classical theory
of dynamical systems. Thus, the infinite-dimensionality of the initial phase space plays here
the role of (maybe essential) technical difficulty which, however cannot produce new types of
dynamical complexity which are not observed in the finite-dimensional theory.

The situation changes drastically when the domain Ω becomes unbounded (e.g. Ω = R
n).

In this case, the attractor is usually infinite-dimensional, see [BaVi90, MiSc95, CoEc99b,
Bab00, EfZe01]. Thus, we do not have any finite-dimensional reduction and truely infinite-
dimensional dynamics of a much “higher level of complexity” can appear. Another principal
difference to the case of bounded domains is that system (0.1) has now not only the temporal
“unbounded direction” but also the spatial ones which may lead to complicated spatial struc-
tures, namely to so-called spatial chaos, see [Kir85, Mie86, Ang87, MiHo88, Rab93, AfMi01,
MiZe02]. However, only nontrivial interaction of temporal chaos and spatial chaos will be
called spatio-temporal chaos, and this is the topic of the present work.

To make this phenomena more precise, we introduce the group of spatial shifts {Th | h ∈
R
n } acting on the phase space Φ via (Thu0)(x) := u0(x+h). Then, since the model equation

(0.1) is spatially-homogeneous this group acts on the attractor A as well and its action
obviously commutes with the semigroup St associated with temporal evolution. Therefore,
an extended (n + 1)-parametrical semigroup {S(t,h) | t ∈ R+, h ∈ R

n } acts on the attractor
A:

S(t,h) : A → A, S(t,h) := St ◦ Th (0.3)

Following [Zel00, Zel04], the extended spatio-temporal semigroup (0.3) can be considered as
a dynamical system with multidimensional “time” (t, h) on the attractor which is responsible
for all spatio-temporal dynamical effects arising in system (0.1). Consequently, the study of
the spatio-temporal chaos in (0.1) is equivalent to the study of the dynamical properties of
that semigroup restricted to A.

However we note that the study of the dynamics of (0.3) is a highly nontrivial problem; and
at present its complete description is not available even for the simplest examples of (0.1) (such
as e.g. Chafee-Infante equation in R

1: ut = uxx + u− u3). Nevertheless, a number of rather
essential results concerning the general properties of that system has been recently obtained.
In particular, a natural generalization of the finite-dimensionality of global attractors to
the case of unbounded domains were formulated in terms of Kolmogorov’s ε-entropy which
allows us to measure the “size” of infinite-dimensional sets in functional spaces, see [ViCh98,
CoEc99b, CoEc99a, Zel99, Zel03a] and Appendix B below. The obtained estimates of the
ε-entropy of the global attractor A allowed, for instance, to verify (see [Zel04]) that the
topological entropy of the action of S(t,h) on the attractor A is finite:

htop(S(t,h),A) <∞, (0.4)

see Appendix B. On the other hand, for the particular case of a gradient nonlinearity f , i.e.,
f = DuF (u) for some F : R

k → R, this topological entropy is known to equal 0, see [Zel04].
We recall that, in contrast to the case of bounded domains, the gradient structure does not
give a global Lyapunov function for equation (0.1), so htop(S(t,h),A) = 0 is not immediate.

It is also worth to note that the extended dynamical system (0.3) possesses a natural
family of subsemigroups S

Vk

(t,h) generated by restrictions of the argument (t, h) of (0.3) to

various k-dimensional hyperplanes Vk of the space-time R
n+1 whose dynamical investigation

can be essentially simpler than for the initial “whole” semigroup (0.3). The most studied is
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the case Vn := R
n
x associated with the spatial dynamical system {Th | h ∈ R

n } and spatial
chaos, see [Kir82, Kir85, Mie86, AfMi01, MiZe02] for the case n = 1 and [Ang87, Rab93,
ABC96, Zel03b, Bab00] for n ≥ 2 and also the references therein. This means that even the
restriction of spatial dynamical system to the set E of all (bounded) equilibria of problem
(0.1) which obviously solve the elliptic equation in R

n

∆xu0 − f(u0) = 0 (0.5)

possesses a very reach and nontrivial chaotic dynamics. So, a family of multibump solutions
of has been constructed in [Rab93] by variational methods starting from a single hyperbolic
bump solution of (0.5) and using small space-periodic perturbation in order to kill the neutral
foliation. In a fact this family gives a homeomorphic embedding of the multidimensional
Bernoulli scheme Mn := {0, 1}Z

n
to the (discrete) spatial dynamical system of the perturbed

spatially periodic equation. An analogous embeddings for the attractor of spatially periodic
RDSs were obtained in [Bab00] under weaker assumptions on the nonlinearity.

We now recall that, in contrast to the classical dynamical systems generated by ODEs, the
action of the spatial dynamical system {Th | h ∈ R

n } on the attractor A usually has infinite
topological entropy (this fact has been established in [Zel03b] under very weak assumption
that (0.1) possesses at least one spatially homogeneous exponentially unstable equilibrium)
although the topological entropy of Bernoulli scheme Mn is finite. So, Bernoulli schemes
with finite number of symbols are not sufficient for modeling of spatial chaos. Therefore, a
Bernoulli scheme Mn

∞ := [0, 1]Z
n

with infinite number of symbols (here [0, 1] is a segment of
R

1 in contrast to the two-point set {0, 1} involved into the definition of the standard Bernoulli
scheme Mn) of symbols were used in [Zel03b] in order to clarify the nature of chaos in spatial
dynamical systems. Moreover, it is shown there that there exists a topological invariant (the
so-called mean topological dimension) which is always finite for spatial dynamics and strictly
positive for the Bernoulli scheme Mn

∞. This description has been extended in [Zel04] from
spatial dynamical system {Th | h ∈ R

n } to all n-parametrical semigroups S
Vn

(t,h) generated by
n-dimensional hyperplanes Vn of the space-time. This result shows, in particular, that the
topological entropy of the purely temporal evolution semigroup {St | t ∈ R+ } is usually also
infinite, i.e.,

htop(St,A) = ∞.

It is however worth to emphasize that the embeddings of the Bernoulli schemes Mn
∞ men-

tioned above are based on the infinite-dimensional unstable manifolds technique (in fact, the
image of Mn

∞ in the attractor A belongs to the unstable manifold of a spatially homogeneous
equilibrium where the direction orthogonal to the hyperplane Vn is interpreted as “time”).
Thus, that approach gives an adequate model only for the “n-directional” space-time chaos
(for all directions belonging to the fixed hyperplane Vn in the space-time) in n-parametrical
subsemigroup S

Vn

(t,h) and do not applicable for clarifying the nature of the ”complete” (n+1)-

directional space-time chaos arising in (0.3). Moreover, to the best of our knowledge, there
were no reasonable models for that (n+1)-directional space-time chaos for the case of dynam-
ical systems in continuous media generated by PDEs. In particular, it was not known whether
or not the topological entropy of the extended semigroup S(t,h) can be strictly positive.

In contrast to that, for the case of discrete media, more or less adequate model for the
“complete” space-time chaos has been suggested by Sinai and Bunimovich. Roughly speaking,
this model consists of infinitely many chaotic oscillators situated at every node of a grid Z

n

coupled by a sufficiently weak interaction. If every chaotic oscillator contains a hyperbolic
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set Γ0, then without interaction the whole system has a hyperbolic set Γ := (Γ0)
Z

n
and,

according to the structural-stability theorem, this set is preserved under sufficiently small
coupling. In particular, if the initial hyperbolic set Γ0 is a one-dimensional Bernoulli scheme
M1 = {0, 1}Z, then the obtained hyperbolic set is (n + 1)-dimensional Bernoulli scheme
Γ = Mn+1 = {0, 1}Z

n+1
and Bernoulli shifts on it are naturally conjugated with spatio-

temporal dynamics. Thus, according to this model, the spatio-temporal chaos is illustrated by
Bernoulli shifts on the (n+1)-dimensional Bernoulli scheme with a finite number of symbols.
Associated invariant measures may also be introduced, see [BuSi88, PeSi91, AfFe00].

The main goal of the present paper is to extend the Sinai-Bunimovich construction to the
case of continuous media and obtain an analogous description of space-time chaos in the RDS
(0.1) and associated extended semigroup (0.3) acting on its attractor A. In order to do so,
we start from the special space-time periodic RDS:

∂tu = ∆xu− fλ(t, x, u) in ∈ R
n, (0.6)

where the nonlinearity fλ has the following structure: there exists a smooth bounded domain
Ω0 b (0, 1)n such that, for every x ∈ [0, 1]n we have

fλ(t, x, u) :=

{
f(t, u) for x ∈ Ω0,

λu for x ∈ [0, 1]n
∖
Ω0,

(0.7)

where f(t, u) is a given function (which is assumed 1-periodic with respect to t) and λ� 1 is
a large parameter. Then we extend function (0.7) space-periodically from [0, 1]n to all x ∈ R

n.
Thus, we have a periodic grid of “islands” Ωl := l + Ω0, l ∈ Z

n, where our nonlinearity fλ
coincides with f(t, u) and can generate nontrivial dynamics. These islands are separated from
each other by the “ocean” Ω− := R

n
∖
(∪l∈ZnΩl) where we have strong absorption provided

by the nonlinearity fλ(t, x, u) ≡ λu.
It is intuitively clear that, for sufficiently large absorption coefficient λ, the solutions u of

equation (0.6) should be small in the absorption domain Ω− and, consequently, the interaction
between the islands is also expected to be small and the dynamics inside of the islands will
be “almost-independent”. Thus, if the RDS in Ω0

∂tv = ∆xv − f(t, v) in Ω0, v = 0 on ∂Ω0, (0.8)

which describes the limit independent dynamics inside of one “island” as λ = ∞, possesses
a hyperbolic set Γ0, then, according to the structural-stability principle, the whole system
(0.6) should have a hyperbolic set homeomorphic to (Γ0)

Z
n

if the absorption parameter λ
is large enough. Moreover, if, in addition, the initial hyperbolic set Γ0 is homeomorphic to
the Bernoulli scheme {0, 1}Z, then system (0.6) will contain an (n+ 1)-dimensional Bernoulli
scheme {0, 1}Z

n+1
∼ ({0, 1}Z)Z

n
in a complete analog with the Sinai-Bunimovich lattice model.

The following theorem, which gives a mathematical justification of the above heuristic
scheme, is the main result of the paper.

Theorem 0.1 Let the time-periodic function f (f(t+1, v) ≡ f(t, v)) satisfies some regularity
and dissipativity assumptions which guarantees the existence of of a global attractor A0 for
equation (0.8). Assume also that there exists a hyperbolic set Γ0 of that equation which is
homeomorphic to the Bernoulli scheme {0, 1}Z. Then, there exists a λ0 � 1 such that, for
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every λ > λ0, there exists a homeomorphic embedding κλ of the (n+1)-dimensional Bernoulli
scheme Mn+1 = {0, 1}Z

n+1
to the attractor Aper of problem (0.6) such that

S(l0,l′) ◦ κλ = κλ ◦ T(l0,l′), l0 ∈ N, l′ ∈ Z
n (0.9)

where T(l0,l′) is the (n+ 1)-parametrical group of Bernoulli shifts on Mn+1 and {S(l0,l′) | l0 ∈
N, l′ ∈ Z

n } is a discrete analog of the extended spatio-temporal DS (0.3) acting on the
attractor Aper. In particular, the topological entropy of that system is strictly positive, viz.,

htop(S(l0,l′),A) ≥ h0 > 0. (0.10)

It is worth to emphasize that, although the nonlinearity fλ in the initial equation (0.6)
is discontinuous with respect to x, approximating this nonlinearity by trigonometrical poly-
nomials with respect to (t, x) and using again the structural-stability principle, we obtain
the analog of Theorem 0.1 with the nonlinearity f̃ analytic with respect to all variables, see
Proposition 5.4. Moreover, using some trick based on the embedding of the attractor Aper of
the space-time periodic RDS to the attractor A of larger RDS of the form (0.1), we construct
the embedding of the Bernoulli scheme {0, 1}Z

n+1
to the spatio-temporal DS acting on the

attractor of an autonomous and spatially homogeneous RDS of the form (0.1).

Corollary 0.2 There exists a RDS of the form (0.1) with polynomial nonlinearity f such
that its attractor possesses a homeomorphic embedding κ̄ of the Bernoulli scheme {0, 1}Z

n+1

satisfying the conjugacy relations (0.9).

To conclude we note that, passing from a periodic to an autonomous system, we lose
the hyperbolicity (in contrast to Theorem 0.1, now the image κ̄({0, 1}Z

n+1
) is no longer

a hyperbolic subset of the attractor A). Nevertheless, Corollary 0.2 shows that (n + 1)-
dimensional Bernoulli schemes with a finite number of symbols can be used in order to clarify
the nature of “true spatio-temporal chaos” arising in spatially homogeneous media as well. In
particular, Corollary 0.2 provides an example of a RDS of the form (0.1) with strictly positive
spatio-temporal topological entropy.

The structure of the paper is as follows. In Section 1 we introduce some classes of weighted
functional spaces and formulate several regularity results for the boundary value problems for
the heat equations in those spaces which are needed for the subsequent structural-stability
analysis. In Section 2 we recall the definitions of hyperbolic sets adopted to the infinite-
dimensional case and obtain some preliminary results for the system (0.6) with λ = ∞. In
Section 3 we establish several auxiliary results which allow us to verify that system (0.6)
for λ � 1 is indeed close in the appropriate functional space to the uncoupled Z

n-array
of equations (0.8). Based on these results we establish, in Section 4, Theorem 0.1 using a
suitable modification of the structural-stability theory for hyperbolic sets. The example of
an autonomous and spatially homogeneous RDS announced in Corollary 0.2 is constructed
in Section 5. Finally, for the convenience of the reader, we explain in Appendix A how to
construct a RDS (0.8) in a bounded domain Ω0 with Dirichlet boundary conditions which
contains a hyperbolic set homeomorphic to {0, 1}Z. In Appendix B we recall the definitions
and main results concerning Kolmogorov’s ε-entropy and the topological entropy of attractors
of dissipative systems in unbounded domains.
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1 Functional spaces and linear parabolic regularity theorems

In this section we introduce some classes of weighted Sobolev spaces and formulate the cor-
responding parabolic regularity theorems which will be used throughout the paper. Our final
goal is to construct examples of RDS in R

n with spatio-temporal chaotic behavior but for
this construction we will essentially use the corresponding equations in unbounded domains
Ω 6= R

n. That is why we start our consideration from the class of admissible (uniformly
regular) unbounded domains in R

n (see, e.g., [Bro59, EfZe01]).
Here and below BR

x denotes the open ball in R
n with center x and radius R.

Definition 1.1 A domain Ω ⊂ R
n is called CN -regular, if there exists radii 0 < R0 < R1 <

R2 and a constant K such that the following holds:
For each x0 ∈ Ω there exists a domain Vx0 ⊂ Ω with

(BR0
x0

∩ Ω) ⊂ Vx0 ⊂ (BR1
x0

∩ Ω). (1.1)

and a CN -diffeomorphism θx0 : B2
0 → BR2

0 such that x0 + θx0(B
1
0) = Vx0 and

‖θx0‖CN + ‖θ−1
x0

‖CN ≤ K. (1.2)

The constant K is called the CN -regularity constant of the domain Ω.

For all results formulated below C2-regularity will be sufficient, so, for simplicity, we will
write in the sequel “regular domain” instead of C2-regular domain and “regularity constant”
instead of C2-regularity constant.

For bounded domains Ω the conditions (1.1) and (1.2) are equivalent to the condition
that the boundary ∂Ω is a smooth manifold. But for unbounded domains smoothness of the
boundary is not sufficient to obtain the regular structure of Ω when |x| → ∞ since uniformity
with respect to x0 ∈ Ω of the smoothness conditions is required.

Now we introduce the class of admissible weight functions.

Definition 1.2 A function φ ∈ Cloc(R
n) is called a weight function with the (exponential)

growth rate µ ≥ 0, if there exists Cφ > 0 such that

φ(x+y) ≤ Cφe
µ|x|φ(y), φ(x) > 0, for every x, y ∈ R

n. (1.3)

Remark 1.3 It is not difficult to deduce from (1.3) that

φ(x+y) ≥ C−1
φ e−µ|x|φ(y) (1.4)

is also satisfied for every x, y ∈ R
n. The estimates (1.1) and (1.3) imply particularly that

C−1
φ e−µRφ(x) ≤ sup|y|≤R φ(x+y) ≤ Cφe

µRφ(x). (1.5)

The typical examples of that weight functions are the following:

φε,x0(x) = e−ε|x−x0|, ε ∈ R, x0 ∈ R
n. (1.6)

Evidently these weights have the growth rate |ε| and satisfy (1.3) uniformly with respect to
x0 ∈ R

n (i.e., the constant Cφε,x0
in (1.3) is independent of x0). We will mainly use below
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exponentially decaying weight functions (1.6) with sufficiently smal positive ε (or their smooth
analogues (1.20)), although the exponentially growing weights (with negative ε) will be also
usefull, see e.g. Corollary 1.16.

Now we are in a position to introduce several classes of weighted Sobolev spaces in un-
bounded domains Ω.

Definition 1.4 Let Ω ⊂ R
n be a regular (unbounded) domain in R

n and let φ be a weight
function with the growth rate µ. For p ∈ [1,∞) define the space

Lpφ(Ω) := {u ∈ Lrloc(Ω) | ‖u‖p
Lp

φ(Ω)
:=

∫
Ω φ(x)|u(x)|pdx <∞}.

Analogously the weighted Sobolev space Wl,p
φ (Ω), l ∈ N, is defined as the space of functions

u ∈ Lpφ(Ω) whose distributional derivatives up to order l inclusively belong to Lpφ(Ω).
We define also another class of weighted Sobolev spaces

Wl,p
b,φ(Ω) := {u ∈ Wl,p

loc(Ω) | ‖u‖p
Wl,p

b,φ(Ω)
:= supx0∈Ω φ(x0)‖u‖Wl,p(Ω∩B1

x0
) <∞}.

Here b stands for “bounded”, and for φ ≡ 1 we write Wl,p
b instead of Wl,p

b,1.

Let us recall shortly several important properties of the introduced spaces, see, e.g.,
[EfZe01] or [Zel03b] for details.

Proposition 1.5 Let φ be a weight function with the growth rate µ ≥ 0.
1. Then for every ε > µ there exists a constant C (just depending on ε, µ and Cφ from

(1.3)) such that for every domain Ω ⊂ R
n every q ∈ [1,∞] and every u ∈ Lpφ(Ω) the following

estimate is valid:
(∫

Ω φ(x0)
q
(∫

Ω e−ε|x−x0||u(x)|pdx
)q

dx0

)1/q
≤ C

∫
Ω φ(x)|u(x)|p dx. (1.7)

2. On L∞
φ (Ω) the following analog of the estimate (1.7) is valid:

supx0∈Ω

{
φ(x0) supx∈Ω{e

−ε|x−x0||u(x)|}
}
≤ C supx∈Ω{φ(x)|u(x)|}. (1.8)

The proof of this proposition can be found in [EfZe01] or [Zel03a].

Proposition 1.6 Let Ω be a regular domain, let φ be the weight function with exponential
growth rate, and let R be a positive number. Then, there exist constants 0 < c1 < C1

(depending on the regularity constant K(Ω) and µ and Cφ from (1.3)) such that for all
u ∈ LPφ (Ω) the following estimates are valid:

c1
∫
Ω φ(x)|u(x)|pdx ≤

∫
Ω φ(x0)

∫
Ω∩BR

x0

|u(x)|pdxdx0 ≤ C1

∫
Ω φ(x)|u(x)|p dx. (1.9)

The proof of this Proposition is given in [EfZe01].

Corollary 1.7 Let the assumptions of Proposition 1.6 hold. Then, for R > 0 an equivalent
norm in the weighted Sobolev space Wl,p

φ (Ω) is given by the following expression:

‖u‖
Wl,p

φ (Ω)
:=

(∫
Ω φ(x0)‖u,Ω ∩BR

x0
‖pl,pdx0

)1/p
. (1.10)

Particularly, the norms (1.10) are equivalent for different R > 0.
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In the sequel we need also weighted Sobolev spaces with fractional derivatives s ∈ R+ (not
only s ∈ Z+). Recall (see [Tri78] for details) that the norm in the space Ws,p(V ), s = [s] + σ,
0 < σ < 1, [s] ∈ Z+ can be given by the following expression

‖u‖pWs,p(V ) = ‖u‖p
W[s],p(V )

+
∑

|α|=[s]

∫
x∈V

∫
y∈V

|Dαu(x)−Dαu(y)|p

|x−y|n+σp dxdy. (1.11)

Moreover, the space W−s,p(V ), 1 < p < ∞, is usually defined as a dual space for Ws,q
0 (V ),

where 1
p + 1

q = 1, i.e. the norm in this space is given via

‖u‖W−s,p(V ) := supψ∈C∞
c (V )

〈u,ψ〉
‖ψ‖Ws,p(V )

where 〈u, ψ〉 :=
∫
V u(x)ψ(x)dx. (1.12)

It is not difficult to prove that for any regular V and for any s ∈ R, 1 < p <∞,

c1‖u‖
p
Ws,p(V ) ≤

∫
x0∈V

‖u‖p
Ws,p(V ∩BR

x0
)
dx0 ≤ C1‖u‖

p
Ws,p(V ). (1.13)

This justifies the following definition.

Definition 1.8 For s ∈ R define the space Ws,p
φ (Ω) by the norm (1.10) where the integer l

is replaced by s.

It is not difficult to check that these norms are also equivalent for different R > 0 and
consequently the definition makes sense.

The following proposition admits to estimate the Ws,p
b -norm via the corresponding weighted

Sobolev norms.

Proposition 1.9 Let s ∈ R, 1 < p <∞, and let φ be a weight function with the growth rate
0 ≤ µ < ε. Then, there exist constants 0 ≤ c1 ≤ C1 such that

c1‖u‖
p
Ws,p

b,φ(Ω)
≤ supx0∈Ω

{
φ(x0)

∫
x∈Ω e−ε|x−x0|‖u‖p

Ws,p(Ω∩B1
x0

)
dx

}

≤ C1‖u‖
p
Ws,p

b,φ(Ω)
for all u ∈ Ws,p

b,φ(Ω).
(1.14)

For the proof of this corollary see [Zel03a].
In order to handle elliptic and parabolic boundary problems with nonhomogeneous bound-

ary conditions we need also weighted Sobolev spaces on the boundary ∂Ω of regular unbounded
domain Ω.

Definition 1.10 Analogously to the Definition 1.4, we define weighted Sobolev spaces of
functions defined on the boundary ∂Ω. For instance the weighted space Ws,p

φ (∂Ω), s ∈ R,
1 < p <∞, is defined by the following norm:

‖u0‖
p
Ws,p

φ (∂Ω)
:=

∫
∂Ω φ(γ)‖u0‖

p
Ws,p(∂Ω∩B1

γ )
dγ

and the spaces Ws,p
b,φ(∂Ω) are defined analogously.

It is known (see, e.g., [Zel00]) that the assertions of Propositions 1.5–1.9 remain valid for
the spaces of distributions on the boundary ∂Ω as well.
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For parabolic systems we now introduce anisotropic Sobolev spaces of functions defined
on R × Ω or R × ∂Ω. Denote by W(l1 ,l2),q([T, T+1] × V ) the classical Sobolev-Slobodetskij
space of functions which have the t-derivatives up to the order l1 and x-derivatives up to the
order l2 belonging to Lq (see, e.g., [LSU67]). Recall that for the case of integer li ≥ 0 the
norm in this space is defined by

‖u‖q
W(l1 ,l2),q([T,T+1]×V )

:= ‖∂l1t u‖
q
Lq([T,T+1]×V )

+ ‖Dl2
x u‖

q
Lq([T,T+1]×V )

+ ‖u‖q
Lq([T,T+1]×V )

where Dl2
x means a collection of all x-derivatives of the order l2, and for the case of noninteger li

can be defined by the interpolation analogously to (1.11) and (1.12) (see [LSU67] or [Tri78]).
Of course, interpolation shows that mixed derivatives exist in the corresponding Sobolev
spaces, i.e., u ∈ W(l1 ,l2),q([T, T + 1] × V ) implies u ∈ W(1−θ)l1 ,q([T, T + 1],Wθl2 ,q(V )) for all
θ ∈ [0, 1].

Definition 1.11 Define the anisotropic spaces W
(l1 ,l2),q
b (R × Ω) and W

(l1 ,l2),q
b (R × ∂Ω) in

analogy to Definition 1.4 (with φ ≡ 1). For instance, in the space W
(l1 ,l2),q
b (R×∂Ω) the norm

is defined by the following expression:

‖u‖
W

(l1 ,l2),q
b (R×∂Ω)

:= supT∈R, x0∈∂Ω ‖u‖W(l1 ,l2),q([T,T+1]×(∂Ω∩B1
x0

))

Moreover, let φ : R × R
n → (0,∞) be a weight function in the variables (t, x) with the

exponential growth rate µ (see Definition 1.2). Then one may define the spaces W
(l1 ,l2),q
φ (R×Ω)

and W
(l1 ,l2),q
φ (R×∂Ω) in a standard way. For instance,

‖u‖q
W

(l1 ,l2),q
φ (R×∂Ω)

:=
∫
(t,γ)∈R×∂Ω φ(t, γ)‖u‖q

W(l1 ,l2),q([t,t+1]×(∂Ω∩B1
γ ))

dγdt.

It is not difficult to show that the analogues of the assertions of Propositions 1.5, 1.6 and
1.9 remain valid for these anisotropic spaces as well.

Now we are in a position to recall the weighted L2-regularity theory for the following
parabolic equation in the regular unbounded domain Ω ⊂ R

n:

∂tu− ∆xu+ u = h, u
∣∣
R×∂Ω

= u0, (t, x) ∈ R × Ω. (1.15)

The following result is formulated for general s ∈ (1/2, 2], but we will mainly use below the
case s = 1 which corresponds to the classical “energy formulation” of the boundary value
problem for heat equations.

Proposition 1.12 Let Ω be a regular unbounded domain and let 1
2 < s ≤ 2 and s 6= 3/2.

Then, for each

h ∈ L2(R,Ws−2,2(Ω)) and u0 ∈ W(s/2−1/4,s−1/2),2(R×∂Ω) (1.16)

problem (1.15) has a unique solution u, which satisfies the estimate

‖∂tu‖L2(R,Ws−2,2(Ω)) + ‖u‖W(s/2,s),2(R×Ω)) ≤

≤ C
(
‖h‖L2(R,Ws−2,2(Ω)) + ‖u0‖W(s/2−1/4,s−1/2),2(R×∂Ω)

) (1.17)

where the constant C depends on the regularity constant K of the domain Ω.
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The assertion of the proposition is more or less known, and can be derived using the analogous
result for bounded domains and the standard localization technique (see, e.g., [LSU67, Tri78,
Ama95, EfZe01]). Therefore, we omit its rigorous proof here.

We also need the following variant of (1.17) in weighted Sobolev spaces.

Corollary 1.13 Under the assumptions of Proposition 1.12 there exists an exponent µ0 =
µ0(K) > 0 such that for every weight function φ : R×R

n → R of growth rate µ ∈ (0, µ0) and
every

h ∈ W
(0,s−2),2
φ (R×Ω) and u0 ∈ W

(s/2−1/4,s−1/2),2
φ (R×∂Ω) (1.18)

equation (1.15) has a unique solution u and the following analogue of (1.17) holds:

‖∂tu‖W
(0,s−2),2
φ (R×Ω))

+ ‖u‖
W

(s/2,s),2
φ (R×Ω)

≤

≤ C(‖h‖
W

(0,s−2),2
φ (R×Ω))

+ ‖u0‖W
(s/2−1/4,s−1/2),2
φ (R×∂Ω)

)
(1.19)

where the constant C depends on K(Ω) and on the constant Cφ introduced in (1.3) and is
independent of the concrete choice of the weight φ.

Our proofs will often use the space-time weight function ϕε,y0 defined via

ϕε,y0(t, x) := e−ε(1+|t−t0 |2+|x−x0|2)1/2
, where y0 := (t0, x0) ∈ R

n+1. (1.20)

It satisfies the evident estimate

|∂tϕε,y0(t, x)| + |∇xϕε,y0(t, x)| ≤ 2εϕε,y0(t, x) for all (t0, x0), (t, x) ∈ R
n+1. (1.21)

Indeed, the proof of (1.19) is based on a standard trick of substituting u = ũ/ϕε,y0
into equation (1.15), multiplying by ϕε,y0 and solving the equation for ũ by a perturbation
argument for ε small. This trick together with estimates (1.5) and (1.7) reduce the proof of
estimate (1.19) to the case φ ≡ 1 obtained in the Proposition 1.12 (see, e.g., [EfZe01, Mie87,
Mie97, Zel00] for details).

Corollary 1.14 Let the assumptions of Proposition 1.12 hold, then for each

h ∈ W
(0,s−2),2
b (R×Ω)) and u0 ∈ W

(s/2−1/4,s−1/2),2
b (R×∂Ω)

equation (1.15) has a unique solution satisfying

‖∂tu‖W
(0,s−2),2
b (R×Ω))

+ ‖u‖
W

(s/2,s),2
b (R×Ω)

≤

≤ C
(
‖h‖

W
(0,s−2),2
b (R×Ω))

+ ‖u0‖W
(s/2−1/4,s−1/2),2
b (R×∂Ω)

)
.

(1.22)

Indeed, the function φ = ϕε,y0 of (1.20) satisfies condition (1.3). Consequently estimates
(1.19) with φ = ϕε,y0 are uniformly valid with respect to y0 ∈ R × Ω. Applying now the
operator supy0∈R×Ω to both parts of them and using Proposition 1.12 we derive estimate
(1.22).

At the end of this section we consider a family of equations of type (1.15) depending on
a large parameter λ� 1:

∂tu = ∆xu− λu, u
∣∣
R×∂Ω

= u0, (t, x) ∈ R × Ω. (1.23)

We study the behavior of several norms of u with respect to the parameter λ.

14



Proposition 1.15 Let C∗ > 1 and the regularity constantK∗ > 0 be given and the associated
growth rate µ∗ = µ0(K∗) > 0. Then, there exists constants C1 and C2 such that for every
regular domain Ω with K(Ω) ≤ K∗ and every weight function φ with growth µ ≤ µ∗ and
Cφ ≤ C∗, for all λ ≥ 1 and all solutions u of (1.23), which satisfy (1.18) with s = 1 the
following estimates are valid:

C1(‖u0‖
2

W
(1/4,1/2),2
φ (R×∂Ω)

+ λ1/2‖u0‖
2
L2

φ(R×∂Ω)
)

≤ ‖∇x u‖
2
L2

φ(R×∂Ω)
+ λ‖u‖2

L2
φ(R×∂Ω)

≤ C2(‖u0‖
2

W
(1/4,1/2),2
φ (R×∂Ω)

+ λ1/2‖u0‖
2
L2

φ(R×∂Ω)
) .

(1.24)

Proof: As in the case of Corollaries 1.13 and 1.14 it is sufficient to prove (1.24) for φ ≡ 1
only. To this end we make a rescaling

x := λ−1/2x′, t := λ−1t′, ũ(t′, x′) := u(t, x), Ω′ := λ1/2Ω. (1.25)

Note that the new domain Ω′ is also regular in the sense of Definition 1.1 for every λ > 1.
Moreover, it is not difficult to show that the regularity constant K can be chosen indepen-
dently of λ > 1. Thus, the rescaled function ũ satisfies the equation

∂t′ ũ− ∆x′ ũ+ ũ = 0, ũ
∣∣
∂Ω′ = ũ0, (t′, x′) ∈ R × Ω′. (1.26)

It follows now from Proposition 1.12 and from the standard trace theorem that

c1‖ũ0‖
2
W(1/4,1/2),2(R×∂Ω′) ≤ ‖ũ‖2

L2(R,W1,2(Ω′)) ≤ C1‖ũ0‖
2
W(1/4,1/2),2(R×∂Ω′). (1.27)

Indeed, the right-hand side of that inequality is an immediate corollary of (1.17). In order to
verify the left inequality, we note that, due to trace theorems for anisotropic Sobolev spaces

‖ũ0‖W(1/4,1/2),2(R×∂Ω) ≤ C‖ũ‖W(1/2,1),2(R×Ω). (1.28)

On the other hand, it follows from equation (1.26) that

‖∂tũ‖L2(R,W−1,2(Ω)) ≤ C‖ũ‖L2(R,W1,2(Ω))

and extending the standard interpolation inequality

‖ũ‖2
L2(Ω) ≤ C‖ũ‖W1,2(Ω)‖ũ‖W−1,2(Ω)

to time-dependent functions, we have

‖ũ‖W(1/2,1),2(R×Ω) ≤ C(‖ũ‖W1,2(R,W−1,2(Ω)) + ‖ũ‖L2(R,W1,2(Ω))) ≤ C1‖ũ‖L2(R,W1,2(Ω)). (1.29)

Combining estimates (1.28) and (1.29), we deduce the desired left-hand side of inequality
(1.27). Moreover, since the regularity constant K for Ω′ can be chosen independent of λ, the
constants c1 and C1 are also independent of λ. Applying the inverse of the rescaling (1.25)
to estimate (1.27) we derive estimate (1.24) for φ ≡ 1. Thus, Proposition 1.15 is proved.
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Corollary 1.16 Define the Dirichlet-Neumann operator Pλ by

Pλu0 := ∂nu
∣∣
R×∂Ω

, where ∂nu(t, x) = ∇xu(t, x) · n(x) (1.30)

and u : R×Ω → R is the unique solution of eqn. (1.23). Then, for every weight function φ on

R×R
n with a sufficiently small growth rate µ < µ0(K) the operator Pλ maps W

(1/4,1/2),2
φ (R×

∂Ω) into W
(−1/4,−1/2),2
φ (R×∂Ω) and

‖Pλu0‖W
(−1/4,−1/2),2
φ (R×∂Ω)

≤ Cλ‖u0‖W
(1/4,1/2),2
φ (R×∂Ω)

(1.31)

where the constant Cλ depends on K, λ and Cφ but is independent of the concrete choice of
φ. Moreover, the following estimates hold:

C1

(
‖u0‖

2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω)
+ λ1/2‖u0‖

2
L2

ϕε,y0
(R×∂Ω)

)

≤
〈
Pλu0 , ϕε,y0u0

〉
L2(R×∂Ω)

≤ C2

(
‖u0‖

2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω)
+ λ1/2‖u0‖

2
L2

ϕε,y0
(R×∂Ω)

) (1.32)

where ϕε,y0 is defined in (1.20), ε < µ0, y0 ∈ R×Ω, and the constants C1, C2 are independent
of λ > 1 and y0 ∈ R × Ω.

Proof: Let ΠΩ be an extension operator from the boundary R×∂Ω inside of the domain R×Ω
such that the function v = ΠΩv0 solves equation (1.15) with h = 0 and v

∣∣
R×Ω

= v0. Then,

according to Corollary 1.13, for every fixed y0 = (t0, x0) and every v0 ∈ W(1/4,1/2),2(R × ∂Ω)
such that

supp v0 ⊂ [t0, t0+1] × (∂Ω ∩B1
x0

) (1.33)

and sufficiently small 0 < ε < µ0(K), we have

‖v‖
W

(1/2,1),2
ϕ−ε,(t0 ,x0)

(R×Ω)
≤ C‖v0‖W

(1/4,1/2),2
ϕ−ε,(t0 ,x0)

(R×∂Ω)
≤ C1‖v0‖W(1/4,1/2),2([t0,t0+1]×(∂Ω∩B1

x0
)) (1.34)

where the constants C and C1 are independent of y0. Multiplying equation (1.23) by v and
integrating by (t, x) ∈ R × Ω and integrating by parts, we have

〈∂nu, v0〉L2([t0,t0+1]×(∂Ω∩B1
x0

)) = 〈∂tu, v〉L2(R×Ω) + 〈∇x u,∇x v〉L2(R×Ω) + λ〈u, v〉L2(R×Ω). (1.35)

Using now the obvious facts that

‖∂tu‖W
(−1/2,0),2
ϕε,(t0 ,x0)

(R×Ω)
≤ C‖u‖

W
(1/2,0),2
ϕε,(t0 ,x0)

(R×Ω)

and [W
(1/2,0),2
ϕ−ε,(t0,x0)

(R × Ω)]∗ = W
(−1/2,0),2
ϕε,(t0,x0)

(R × Ω), we derive from (1.35) that

|〈∂nu, v0〉L2([t0,t0+1]×(∂Ω∩B1
x0

))| ≤ Cλ‖u‖W
(1/2,1),2
ϕε,(t0 ,x0)

(R×Ω)
‖v‖

W
(1/2,1),2
ϕε,(t0 ,x0)

(R×Ω)
≤

≤ C ′
λ‖u0‖W

(1/4,1/2),2
ϕε,(t0 ,x0)

(R×∂Ω)
‖v0‖W(1/4,1/2),2([t0,t0+1]×(∂Ω∩B1

x0
))

(1.36)
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where the constants Cλ and C ′
λ depend on λ, but are independent of y0 (here we have used

Corollary 1.13 in order to estimate u in terms of u0 and estimate (1.34) for estimating v in
terms of v0). Thus we have established that

‖Pλu0‖
2
W(−1/4,−1/2),2([t0,t0+1]×(∂Ω∩B1

x0
))

≤ C ′
λ

∫
(t,s)∈R×∂Ω ϕε,(t0,x0)(t, s)‖u0‖

2
W(1/4,1/2),2([t,t+1]×(∂Ω∩B1

s ))
dtds.

Multiplying this estimate by φ(t0, x0), integrating over (t0, x0) ∈ R×∂Ω and using Proposition
1.5 we obtain the desired estimate (1.31).

Thus, it remains to derive estimate (1.32). To this end we multiply equation (1.23) by
ϕε,y0u and integrate over (t, x) ∈ R × Ω. After integration by parts we will have

〈Pλu0, ϕε,y0u0〉L2(R×∂Ω) = 〈|∇x u|
2, ϕε,y0〉L2(R×Ω) + λ〈|u|2, ϕε,y0〉L2(R×Ω)

+〈∇xu, u∇xϕε,y0〉L2(R×Ω) − 〈|u|2, ∂tϕε,y0〉L2(R×Ω).

Applying estimate (1.24) to the right-hand side and using the estimate (1.21) for ϕε,y0 we
arrive at (1.32) (recall that ε < µ0(K) is small). Thus, Corollary 1.16 is proved.

2 Hyperbolic trajectories and sets for RDSs

In this section we introduce a model RDS in a bounded domain Ω0 which possesses a hyperbolic
set Γ0. Using this model RDS we formally construct a new RDS in an unbounded domain
which possesses a hyperbolic set Γ := (Γ0)

Z
n

. This formal construction will be justified in
the next sections.

Let Ω0 be a regular bounded domain in R
n (without loss of generality we may assume

that 0 ∈ Ω0 and diamΩ0 < 1). Consider the following RDS in Ω0:

{
∂tu = ∆xu− u− f(t, u)

u
∣∣
t=0

= u0, u
∣∣
∂Ω0

= 0
(2.1)

Here u = (u1, · · · , uk) is the unknown vector-valued function, ∆x is the componentwise Lapla-
cian with respect to the variable x := (x1, · · · , xn). The nonlinearity f : R × R

k → R
k is

assumed to be 1-periodic with respect to t, i.e.,

f(t+1, u) ≡ f(t, u) for all (t, u) ∈ R × R
k, (2.2)

to vanish for u = 0, i.e., f(t, 0) = 0, and to have bounded derivatives with respect to u and t
such that

‖∂tf‖L∞(R×Rk) + ‖Dk
uf‖L∞(R×Rk) ≤ C for k = 0, 1, and 2. (2.3)

It is well known (see, e.g., [BaVi89]) that under these assumptions eqn. (2.1) possesses a
unique solution u : [0,∞) → L2(Ω0) for every u0 ∈ L2(Ω0). It satisfies the dissipative estimate

‖u(t)‖L2(Ω0) ≤ C‖u0‖L2(Ω0) e−αt + Cf for t ≥ 0, (2.4)

where α > 0 depends on Ω0 only. Hence, the nonlinear solution operator

S0
t : L2(Ω0) → L2(Ω0); u

0 7→ u(t) =: S0
t (u

0), (2.5)
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is well defined. It is also known that under the above assumptions the Poincaré map
S0

1 : L2(Ω0) → L2(Ω0) associated with problem (2.1) possesses a compact global attractor
A0 ∈ L2(Ω0), which is generated by all complete bounded solutions of (2.1), i.e.,

A0 = Π0K
0, Π0u := u(0),

where the essential set K0 := {u ∈ Cb(R,L
2(Ω)) | u solves (2.1) } is not empty since u ≡ 0

lies in K0. For more information see, e.g., [BaVi89, Tem88].
Finally, the standard parabolic regularity theory (see [LSU67]) shows that there exists a

constant CK such that
‖u‖C1

b(R×Ω0) ≤ CK for all u ∈ K0. (2.6)

In order to introduce the notion of hyperbolicity for invariant sets, we need the nonhomo-
geneous analogue of the first variation associated with the trajectory u ∈ K0:

∂tv = ∆xv − v − Duf(t, u(t, x))v + h(t, x) in R × Ω0, v
∣∣
R×∂Ω0

= 0. (2.7)

Definition 2.1 A trajectory u ∈ K0 is called a hyperbolic trajectory of system (2.1), if there
exists a constant Cu > 0 and if for every h ∈ L2(R,W−1,2(Ω0)) problem (2.7) has a unique
solution v ∈ L2(R,W1,2

0 (Ω0)) ∩ W1,2(R,W−1,2(Ω0)) and this solution satisfies the estimate

‖v‖W(0,1),2(R×Ω0)
+ ‖∂tv‖W(0,−1),2(R×Ω0) ≤ Cu‖h‖W(0,−1),2(R×Ω0)

. (2.8)

A subset Γtr
0 ⊂ K0 is called a (uniformly) hyperbolic trajectory set for system (2.1) , if every

trajectory u ∈ Γtr
0 is hyperbolic and estimates (2.8) hold uniformly with respect to u ∈ Γtr

0 ,
i.e., with Cu ≤ CΓ0 < ∞. The set Γ0 := Π0Γ

tr
0 ⊂ L2(Ω0) is called then a hyperbolic set of

problem (2.1).

As above we need to reformulate estimate (2.8) in terms of weighted Sobolev spaces.

Lemma 2.2 Let u ∈ K0 be a hyperbolic trajectory of system (2.1) with Cu as given in (2.8).
Then there exists µ0 = µ0(Cu) > 0 such that for every weight function φ of exponential
growth rate µ < µ0 the following estimate is valid for the solution of problem (2.7)

‖v‖
W

(0,1),2
φ (R×Ω0)

+ ‖∂tv‖W
(0,−1),2
φ (R×Ω0)

≤ C ′
u‖h‖W

(0,−1),2
φ (R×Ω0)

, (2.9)

where the constant C ′
u depends only on Cu and Cφ and is independent of the concrete choice

of hyperbolic trajectory. In particular (2.9) implies that

‖v‖
W

(0,1),2
b (R×Ω0)

+ ‖∂tv‖W
(0,−1),2
b (R×Ω0)

≤ C ′′
u‖h‖W

(0,−1),2
b (R×Ω0)

, (2.10)

where C ′′
u also depends only on Cu.

The proof of this lemma is also based on a standard trick with variable changing ṽ = ϕε,y0v
in equation (2.7) analogously to Corollaries 1.13 and 1.14, so we leave the rigorous derivation
of (2.9) and (2.10) to the reader.
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Remark 2.3 It is not difficult to verify (using (2.9) with exponential weights φ(t) := e−ε|t|,
ε is small positive) that the above definition of the hyperbolic trajectory u(t) is equivalent to
the existence of an exponential dichotomy for homogeneous equation of variations

∂tv = ∆xv − v − Duf(t, u(t, x))v in R × Ω0, v
∣∣
R×∂Ω0

= 0, v(0) = v0. (2.11)

Namely, there exists a splitting the phase space L2(Ω0) into a direct sum of two closed linear
subspaces V+ = V+(u) and V− = V−(u) such that for every v0 ∈ V+ there exists a unique
backward solution v(t) := v+(t) (defined for all negative t) and for every v− ∈ V− there exists
a forward solution v(t) := v+(t) (defined for all positive t) such that

‖v±(∓t)‖L2(Ω0) ≤ Ce−εt‖v±‖L2(Ω0), t ≥ 0. (2.12)

Moreover, the positive constants C and ε depend only on the hyperbolicity constant Cu intro-
duced on (2.8). Thus, the exponential dichotomy (2.12) is uniform with respect to all trajec-
tories u belonging to a hyperbolic set Γtr0 and, consequently, our definition of a hyperbolic set
is equivalent to the standard definition via stable and unstable foliations (see, e.g., [KaHa95]).
We recall that our definition is adopted for the nonautonomous (e.g., time-periodic) equa-
tions, so the neutral foliation is absent and we factually have a discrete dynamical system
generated by the Poincaré map S0

1 .
We also note that our definition is associated with the phase space L2(Ω0), although the

concrete choice of that space is not essential due to the smoothing property for parabolic
equations. In particular, the equivalent hyperbolicity formulation associated with the phase
space W1,2(Ω0) reads: for every h ∈ L2(R×Ω0) there exists a unique solution v ∈ W(1,2),2(R×
Ω0) of equation (2.7) and the following analogue of (2.8) holds:

‖v‖W(1,2),2(R×Ω0) ≤ Cu‖h‖L2(R×Ω0). (2.13)

Although (2.13) looks simpler than (2.8) (in particular, it does not contain Sobolev norms
with fractional or negative exponents), we prefer to use the L2-form formulated in Definition
2.1 since we will consider below the dynamical systems which are close only in rather weak
sense and the W1,2-norms will be too strong for our purposes.

In order to formulate our additional assumptions to system (2.1) we introduce the model
dynamical system of Bernoulli shifts (see, e.g., [KaHa95] for details).

Definition 2.4 For n ∈ N define Mn := {0, 1}Z
n

= { b : Z
n → {0, 1} } and equip it with the

standard Tychonov topology. Using the n-dimensional “time” l ∈ Z
n we define the model

dynamical system { Tl | l ∈ Z
n } on Mn via

(Tlb)(m) := b(l+m), m ∈ Z
n, where b = b(·) ∈ Mn. (2.14)

We will denote by { T i
k | k ∈ Z }, i = 1, · · · , n, the one-parameter subgroups of (2.14) defined

via T i
k := Tkei

, where ei is a standard i-th coordinate vector in R
n.

Since we consider spatial-temporal systems we are lead to the set (M1)Z
n
, which we

identify with Mn+1 via

(b(·, l′))l′∈Zn ∈ (M1)Z
n

for b ∈ Mn+1. (2.15)
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We will then use l = (l0, l
′) ∈ Z

n+1 to indicate the time component l0 and the spatial
component l′ ∈ Z

n.
Our basic assumption for the construction of spatio-temporal chaos is now, that the dy-

namics of system (2.1) contains chaotic dynamics in the following sense.

Assumption 2.1 There is a hyperbolic set Γ0 for problem (2.1) in the sense of Definition
2.1. Moreover, there exists a homeomorphism τ0 : M1 → Γ0 such that the dynamical systems
(M1, T 0

1 ) and (Γ0, S
0
1) are conjugate, i.e.,

τ0 ◦ T
0
1 = S0

1 ◦ τ0, where (T 0
1 b)(l0) = b(l0+1)for l0 ∈ Z. (2.16)

(Recall that S0
1 is the Poincaré map of (2.1) with S0

1u = u(·+1).)

Since every initial condition u0 ∈ Γ0 ⊂ L2(Ω0) is associated with a unique trajectory
u ∈ K0 we may also define the hyperbolic trajectory set Γtr

0 and the homeomorphism τ tr
0 :

M1 → Γtr
0 ; a 7→ U0

a ∈ Cb(R,L
2(Ω0)), which satisfies

τ0(a) = U0
a (0) and U 0

a (t+ 1) = U 0
T 0
1 a

(t) for t ∈ R. (2.17)

To make τ tr
0 continuous, it is important to introduce a suitable topology on Γtr

0 ⊂ K0. This
is the topology of uniform convergence in L2(Ω0) on compact subset of R. Since K0 and
hence Γtr

0 is contained in a bounded set of Cb(R,L
2(Ω0)) this topology is easily obtained the

weighted norms, e.g., L∞
e−ε|t|(R,L

2(Ω0)). We refer to [MiZe02] for the exact arguments.

Remark 2.5 We recall that the existence of a hyperbolic sets Γ0 described in Assumption
2.1 is closely related with the existence of transversal homoclinic orbits for equation (2.1).
Indeed, let a0 ∈ M1 be a zero element (i.e. a0(n) ≡ 0 for all n ∈ Z). Then, according to
(2.16), the corresponding hyperbolic trajectory u0 := U0

a0 is a time-periodic trajectory of the
RDS(2.1). Without loss of generality, we may assume that

u0 := U0
a0 ≡ 0 (2.18)

(if (2.18) is not satisfied, it is sufficient to change a dependent variable u → u − u0(t, x)).
Then, according to hyperbolicity assumption (2.8), u0 ≡ 0 is a hyperbolic equilibrium of
system (2.1) (in particular, (2.18) implies that f(t, 0) ≡ 0).

Let us now consider a basic homoclinic orbit ā to a0 in M1, determined by ā(0) = 1 and
ā(l) = 0, l 6= 0. Then, commutation relations (2.16) and (2.17) together with the fact that τ0

is a homeomorphism guarantee that the associated trajectory ū := U 0
ā will be a homoclinic

orbit to u0 ≡ 0. Moreover, the hyperbolicity assumption (2.8) implies that ū is a transversal
homoclinic orbit to zero solution and, consequently, decays exponentially as t→ ±∞:

ū ∈ C1
eµ|t|(R × Ω0), (2.19)

for some positive µ. We now recall that every element a ∈ M1 can be presented as a sum of
shifts of the basic homoclinic orbit ā with coefficients from 0 and 1, namely

a =
∑

l∈Z
a(l)T 0

−lā (2.20)

Of course, the homeomorphism τ0 : M1 → Γ0 is not linear and we cannot write the analogue
of equality (2.20) for the solution Ua ∈ Γtr0 . Nevertheless, this solution is usually occurs close
to the sum

∑
l∈Z

a(l)ū(· − l), i.e.

‖Ua −
∑

l∈Z
a(l)ū(· − l)‖C1(R×Ω0) ≤ ε0 (2.21)
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where the small positive ε0 is independent of a ∈ M1 and the trajectory U 0
a is determined

in a unique way by this condition. Thus, a hyperbolic set Γtr0 is generated by shifts of the
basic transversal homoclinic orbit ū summed with coefficients 0 and 1. Moreover, it is also
well-known that the existence of a single transversal homoclinic orbit ū to some periodic
solution u0 of problem (2.1) is sufficient for the existence of a hyperbolic set Γtr0 satisfying
Assumption 2.1, see [KaHa95, SSTC01] for the details.

Remark 2.6 Assumption 2.1 which guarantees that the Dirichlet problem (2.1) in a bounded
domain Ω0 possesses a hyperbolic set homeomorphic to Bernoulli scheme M1 is the basis of
our construction. As we explained in previous remark, existence of the hyperbolic sets of
that type is strongly related with homoclinic orbits and they usually appear in concrete
examples of ODEs or PDEs under the bifurcation of the appropriate homoclinic orbit, see
e.g. [KaHa95, SSTC01] and references therein. Moreover, a number of special constructions
which allow to realize a given finite-dimensional vector field as a restriction of a RDS to its
appropriate central manifold are also known, see [Pol02, FiPo90].

Unfortunately, although the existence of RDSs satisfying Assumption 2.1 seems well-
known, it is not easy to give a sharp reference for this result. That is why, for the convenience
of the reader, we briefly explain in Appendix A how to construct a RDS satisfying Assumption
2.1 if a system of ODEs is known which satisfies this assumption.

It is now easy to construct a RDS which has have the hyperbolic set Γ := (Γ0)
Z

n

. We do
this by considering a period array of uncoupled systems as follows. Later we will show that
coupling does not destroy the hyperbolic set and such we are able to embed the problem into
a RDS which is spatially homogeneous.

We use the spatial translation operator Th : x 7→ x − h and define for l ∈ Z
n the sets

Ωl := TlΩ0. Due to our assumptions diamΩl < 1, the domains Ωl do not intersect for different
values of l ∈ Z

n. Define the domains Ω+ and Ω− via

Ω+ := ∪l∈ZnΩl, Ω− := int(Rn
∖
Ω+).

Evidently Ω+ and Ω− are uniformly regular in the sense of Definition 1.1 and Ω+ is discon-
nected.

Consider now the RDS in Ω+:

{
∂tu = ∆xu− u− f(t, u) in R × Ω+,

u = 0 on R × ∂Ω+,
(2.22)

which in fact decouples into a countable number of copies of the initial RDS (2.1), since Ω+

is the disjoint union ∪l∈ZnΩ0. Indeed, any solution of (2.22) can be represented as

u(t) =
∑

l∈Zn Tlul(t)χΩl
where (Thv)(x) = v(x+h) (2.23)

and χΩl
is a characteristic function of the domain Ωl. Moreover, for each l ∈ Z

n the function
ul : [0,∞) → L2(Ω0) is a solution of (2.1).

Using the decoupling (2.23) and the estimate (2.4) one easily verifies that for every
u0 ∈ L2

b(Ω+) problem (2.22) has a unique solution u(t) which satisfies the dissipative es-
timate

‖u(t)‖L2
b(Ω+) ≤ C‖u(0)‖L2

b(Ω+) e−αt + Cf .
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Thus, the solution operator of (2.22) is well defined via

St : L2
b(Ω+) → L2

b(Ω+), u(0) 7→ Stu(0) := u(t).

The Poincaré map S1 : L2
b(Ω+) → L2

b(Ω+) associated with (2.22) possesses a global, locally
compact attractor A ⊂ L2

b(Ω+). The latter means that the set A is bounded in L2
b(Ω+) but is

compact in the topology of L2
loc(Ω+) only (which is natural for the case of unbounded domains,

see [MiSc95, Mie97, Zel03a]). Moreover, the decoupling (2.23) defines a homeomorphism

A ∼
(
A0

)Z
n

and the local topology induced on A by the embedding A ⊂ L2
loc(Ω+) coincides with the

Tychonov topology induced on the product
(
A0

)
Z

n

. As in the case of A0, the attractor
A ⊂ L2

b(Ω+) is generated by all bounded complete solutions of problem (2.22), i.e.,

A = Π0K, K ∼
(
K0

)Z
n

.

Let us study now the relations between the hyperbolic trajectories of systems (2.1) and
(2.22). To this end we introduce the nonhomogeneous equation of variations for (2.22) for
u ∈ K:

∂tv = ∆xv − v − Duf(t, u(t, x))v + h(t, x) in R × Ω+, v = 0 on R × ∂Ω+. (2.24)

Lemma 2.7 Let Γtr
0 ⊂ K0 be a nonempty hyperbolic trajectory set for (2.1). Then, for any

sequence (ul)l∈Zn with ul ∈ Γtr
0 the function u ∈ K defined via (2.23) is a hyperbolic trajectory

for eqn. (2.22). Moreover, there is an exponent µ0 = µ0(CΓ0) > 0 such that for every weight
function φ with the exponential growth rate µ < µ0 the following estimate is valid for the
solution v of equation (2.24):

‖v‖
W

(0,1),2
φ (R×Ω+)

+ ‖∂tv‖W
(0,−1),2
φ (R×Ω+)

≤ CΓ‖h‖W
(0,−1),2
φ (R×Ω+)

(2.25)

where the constant CΓ depends only on CΓ0 and Cφ and is independent of the specific choice
of hyperbolic trajectories (ul)l∈Zn . In particular, (2.25) implies that

‖v‖
W

(0,1),2
b (R×Ω+)

+ ‖∂tv‖W
(0,−1),2
b (R×Ω+)

≤ C∗
Γ‖h‖W

(0,−1),2
b (R×Ω+)

, (2.26)

where C∗
Γ depends only on CΓ0 .

Indeed, estimates (2.25) and (2.26) are immediate corollaries of (2.9) and (2.10) and the fact
that the weight Tlφ satisfies (1.3) with the same constant as φ.

The assertion of Lemma 2.7 admits to find a “large” hyperbolic set Γ for the RDS (2.22).

Corollary 2.8 Under the assumption of Lemma 2.7 the representation (2.23) defines a hy-
perbolic trajectory set

Γtr ∼
(
Γtr

0

)Z
n

for problem (2.22) and consequently Γ := Π0Γ
tr ⊂ L2

b(Ω+) is a hyperbolic set for (2.22) which
is homeomorphic to ΓZ

n

0 .
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Again it is important to equip Γtr ⊂ Cb(R,L
2
b(Ω+)) and Γ ⊂ L2

b(Ω+) with the correct
topologies which describe convergence on bounded subsets of R × Ω+ and Ω+, respectively.
As above the weighted topologies are the desired ones.

By construction, system (2.22) is invariant under the group {Tl′ | l
′ ∈ Z

n } of discrete
spatial translations as well as under the temporal shifts {Sl0 | l0 ∈ Z }. Note that these two
actions commute, such that we have a spatio-temporal action of Z

n+1, which we denote by
{Sl = Sl0 ◦ Tl′ | l = (l0, l

′) ∈ Z
n+1 } and {Tl | l = (l0, l

′) ∈ Z
n+1 } for the action on initial data

(i.e., on L2
b(Ω+)) and on trajectories (i.e., on Cb(R,L

2
b(Ω+))), respectively. In particular, the

attractor A and the corresponding set of essential trajectories of (2.22) are also invariant with
respect to these actions:

SlA = A and TlK = K for l = (l0, l
′) ∈ Z

n+1.

Moreover the sets Γtr and Γ are also invariant with respect to these translations:

TlΓ
tr = Γtr and SlΓ = Γ for l ∈ Z

n+1. (2.27)

Moreover, these actions on Γ = (Γ0)
Z

n
and Γtr = (Γtr

0 )Z
n

are conjugated to the standard
Bernoulli shift { Tl | l ∈ Z

n+1 } on Mn+1 = (M1)Z
n

via the obvious homeomorphisms τ :
Mn+1 → Γ and τ tr : Mn+1 → Γtr defined via τ(b) = τ tr(b)|t=0 and

τ(b) = U tr
b : (t, x) 7→

∑
l′∈Zn U0

b(·,l′)(t, x+l
′)χΩ0(x+l

′)

with U0
b(·,l′) as defined right before (2.17). We summarize these result as follows.

Corollary 2.9 Let the assumption 2.1 hold. Then, the multi-dimensional Bernoulli system
(Mn+1, { Tk |k ∈ Z

n+1 }) is conjugated to (Γ, {Sk = Sk0 ◦Tk |k = (k0, k) ∈ Z
n+1 }) associated

with the RDS (2.22) via the homeomorphism τ , i.e.,

Sl0 ◦ τ = τ ◦ T(l0,0) for l0 ∈ Z and Tl′ ◦ τ = τ ◦ T(0,l′) for l′ ∈ Z
n. (2.28)

Thus, we have constructed a RDS which possesses a hyperbolic set Γ = ΓZ
n

0 which shows
spatio-temporal chaos. But unfortunately the unbounded domain Ω+ is disconnected and
consequently is not a “domain” in a usual sense which makes the obtained result artificial
and uninteresting in itself. In the subsequent sections we will use the structural stability of
hyperbolic sets to show that a weakly coupled systems still has the same chaotic behavior.

3 The linearization of the weakly coupled system

Our next step is to construct an appropriate RDS in R
n which is in a sense close to problem

(2.22) in Ω+ and then to construct the hyperbolic set Γ̃ for this new system using the structural
stability of hyperbolic sets. We will search such a system in the following form:





∂tu = ∆xu− u− f(t, u) for x ∈ Ω+,

∂tu = ∆xu− λu for x ∈ Ω−,

u
∣∣
R×∂Ω+

= u
∣∣
R×∂Ω−

, ∂nu
∣∣
R×∂Ω+

+ ∂nu
∣∣
R×∂Ω−

= 0,

(3.1)

where λ � 1 is a large fixed parameter. Evidently, this problem can be rewritten as a RDS
in R

n:
∂tu = ∆xu− u− fλ(t, u), (t, x) ∈ R × R

n, (3.2)
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where by definition

fλ(t, x, u) :=

{
f(t, u) for x ∈ Ω+,

(λ−1)u for x ∈ Ω−.
(3.3)

The continuity of u and ∇xu on ∂Ω+ = ∂Ω− is now included in the smoothness assumptions
for the solutions. The function fλ is 1-periodic with respect to t and x:

fλ(t+1, x, u) = fλ(t, x, u) and fλ(t, Tlx, u) = fλ(t, x, u) (3.4)

for every l ∈ Z
n and every (t, x, u) ∈ R × R

n × R
k.

We now want to show that (3.2) is a small perturbation of the uncoupled system (2.22) on
Ω+. The heuristic argument is clear, since the large parameter λ � 1 corresponds to strong
absorption and hence makes the solution very small in the domain Ω−. Thus, we expect to
approximate zero Dirichlet data on ∂Ω+. To make these arguments precise we recall, from
Corollary 1.16, the linear Dirichlet-Neumann operator

P−
λ : W

(1/4,1/2),2
b (R × ∂Ω−) → W

(−1/4,−1/2),2
b (R × ∂Ω−)

where Ω is replaced by Ω− and where we have used that the equation is linear in Ω−.
By solving the second equation of (3.1) we rewrite this problem in the following equivalent

form which is more convenient for our purposes:

{
∂tu = ∆xu− f(t, u) for (t, x) ∈ R × Ω+,

∂nu
∣∣
R×∂Ω+

+ P−
λ (u

∣∣
R×∂Ω+

) = 0.
(3.5)

Indeed, system (3.5) is a coupled version of system (2.22) in which the coupling is concentrated
in the nonlocal linear boundary operator P−

λ . Note that the nonlocality is in space and time.
We will now use that this coupling is small for λ � 1 such that we are able to show

that the linearization of (3.5) at the functions u ∈ Γtr is still invertible. We will use this in
the following section to construct a hyperbolic set Γ̂λ for eqn. (3.2) using structural-stability
arguments.

Note that the functions u ∈ Γtr are not solutions of (3.5), however we may still study the
inhomogeneous, variational equation around these functions:

{
∂tṽ = ∆xṽ − ṽ − Duf(t, u(t, x))ṽ + h(t, x) on R × Ω+,

∂nṽ + P−
λ (ṽ

∣∣
R×∂Ω+

) = g0 on R × ∂Ω+.
(3.6)

We will show below that the solution operator M λ
u giving ṽ = Mλ

u (g0, h) is well-defined by
comparing it with the solution operator M∞

u associated with the nonhomogeneous, variational
equation (2.24), now including also inhomogeneous Dirichlet boundary conditions:

{
∂tv = ∆xv − v − Duf(t, u(t, x))v + h(t, x) in R × Ω+,

v = v0 on R × ∂Ω+.
(3.7)

Hence, M∞
u is defined via v = M∞

u (v0, h).
Our main result will be the comparison between ṽ = M λ

u (0, h) and v = M∞
u (0, h) in the

form
‖ṽ − v‖ = ‖M∞

u (0, h) −Mλ
u (0, h)‖ ≤ Cλ−βp‖h‖
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in suitable function spaces. This result is obtained by reducing the problem to the boundary
R × ∂Ω+ via the operator P f

u : θ0 7→ ∂nM
∞
u (θ0, 0). Thus, w0 = (v−ṽ)|R×∂Ω+ will satisfy

∂nv + P fuw0 + P−
λ w0 = 0 on R × ∂Ω+.

Our a priori estimates for P−
λ from Proposition 1.15 and Corollary 1.16 imply that the

inner product 〈P λ
−w0, w0〉 is of order λ1/2‖w0‖

2 as λ → ∞. This fact, together with the

positivity of the principal part of P f
u (see Lemma 3.3) allow us to conclude that the operator

P fu + P−
λ is invertible (and, consequently, w0 is uniquely determined by ∂nv|R×∂Ω+) if λ is

large enough. Hence, going backwards, we are able to find ṽ = M λ
u (0, h).

We now make the above statements rigorous. The main result of this section is the
following theorem.

Theorem 3.1 Let Γtr be the hyperbolic set set constructed above. Then there exist constants
λ0 � 1 and ε0, CΓ > 0 such that for all λ > λ0, all ε ∈ [0, ε0], all y0 ∈ R

n+1, all solutions

u ∈ Γtr and all h ∈ W
(0,−1),2
b (R×Ω+) equation (3.6) with g0 ≡ 0 has a unique solution ṽ and

it satisfies
‖∂tṽ‖W

(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖ṽ‖

W
(0,1),2
ϕε,y0

(R×Ω+)
≤ CΓ‖h‖W

(0,−1),2
ϕε,y0

(R×Ω+)
. (3.8)

Moreover, for each p ∈ (pmin, pmax) with pmin = 2n+4
n+1 and pmax = 2n+4

n there exists a
constant c∗p such that

‖v−ṽ‖Lp
ϕpε/2,y0

(R×Ω+) ≤ c∗pCΓλ
−βp‖h‖

W
(0,−1),2
ϕε,y0

(R×Ω+)
where βp = n(pmax−p)

4p , (3.9)

and v = M∞
u (0, h) is the solution of the linearized problem (2.24) (which exists due to Lemma

2.7).

Before we start the proof of this theorem, we provide two lemmas. All the constants will be
independent of u ∈ Γtr and y0 ∈ R

n+1.

Lemma 3.2 There exist ε0, CΓ > 0 such that for all boundary data θ0 ∈ W
(1/4,1/2),2
b (R×∂Ω+)

equation (3.7) with h ≡ 0 has a unique solution θ and the following estimate is valid:

‖∂tθ‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖θ‖

W
(0,1),2
ϕε,y0

(R×Ω+)
≤ CΓ‖θ0‖W

(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
, (3.10)

Thus, the linear operator

P fu : W
(1/4,1/2),2
b (R × ∂Ω+) → W

(−1/4,−1/2),2
b (R × ∂Ω+) (3.11)

is well defined via P f
u θ0 := ∂nθ

∣∣
R×∂Ω+

and bounded.

Proof: Indeed, estimate (3.10) is a standard corollary of estimates (1.19) and (2.25). The

boundedness of P f
u follows from the trace theorem, analogously to Corollary 1.16.
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Lemma 3.3 We decompose the operator P f
u as P fu = P+

1 +P ′
u, where the operator P+

1 is the
Dirichlet-Neumann operator Pλ of (1.30) with λ = 1 and Ω = Ω+ (i.e., with f ≡ 0). Then

there exist constants ε0, C, C1, C2 > 0 such that for all ε ∈ [0, ε0] and all θ0 ∈ W
(1/4,1/2),2
b (R×

∂Ω+) the following estimates hold:

‖P ′
uθ0‖W

(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
≤ C‖θ0‖W

(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
. (3.12)

C1‖θ0‖
2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
≤ 〈P+

1 θ0, ϕε,y0θ0〉L2(R×∂Ω+) ≤ C2‖θ0‖
2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
. (3.13)

Proof: To estimate P+
1 let θ1 be the solution of the problem ∂tθ1 = ∆θ1 − θ1 in R × Ω+

and θ1 = θ0 in R × ∂Ω+ such that P+
1 θ0 := ∂nθ1

∣∣
Ω+

. Multiplying the equation by ϕε,y0θ1,

integrating over R × Ω+ and arguing as in the proof of (1.32), we derive estimate (3.13).
To estimate P ′

u we introduce the function θ2 := θ − θ1 such that by definition P ′
uθ0 =

∂nθ2|R×∂Ω+ and which satisfies the equation

∂tθ2 = ∆xθ2 − θ2 − Duf(t, u(t, x))θ in R × Ω+, θ2 = 0 on R × ∂Ω+, (3.14)

where θ = M∞
u (θ0, 0).

Because of Lemma 3.2 and the fact that Duf ∈ L∞ we have the estimate

‖Duf(·, u(·, ·))θ‖L2
ϕε,y0

(R×Ω+) ≤ C1‖θ0‖W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
. (3.15)

Applying estimate (1.19) with s = 2 to equation (3.14) and using (3.15) we obtain

‖θ2‖W
(1,2),2
ϕε,y0

(R×Ω+)
≤ C2‖θ0‖W

(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
.

With the standard trace theorem we conclude

‖∂nθ2‖W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
≤ C3‖θ0‖W

(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
, (3.16)

which is the desired estimate (3.12).

Proof of Theorem 3.1:
Let v = M∞

u (0, h) and w = v − ṽ satisfies the equation
{
∂tw = ∆xw − w − Duf(t, u(t, x))w in R × Ω+,

∂nw + P−
λ (w

∣∣
R×∂Ω+

) + ∂nv = 0 on R × ∂Ω+.
(3.17)

Because of Lemma 2.7 and the trace theorem (analogously to Corollary 1.16) we have

‖∂nv‖W
(−1/4,−1/2),2
ϕε,y0

(R×∂Ω+)
≤ C‖h‖

W
(0,−1),2
ϕε,y0

(R×Ω+)
. (3.18)

Using the operator P f
u we reduce problem (3.17) to the equivalent pseudo-differential equation

on the boundary R × ∂Ω+, namely P fuw0 + P−
λ w0 + ∂nv = 0 with w0 := w

∣∣
R×∂Ω+

. Using the

decomposition P f
u = P+

1 + P ′
u of Lemma 3.3 we arrive at

P−
λ w0 + P+

1 w0 + P ′
uw0 + ∂nv = 0 on R × ∂Ω+. (3.19)
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Taking a scalar product in L2(R × ∂Ω+) of equation (3.19) with the function ϕε,y0w0 and
using the Cauchy-Schwarz inequality and the estimates (1.32), (3.12) and (3.13) we derive

‖w0‖
2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
+ λ1/2‖w0‖

2
L2

ϕε,y0
(R×∂Ω+) ≤

≤ C3‖w0‖
2
L2

ϕε,y0
(R×∂Ω+) +C3‖∂nv‖

2

W
(−1/4,−1/2),2
ϕε,y0

(R×∂Ω+)
.

(3.20)

Inserting estimate (3.18) into (3.20) we derive that for λ > (C3+1)2 =: λ0 the following
estimate is valid:

‖w0‖
2

W
(1/4,1/2),2
ϕε,y0

(R×∂Ω+)
+ λ1/2‖w0‖

2
L2

ϕε,y0
(R×∂Ω+) ≤ C4‖h‖

2

W
(0,−1),2
ϕε,y0

(R×Ω+)

for an appropriate constant C4 which is independent of λ > λ0. Interpolating with α ∈ [0, 1]
we obtain

‖w0‖W
(α/4,α/2),2
ϕε,y0

(R×∂Ω+)
≤ Cλ−(1−α)/4‖h‖

W
(0,−1),2
ϕε,y0

(R×Ω+)
, (3.21)

u ∈ Γtr. Using w0 = w
∣∣
R×∂Ω+

, choosing α = 1 in (3.21) and applying estimate (3.10), we find

‖∂tw‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖w‖

W
(1/2,1),2
ϕε,y0

(R×Ω+)
≤ C‖h‖

W
(0,−1),2
ϕε,y0

(R×Ω+)
(3.22)

which together with ṽ = v−w and (2.25) implies (3.8).
To prove estimate (3.9) we use (3.21) with 0 < α < 1 and (1.19) with s = (α + 1)/2 to

derive
‖w‖

W
((α+1)/4,(α+1)/2),2
ϕε,y0

(R×Ω+)
≤ C ′λ−(1−α)/4‖h‖

W
(0,−1),2
ϕε,y0

(R×Ω+)
. (3.23)

The presence of the subordinated term Duf(t, u(t, x))w in (3.10) in comparison with (1.15) is
not essential thanks to estimate (2.25). Applying now an embedding theorem for anisotropic
Sobolev spaces (cf. [LSU67]) we obtain

‖w‖Lpα
ϕpαε/2,y0

(R×Ω) ≤ Cp‖w‖W
((α+1)/4,(α+1)/2),2
ϕε,y0

(R×Ω+)
, (3.24)

where pα := 2(n+2)
n+1−α ∈ (pmin, pmax) and the constant Cp is independent of y0 ∈ R

n+1, to
inequality (3.23) we obtain estimate (3.9). Having the a-priori estimate (3.8) for the solutions
of (3.6) one can verify the existence of a solution ṽ in a standard way. Theorem 3.1 is proved.

Corollary 3.4 Under the assumptions of Theorem 3.1 the following estimates hold:

‖∂tṽ‖W
(0,−1),2
b (R×Ω+)

+ ‖ṽ‖
W

(0,1),2
b (R×Ω+)

≤ CΓ‖h‖W
(0,−1),2
b (R×Ω+)

(3.25)

and
‖v−ṽ‖Lp

b(R×Ω+) ≤ CΓλ
−βp‖h‖

W
(0,−1),2
b (R×Ω+)

, (3.26)

where p ∈ (pmin, pmax) := (2n+4
n+1 ,

2n+4
n ), βp = n(pmax−p)

4p > 0 and all constants are independent

of the concrete choice of u ∈ Γtr.
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Indeed, estimates (3.25) and (3.26) are immediate corollaries of Theorem 3.1 and Propo-
sition 1.9.

In conclusion of this section we consider problem (3.6) with nonhomogeneous boundary
conditions, i.e., we estimate w = M λ

u (w0, 0).

Corollary 3.5 Let the assumptions of Theorem 3.1 hold. Then for every λ > λ0 and for

every w0 ∈ W
(−1/4,−1/2),2
b (R× ∂Ω+) the solution w = Mλ

u (w0, 0) of (3.6) exists uniquely and
satisfies the estimate:

‖∂tw‖W
(0,−1),2
b (R×Ω+)

+ ‖w‖
W

(0,1),2
b (R×Ω+)

+ λβp‖w‖Lp
b(R×Ω+)

≤ CΓ‖w0‖W
(−1/4,−1/2),2
b (R×∂Ω+)

.
(3.27)

Moreover, for ε ∈ [0, ε0] the following weighted analogue of (3.27) holds:

‖∂tw‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖w‖

W
(0,1),2
ϕε,y0

(R×Ω+)
+ λβp‖w‖Lp

ϕpε/2,y0
(R×Ω+) ≤

≤ CΓ‖w0‖W
(−1/4,−1/2),2
ϕε,y0

(R×∂Ω+)
,

(3.28)

where p ∈ (pmin, pmax) and βp = n(pmax−p)
4p > 0 as above.

Indeed, estimates (3.27) and (3.28) have been obtained in the proof of Theorem 3.1 (com-
pare equations (3.6) and (3.17)).

4 Structural stability

In this section we construct a hyperbolic trajectory set Γtr
λ for the coupled problem (3.5)

which will be homeomorphic to the hyperbolic trajectory set Γtr of the uncoupled problem
(2.22).

The main result of the section is the following theorem.

Theorem 4.1 Let Γ0 be a nonempty hyperbolic set for problem (2.1). Then there is a
constant λ1 � 1 such that for every λ > λ1 there is a hyperbolic trajectory set Γtr

λ for
equation (3.5) which is homeomorphic to Γtr = (Γtr0 )Z

n
:

κtr
λ : Γtr ↔ Γtr

λ (4.1)

This homeomorphism commutes with the discrete space-time translations {Tl | l = (l0, l
′) ∈

Z
n+1 } (defined via (T(l0,l′)u)(t, x) := u(t+l0, x+l

′)), i.e.,

κtr
λ ◦ Tl = Tl ◦ κ

tr
λ for l ∈ Z

n+1. (4.2)

Moreover, κtr
λ is bi-Lipschitz continuous in the weighted topology, i.e., there exist constants

C1, C2 > 0, λ1 > 0, and ε0 > 0 such that for all λ > λ1, ε ∈ (0, ε0) and all u1, u2 ∈ Γtr the
following estimate is valid:

C1

(
‖∂tu1−∂tu2‖W (0,−1),2

ϕε,y0
(R×Ω+)

+ ‖u1−u2‖W
(0,1),2
ϕε,y0

(R×Ω+)

)

≤ ‖∂tũ1−∂tũ2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖ũ1−ũ2‖W

(0,1),2
ϕε,y0

(R×Ω+)

≤ C2

(
‖∂tu1−∂tu2‖W

(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)

)
,

(4.3)

where ũi = κtr
λ (u) and i = 1, 2.
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Proof: Indeed, let u ∈ Γtr be a hyperbolic trajectory of the uncoupled system (2.22). We will
search for the corresponding hyperbolic trajectory ũ := κtr

λ (u) in the form ũ = u+ w. Then,
the correction w has to satisfy the equation

{
∂tw = ∆xw −w − [f(t, u(t, x)+w(t, x)) − f(t, u(t, x))] in R × Ω+,

P−
λ (w

∣∣
R×∂Ω+

) + ∂nw + ∂nu = 0 on R × ∂Ω+.
(4.4)

Define the function w̃λ as Mλ
u (−∂nu, 0), i.e., as solution of (3.6) with h ≡ 0. Corollary 3.5

and estimate (2.6) give

‖w̃λ‖Lp
b(R×Ω+) ≤ Cpλ

−βp‖∂nu‖W
(−1/4,−1/2),2
b (R×Ω+)

≤ C∗
pλ

−βp (4.5)

where p ∈ (pmin, pmax) is fixed and C∗
p is independent of λ and u ∈ Γtr.

Now the function θ = w − w̃λ has to satisfy the equation

{
∂tθ = ∆xθ − θ − Duf(t, u(t, x))θ − h(t, x, θ) in R × Ω+,

P−
λ (θ

∣∣
R×∂Ω+

) + ∂nθ = 0 on R × ∂Ω+,
(4.6)

where h(t, x, θ) := f(t, u(t, x)+w̃λ(t, x)+θ) − f(t, u(t, x)) − Duf(t, u(t, x))θ. Recalling the
solution operator Mλ

u for system (3.6), equation (4.6) can be rewritten in the form

θ +Mλ
u (0, [f(·, u+w̃λ+θ) − f(·, u) − Duf(·, u)θ]) = 0.

We are going to solve this equation with the help of the implicit function theorem. For fixed
p ∈ (pmin, pmax) we define the mapping

Φ :

{
[1,∞]×Lpb(R × Ω+) → Lpb(R × Ω+),

(λ, θ) 7→ θ +Mλ
u (0, [f(·, u+w̃λ+θ)−f(·, u)−Duf(·, u)θ]).

Recall that M∞
u is the solution operator of problem (2.24) and that w̃∞ ≡ 0. It follows

now from (2.3) (3.8), (3.9) and (4.5) that Φ ∈ C0([1,∞] × Lpb,L
p
b), DθΦ ∈ C0([1,∞] × Lpb,

Lin (Lpb,L
p
b)),Φ(∞, 0) = 0 and DθΦ(∞, 0) = Id. Consequently, due to the implicit function

theorem there is λ0 � 1 such that for every λ > λ1 there is a unique θλ ∈ Lpb(R × Ω+) such
that

Φ(λ, θλ) = 0 and ‖θλ‖Lp
b(R×Ω+) ≤ Cλ−βp, (4.7)

where the constant C is independent of u ∈ Γtr. Consequently, θ = θλ solves (4.6). Moreover,
θλ = −Mλ

u (0, h) implies via (3.8) and (3.9) that

‖∂tθλ‖W
(0,−1),2
b (R×Ω+)

+ ‖θλ‖W
(0,1),2
b (R×Ω)

≤ C1λ
−βp , (4.8)

since h can be estimated as follows. From (2.3) and (4.5) we obtain

‖h‖L2
b(R×Ω+) = ‖f(·, u+w̃λ+θλ) − f(·, u) − Duf(·, u)θλ]‖L2

b(R×Ω+)

≤ C
(
‖θλ‖L2

b(R×Ω) + ‖w̃λ‖L2
b(R×Ω)

)
.

Together with (4.7) and (4.5) this implies estimate (4.8) for sufficiently large λ.
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Now define κtr
λ (u) := ũ := u+ w̃λ + θλ, which, by construction, is a solution of equation

(3.5) and hence of the RDS (3.2). Moreover, due to (4.5) and (4.8) we have the closeness
condition

‖u−ũ‖Lp
b(R×Ω+) ≤ Cλ−βp . (4.9)

Let us verify that ũ is a hyperbolic trajectory for system (3.5). According to Definition 2.1
we have to consider the linearized problem

{
∂tṽ = ∆xṽ − ṽ − Duf(t, ũ)ṽ + h(t, x) on R × Ω+,

P−
λ

(
ṽ
∣∣
R×∂Ω+

)
+ ∂nṽ = 0 on R × ∂Ω+.

(4.10)

Indeed, it follows from (2.3) and (4.9) and from the embedding theorem for the anysotropic
Sobolev spaces that

‖[Duf(·, u)−Duf(·, ũ)]ṽ‖L2(R×Ω+) ≤ Cλ−β‖ṽ‖Lpmax (R×Ω+)

≤ C1

(
‖∂tṽ‖W(0,−1),2(R×Ω+) + ‖ṽ‖W(0,1),2(R×Ω+)

)
(4.11)

for some positive β > 0. Applying this to the right-hand side of (4.10) and employing the
hyperbolicity of u as given in estimate (3.8) with φ = 1 (i.e., ε = 0), we easily obtain

‖∂tṽ‖W(0,−1),2(R×Ω+) + ‖ṽ‖W(0,1),2(R×Ω+) ≤ C ′
Γ‖h‖W(0,−1),2(R×Ω+)

where the constant C ′
Γ is independent of λ > λ0 and of the concrete choice of ũ = κtr

λ (u) ∈ Γtr
λ .

Thus, ũ is a hyperbolic trajectory of (3.5).

Thus, we have shown that Γtr
λ := κtr

λ (Γtr) is a hyperbolic set for the coupled problem (3.5).
The commutation properties (4.2) are immediate corollaries of our construction of κtr

λ and of
the uniqueness part of the implicit function theorem. Thus, it remains only to verify the local
Lipschitz continuity (4.3). For this, let u1, u2 ∈ Γtr be two hyperbolic solutions of (2.22) and
let ũi := κtr

λ (ui), i = 1, 2, be the corresponding hyperbolic solutions of (3.5). Define also the
functions w̃iλ as the solutions of problem (4.4) associated with ui, i = 1, 2, respectively and
the functions θi := ũi − ui − w̃iλ. Then, the function w̃λ := w̃1

λ − w̃2
λ satisfies the equation

{
∂tw̃λ = ∆xw̃λ − w̃λ − Duf(t, u1)w̃λ + h,

P−
λ (w̃λ

∣∣
R×∂Ω+

) + ∂nw̃λ
∣∣
R×∂Ω+

+ (∂nu1

∣∣
R×∂Ω+

−∂nu2

∣∣
R×∂Ω+

) = 0,
(4.12)

where h(t, x) := [Duf(t, u1(t, x))−Duf(t, u2(t, x))]w̃
2
λ(t, x). We claim that there are C, ε0 > 0

such that for every ε ∈ [0, ε0] the following estimate holds:

‖∂tw̃λ‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖w̃λ‖W

(0,1),2
ϕε,y0

(R×Ω+)
+ λβp‖w̃λ‖Lp

ϕpε/2,y0
(R×Ω+)

≤ C(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
),

(4.13)

where p ∈ (pmin, pmax) is fixed and C and ε0 are independent of ui ∈ Γtr, λ > λ0 and of
y0 ∈ R

n+1.
In order to derive (4.13) we need the following standard smoothing property for the

solutions of (2.22).
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Lemma 4.2 Let ui ∈ K, i = 1, 2, be two essential solutions of problem (2.22). Then there is
ε0 > 0 such that for every ε ∈ [0, ε0] the following estimates hold:

C1‖u1−u2‖C1
ϕε/2,y0

(R×Ω+) ≤ ‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)

≤ C2‖u1−u2‖C1
ϕε/2,y0

(R×Ω+)

(4.14)

where the constants ε0 and Ci are independent of ui ∈ K and of y0 ∈ R
n+1.

Proof: Indeed, the function v := u1 − u2 satisfies the linear equation

∂tv = ∆xv − v −A(t, x)v in R × Ω+, v = 0 on R × ∂Ω+ (4.15)

with A(t, x) :=
∫ 1
0 Duf(t, su1(t, x) + (1−s)u2(t, x))ds and hence, by (2.3) and estimates (2.6)

for the solutions ui, we have A ∈ C1
b(R × Ω+,R

m×m).
Applying the standard parabolic regularity theorems (see, e.g., [LSU67]) to equation

(4.15), we derive estimates (4.14) and Lemma 4.2 is proved.

Estimate (4.14) together with estimate (4.5) for w̃2
λ imply that

‖h‖L2
ϕε,y0

(R×Ω+) ≤ Cλ−βp(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
), (4.16)

where h is defined after (4.12), βp > 0 and C is independent of λ, y0 and ui. Applying
estimates (3.8), (3.9) and (3.28) to equation (4.12) and using (4.16) we obtain the desired
estimate (4.13).

It remains to estimate θ := θ1 − θ2 which satisfies the equation

{
∂tθ = ∆xθ − θ − Duf(t, u1)θ + h̃ in R × Ω+,

P−
λ (θ

∣∣
R×∂Ω+

) + ∂nθ = 0 on R × ∂Ω+;
(4.17)

where h̃ = h1 + h2 + h3 with

h1 := [f(·, u1+w̃
2
λ+θ2) − f(·, u1+w̃

1
λ+θ2)],

h2 := −[f(·, u1+w̃
1
λ+θ1) − f(·, u1+w̃

1
λ+θ2) − Duf(·, u1)θ],

h3 := f(·, u1+w̃
2
λ+θ2)−f(·, u2+w̃

2
λ+θ2)+f(·, u1)−f(·, u2).

(4.18)

We estimate every term hi separately. Due to the global Lipschitz continuity of f and estimate
(4.13) for w̃λ we have

‖h1‖L2
ϕε,y0

(R×Ω+) ≤ C1λ
−βp

(
‖∂tu1−∂tu2‖W

(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)

)
. (4.19)

Moreover, due to the uniform Hölder continuity of Duf one has the estimate

|f(t, u1+w̃
1
λ+θ1) − f(t, u1+w̃

1
λ+θ2) − Duf(t, u1)θ|

≤
∫ 1
0 |Duf(t, u1+w̃

1
λ+sθ1+(1−s)θ2) − Duf(t, u1)|ds |θ| ≤

≤ C
(
|w̃1
λ|
δ + |θ1|

δ + |θ2|
δ
)
|θ|,
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where 0 < δ ≤ 1 is arbitrary and the constant C depends only on f . Fixing δ small enough
and using estimates (4.5) and (4.7) and the Hölder inequality we arrive at

‖h2‖L2
ϕε,y0

(R×Ω+) ≤ C(‖w̃1
λ‖
δ
Lp

b(R×Ω+)
+‖θ1‖

δ
Lp

b(R×Ω+)
+‖θ2‖

δ
Lp

b(R×Ω+)
) ‖θ‖Lp

ϕε,y0
(R×Ω+)

≤ C2λ
−δβp‖θ‖Lp

ϕε,y0
(R×Ω+).

(4.20)

Finally using the Lipschitz continuity of Duf we obtain the estimate

|h3(t, x)| ≤ C
(
|w̃2
λ(t, x)| + |θ2(t, x)|

)
|u1(t, x)−u2(t, x)|

and consequently, due to (4.5), (4.13) we find

‖h3‖L2
ϕε,y0

(R×Ω+) ≤ C3λ
−βp(‖∂tu1−∂tu2‖W

(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
). (4.21)

In the three estimates (4.19), (4.20) and (4.21) the exponent p ∈ (pmin, pmax) is fixed and the
constant C1, C2, and C3 are independent of y0 ∈ R

n+1, λ > λ1 and ui ∈ Γtr.
Applying estimate (3.8) to equation (4.17) and using inequalities (4.19), (4.20) and (4.21)

for the right-hand side h = h1+h2+h3 we obtain

‖∂tθ1−∂tθ2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖θ1−θ2‖W

(0,1),2
ϕε,y0

(R×Ω+)

≤ Cλ−βp(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
).

(4.22)

Using ũ1 − ũ2 = [u1−u2] + [w̃1
λ−w̃

2
λ] + [θ1−θ2], estimates (4.13) and (4.22) imply

C1‖u1−u2‖Lp
ϕpε/2,y0

(R×Ω+) ≤ C ′
1‖ũ1 − ũ2‖Lp

ϕpε/2,y0
(R×Ω+) ≤

≤ ‖∂tũ1−∂tũ2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖ũ1−ũ2‖W

(0,1),2
ϕε,y0

(R×Ω+)

≤ C2(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W (0,1),2

ϕε,y0
(R×Ω+)

).

(4.23)

To finish the proof of Theorem 4.1 it remains to note that estimate (1.22) with s = 1 applied
to equation (4.15) gives

‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
≤ C3‖u1−u2‖Lp

ϕpε/2,y0
(R×Ω+).

This estimate together with (4.23) provide (4.3); and thus Theorem 4.1 is proved.

Until now we have discussed the problem (3.5) on Ω+ with the nonlocal boundary condi-
tions depending on λ. Now we return to the RDS (3.2) defined on all of R

n, but with a the
nonlinearity fλ defined in (3.3). The associated initial value problem reads (3.2), i.e.,

{
∂tu = ∆xu− u− fλ(t, x, u) for (t, x) ∈ (0,∞) × R

n,

u(0, x) = u0(x) for x ∈ R
n.

(4.24)

First of all we note that (2.3) and (3.3) implies that for every λ > 0 and every u0 ∈ L2
b(Rn)

problem (4.24) has a unique solution u : [0,∞) → L2
b(R

n) and the following estimate holds:

‖u(t)‖L2
b(Rn) ≤ C‖u(0)‖L2

b(Rn)e
−αt + Cλ, α > 0 (4.25)
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and consequently the solution operator

Ŝλt : L2
b(R

n) → L2
b(R

n), u0 7→ u(t), (4.26)

is well defined (see, e.g., [Zel03a]). Moreover, it is known (see, e.g., [MiSc95, Zel03a, Mie02])
that the Poincaré map Ŝ1 associated with problem (4.24) possesses a global, locally compact
attractor Âλ ⊂ L2

b(R
n) which is generated by the set K̂λ ⊂ L2

b(R×R
n) of all essential solutions

of problem (3.2), i.e.,
Âλ = Π0K̂λ.

Moreover, the following result is a standard corollary of the parabolic regularity theorems
(see, e.g., [LSU67]).

Proposition 4.3 Every trajectory û ∈ K̂λ lies in C1
b(R×R

n) and satisfies the estimate
‖û‖C1

b(R×Rn) ≤ Cλ, where Cλ depends on λ but is independent of the concrete choice of

û ∈ K̂λ. Moreover, the set K̂λ is compact in the local topology of C1
loc(R × R

n), namely

K̂λ b C1
loc(R × R

n).

Note that it is sufficient to have fλ smooth in u and t. The jumps over the boundary ∂Ω+

do prevent higher regularity, but not the C1-regularity.

Let us study now the hyperbolic trajectory set Γ̂tr
λ ⊂ L2

b(R × R
n) for equation (4.24)

associated with the corresponding set Γtr
λ ⊂ L2

b(R × Ω+).

Corollary 4.4 Let λ1 � 1 be the same as in Theorem 4.1. Then for every λ > λ1 equation
(4.24) possesses a hyperbolic set Γ̂tr

λ ⊂ K̂λ which is homeomorphic to Γtr via

κ̂tr
λ : Γtr ↔ Γ̂tr

λ .

Moreover, the homeomorphism κ̂tr
λ satisfies the commutation properties (4.2) and is Lipschitz

continuous in the local topology, i.e., for each λ > λ1 there exist constants C1 and C2 such
that for all u1, u2 ∈ Γtr we have

C1(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
)

≤ ‖κ̂tr
λ (u1)−κ̂

tr
λ (u2)‖C1

ϕε/2,y0
(R×Rn)

≤ C2(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
).

(4.27)

Note that in contrast to (4.3) here C1, C2 depend on λ. This is because we switch to the
non-compatible C1 topology, cf. also Proposition 4.3.

Proof: Indeed, let u ∈ Γtr and let ũ = κtr
λ (u) ∈ Γtr

λ . Define we define the function û :=

κ̂tr
λ (u) ∈ Γ̂tr

λ via the trivial linear extension Eλ : L2
b(R × Ω+) → L2

b(R×R
n); ũ 7→ û defined as

follows:

û(t, x) :=

{
ũ(t, x), if x ∈ Ω+,

vu(t, x), if x ∈ Ω−,

where vu is the unique solution v of the problem

∂tv = ∆xv − λv in R × Ω− and v
∣∣
R×∂Ω−

= ũ
∣∣
R×∂Ω+

.
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This works well since the RDS (4.24) is linear in Ω−. Because of (1.24), we have

‖∂tû‖W
(0,−1),2
ϕε,y0

(Rn+1)
+ ‖û‖

W
(0,1),2
ϕε,y0

(Rn+1)
≤ Cλ(‖ũ‖W

(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖ũ‖

W
(0,1),2
ϕε,y0

(R×Ω+)
). (4.28)

According to the construction of the operator P −
λ the function û is a solution of problem

(3.2) and consequently û ∈ K̂λ. Moreover, it is not difficult to verify, using Theorem 4.1
and estimate (1.24), that û is a hyperbolic trajectory of the system (4.24), i.e., for every
h ∈ W(0,−1),2(R × R

n) the problem

∂tv = ∆xv − v − Dufλ(t, x, û(t, x))v + h(t, x) on R
n+1 (4.29)

possesses a unique solution v which satisfies the estimate

‖∂tv‖W(0,−1),2(Rn+1) + ‖v‖W(0,1),2(Rn+1) ≤ CΓ‖h‖W(0,−1),2(Rn+1), (4.30)

where the constant CΓ depends on λ but are independent of the concrete choice of u ∈ Γtr.
Thus, Γ̂tr

λ := κ̂tr
λ (Γtr) is a hyperbolic set for problem (4.24).

Let now ûi = κ̂tr
λ (ui). Then combining (4.3) and (4.30) we obtain

C̃1(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
)

≤ ‖∂tû1−∂tû2‖W
(0,−1),2
ϕε,y0

(Rn+1)
+ ‖û1−û2‖W

(0,1),2
ϕε,y0

(Rn+1)

≤ C̃2(‖∂tu1−∂tu2‖W
(0,−1),2
ϕε,y0

(R×Ω+)
+ ‖u1−u2‖W

(0,1),2
ϕε,y0

(R×Ω+)
)

(4.31)

where the constants C̃i depend on λ but are independent of the concrete choice of ui ∈ Γtr.
To finish the proof of estimate (4.27) we use the parabolic regularity theory which gives

‖û1−û2‖C1
ϕε/2,y0

(Rn+1) ≤ C(‖∂tû1−∂tû2‖W
(0,−1),2
ϕε,y0

(Rn+1)
+ ‖û1−û2‖W

(0,1),2
ϕε,y0

(Rn+1)
), (4.32)

where C is independent of ûi ∈ K̂. Indeed, (4.31) and (4.32) provide (4.28); and thus,
Corollary 4.4 is proved.

5 Example of space-time chaos in RDSs

So far we have constructed homeomorphisms between the set Γtr = (Γtr
0 )Z

n
from Cor. 2.8 and

Γ̂tr
λ . Thus, we worked in the space of trajectories. We now return to the phase space of the

RDS (4.24) and construct an hyperbolic set there. Moreover, we will use the homeomorphism
between Γtr and the standard Bernoulli scheme to deduce space-time chaos.

Recall that Π̂0 : Cb(R,L
2
b(Rn)) → L2

b(R
n) maps trajectories u onto their initial data

u0 = u(0).

Corollary 5.1 Let the assumptions of Corollary 4.4 hold and let Γ̂tr
λ be the hyperbolic set

of the problem (4.24) constructed in Corollary 4.4. Define Γ̂λ := Π̂0Γ̂
tr
λ ⊂ Â ⊂ L2

b(R
n), then

there is a homeomorphism (with respect to the associated local topologies)

κ̂λ : Γ̂λ ↔ Γ = (Γ0)
Z

n

which commutes with the discrete group of spatial translations {Tl′ | l
′ ∈ Z

n } and with the
Poincaré maps generated by the equations (2.22) and (4.24), respectively:

κ̂λ ◦ Sl0 = Ŝλl0 ◦ κ̂λ and κ̂λ ◦ Tl′ = Tl′ ◦ κ̂λ for l0 ∈ Z and l′ ∈ Z
n.
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Proof: Indeed, it is known (see, e.g., [AgNi67, Zel03b]) that the maps Π̂0 : K̂λ → Âλ and
Π0 : K → A are one-to-one. Since the sets K̂λ and K are compact in the local topologies,
these maps are in fact homeomorphisms. The desired homeomorphism κ̂λ can be defined now
via

κ̂λ := Π0 ◦ κ̂
tr
λ ◦ (Π̂0)

−1, (5.1)

where κ̂tr
λ is constructed in Corollary 4.4. The commutation properties are immediate corol-

laries of (4.2).

Combining the Corollaries 2.9 and 5.1 we arrive at the final result on this section which
states the existence of spatial-temporal chaos for the RDS (4.24). Note that the system is
space and time periodic with periodicity 1 in each direction.

Theorem 5.2 Let Assumption 2.1 be valid such that the RDS (2.1) in the bounded domain
Ω0 has a hyperbolic set. Moreover, let the assumptions of Corollary 4.4 hold (i.e., the coupling
is weak since λ > λ1 � 1) such that Γ̂λ and κ̂λ can be constructed as above. Then, the
RDS (4.24) admits space-time chaos in the following precise sense: The multidimensional
Bernoulli system (Mn+1, { Tl | l ∈ Z

n+1 }) (as defined in Def. 2.4) is topological conjugate
to (Γ̂λ, { Ŝ

λ
l | l = (l0, l

′) ∈ Z
n+1 }) via the homeomorphism τ̂ : Mn+1 → Γ̂λ (in the local

topologies). Here,

Ŝ(l0,0) = Ŝλl0 and Ŝ(0,l′) = Tl′ for (l0, l
′) ∈ Z

n+1,

and conjugacy means the commutations

τ̂ ◦ T(l0,0) = Ŝλl0 ◦ τ̂ , τ̂ ◦ T(0,l′) = Tl′ ◦ τ̂ for l0 ∈ Z and l′ ∈ Z
n. (5.2)

Remark 5.3 As in the case of purely temporal dynamics (see Remark 2.5) the spatio-
temporal hyperbolic set Γ̂λ and Γ̂trλ are closely related with the multidimensional analogue of
homoclinic orbits the so-called bump solutions. Indeed, let the assumption (2.18) be satisfied.
Then, the image τ̂(b0) of a zero element b0 ≡ 0 of Mn+1 under the homeomorphism τ̂ con-
structed in Theorem 5.2, obviously, also equals zero: τ̂(b0) = 0. Analogously, the image τ̂(b̄)
of the basic bump element b̄ ∈ Mn+1 (b̄(0) = 1, b̄(l) = 0, l 6= 0) gives a spatio-temporal bump
orbit ū := τ̂ tr(b̄) for problem (4.24). Moreover, it follows from the hyperbolicity of condition
on ū and u0 (exactly as in purely temporal case) that the solution ū is an exponential bump,
i.e.

ū ∈ C1
eµ|t|+µ|x|(R

n+1), (5.3)

for some positive µ. Thus, our construction gives, in particular the existence of an exponen-
tially decaying space-time bump solution for equation (4.24). Furthermore, analogously to
(2.20), every b ∈ Mn+1 can be presented as follows:

b =
∑

l∈Zn+1 b(l)T−lb̄. (5.4)

And, analogously to (2.21), it is not difficult to verify that every solution Ub := τ̂ tr(b),
b ∈ Mn+1 satisfies

‖Ub −
∑

(l0 ,l′)∈Zn+1 b(l0, l
′)ū(· − l0, · − l′)‖L2

b(Rn+1) < ε′0

where ε′0 > 0 is a small positive number depending on ε0 introduced in (2.21). Thus, analo-

gously to the pure temporal case, the hyperbolic set Γ̂trλ is also generated by all spatio-temporal
shifts of the basic bump solution ū summed with coefficients 0 or 1.
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Finally we want to show that it is also possible to construct spatio-temporal chaos in RDS
which have a nonlinearity f which is smooth in t, x and u, since by now our function fλ is
not continuous with respect to x ∈ R

n. Moreover, the periodicity in space and time might
appear to be artificial and it is desirable to find a RDS which is autonomous and spatially
homogeneous. However, this can only be done by giving up the hyperbolicity, because of the
arising continuous translation groups in space and time.

To construct a smooth RDS we approximate the nonlinearity fλ by a new nonlinearity
which is polynomial in the state variable u while the periodicity in t and x is obtained by
polynomials in the trigonometric functions cos(2πxj) and sin(2πxj) where j = 0, . . . , n and
x0 = t. To be more precise, consider RN : R

n+1 × R
k → R

k in the form

RN (t, x, u) :=

R̃N (sin(2πt), cos(2πt), sin(2πx1), cos(2πx1), · · · , sin(2πxn), cos(2πxn), u) + ε|u|2Nu,
(5.5)

where R̃N is an algebraic polynomial of degree 2N with N ∈ N and ε = εN > 0. Thus, the
function RN is 1-periodic with respect to (t, x). By (2.3) it is possible to find polynomials
R̃N and εN > 0 in such a way that for every R > 0 and every q > 1 we have

‖fλ−RN‖Lq
b(Rn+1×VR) → 0, ‖Dufλ−DuRN‖Lq

b(Rn+1×VR) → 0,

‖D2
ufλ−D2

uRN‖Lq
b(Rn+1×VR) → 0 for N → ∞,

(5.6)

where VR := {u ∈ R
k | |u| ≤ R }.

Consider now the following family of RDS in R
n:

∂tu = ∆xu− u−RN (t, x, u)), (t, x) ∈ R+ × R
n, u

∣∣
t=0

= u0 (5.7)

By the construction of RN we have the dissipativity condition

RN (t, x, v).v ≥ −CN + εN
2 |u|2N+2 for all (t, x, v) ∈ R × R

n × R
k, (5.8)

for an appropriate constant CN . As a consequence (see, e.g., [Zel03a]) the RDS (5.7) possesses,
for every u0 ∈ L2

b(R
n), a unique global solution u : [0,∞) → L2

b(R
n), t ∈ R+, which satisfies

the dissipativity estimate:

‖u(t)‖L2
b(Rn) ≤ C‖u(0)‖L2

b(Rn)e
−αt + CN for some α,CN > 0,

and the solution operator St : L2
b(R

n) → L2
b(R

n);u0 7→ u(t) of problem (5.7) is well defined.
Moreover, the Poincaré map S1 admits a global, locally compact attractor AN ⊂ L2

b(Ω) which
is generated by the set KN of all essential solutions trajectories of (5.7):

AN = Π0KN . (5.9)

Moreover, in analogy to Proposition 4.3 we have

KN ⊂ C1
b(R

n+1), ‖u‖C1
b(Rn+1) ≤ C

′
N for all u ∈ KN , KN b C1

loc(R
n+1). (5.10)

The following result is a complete analogue of the structural-stability Theorem 4.1 for the
case of systems (4.24) and (5.7). It states that the existence of a hyperbolic trajectory set.
The subsequent theorem then concludes that the smooth, polynomial RDS (5.7) has spatio-
temporal chaos.
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Proposition 5.4 Let the above assumptions hold. Then, there is N0 > 0 such that for every
N > N0 equation (5.7) possesses a hyperbolic trajectory set Γ

tr
N ⊂ KN which is homeomorphic

to the hyperbolic trajectory set Γ̂tr := Γ̂tr
λ constructed in Corollary 4.4 (recall that λ > λ1 is

fixed now):

κNtr : Γ̂tr ↔ Γ
tr
N .

This homeomorphism satisfies the commutation properties (4.2) and is Lipschitz continuous
in the local topology, i.e., if ûi ∈ Γ̂tr and ui := κNtr (ûi) then the following estimate is valid for
a sufficiently small ε < ε0:

C1‖û1−û2‖C1
ϕε,y0

(Rn+1) ≤ ‖u1−u2‖C1
ϕε,y0

(Rn+1) ≤ C2‖û1−û2‖C1
ϕε,y0

(Rn+1) (5.11)

where the constants Ci, i = 1, 2 are independent of N , y0 ∈ R
n+1 and of the concrete choice

of hyperbolic trajectories ûi ∈ Γ̂tr.

Proof: The assertion of this theorem can be derived from Cor. 4.4 using the structural-stability
arguments in complete analogy to the proof of Theorem 4.1. In fact, the proof is much simpler
since (5.6) guarantees the closeness of systems (4.24) and (5.7) in a more regular topology that
we had in the case of equations (3.5) and (2.22). Indeed, as in Section 4, in order to construct
the required homeomorphism, we need to find, for every hyperbolic trajectory û ∈ Γ̂tr of
(4.24), the associated trajectory ū of equation(5.7) such that û(t, x) is “close” to ū(t, x) for
all (t, x) ∈ R

n+1. Moreover, due to the smoothing property for parabolic equations, the
hyperbolicity estimate (4.30) for the variation equation (4.29) can be reformulated as follows,

for every h ∈ Lpb(R
n+1) there exists a unique solution v ∈ W

(1,2),p
b (Rn+1) of

∂tv = ∆xv − v − Dufλ(t, x, û(t, x))v + h(t, x)

and the following estimate holds:

‖v‖
W

(1,2),p
b (Rn+1)

≤ C‖h‖Lp
b(Rn+1)

where the constant C depend only on the hyperbolicity constant CΓ from (4.30) and p. Thus,

due to (5.6), we may require ū to be close to û in the metric of W
(1,2),p
b (Rn+1) (where p = p(n)

is fixed large enough that the embedding W(1,2),p(Rn+1) ⊂ Cb(R, C
1
b (R

n)) holds) and find it
by the implicit function theorem exactly as we did in Section 4. So we leave the details
to the reader and only note that the above scheme gives the closeness of û and ū only in

Cb(R,C
1
b(R

n)) and estimate (5.11) in the W
(1,2),p
ϕε,y0

(Rn+1) which is weaker than C1
ϕε,y0

(Rn+1)
since it does not contain the estimate of the C-norms of the t-derivative. In order to obtain
the required C-estimate for the t-derivatives postulated in Proposition 5.4, it only remains to
differentiate equations (4.24) and (5.7) with respect to t (based on the observation that fλ
and RN are smooth with respect to t and u) and apply the Lpϕε,y0

regularity estimate once
more.

Returning to the hyperbolic sets in the phase space we derive the following corollaries.

Theorem 5.5 Let the assumptions of Prop. 5.4 hold such that the hyperbolic trajectory set
Γ

tr
N can be constructed. Let ΓN := Π0Γ

tr
N ⊂ AN and S(l0,l′) = Sl0 ◦Tl′ for (l0, l

′) ∈ Z
n+1. Then,

there is a homeomorphism τ : Mn+1 → ΓN such that multidimensional Bernoulli system
(Mn+1, { Tl | l ∈ Z

n+1 } is conjugated to the hyperbolic dynamics (ΓN , {Sl | l ∈ Z
n+1 }) in

(5.7), i.e., τ ◦ Tl = Sl ◦ τ for all l ∈ Z
n+1.
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Indeed, this assertion follows immediately from Prop. 5.4 by applying Π0 and by the
previously established conjugacy of Γ̂tr to Mn+1.

Finally we construct the desired autonomous and homogeneous RDS. We start with the
simple construction of an autonomous, homogeneous RDS which has the vector (sin(2πt), · · · , cos(2πxn))
as a particular solution.

Lemma 5.6 For every N ∈ N there exists a (2n+2)-dimensional RDS (i.e., v(t, x) ∈ R
2n+2)

∂tv = ∆xv − v −QN (v), (t, x) ∈ R
n+1 (5.12)

with QN (v) = Q̃N (v) + εN |v|
2Nv where εN > 0 and Q̃N is a polynomial of degree 2N , which

possesses the particular solution vper given via

vper(t, x) := (sin(2πt), cos(2πt), sin(2πx1), cos(2πx1), · · · , sin(2πxn), cos(2πxn)) .

Proof: The construction is totally explicit, since for each (t, x) we have |vper(t, x)|2 = n+1.
We let QN (v) = −Av + εNv|v|

2N−2(|v|2 − (n+1)) and choose A ∈ R
(2n+2)×(2n+2) such that

(∂t − ∆x + 1)vper = Avper, namely A = diag(
(

0
−2π

2π
0

)
, 4π2, . . . , 4π2).

Fix now the integer N > N0 and define the vector U := (v, u) ∈ R
k+2n+2 and the

polynomial F : R
k+2n+2 → R

k+2n+2 of the degree 2N+1 via

F (U) = F (v, u) := (QN (v), R̃N (v, u)) (5.13)

where R̃N is defined in (5.5). Our final system is the autonomous (k+2n+2)-dimensional
RDS (i.e., U ∈ R

k+2n+2)

{
∂tU = ∆xU − U − F (U) in (0,∞) × R

n

U(0, x) = U 0(x) on R
n.

(5.14)

Then, by construction we have, for 0 < δ < εN ,

F (U).U ≥ −C + δ|U |2N+2 for all U ∈ R
k+2n+2 (5.15)

and consequently for every U0 ∈ L2
b(Rn) problem (5.14) possesses a unique global solution

U : [0,∞) → L2
b(R

n). Moreover, the semigroup (St)t≥0 with

St : L2
b(R

n) → L2
b(R

n); U0 7→ StU
0 := U(t), (5.16)

associated with problem (5.14) is well defined and possesses a global, locally compact attractor
AU ⊂ L2

b(R
n) and the analogues of (5.9) and (5.10) are valid (see, e.g., [Zel03a]).

However, due to the skew-product structure of system (5.14), where the v-component is
independent of u, and due to Lemma 5.6, the attractor AN is embedded in AU via

AN ∼ vper(0, ·) ×AN ⊂ AU .

Combining this embedding with Theorem 5.5 we finally obtain the following result.
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Theorem 5.7 Let the above assumptions hold. Then, the multidimensional Bernoulli shift
(Mn+1, { Tl | l ∈ Z

n+1 }) is topologically embedded via a homeomorphic embedding τ :
Mn+1 → AU

τ ◦ T(l0,l′) = (Sl0 ◦ Tl′) ◦ τ for all l = (l0, l
′) ∈ Z

n+1. (5.17)

where St denotes the semigroup for equation (5.14).

Corollary 5.8 Let S(t,h) := St ◦ Th be the (n+1)-parametrical extended spatio-temporal

semigroup associated with equation (5.14). Then this semigroup acts on the attractor AU

and the topological entropy of this action is finite and strictly positive:

0 < htop

(
S(t,h),A

U
)
<∞ (5.18)

Indeed, the finiteness of the value (5.18) is proved in [Zel00]. In order to verify that this
value is strictly positive, it remains to recall that the topological entropy is preserved under
homeomorphisms (cf. e.g., [KaHa95]). So (5.17) implies that

htop({S(l0,l′)}(l0,l′)∈Zn+1 , AU ) ≥ htop({S(l0,l′)}(l0,l′)∈Zn+1 , τ(Mn+1))

= htop(T(l0,l′),M
n+1) = 1,

(5.19)

Since the topological entropy of the continuous semigroup {S(t,h) | (t, h) ∈ R
n+1 } obviously

coincides with that of its discrete subgroup {S(l0,l′) | (l0, l
′) ∈ Z

n+1 }, (5.19) implies the left
inequality in (5.18).

A Hyperbolic sets for RDS in bounded domains

In this section, we give an explicit scheme which allows us to construct RDSs in bounded
domains with hyperbolic sets in the sense of Definition 2.1. To be more precise, for a given
system of ODEs with polynomial nonlinearity which possesses a hyperbolic set ΓODE and every
bounded domain Ω0, we construct a RDS in Ω0 with Dirichlet boundary conditions which
possesses a hyperbolic set ΓPDE homeomorphic to ΓODE. Since the existence of hyperbolic
sets for ODEs with polynomial nonlinearities are well known, this scheme provides a rich class
of hyperbolic sets for RDSs in bounded domains with Dirichlet boundary conditions.

Our strategy is based on the detailed analysis of the following special form of a RDS:

∂tu = γ(∆xu− λ1u) − f(t, u) in R × Ω0, u = 0 on R × ∂Ω0, (A.1)

where u = (u1, · · · , uk) is an unknown vector-valued function f(t, u) is a given nonlinearity
(which is assumed to be periodic with respect to t: f(t+ T, u) ≡ f(t, u)), λ1 > 0 is the first
eigenvalue of the Laplacian in Ω0 and γ � 1 is a large parameter. Let P+ and P− be the
L2-orthoprojectors to the first and the rest eigenvectors of the Laplacian respectively and let
u(t) = u+(t) + u−(t) with u±(t) := P±u(t). Then, these functions satisfy

{
∂tu+ = −P+f(t, u+ + u−),

∂tu− = γ(∆xu− + λ1u−) − P−f(t, u+ + u−).
(A.2)

It is intuitively clear that, for large γ the u−-component of a solution u of eqn. (A.2) will be
small and, consequently, this solution will be close to the appropriate solution v of the system
of ODEs

d
dtv(t) = −f+(t, v) with f+(t, v) := 〈f(t, e1 · v), e1〉L2(Ω0) =

∫
Ω0
f(t, e1(x)v)e1(x)dx, (A.3)
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where e1 is the normed, first eigenvector of the Laplacian and v(t) = (v1(t), · · · , vk(t)). Thus,
if system (A.3) possesses a hyperbolic set, it should preserve also for system (A.2) for large
γ by structural-stability arguments. The following theorem gives a rigorous justification of
these arguments.

Theorem A.1 Let the nonlinearity f in equation (A.1) be T -periodic with respect to time,
satisfy regularity assumption (2.3) and, in addition f(t, 0) ≡ 0. Moreover, let Ω0 ⊂ R

n be
an open bounded domain. Assume also that the associated system of ODE (A.3) possesses
a hyperbolic set ΓODE. Then, for all sufficiently large γ, system (A.2) possesses a hyperbolic
set ΓPDE = ΓPDE(γ) which is homeomorphic to ΓODE.

Proof: In order to deduce the assertion of the theorem, we first need to study the second
equation of (A.2).

Lemma A.2 Let the assumptions of Theorem A.1 hold. Then, there exists γ0 > 0 such that,
for all γ ≥ γ0 and every function v ∈ L∞(R,Rk), the equation

∂tu− = γ(∆xu− − λ1u−) − P−f(t, u− + v · e1) (A.4)

possesses a unique solution u− ∈ L∞(R, P−L2(Ω0)) and the following estimate holds:

‖u−(t)‖L2(Ω0) ≤ Cγ−1/2 sup{ e−α(t−s)‖v(s)‖ | s ∈ (−∞, t] } (A.5)

where positive constants C and α are independent of γ and t. Thus, the nonlinear solution
operator Tγ : L∞(R,Rk) → L∞(R, P−L2(Ω0)) is well-defined via Tγv := u−. Moreover, this
operator is of class C1 and satisfies the following estimate:

‖Tγ‖C1(L∞(R,Rk),L∞(R,L2(Ω0))) ≤ C1γ
−1/2 (A.6)

where the constant C1 is also independent of γ.

Proof: Indeed, multiplying equation (A.5) scalarly in L2(Ω0) by u−(t) and using that
‖∇x u−‖

2
L2(Ω0) ≥ λ2‖u−(t)‖2

L2(Ω0) with λ2 > λ1, we have

d
dt‖u−(t)‖2

L2 + γ(λ2 − λ1)‖u−(t)‖2
L2 ≤ C‖f(v(t) · e1 + u−(t))‖2

L2 (A.7)

Since, f and Duf are globally bounded and f(t, 0) ≡ 0 the right-hand side of (A.7) can be
estimated as follows

C‖f(v(t) · e1 + u−(t)‖2
L2 ≤ Cf‖v(t)e1 + u−(t)‖2

L2 ≤ C2(‖v(t)‖
2 + ‖u−(t)‖2

L2).

Inserting this estimate to (A.7), we deduce that, for sufficiently large γ,

d
dt‖u−(t)‖2

L2 + κγ‖u−(t)‖2
L2 ≤ C ′‖v(t)‖2 (A.8)

where the positive constants κ and C are independent of γ. Applying the Gronwall inequality
to (A.8), we deduce estimate (A.5). Thus, operator Tγ is indeed well-defined. The estimate
for its Fréchet derivative can be obtained analogously. This proves Lemma A.2.
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Thus, Lemma A.2 provides a Lyapunov-Schmidt reduction which allows to rewrite problem
(A.2) in the following nonlocal form:

d
dtv+(t) = −〈f(t, v+(t) · e1 + (Tγv+)(t)), e1〉L2(Ω0) (A.9)

where u+(t, x) = v+(t) · e1(x), v+(t) ⊂ R
k. Estimate (A.6) shows that this equation is

really a small perturbation of equation (A.2). Let now the trajectory v : t 7→ v(t) belong
to the (trajectory) hyperbolic set Γtr

ODE of the ODE (A.2). Then, we seek for the associated
hyperbolic trajectory v+ of (A.9) in the form v+ := v + θ where θ is a small perturbation
which has to satisfy the following equation

d
dtθ = −Dvf+(t, v)θ−

− 〈f(t, v(t) · e1 + (Tγ(v + θ))(t)) − f(t, v(t) · e1) − f ′u(t, v(t) · e1)θ, e1〉L2(Ω0). (A.10)

We recall that the linear part of equation (A.10) is invertible (in L∞(R,Rk)) due to the
hyperbolicity assumption on v and the nonlinear part is small (for large γ)) due to Lemma
A.2. Thus, applying the implicit function theorem analogously to Section 4, we establish that
for all large γ (i.e., γ > γ0 � 1) eqn. (A.10) is uniquely solvable in a small neighborhood of
v and the solution θ satisfies

‖θ‖L∞(R,Rk) ≤ C ′γ−1/2, (A.11)

where the constant C ′ is independent of γ. Recalling that the function θ determine in a
unique way the associated solution u (namely u = u+ + u− = (v+θ)e1 + Tγ(v+θ)) of the
whole system (A.2) and using estimates (A.11) and (A.5), we obtain a unique trajectory u(t)
of equation (A.1) which satisfies

‖u(t) − v(t) · e1‖L2(Ω0) ≤ C ′′γ−1/2 for t ∈ R. (A.12)

Using this estimate, it is very easy to verify that this trajectory is hyperbolic in the sense
of Definition 2.1. Thus, for every v ∈ Γtr

ODE, we have constructed a hyperbolic trajectory
u = κγ(v) of the RDS (A.1) and, consequently, the required hyperbolic set Γtr

PDE := κγ(Γ
tr
ODE)

is also constructed and it only remains to verify that κγ is a homeomorphism. To this end,
arguing as in Section 4, we can verify that, for every v1, v2 ∈ Γtr

ODE, the associated trajectories
ui := κγ(vi) satisfy the following analogue of (4.23):

c ‖v1−v2‖L∞
φε (R,Rk) ≤ ‖u1−u2‖L∞

φε (R,L2(Ω0)) ≤ C‖v1−v2‖L∞
φε (R,Rk). (A.13)

Here φε(t) = e−ε|t| and the estimate holds for sufficiently small positive ε where the con-
stants c and C are independent of v1 and v2. Estimate (A.13) shows that κγ is indeed a
homeomorphism, which finishes the proof of the Theorem A.1.

The following corollary shows that the L2-norm in (A.12) can be replaced by stronger
ones like the C-norm or the C1-norm.

Corollary A.3 Let the assumptions of Theorem A.1 hold and let the domain Ω0 be suffi-
ciently smooth. Then, for every v ∈ Γtr

ODE
and u := κγ(v), we have

‖u(t) − v(t) · e1‖C1(Ω0) ≤ Cγ−1/2 (A.14)

where the constant C is independent of γ and v.
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Proof: Indeed, according to our assumptions on the nonlinearity f , we have

‖P−f(t, u(t))‖L∞(Ω0) ≤ C1 (A.15)

where C1 is independent of u ∈ ΓPDE and t. Scaling the time as t = γ−1t′ in the second
equation of (A.2), we have

∂t′u− = ∆xu− + λ1u− − γ−1P−f(γ−1t′, u(t′)). (A.16)

Applying now the appropriate parabolic regularity theorem to equation (A.16) and using
(A.15) and the fact that the L∞-norm is invariant under scaling, we infer

‖u−(t)‖C1(Ω0) ≤ C1γ
−1 for all u ∈ ΓPDE and all t ∈ R. (A.17)

Together with (A.12) this gives (A.14) and finishes the proof of the corollary.

Thus, we see that the hyperbolic set ΓPDE of equation (A.1) is localized in a small C1-
neighborhood of the initial hyperbolic set ΓODE (more precisely, of the set ΓODE · e1). Conse-
quently, the behavior of the function f(t, u) outside of this neighborhood is not essential and
we can drop out the growth restrictions of the function f in conditions of Theorem A.1. In
particular, we can use this theorem in the class of nonlinearities which are polynomials with
respect to u. The following simple lemma shows that every polynomial nonlinearity can be
realized in the form of a right-hand side of equation (A.3).

Lemma A.4 For every nonlinearity Q(t, v) = (Q1(t, v), · · · , QN (t, v)) which is polynomial
with respect to v = (v1, · · · , vN ) there exists a polynomial function fQ(t, v) such that

Q(t, v) = P+fQ(t, v · e1) for all t ∈ R and v ∈ R
k. (A.18)

Proof: Indeed, it is sufficient to verify (A.18) for scalar monomials Q(t, v) := a(t)v j11 · · · vjnN .

We will seek for the required polynomial fQ in the form fQ(t, u) = b(t)uj11 · · · ujnN . Then,
obviously

P+fQ(t, v · e1) = b(t)vj11 · · · vjnN · (ej1+···+jN
1 , e1)

It only remains to recall that the first eigenvector of the Laplacian is strictly positive (i.e.
e1(x) > 0, x ∈ Ω). Consequently, the scalar product in the right-hand side is also strictly
positive and (A.18) hold with b(t) := a(t)[(ej1+···+jN

1 , e1)]
−1.

Since the existence of hyperbolic sets for the systems of ODEs with polynomial nonlin-
earities is obvious (see e.g. [KaHa95]), we have proven the following corollary.

Corollary A.5 For every sufficiently smooth bounded domain Ω0, there exists a RDS of the
form (2.1) (or, which is the same, (A.1)) which possesses a hyperbolic set homeomorphic to
the Bernoulli scheme M1 and thus satisfy Assumption 2.1 of Section 2.
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B Kolmogorov’s ε-entropy and the topological entropy of at-

tractors of RDS in Rn.

We recall the definitions and main results for Kolmogorov’s ε-entropy and topological entropy
of attractors of reaction-diffusion equations. Further details can be found, e.g., in [KoTi61,
ViCh98, Zel03b, Zel04]. We start with the definition of Kolmogorov’s ε-entropy.

Definition B.1 Let K be a compact set in a metric space M . Then, for every positive ε, it
can be covered by the finite number of ε-balls of M . Let Nε(K,M) be the minimal number
of such balls. Kolmogorov’s ε-entropy is defined as the logarithm of that number:

Hε(K,M) := log2Nε(K,M). (B.1)

The detailed exposition of this entropy including its asymptotics for typical sets in functional
spaces can be found in [KoTi61]. We only recall that the fractal dimension df (K) of the set
K in M can be expressed in terms of that entropy as follows:

df (K) := lim supε→0
Hε(K,M)

log2
1
ε

(B.2)

Roughly speaking, a set K has a fractal dimension κ ∈ R+ if Hε(K,M) ∼ ( 1
ε )
κ.

It is well-known that the attractors of dissipative dynamical systems generated by evolution
equations of mathematical physics usually have finite fractal dimension:

df (A,L
∞(Ω)) ≤ C and Hε(A,L

∞(Ω)) ≤ C log2
1
ε (B.3)

In contrast to this, the attractors in unbounded domains (e.g. Ω = R
n) are usually infinite-

dimensional and, instead of (B.3), we usually have the following estimate of the ε-entropy.

Proposition B.2 Let the nonlinearity f in equation (0.1) in R
n satisfies some natural dissi-

pativity (and growth) assumptions. Then, the ε-entropy of the restriction of the attractor A
to R-balls BR

0 ⊂ R
n centered at 0 satisfies the estimate

Hε(A
∣∣
BR

0
,L∞(BR

0 )) ≤ C(R+ log2
1
ε )
n log2

1
ε , (B.4)

where the constant C is independent of ε and R.

We recall that, in unbounded domains, the attractor A is compact in the local topology
only, so the restrictions to bounded domains (e.g., R-balls) are necessary in order to have
finite Kolmogorov’s ε-entropy. Moreover, under very weak assumption eqn. (0.1) possesses
at least one spatially-homogeneous exponentially unstable equilibrium; then the attractor A
satisfies the following lower bound for the ε-entropy:

Hε(A
∣∣
BR

0
,L∞(BR

0 )) ≥ C ′Rn log2
1
ε (B.5)

for some positive C ′ depending on the concrete form of the equation. This estimate shows
that (B.4) is sharp for the case R & log2

1
ε . For the case R � log2

1
ε (e.g. R = 1) estimate

(B.5) is far from being optimal and can be replaced by the following one: for every positive
µ there exists positive Cµ such that

Hε(A
∣∣
B1

0
,L∞(B1

0)) ≥ Cµ(log2
1
ε )
n+1−µ (B.6)
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Thus, estimate (B.4) is, in a sense sharp for all values of R and ε. It is also worth to
note that the type of the asymptotics given by (B.5)–(B.7) seems to have a universal nature
and depends only very weakly on the concrete type of equation considered. Indeed, up
to the moment, the above asymptotics are verified for various classes of reaction-diffusion
equation, damped hyperbolic equations and even elliptic systems in unbounded domains, see
[EfZe02, Zel01, Zel03b, MiZe02].

We now turn to the topological entropy of attractors in unbounded domains. We first
recall the general definition adapted to the case of multiparametrical semigroups.

Definition B.3 Let (M,d) be a compact metric space and let an (n+ 1)-parametrical semi-
group {S(t,h) | t ≥ 0, h ∈ R

n } acts (continuously) in M . For every T ≥ 0, we define a new
equivalent metric dT on M via

dT (m1,m2) := sup(t,h)∈[0,T ]n+1 d(S(t,h)m1,S(t,h)m2) (B.7)

Then, since (M,dT ) remains compact, its ε-entropy Hε(M, (M,dT )) is well defined and finite.
The topological entropy of S(t,h) on M is defined as

htop(S(t,h),M) := limε→0 lim supT→∞
1

Tn+1 Hε(M, (M,dT )). (B.8)

We also recall that the topological entropy depends only on the topology on M and is inde-
pendent of the concrete choice of the metric d.

The following result shows that for the case of the spatio-temporal dynamical system
associated with the RDS (0.1) acting on the attractor A, the topological entropy can be
calculated in a much simpler way.

Proposition B.4 Let K ⊂ L∞(Rn+1) be the set of all essential solutions of (0.1). Then, the
topological entropy of the extended spatio-temporal semigroup on the attractor satisfies

htop(S(t,h),A) = limε→0 limT→∞
1

Tn+1 Hε(K
∣∣
[0,T ]n+1,L

∞([0, T ]n+1)). (B.9)

The proof of this formula can be found in [Zel03b] or [Zel04]. The universal entropy
estimate (B.4) together with expression (B.9) allows us to establish the finiteness of the
topological entropy of the attractor.

Corollary B.5 The expression (B.9) is finite for the spatio-temporal semigroup associated
with (0.1), i.e.,

htop(S(t,h),A) ≤ C ′ <∞. (B.10)

Indeed, estimate (B.4) together with the standard Lipschitz continuity of solutions of (0.1)
with respect to the initial data implies that

Hε(A
∣∣
[0,T ]n+1 ,L

∞([0, T ]n+1)) ≤ C ′(T + log2
1
ε )
n+1 (B.11)

which immediately implies (B.10), see [Zel04] for details.
To conclude we note that the lower bounds (B.5) and (B.6) are strong enough in order

to verify that the topological entropy of the n-parametrical group {Th | h ∈ R
n } of spatial

translations on the attractor is infinite, i.e.,

htop(Th,A) = limε→0 limR→∞
1
Rn Hε(A

∣∣
[0,R]n

,L∞([0, R]n)) = ∞. (B.12)
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Yet, these bounds are not sufficient to show that the spatio-temporal entropy (B.9) is strictly
positive. Indeed, in order to obtain this positivity, we need Hε(K,L

∞([0, T ]n+1)) to be pro-
portional to T n+1 as T → ∞ and (B.5) gives only

Hε(K,L
∞([0, T ]n+1)) ≥ Hε(A,L

∞([0, T ]n+1)) ≥ C ′(T + log2
1
ε )
n log2

1
ε . (B.13)

However, this leads to the much too weak lower bound C(ε)T n for T → ∞.
In contrast to that, it is not difficult to verify that, for the example of a RDS constructed

above the estimate

Hε(K
∣∣
[0,T ]n+1,L

∞([0, T ]n+1)) ≥ C ′′(T − log2
1
ε )
n+1 (B.14)

holds. This gives an alternative proof of the fact that the topological entropy (B.9) is strictly
positive for our example.
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[FiPo90] B. Fiedler and P. Polačik: Complicated dynamics of scalar reaction diffusion equations
with a nonlocal term, Proc. Roy. Soc. Edinburgh Sect. A 115, 1990, no. 1-2, 167–192.

[GEP98] G. Goren, J.-P. Eckmann, and I. Procaccia. Scenario for the onset of space-time chaos.
Phys. Rev. E (3), 57(4), 4106–4134, 1998.

[KaHa95] A. Katok, B. Hasselblatt: Introduction to the modern theory of dynamical systems,
Cambridge University Press, 1995.
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