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1 Motivating examples

1.1 Rate-independent evolutionary problems

In this Lipschitz Lecture we consider evolutionary problems, hence problems that depend on
time. A solution of such a problem will be denoted by q and maps from some time interval
[0, T ] into a state-space Q, i.e. q : [0, T ] → Q. Thus, we want to know how the solution q

evolves in time.
We are interested in the subclass of rate-independent evolutionary problems. A typical

evolutionary problem consists of an initial value q0 ∈ Q which determines the initial position
of the solution, i.e. q(0) = q0 and of course on some time-dependent data. Let us for
simplicity assume that this time-dependent data can explicity be expressed by some function
l ∈ C0

(
[0, T ],Q∗

)
. Then we are able to characterize the rate-independence of such a problem

with the help of the
Input-output operator

Q : state-space

H :

{
Q× C0

(
[0, T ],Q∗

)
→ C0

(
[0, T ],Q

)
,

q0 × l 7→ q(·).
The Input-output operator H maps the given data (i.e. the initial value q0 and the

(external) loading l ∈ C0
(
[0, T ],Q∗

)
) to a solution of the problem.

Definition 1.1 (Abstract definition of rate-independence) An evolutionary problem,
which can be expressed by the above input-output operator is called rate-independent if the
solution (output) depends on a change of the rate of the loading as follows:

H(q0, l ◦ α) = H(q0, l) ◦ α for every α ∈ C1
(
[0, T ]

)
with α̇ > 0.

If for example the external loading acts twice as fast (α̇ ≡ 2) then the solution of a rate-
independent problem responds just twice as fast, too. To give the reader a first intuition we
present some examples.

2



1.2 First example of a rate-independent problem: sliding ball
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Figure 1: sliding ball on a stick

We consider a one dimensional problem Q = R1 of a sliding ball or a sliding pearl on a
bended stick, (see figure 1). Somebody is holding the stick with his hands and as time evolves
the person inclines the stick by the angle l(t). The question is: What will the ball do? Our
solution q(t) is the angle between the position of the ball and the dotted line corresponding
to the initial position of the ball. This angle describes how far the ball slides along the stick.
The problem turns out to be nontrivial if we take dry or Coulomb friction into account.

We now explain the four pictures of figure 1. The first picture describes the initial position
of the system at time t = 0 and we assume 0 = l(0) = q(0). In the second picture the person
inclined the stick by the angle l(t1). We assume that due to friction the ball does not slide
and we still have q(t1) = 0. In the third picture the person inclined the stick even more and
we have l(t2) > l(t1). Now, the ball did slide by the angle −q. The last picture will be used
to motivate the following mathematical model.

To model the above problem we describe the energy inside the system. For this we
introduce the energy storage functional E : [0, T ] ×Q → R, (t, q) 7→ E(t, q). Note first, that
we do not take into account kinetic energy, hence our energy functional does not depend on
the velocity of the solution q̇ = d

dt
q. This is physically only allowed if we can assume that

the physical velocity of the ball remains small.
Let us now consider the fourth picture and assume that the mass of the ball is 1, then

its potential energy is described by E = h with h being the height of the position of the ball.
The height h depends on the prescribed angle l(t) and the excursion q of the ball as follows

h = 1 − (1 − h) = 1 − cos(ϕ) = 1 − cos(l(t) − q).
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To keep the model simple we assume l(t) − q to be small and use cos(ϕ) ≈ 1 − ϕ2

2
and we

deduce h ≈ (l(t)−q)2

2
. This motivates the definition

E(t, q) :=
1

2
q2 − l(t)q.

Note, that we let drop the term 1
2
l2(t). We will motivate later on why this does not have

any impact on our solution q. The negative energy restoring force (the force, that is needed
to keep the particle in its position) is

σ(t, q) = DqE(t, q) = q − l(t).

During its sliding friction occurs and we denote by κ > 0 the coefficient of friction which
models the roughness of the stick. For simplicity we assume that the ball is pressed with
a constant force to the stick. Then the following implications are the Coulomb friction law
and describe the behavior of the system.







|σ| < κ ⇒ q̇ = 0
σ = κ ⇒ q̇ ≥ 0
σ = −κ ⇒ q̇ ≤ 0
|σ| > κ forbidden

(1)

Hence, if the energy restoring force is less than the maximal frictional force (described by
κ·”normal force” = κ · 1) then the particle does not move.

This case study can be expressed in a more convenient form using the multivalued function

Sign(v) =







[−1, 1] if v = 0,
{+1} if v > 0,
{−1} if v < 0.

See also figure 2.
It is now easy to see that (1) is equivalent to the differential inclusion

0 ∈ κ Sign(q̇)
︸ ︷︷ ︸

frictional forces

+ q − l
︸︷︷︸

energy restoring force

. (DI)

This is a typical force balance law.

Problem 1.2 (Sliding ball) For given q0 ∈ (−π,+π) find a solution q ∈ W1,1([0, T ],R)
such that for almost all t ∈ [0, T ] we have

0 ∈ κ Sign (q̇(t)) + q(t) − l(t).

We check that the model (DI) is rate-independent. Assume that q ∈ W1,1([0, T ],R)
is a solution for the above problem. We now replace the input l(t) by l(α(t)) with α ∈
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Figure 2: multivalued sign function

C1([0, T ],R), α(0) = 0 and α̇ > 0. We claim that q(α(t)) is the new solution. Inserting it
into the differential inclusion leads us to

0 ∈ κ Sign (α̇(t)q̇(α(t))) + q(α(t)) − l(α(t)).

The model is now rate-independent due to the fact that the multivalued Sign is homogenous
of degree 0, i.e.

Sign(γq̇) = Sign(q̇) for γ > 0. (2)

We next present a solution curve for a periodic loading l(t) = sin(t) in figure 3. Note that
we have l ∈ C∞([0, T ],R) for the input while the output satisfies q ∈ Clip([0, T ],R). Such a
behavior is typical for non-smooth dynamics.

1.3 General remarks on our rate-independent modeling

The above model already contains some important features which will be present during the
whole lecture. First we will mainly follow an energetic approach and formulate our problems
using an energy storage functional E that only depends on time t and the state q. This is
a first and severe limitation since any dependence on the velocity q̇ is neglected. E is only
the potential energy. Physically such models are only meaningful if the time scale of the
external loading is quite small compared with the intrinsic time scale of the problem, e.g. if
the stick in the above example is inclined slowly within hours or days.

Apart of the energy we will have dissipation in all models. In the sliding ball example
dissipation was due to friction. In general the dissipation describes the loss of energy of the
system, due to changes in the system

∫ t1

t0
R(q̇)dt with R(v) = κ|v|. Hence, the dissipation

always depends on the velocity of the solution. As for the modeling of the energy functional
we also have to restrict ourself for the modeling of the dissipation to special cases. Namely,
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Figure 3: Sliding ball with periodic forcing

the dissipation potential R has to be homogenous of degree 1 with respect to the velocity
or respectively the dissipational force R′(v) has to be homogenous of degree 0 with respect
to the velocity v, see (2). This 1-homogeneity gives the rate independence. Classical viscous
dissipation is 2-homogenous, i.e. R(v) = a

2
v2.

As a last remark we want to mention that in all problem formulations we are going to
consider the solution will never depend on a purely time dependent term of the energy, i.e.
we get the same solutions for the energies E(t, q) and E(t, q) + e(t) for all smooth functions
e, since energies are usually only defined up to a constant.

1.4 Second example of a rate-independent problem: folding ruler

x1

x2

x3

x4

φ1

φ2
φ3

Figure 4: folding ruler

The folding ruler (see figure (4)) is a typical example for a rate-independent model as
a geometric evolutionary system. The problem consists in determining the positions of the
four joints (x1, . . . , x4) ∈ R8. In fact, x1 and x4 are the both ends while x2 and x3 are the
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positions of the joints in which dry friction occurs when the angle between the two legs of
the joint changes. Since the distance of the joints is pair-wise fixed we have to consider
the manifold M := { (x1, . . . , x4) ∈ R8 | ‖xj − xj+1‖ = dj, j = 1, 2, 3 } which has dimension
five. Equivalently we can follow the approach of modeling the ruler by x1, φ1, φ2, φ3 and put
M = { (x1, φ1, φ2, φ3) ∈ R5 | φj ∈ S1, j = 1, 2, 3 }. Here x1 denotes the position of the
first joint while φj denote the angle at the corresponding joint. In both cases the manifold
M has no linear structure since we cannot add to elements q1, q2 ∈ M and assure that
q = q1 + q2 ∈ M holds.

Using coordinates (x1, φ1, φ2, φ3) on M and assuming gravity acting in the direction
(0,−1)T we have the energy functional E(t, x1, φ1, φ2, φ3) = (m1 + m2 + m3)[x1 · (0, 1)T +
d1 cosφ1] + (m1 + m3)d2 cos φ2 + m3d3 cos φ3 and the dissipational functional R(φ̇1, φ̇2) =
κ(|φ̇1| + |φ̇2|).

1.5 Generalized formulation

Let be given an energy potential

E : [0, T ] ×M → R∞ := R ∪ {+∞}

and a dissipation metric

R : TM = ∪q∈M(q, TqM) → [0,∞]

Here TM denotes the tangent bundle of the manifold M. From a physical point of view
the dissipation metric R is a power and its derivative with respect to its second variable
(i.e. DvR(q, q̇)) corresponds to the dissipational forces. As in the sliding ball example we
formulate the problem to solve as a

Force balance
0 = DvR(q, q̇) + DqE(t, q) ∈ T ∗

q M. (3)

This problem turns out to be a gradient flow if the dissipative metric R is 2-homogeneous,
e.g. R(q, v) = 1

2
〈G(q)v, v〉. Then (3) reads G(q)q̇ = −DqE(t, q) or using the gradient (with

respect to the metric G) we have q̇ = −∇qE(t, q).
The problem is rate-independent if the dissipative metric R is 1-homogeneous with respect
to its second variable, i.e. R(q, γv) = γR(q, v) for all γ ≥ 0. Note that in such a situation
a nontrivial metric R is not differentiable in v = 0. This leads us to the definition of
subdifferentials.

Definition 1.3 (Subdifferential) Let X be a Banach space. The subdifferential ∂ϕ(v) of
a functional ϕ : X → (−∞,∞] in a point v ∈ X is defined by

∂ϕ(v) = { σ ∈ X∗ | ϕ(w) − ϕ(v) ≥ 〈σ, w − v〉 for every w ∈ X }.

We rewrite the force balance law (3) in the rate-independent situation of R(q, ·) being 1-
homogeneous as a
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Subdifferential formulation:

0 ∈ ∂vR(q, q̇) + DqE(t, q). (SDF)

Note that
R(q, ·) 1-homogeneous ⇔ ∂vR(q, ·) 0-homogeneous.

2 Evolutionary variational inequality - the quadratic

case

2.1 Equivalent problem formulations

The classical theory was developed by Moreau in 1974 (see [Mor74]) for models in elasto-
plasticity.
After having seen how to formulate rate-independent problems as subdifferential formulations
(see (SDF)) we now introduce the formulation as an evolutionary variational inequality.

In the following Q denotes a Hilbert space and Q∗ its dual. The dual pairing is denoted
by 〈·, ·〉. We assume that the potential energy functional has the form

E(t, q) =
1

2
〈Aq, q〉 − 〈l(t), q〉

with A ∈ Lin
(
Q,Q∗

)
, A = A∗ ≥ α > 0. This assumption is classical to model elastic

material properties. As usual we denote by l ∈ C1
(
[0, T ],Q∗

)
the external loading. For the

dissipative metric we assume R(q, v) = R(v) and

R : Q → [0,∞] convex, lower semi-continuous and 1-homogeneous. (4)

From this assumption we deduce the triangle inequality R(v1 + v2) ≤ R(v1) + R(v2).
We want to emphasize that we do not need assumptions of the following type R(−v) =
R(v) i.e., symmetry R(v) ≥ c‖v‖ i.e., coercivity or R(v) ≤ C‖v‖ i.e., boundedness. The
subdifferential formulation now reads

0 ∈ ∂R(q̇) + Aq − l(t)
︸ ︷︷ ︸

=DqE(t,q)

. (SDF)

By the definition of subdifferentials, (SDF) is equivalent to the
evolutionary variational inequality:

∀v ∈ Q 〈Aq − l(t), v − q̇〉 + R(v) −R(q̇) ≥ 0. (EVI)

Definition 2.1 We call a function q a solution of (SDF), if q ∈ W1,1
(
(0, T ),Q

)
and (SDF)

holds a.e. in [0, T ].

We next introduce a third equivalent formulation which will be used most in this lecture.
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Definition 2.2 (Energetic solution, quadratic case) We call a function q an energetic
solution if q ∈W 1,1((0, T ),Q) and (S) and (E) are valid for every t ∈ [0, T ],:
Stability:

∀q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + R(q̃ − q), (S)

Energy balance:

E(t, q(t)) +

∫ t

0

R(q̇(s)) ds = E(0, q(0)) +

∫ t

0

∂tE(s, q(s)) ds. (E)

Proposition 2.3
(SDF) ⇔ (EVI) ⇔ (S)&(E)

Proof. By convexity of E(t, ·) the stability condition (S) is equivalent to

∀v ∈ Q : 〈DE(t, q), v〉+ R(v) ≥ 0. (Sloc)

Applying d
dt

to (E) and using q ∈ W1,1 we conclude that d
dt
E(t, q(t))+R(q̇(t)) = 0+∂tE(t, q(t))

holds for almost all t ∈ [0, T ]. Using the chain rule this is in turn equivalent to

〈DE(t, q(t)), q̇(t)〉 + R(q̇(t)) = 0. (Eloc)

Subtracting (Eloc) from (Sloc) leads us to (EVI). Hence we have prove up to now (E)&(S) ⇒
(EVI).

We next show the opposite direction, i.e. (EVI) ⇒ (S)&(E). We multiply (EVI) with ε

and replace v by 1
ε
v. From ε → 0 we derive then (Sloc). Plugging v = 0 in (EVI) and v = q̇

in (Sloc) we conclude (Eloc). Hence, for all t where (EVI) holds we have (Sloc)&(Eloc).
Integrating

∫ t

0
(Eloc) ds gives (E) for all t ∈ [0, T ] whereas (Sloc) gives (S) only for almost all

t. To resolve this we show the closedness of the set of stable states, i.e.

if







q(tj) satisfies (S)
tj → t

q(tj) → q(t)






then q(t) satisfies (S), too.

We have to show
∀q̃ : E(t, q(t)) ≤ E(t, q̃) + R(q̃ − q(t)).

We know ∀j ∈ N∀q̃ :

E(tj, q(tj)) ≤ E(tj , q̃) + R(q̃ − q(tj))
↓ ↓ ↓

E(t, q(t)) E(t, q̃) ??
.

Hence, our task is to find a sequence q̃j → q̃ with E(tj, q̃j) → E(t, q̃) and R(q̃j − q(tj)) →
R(q̃ − q(t)). A good choice is q̃j(t) := q(tj) + q̃ − q(t) since q̃j(t) → q̃. It follows E(tj, q̃j) →
E(t, q̃) and R is constant along the sequence. Consequently, we derive that (S) holds for all
t ∈ [0, T ] which is our desired result.

Note that the validity of (S) for all t ∈ [0, T ] implies that any solution to (SDF), (EVI)
or (S)&(E) must have an initial value q0 = q(0) that is stable. The evolutionary problem is
not solvable for all initial data! �
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2.2 Classical theory for (EVI)

1. Existence for the initial value problem holds under the assumption q(0) = q0 ∈ S(0).
The set of stable states at time t is defined by

S(t) := { q ∈ Q | ∀q̃ ∈ Q : E(t, q) ≤ E(t, q̃) + R(q̃ − q) }.

The existence proof is a corollary of the general existence result which we formulate in
section 3.2.

2. Uniqueness. The uniqueness is proven using the idea of contractive semigroups. As-
sume that q1 and q2 are solutions, i.e.

∀v ∈ Q : 〈Aq1 − l, v − q̇1〉 + R(v) −R(q̇1) ≥ 0,

∀ṽ ∈ Q : 〈Aq2 − l, ṽ − q̇2〉 + R(ṽ) −R(q̇2) ≥ 0.

Choosing v = q̇2 and ṽ = q̇1 and adding makes all R disappear and we end with

〈A(q1 − q2), q̇2 − q̇1〉 ≥ 0.

Due to A = A∗ it follows that

d

dt

1

2
〈A(q1 − q2), q1 − q2〉 ≤ 0.

Because of A ≥ α > 0, i.e. 〈Av, v〉 ≥ α‖v‖2 for all v ∈ Q, this implies q1 ≡ q2 provided
that q1(0) = q2(0).

2.3 Linearized elastoplasticity

As example we study a model of linearized elastoplasticity. Let Ω ⊂ R
d be a bounded

Lipschitz domain describing the body under consideration. The state space Q = F × Z is
partitioned into the set of admissible deformations

F =
(
H1

ΓDir
(Ω)

)d
= { u : Ω → R

d | u ∈ (H1(Ω))d, u|ΓDir
= 0 }

and the set of plastic tensors epl ∈ Z = L2(Ω,Rd×d
sym,0). Thereby R

d×d
sym,0 = {A ∈ Rd×d | A =

A⊤, trA = 0 }. The linearized strain tensor e(u) = 1
2
(∇u + ∇u⊤) ∈ Rd×d

sym satisfies Korn’s
inequality on F , i.e. there exists a constant cKorn > 0, such that

∫

Ω

|e(u)|2dx ≥ cKorn‖u‖2
H1(Ω) .

The energy is given as the sum of the elastic energy, the hardening energy and the potential
energy:

E(t, u, epl) =

∫

Ω

1

2
(e(u) − epl) : C : (e(u) − epl) +

1

2
epl : A : epldx− 〈l(t), u〉
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with symmetric and positive definite fourth order tensors C and A. The following estimate
holds:

1

2

〈

A
(
u

epl

)

,

(
u

epl

)〉

=

∫

Ω

1

2
(e(u) − epl) : C : (e(u) − epl) +

1

2
epl : A : epldx

≥ cC‖e(u) − epl‖2
L2(Ω,Rd×d

sym)
+ cA‖epl‖2

L2(Ω,Rd×d
sym)

≥ c0

(

‖e(u)‖2
L2(Ω,Rd×d

sym)
+ ‖epl‖2

L2(Ω,Rd×d
sym)

)

≥ c0cKorn‖u‖2
H1(Ω) + c0‖epl‖2

L2 .

The dissipation function is defined independently of u̇:

R(u̇, ėpl) = R̃(ėpl) =

∫

Ω

R̃(ėpl(x))dx . (5)

As a first case, we put

R̃ :

{
R

d×d
sym,0 → [0,∞)
ėpl 7→ ρ|ėpl|

, (6)

where | · | denotes a matrix norm that depends on the applied engineering model, i.e.

|A| = max{ |λ(A)| | λ(A) eigenvalue of A } for Tresca plasticity,

|A| = (A : A)
1

2 for von Mises plasticity .

Under consideration of definition equation (6) the dissipation function in equation (5) reads
as follows: R̃(ėpl) = ρ‖ėpl‖L1(Ω).

As a second model we consider

R̃ :







R
d×d
sym,0 → [0,∞]

A 7→
{

ρ(A : A)
1

2 if A is positive semi-definite
∞ else.

Here R̃ is neither continuous in the L2- topology nor in the L1-topology, however it satisfies
all assumptions of the abstract theory, cf, (4).

Since R is independent of u̇, the subdifferential of R with respect to q̇ = (u̇, ėpl)
⊤ can be

expressed as follows:
∂R(u̇, ėpl) = {0} × ∂R̃(ėpl) .

Thereby ∂R(u̇, ėpl) ⊂ F⋆×Z⋆ with {0} ⊂ F⋆ and ∂R̃(ėpl) ⊂ Z⋆. Thus, the subdifferential
formulation for linearized elastoplasticity is given by:

(
0
0

)

∈ ∂R(u̇, ėpl) +

(
A11 A12

A⋆
12 A22

) (
u

epl

)

−
(
l

0

)

⊂
(
F∗

Z∗

)

, (SDF)

which can be split up in the elastic equilibrium equation

0 = A11u+ A12epl − l(t) = DuE(t, u, epl) ∈ F∗

11



−1 1

U(q)

Figure 5: Example for non-uniqueness. The potential U not being strictly convex.

and the plastic flow rule

0 ∈ ∂R̃(ėpl) + A⋆
12u+ A22epl = ∂R̃(ėpl) + Depl

E(t, u, epl) ⊂ Z∗ .

The above problem (SDF) has a unique solution q for stable initial conditions. Existence
follows from the main theorem 3.4, see Section 3.2. Uniqueness was established above in
Section 2.2.

2.4 Remarks regarding uniqueness

Let us consider the general case:

0 ∈ ∂R(q, q̇) + DqE(t, q) , (SDF)

where
E(t, q) = U(q) − q

with the potential U as in figure 5. The dissipation metric R is assumed to be defined by

R(q̇) = |q̇| .

In this case q(t) solves (SDF) if

q̇ ≥ 0 and − 1 ≤ q(t) ≤ 1 . (7)

Remark 2.4 Uniqueness can not be expected without strict convexity.

We want to call attention to the literature given below, where some modified energy func-
tionals have been analyzed and uniqueness could be achieved:

• [MT04]: Here, no state dependence is assumed:

R(q, q̇) = R(q̇) .

For E ∈ C2,Lip([0, T ]×Q) with D2E ≥ α > 0 on the whole space, uniqueness is achieved.
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• [BKS04]: In this case the energy is given by

E(t, q) =
1

2
|q|2 − 〈l(t), q〉 .

On the dissipation metric R the following assumptions are made:

DqR(q, q̇)2 small ,
1

c
‖q̇‖ ≤ R(q, q̇) ≤ C‖q̇‖ ,

R2 ∈ C2(Q×Q) , D2
q̇R(q, ·) ≥ α > 0 .

• [MR07] combines the results of the two papers above and slightly generalizes their
union.

We finally mention a seemingly simple example where uniqueness is still an open problem.
Let Q = R2, |q| =

√

q2
1 + q2

2, and

E(t, q) =
1

2
|q|2 − l(t) · q + χB1(0)(q) ,

where χB1(0)(q) =

{
0 for |q| ≤ 1
∞ for |q| ≥ 1

and R(q̇) = |q̇|. We point out that the existence of a

solution q ∈ Clip([0, T ],Q) follows easily by the theory, but its uniqueness is still an open
problem.

3 General existence theory

3.1 Energetic formulation in the general case

Up to now, the state space Q was assumed to be a Banach space. In this section the existence
theory is generalized on Q being the product of arbitrary Hausdorff topological spaces F
and Z. Thereby F is the space of the “elastic”, dissipation-free variables and Z denotes the
space of the internal, dissipational variables.
In order to motivate a generalized definition of the dissipation distance, we firstly consider,
as in the sections before, the subdifferential formulation referring to Q being a Banach space:

0 ∈ ∂R(q, q̇) + DqE(t, q) , (SDF1)

where the dissipation metric R has to be understood as an infinitesimal metric in the sense of
differential geometry, mapping from the tangential bundle TQ into [0,∞]. Via the dissipation
metric we introduce the (global) dissipation distance

D : Q×Q → [0,∞],

D(q0, q1) = inf{
∫ 1

0

R(q(s), q̇(s))ds | q ∈W 1,1([0, 1],Q), q(0) = q0, q(1) = q1 } .

13



sj−1
sj

sj+1

Figure 6: Approximation of the dissipation along a path q using partitions, see DissD(q, [r, t]).

Since R is a metric, D satisfies the triangle inequality by definition

D(q0, q2) ≤ D(q0, q1) + D(q1, q2) and D(q, q) = 0.

As we didn’t assume R(q,−q̇) = R(q, q̇) the dissipation distance may allow for D(q0, q1) 6=
D(q1, q0) is allowed.

In the general case of a Hausdorff topological space Q, we consider an energy functional
E : [0, T ]×Q → R∞ and an even more general dissipation distance D : Q×Q → [0,∞], for
which the properties will be given below. For this general setting we now state the definition
of an energetic solution:

Definition 3.1 (Energetic solution for Hausdorff topological spaces) A function q :
[0, T ] → Q is called an energetic solution associated with E and D if

t 7→ ∂tE(t, q(t)) ∈ L1((0, T ))
if for every t ∈ [0, T ] we have

E(t, q(t)) <∞,
and if for every t stability (S) and energy balance (E) hold:

∀q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃) , (S)

E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0

∂tE(s, q(s))ds , (E)

where

DissD(q, [r, t]) = sup
all partitions of [r,t]

N∑

j=1

D(q(sj−1), q(sj)) .

Remark 3.2 The energetic formulation is totally independent of a differentiable structure
for Q. We do not need DE = ∂zE . Even if Q is a convex subset of a Banach space, we
may consider D and E(t, ·) that are not even continuous or convex (on suitably defined dense
subspaces). Moreover, q̇ is not needed.
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3.2 The existence theorem

Here we follow the general theory developed in [MM05, FM06] and surveyed in [Mie05].
The essential advance between [MM05] and [FM06] is due to abstract versions of the ideas
in [DFT05]. However, the theory presented here is slightly generalized due to the further
development in [MRS06].

The following assumptions are made on the energy potential and on the dissipation
distance:

General assumptions on the energy potential E : [0, T ] ×Q → R∞ := R ∪ {∞}:

Compactness of energy sublevels:
∀ t ∈ [0, T ] ∀E ∈ R : Lt,E := { q ∈ Q | E(t, q) ≤ E } is s-compact.

(E1)

Uniform control of the power ∂tE :
∃ cE0 ∈ R ∃ cE1 > 0 ∀ q ∈ Q with E(0, q) <∞ :
E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ cE1 (cE0 +E(t, q)) for all t ∈ [0, T ].

(E2)

Uniform time-continuity of the power ∂tE :
∀ ε > 0 ∀E ∈ R ∃ δ > 0 :
E(0, q) ≤ E and |t1−t2| < δ =⇒ |∂tE(t1, q)−∂tE(t2, q)| < ε.

(E3)

Conditions of the dissipation distance D : Z ×Z → [0,∞]

Pseudo distance:
∀ z1, z2, z3 ∈ Z : D(z1, z1) = 0 and D(z1, z3) ≤ D(z1, z2) + D(z2, z3).

(D1)

Lower semi-continuity: D : Z ×Z → [0,∞] is s-lower semi-continuous. (D2)

Positivity of D: For all s-compact sets K ⊂ Z :

If zk ∈ K and min {D(zk, z),D(z, zk)} → 0, then zk
Z→ z.

(D3)

By s-compact and s-continuous we mean sequentially compact and sequentially continuous.
Furthermore we introduce the set of stable states associated with the time t:

S(t) = { q ∈ Q | E(t, q) <∞, ∀q̃ ∈ Q : E(t, q) ≤ E(t, q̃) + D(q, q̃) } .

This leads to the definition of stable sequences:

Definition 3.3 A sequence (tj , qj)j∈N ⊂ [0, T ] ×Q is called a stable sequence, if

(i) sup{ E(tj, qj) | j ∈ N } <∞ ,

(ii) qj ∈ S(tj) .

We are now ready to state the main theorem on the existence of energetic solutions for the
energetic formulation (S) and (E).
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Theorem 3.4 (Main Existence Theorem) Let E and D satisfy conditions (E1)–(E3)
and (D1)–(D3). Moreover, let the following compatibility condition (CC) hold:

For every stable sequence (tk, qk)k∈N with (tk, qk)
[0,T ]×Q→ (t∗, q∗) we have

∂tE(tk, qk) → ∂tE(t∗, q∗), (CCa)

q∗ ∈ S(t∗). (CCb)

Then, for each q0 ∈ S(0) there exists an energetic solution q : [0, T ] → Q associated with E
and D with initial datum q(0) = q0.

A useful sufficient criterion for the compatibility condition (CC) is the following, see
[MM05].

Proposition 3.5 If (E1)-(D3) hold and D : Z × Z → [0,∞] is s-continuous, then (CCa)
and (CCb) hold.

This proposition will be reformulated and proved on page 21.

3.3 Example: Linearized elastoplasticity

We check now the validity of conditions (E1)-(D3), (CCa) and (CCb) for the model of
linearized elastoplasticity introduced in section 2.3. Let u and z be respectively the elastic
displacements and the plastic variables. We assume that u and z belong respectively to
F = H1

ΓD
(Ω,Rd) and Z = L2(Ω; Rm). We introduce also the following notations: q = (u, z)⊤,

f(t) = (l(t), 0)⊤ and Q = H1
ΓD

(Ω,Rd) × L2(Ω; Rm). The Hilbert space Q is equipped with
the weak topology. The potential energy at time t is defined as

E(t, q) := 1
2
〈Aq, q〉 − 〈f(t), q〉,

where A : Q → Q∗ is linear and bounded and satisfies A = A∗ ≥ α > 0. Furthermore,
f ∈ C1([0, T ];Q∗). The dissipation distance is given as

D(z0, z1) :=

∫

Ω

R̃(z1(x) − z0(x)) dx with R̃ as in Subsection 2.3.

(E1) Sublevels of E . Since E is strongly continuous, coercive and convex, the sets Lt,E are
convex, bounded and strongly closed and thus weakly compact.

(E2) Observe that ∂tE(t, q) = limh→0(E(t+h, q)−E(t, q)) and therefore ∂tE(t, q) = −〈l̇(t), u〉.
We deduce that

|∂tE(t, q)| ≤ ‖l̇(t)‖Q∗

︸ ︷︷ ︸

≤c0

‖q‖Q ≤ 1

2
c20 +

1

2
‖q‖2

Q ≤ 1

2
c20 + c1(c2 + E(t, q)).

(E3) Observe that ḟ(t) = (l̇(t), 0)⊤ ∈ C0([0, T ];Q∗) is uniformly continuous.
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(D1) The triangle inequality follows immediately from the definition of D.

(D2) holds since D : Z ×Z → [0,∞] is convex and strongly lower semi continuous and thus
weakly lower semi-continuous.

(D3) Sequential compactness of {zk, k ∈ N} implies boundedness in L2(Ω; Rm). Moreover
min {D(z, zk),D(zk, z)} → 0 shows that ‖zk − z‖L1(Ω) tends to zero. Hence, we have zk ⇀ z

weakly in L2(Ω) as desired.

(CCa) Let (tk, qk) → (t∗, q∗). Then l̇(tk) → l̇(t∗) strongly in Q∗ and qk ⇀ q∗ weakly in Q
and we deduce that ∂E(tk, qk) = −〈l̇(tk), qk〉 → ∂E(t∗, q∗) = −〈l̇(t∗), q∗〉.
(CCb) Already proved at the end of the proof of Proposition 2.3. Note that each S(t) is
strongly closed and convex.

3.4 Proof of the main theorem 3.4

The existence proof relies on the following incremental minimization problem. We denote by
Argminq̃∈Q{ϕ(q̃)} the set of all minimizers of a function ϕ : Q → R∞. For a given partition
0 = t0 < t1 < . . . < tN−1 < tn = T . We define the following incremental problem:

For k = 1, . . . , N, find qk ∈ Argmin
q̃∈Q

{E(tk, q̃) + D(qk−1, q̃)}. (9)

Note that q0 is the given initial condition.

Example 3.6 Incremental minimization problems occur in many contexts of time discretiza-
tions for PDEs. Rate independent systems are special since the incremental problem does
not depend on the length of the time step.

Consider the heat equation:
∂θ

∂t
= ∆θ in Ω, (10)

with Dirichlet boundary conditions θ|∂Ω = 0 and initial conditions θ(0, · ) = θ0. Observe that
(10) can be discretized in time, via the backward Euler scheme:

1

h
(θk − θk−1) = ∆θk.

Hence in each time step we have to solve an elliptic PDE for θk, namely −∆θk+ 1
h
θk = 1

h
θk−1.

This PDE is easily identified as the Euler-Lagrange equations of the incremental problem

θk ∈ Argmin
θ̃∈H1

0
(Ω)

{1

2
‖∇θ̃‖2

L2(Ω) +
1

2h
‖θ̃ − θk−1‖2

L2(Ω)

}

.

Remark 3.7 Rate independence makes the incremental problem independent of time step.

The proof of existence theorem 3.4 consists of five steps.
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Let Jk : Q → R∞ be defined by Jk(q̃) = E(tk, q̃) +D(qk−1, q̃). We deduce from (E1) and
(D2) that Jk is s-lower semi-continuous and has s-compact sublevels. Then minimizers Jk

exist for all k ∈ {1, . . . , N}. More precisely, for q0 given, there exist q1, . . . , qN .

Step 1: A priori estimates. Since (qk) are minimizers, we may deduce the following result
which shows that the fully implicit incremental problem is a very convenient discretization
from the analytical standpoint.

Theorem 3.8 Assume that q0 ∈ S(0), then every solution (qk)k=0,1,...N of the incremental
problem (9) satisfies the discrete version of stability (S) and energy equality (E), namely for
all k ∈ {1, . . . , N} we have

qk ∈ S(tk), (11a)
∫ tk

tk−1

∂sE(s, qk) ds ≤ ek + δk − ek−1 ≤
∫ tk

tk−1

∂sE(s, qk−1) ds, (11b)

where ek := E(tk, qk) and δk := D(qk−1, qk). Moreover, we have the following inequalities:

E(tk, qk) ≤ (e0 + cE0 ) exp(cE1 tk) − cE0 , (12a)
N∑

j=1

D(zj−1, zj) ≤ (e0 + cE0 ) exp(cE1 T ). (12b)

Proof. Since qk is a minimizer, we have ek + δk ≤ E(tk, q̃) + D(qk−1, q̃) for all q̃ belonging to
Q. We prove (11a) using the triangle estimate D(qk−1, q̃) ≤ δk + D(qk, q̃).

The lower estimate in (11b) comes from qk−1 ∈ S(tk−1). We test by q̃ = qk and obtain:

ek−1 ≤ E(tk−1, qk) + δk = ek + δk −
∫ tk

tk−1

∂tE(s, qk) ds.

The upper estimate in (11b) follows from the minimality of qk, i.e. we may deduce from
(9) that

ek + δk ≤ E(tk, qk−1) + D(qk−1, qk−1) = ek−1 +

∫ tk

tk−1

∂sE(s, qk−1) ds.

Observe that the upper estimate in (11b) gives

ek + δk ≤ ek−1 +

∫ tk

tk−1

∂sE(s, qk−1) ds. (13)

On the other hand, we estimate E(s, qk−1) = E(tk−1, qk−1) +
∫ s

tk−1

∂sE(r, qk−1) dr making use

of |∂tE(s, qk−1)| ≤ cE1 (E(s, qk−1) + cE0 ), i.e. (E2). By the classical Gronwall lemma we infer
that

E(s, qk−1) ≤ (E(tk−1, qk−1) + cE0 ) exp(cE1 |s− tk−1|) − cE0 . (14)
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Introducing (14) in (13), we arrive at

ek + δk ≤ ek−1 + (ek−1 + cE0 )(exp(cE1 (tk − tk−1)) − 1)

= (ek−1 + cE0 ) exp(cE1 (tk − tk−1)) − cE0 .
(15)

Since δk ≥ 0 we may drop it and induction over j = 1, . . . , k gives (11a), namely

ek + cE0 ≤ (e0 + cE0 )
k∏

j=1

exp(cE1 (tj − tj−1)) ≤ (e0 + cE0 ) exp(cE1 T ).

Observe that ek + cE0 is positive and we may deduce that

k∑

j=1

δj ≤ e0 − ek +

k∑

j=1

(ej−1 + cE0 )(exp(cE1 (tj − tj−1)) − 1). (16)

Carrying (15) into (16), we obtain

k∑

j=1

δj ≤ (e0 + cE0 ) − (ek + cE0 ) + (e0 + cE0 )

K∑

j=1

(exp(cE1 tj) − exp(cE1 tj−1))

≤ (e0 + cE0 ) exp(cE1 tk),

from which the desired result (11a) follows. �

Step 2: Selection of subsequences. We choose a sequence of partitions 0 = tN0 < tN1 <

. . . < tNN = T whose fineness maxk=1,...,N(tNk , t
N
k−1) tends to zero when N tends to ∞. Let

q̄N : [0, T ] → Q, q̄N(t) = (ϕ̄N(t), z̄N (t)) ∈ F × Z = Q, be a piecewise constant interpolant
with q̄(t) = qN

k−1 for t belonging to [tNk−1, t
N
k ). We have

E(t, q̄N(t)) ≤ (E(0, q0) + cE0 ) exp(cE1 t− cE0 ) for all t ∈ [0, T ], (17a)

(E(0, q0) + cE0 ) exp(cE1 T ) ≥
N∑

j=1

D(z̄N(tNj−1), z̄
N (tNj )) = DissD(z̄N ; [0, T ]). (17b)

Recall that the classical Helly’s theorem states that a bounded sequence of monotone func-
tions on the real line always has a subsequence that converges pointwise everywhere. Then
using a suitable version of Helly’s selection principle (see e.g., [Mon93, MT04, MM05]), it is
possible to find a sequence (z̄Nk)k∈N and a limit function z : [0, T ] → Z and δ : [0, T ] → [0,∞)
monotone such that

∀t ∈ [0, T ] : z̄Nk(t) → z(t), (18a)

∀t ∈ [0, T ] : DissD(z̄Nk ; [0, t]) → δ(t), (18b)

∀0 ≤ r ≤ t ≤ T : DissD(z; [r, t]) ≤ δ(t) − δ(r). (18c)
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Here we use (D1)-(D3) essentially.
Note that the function pk(t) = ∂tE(t, q̄Nk(t)) form a bounded sequence in L∞([0, T ]).

This follows from the estimate (E2), i.e.,|∂tE(s, q)| ≤ cE1 (E(s, q) + cE0 ) together with (17a).
We conclude that

pk ⇀ p∗ weakly ∗ in L∞([0, T ]), (19)

at least for a subsequence. Moreover, we define psup : [0, T ] → R through

psup(t) = lim supk→∞pk(t).

Observe that by application of Fatou’s Lemma, we obtain p∗(t) ≤ psup(t) a.e. t ∈ [0, T ].
On the other hand, for fixed t ∈ [0, T ] we choose a t-dependent subsequence (N t

kj
)j∈N

such that
pkt

j (t) → psup(t) for j → ∞,

ϕ̄kt
j
(t) → ϕ(t) for j → ∞ in F .

It remains to prove that q(t) = (ϕ(t), z(t)) : [0, T ] → F ×Z is a solution.

Step 3: Stability of the limit process. For all t ∈ [0, T ] we have q̄
Nt

kl (t) = q̄
Nt

kl (tj)

tj = t
Nt

kl
j ≤ t < t

Nt
kl

j+1. By Theorem 3.8, cf (11a) we find q̄
Nt

kl (tj) ∈ S(tj). We deduce from

(CCb) that ϕ(t) ∈ S(t) since tj → t and q̄
Nt

kl (t) → q(t).

Step 4: Upper energy estimate. Let us define the functions ēk(t) = E(t, q̄
Nt

kl (t)) and

δ̄(t) = DissD(q̄
Nt

kl (t); [0, t]). We have the following inequality

ēk(t) + δ̄k(t) ≤ ē(0) +

∫ t

0

pk(s) ds+ cΨ(ξ, t), (20)

where Ψ(ξ, tN) is the fineness of partition and c bounds ∂tE on the considered solutions.
When k tends to zero, we observe that ēk(t) tends to the limit that is larger than E(t, q(t)),
by Helly’s Theorem, δ̄(t) tends to δ(t) ≥ DissD(q; [0, T ]), and thanks to (19), we may pass
to the limit in (20) and since p∗(t) ≤ psup(t) a.e., we finally obtain

E(t, q(t)) + DissD(q; [0, T ]) ≤ E(0, q(0)) +

∫ t

0

p∗(s) ds

≤ E(0, q(0)) +

∫ t

0

psup(s) ds.

Since psup(t) = ∂tE(t, q(t)), we infer from (21) that

E(t, q(t)) + DissD(q; [0, T ]) ≤ E(0, q(0)) +

∫ t

0

∂sE(s, q(s)) ds.

Step 5: Lower energy estimate. The lower estimate for the energy balance is a direct
consequence of stability (S) and (E3). This finishes the proof of theorem 3.4.
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3.5 A sufficient condition for (CCa) and (CCb)

The following proposition describes a sufficient condition such that the compatibility condi-
tions (CCa) and (CCb) hold.

Proposition 3.9 Assume (E1)–(D3). If D : Z × Z → [0,∞] is sequentially continuous,
then the compatibility conditions (CCa) and (CCb) are satisfied. Moreover,

E : S[0,T ] = ∪t∈[0,T ]{t} × S(t) → R∞

is sequentially continuous.

Note that the dissipation functional in linear elastoplasticity is not sequentially continuous
on Z = L2(Ω)weak.

Proof. The continuity of E on S[0,T ] can be seen as follows: Condition (E1) implies that E is
lower semi-continuous, i.e. we have

E(t∗, q∗) ≤ lim inf
j→∞

E(tj, qj)

for every sequence (tj, qj)j∈N with (tj, qj) → (t∗, q∗). Let now (tj , qj) ∈ S(tj) with (tj , qj) →
(t∗, q∗) ∈ S(t∗) and assume for simplicity that tj = t∗ for every j (the case with tj 6= t∗
follows easily by employing (E2)). By stability and the continuity of D we obtain

lim sup
j→∞

E(t∗, qj)
(S)

≤ lim sup
j→∞

(
E(t∗, q∗) + D(qj, q∗)

)
= E(t∗, q∗).

This proves the continuity of E on S[0,T ]. Let now (tj, qj)j∈N be a stable sequence with
(tj , qj) → (t∗, q∗). For condition (CCb) we have to show that (t∗, q∗) ∈ S(t∗). For simplicity
we assume that tj = t∗ for every j. The lower semi-continuity of E and the continuity of D
imply that

E(t∗, q∗) ≤ lim inf
j→∞

E(t∗, qj)
(S)

≤ lim inf
j→∞

(
E(t∗, q̃) + D(qj, q̃)

)
= E(t∗, q̃) + D(q∗, q̃)

for every q̃ ∈ Q. This proves (CCb). Condition (CCa) follows from the next lemma. �

Lemma 3.10 Let E : [0, T ] ×Q → R∞ satisfy (E1)– (E3). The following implication holds
true:

qj → q∗,

E(tj, qj) → E(t∗, q∗) <∞

}

=⇒ ∂tE(tj, qj) → ∂tE(t∗, q∗).

This result is a variant of the well-known fact in nonlinear elasticity that stresses converge
if the deformation and the energy converge. More precisely, if I is lower semi-continuous
and Gâteaux-differentiable on a reflexive Banach space X , then

qj
X→ q∗

I(qj) → I(q∗)

}

=⇒ DqI(qj)
X ∗

⇀ DqI(q∗),

see e.g., [BKK00].
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Proof. For simplicity we assume again that tj = t∗ for every j. For the general case allowing
for tj 6= t∗ we refer to [FM06, MRS06].

By assumption (E3) there exists a modulus of continuity ωE (i.e. ωE : [0, T ] → [0,∞)
nondecreasing with ωE(h) → 0 for h→ 0) such that for every j and every h > 0 we have

∣
∣
∣
∣

1

h

(
E(t∗ ± h, qj) − E(t∗, qj)

)
∓ ∂tE(t∗, qj)

∣
∣
∣
∣
≤ ωE(h). (21)

The lower semi-continuity of E and the convergence of E(t∗, qj) lead to

lim inf
j→∞

1
h

(
E(t∗ ± h, qj) − E(t∗, qj)

)
≥ 1

h

(
E(t∗ ± h, q∗) − E(t∗, q∗)

)
(22)

for every h > 0. Thus,

lim sup
j→∞

∂tE(t∗, qj)
(21)

≤ lim sup
j→∞

1
h

(
− E(t∗ − h, qj) + E(t∗, qj)

)
+ ωE(h)

= ωE(h) − lim inf
j→∞

1
h

(
E(t∗ − h, qj) − E(t∗, qj)

)

(22)

≤ ωE(h) − 1
h

(
E(t∗ − h, q∗) − E(t∗, q∗)

)

(21)

≤ 2ωE(h) + ∂tE(t∗, q∗).

Since ωE(h) → 0 for h → 0, we have finally shown that lim supj→∞ ∂tE(t∗, qj) ≤ ∂tE(t∗, q∗).
The “lim inf”–case can be treated in the same way using the “+” version of inequality (21).

�

4 Examples and applications

4.1 An example with discontinuous solutions

We consider a system consisting of a mass and a spring, where the mass is pulled via the
spring over a rough surface (see figure 7). The energy can be stored in the spring and it can
be dissipated due to friction. Let ℓ(t) be the position of the right end of the spring at time
t and let z(t) denote the position of the mass. The energy, which is stored in the spring, is
given by

Ê(t, z) = 1
2

(
ℓ(t) − z

)2
= 1

2
z2 − ℓ(t)z + 1

2
ℓ(t)2,

whereas the dissipation potential is modeled by

R(z, ż) = µ(z) |ż| .
The coefficient µ(z) is the friction coefficient of the surface and depends on z. Since the
term 1

2
ℓ(t)2 in Ê does not depend on z, we can skip it and formulate our problem with E

here below:

E(t, z) = 1
2
z2 − ℓ(t)z.
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µ = 1µ = 3

z(t)

ℓ(t)

snow ice

Figure 7: Mass with spring pulled over a rough surface (above) and real world application
(below).

For our example we choose

µ(z) =

{

3 for z ≤ 0 (rough surface),

1 for z > 0 (slippery surface).

The dissipation distance is given by

D(z0, z1) = inf
{

∫ 1

0

R(z(s), ż(s))ds, z ∈W 1,1(R), z(0) = z0, z(1) = z1
}

= |A(z0) −A(z1)| ,

where A(z) = 2z−|z|. Altogether we are looking for an energetic solution z : [0, T ] → R = Q
with z(0) = z0 which for every t ≥ 0 and v ∈ R satisfies

E(t, z(t)) ≤ E(t, v) + D(z(t), v), (23)

E(t, z(t)) + DissD(z, [0, t]) = E(0, z(0)) −
∫ t

0

ℓ̇z(s)ds. (24)

Since the function v 7→ D(z, v) is convex if and only if z ≥ 0, see fig. 8, the energetic
formulation (23)–(24) is not equivalent to (EVI). But we can show that the force balance is
satisfied on smooth parts of solutions and that a certain jump relation has to be satisfied
otherwise.

Force balance: Let ℓ, z ∈ C1([s0, s1],R) and assume that z satisfies (23) and (24) for
every t ∈ [s0, s1]. For smooth paths, the dissipated energy is given by

DissD(z, [s0, s1]) =

∫ s1

s0

R(z(s), ż(s))ds.
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z1z0 z0

D(z0, ·), z0 < 0

D(z0, ·), z0 > 0

Figure 8: Graph of D(z0, ·) for z0 < 0 and z0 > 0. The slopes are from the set {±1,±3}. If
z0 < 0, then D(z0, ·) is not convex.

Assume first that z(t) ≤ 0 for every t ∈ [s0, s1]. In this case we have R(z(t), v − z(t)) ≥
D(z(t), v) for every v ∈ R and obtain from (23)–(24)

E(t, z(t)) ≤ E(t, v) + R(z(t), v − z(t)), (25)

E(t, z(t)) +

∫ t

s0

R(z(s), ż(s))ds = E(s0, z(s0)) −
∫ t

s0

ℓ̇(s)z(s)ds (26)

for every t ∈ [s0, s1] and every v ∈ R. By similar arguments as in Section 2.1 it follows that
z satisfies the force balance

0 ∈ µ(z(t)) Sign(ż(t)) + z(t) − ℓ(t) (27)

for every t ∈ [s0, s1].
Assume now that z(t) > 0 for every t ∈ [s0, s1] and let Eℓ(z) = 1

2
z2 − ℓz. For every z > 0

and ℓ ∈ R the functions

Fz,ℓ : R → R, v 7→ Eℓ(v) + D(z, v), (28)

Gz,ℓ : R → R, v 7→ Eℓ(v) + R(z, v − z) (29)

are continuous and strictly convex. Moreover, z is the unique minimizer of Fz,ℓ (by assump-
tion (23)). For every z > 0 there exists an open neighborhood Uz of z with Fz,ℓ(v) = Gz,ℓ(v)
for every v ∈ Uz. Thus, z is at least a local minimizer of Gz,ℓ and, due to the strict con-
vexity of Gz,ℓ, it is even a global minimizer of Gz,ℓ. Altogether it follows for smooth paths
z : [s0, s1] → (0,∞) satisfying (23) and (24) that (25)–(26) are fulfilled as well. Like in the
case z ≤ 0 we conclude that z satisfies the force balance (27).
Summarizing the above considerations we have shown that smooth parts of solutions to
(23)–(24) satisfy

0 ∈ ∂vR(z(t), ż(t)) + DvE(s, z(s))

for every t.
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Jumps: From condition (24) we deduce a jump relation for piecewise smooth solutions.
Let again ℓ ∈ C1. Let furthermore z : [s0, s1] → R with z

∣
∣
[s0,sJ ]

∈ C1 and z
∣
∣
[sJ ,s1]

∈ C1 for

some sJ ∈ (s0, s1) and assume that z satisfies the energy balance (24) for every t ∈ [s0, s1].
We define z+ = limtցsJ

z(t) and z− = limtրsJ
z(t). For every s < sJ and t > sJ , the energy

balance (24) implies that

E(t, z(t)) + DissD(z, [s, t]) = E(s, z(s)) −
∫ t

s

ℓ̇(τ)z(τ)dτ.

For sր sJ and tց tJ , this relation converges to the jump relation

E(sJ , z+) + D(z−, z+) = E(sJ , z−). (30)

The previous relation (30) means that the spring energy, which is released due to the jump,
equals to the energy, which is dissipated due to the jump.

Based on the force balance (27) and the jump relation (30) we can now construct piecewise
smooth functions which satisfy the energy balance (24). We then have to find those functions,
which satisfy the stability condition (23) as well.

Let z0 = −2 and ℓ(t) = t. The initial datum and ℓ are chosen in such a way that the
mass is pulled from the region with high friction to the region with low friction. By the force
balance (27) we obtain

zsJ
(t) =

{

−2 if 0 ≤ t ≤ 1,

t− 3 if 1 ≤ t ≤ sJ ,
(31)

as long as z(t) ≤ 0, i.e. for sJ ≤ 3. Furthermore, relation (27) implies for z ≥ 0 that

zsJ
(t) =

{

z+ if sJ < t ≤ z+ + 1,

t− 1 if t > z+ + 1.
(32)

The parameters sJ ≤ 3 and z+ ≥ 0 have to be adjusted in such a way that the jump relation
(30) is satisfied. With z− = sJ − 3 ≤ 0, relation (30) reads as follows :

1
2
z2
+ − sJz+ − 1

2
z2
− + sJz− + (z+ − 3z−) = 0.

Taking into account that z+ ≥ sJ − 1 we obtain

z+(sJ) = sJ − 1 + 2
√
sJ − 2,

which makes sense for sJ ≥ 2, only. Thus we have constructed a family zsJ
of discontinuous

functions which satisfy the balance of forces (27) and the energy balance (24): for sJ ∈ [2, 3]

zsJ
(t) =







−2 if 0 ≤ t ≤ 1,

t− 3 if 1 ≤ t ≤ sJ ,

z+(sJ) if sJ < t ≤ z+(sJ) + 1,

t− 1 if t > z+(sJ) + 1.
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Figure 9: Set S of admissible states, solution z2 and function z3 plotted over ℓ

From this family we select now those functions, which satisfy the stability condition (23),
as well. Let S = { (ℓ, z) ∈ R

2 | z minimizes Fz,ℓ } be the set of admissible states (Fz,ℓ from
(28)). Energetic solutions have to satisfy (ℓ(t), z(t)) ∈ S for every t. It is technical (but
straight forward) to calculate S and to show that that zsJ

satisfies the stability condition
(23) if and only if sJ = 2. Thus z2 is a (discontinuous) energetic solution of (23)–(24). The
set S of admissible states, the solution z2 (red) and the function z3 (green), which is not a
solution but satisfies the force balance and the energy balance, are plotted in figure 9. The
curve γ is defined through γ(ℓ) = ℓ− 3 + 2

√
2 − ℓ.

This example shows that discontinuous solutions may occur. Furthermore, the example
shows that the force balance (27) in combination with the energy balance is necessary but
not sufficient to find piecewise smooth energetic solutions of (S) & (E) (or (23)–(24)). Note
that the solution z2 of (23)–(24) jumps before the mass reaches the point, where the friction
coefficient changes. This is not what is observed in the experiment. The function z3 seems to
coincide best with the real experiment, since the jump takes place in the moment, where the
friction coefficient changes. Note that for t ∈ (2, 4) the point z2(t) is a global minimizer of the
function E(t, ·)+D(z2(t), ·), whereas the point z3(t) is a local minimizer of E(t, ·)+D(z3(t), ·),
only. With formulation (23) we are looking for a global minimizer, whereas nature seems to
prefer local minimization.

It is questionable whether the rate independent formulation (23)–(24) is an appropriate
model for describing the problem in a proper way since the jump violates the assumption
that the process is very slow.

Remark 4.1 The functions { zsJ
| sJ ∈ [2, 3] } are solutions of (E) and (S̃), where

For every v ∈ R, t ≥ 0 (S̃)

E(t, q(t)) ≤ E(t, v) + R(q(t), v − q(t)).

Remark 4.2 Discontinuous solutions may also occur in the case of a smooth friction co-
efficient with steep gradient. If µ ∈ C1, then any smooth solution should satisfy 0 =
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µ (z (t)) + z (t) − l (t). Hence, we see that µ
′

(z) ≤ −1 leads to troubles in solving this
implicit equation, see Example 3.5 in [Mie05] and [SM06].

Remark 4.3 It is possible to modify D in such a way that the jump takes place at t∗ = 3
from z− = 0 to z+ = t∗ − 1. In this case, D is unsymmetric and not continuous.

4.2 Quasistatic magnetostriction

Here we present a rate-independent model for the interaction of magnetization and elasticity,
see [Mie06a, Sect. 5.6]. It is based on quite related work by Kruž́ık and Roub́ıček (see
[Kru02, RK04]) and on a similar model for ferro-electricity in [MT06a, MT06b], which is
used in engineering, see [KW03, RS05].

For a body Ω ⊂ R3 let u : Ω → R3 be the displacement field, e(u) = 1
2
(∇u + ∇u⊤) the

linearized strain tensor, m : Ω → S2 = ∂B1(0) ⊂ R3 the magnetization and B : R3 → R3 the
magnetic flux. The constitutive law, which connects the magnetic flux with the magnetic
field H : R3 → R3, is given by

B = µ0(H +mext) in R
3,

where mext is the extension of m with 0 to R3\Ω. Furthermore, the static Maxwell equations
shall be satisfied in R3:

divB = 0, curlH = 0.

We consider the following energy functional:

E(t, u, B,m) =

∫

Ω

W (x, e(u), m) dx+

∫

Ω

ρ

2
|∇m|2 dx−

∫

Ω

B ·m dx

+

∫

R3

1

2µ0
|B|2 dx− 〈

(
lmech(t)
lmagn(t)

)

,

(
u

B

)

〉. (33)

The first term is the stored elastic energy, the second term describes the exchange energy, the
third term gives the interaction between magnetization and the magnetic flux, the fourth
term is the energy which is stored in the magnetic field. Note that DuE(t, u, B,m) = 0
corresponds to the weak formulation of the elastic equilibrium and DBE(t, u, B,m) = 0 is
the weak form of the condition curlH = 0 since divB ≡ 0. We choose Q = F ×Z, where

F = H1
ΓDir

(Ω,R3) ×H(R3,Div) ∋ (u,B),

H(R3,Div) = {B ∈ L2(R3) | DivB = 0 },
Z = H1(Ω, S2) ∋ m.

In all spaces we consider the weak topology.
Assume that W is a Carathéodory function and that W (x, ·, m) : R3×3

sym → R is convex
and bounded from below by a function with quadratic growth. It is not hard to describe
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further “natural” assumptions on W , lmech(t) and lmagn(t) such that conditions (E1)–(E3)
are satisfied.

In order to model magnetic hysteresis we introduce a (macroscopically motivated) dissi-
pation distance on S2

D(x, ·, ·) : S
2 × S

2 → [0,∞).

It is assumed that D satisfies the triangle inequality and that there is a constant c > 0 such
that

1
c
|m1 −m2| ≤ D(x,m1, m2) ≤ c |m1 −m2| .

A possible choice for D is

D(x,m1, m2) = c1(x) arccos(m1 ·m2) + c2(x) |ê(x) · (m1 −m2)| ,

where ê(x) is a preferred direction. The dissipation distance on Z × Z is then given by

D : Z ×Z → [0,∞], D(m1, m2) =

∫

Ω

D(x,m1(x), m2(x)) dx. (34)

The assumptions on D imply that D satisfies the triangle inequality as well. Moreover, we
have

1
c
‖m1 −m2‖L1(Ω) ≤ D(m1, m2) ≤ c ‖m1 −m2‖L1(Ω)

and therefore, D is strongly continuous with respect to the strong L1–topology. Since
Z = H1(Ω) is compactly embedded in L1(Ω), D is weakly continuous in H1 and there-
fore continuous with respect to the topology in Z. Thus, D satisfies (D1)–(D3) and the
compatibility conditions (CCa), (CCb) due to Proposition 3.9.

Under the above assumptions, the existence theorem is applicable to the energetic for-
mulation based on E from (33) and D from (34).

4.3 Small-strain model for shape-memory alloys

Ω

ΓDir

R
d

S0

z

displacement u

Figure 10: Domain Ω with displacement u
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Let the displacement u be defined on a domain Ω with Dirichlet boundary ΓDir, i.e. u
satisfies Dirichlet boundary conditions

u(t, ·) = uDir(t, ·) on ΓDir ⊂ ∂Ω.

The displacement u is split additively as u(t, ·) = uDir(t, ·) + ũ, where ũ ∈ H1
ΓDir

(Ω; Rd). The
energy potential is defined as

E(t, ũ, z) =

∫

Ω

W (e(uDir(t) + ũ) − z) + h(z) +
σ

2
|∇z|2 dx

with

• e(u) = 1
2
(∇u+ ∇u⊤) ∈ Rd×d

sym,

• z ∈ S0 := {A ∈ Rd×d|A = A⊤, tr A = 0} mesoscopic transformation strain,

• W (e) = 1
2
e : C : e, for example W (e) = λ

2
(tr e)2 + µ|e|2 in the isotropic case,

• σ
2
|∇z|2 a mathematical regularization with σ > 0.

Following a model of [SMZ98, AP02, AS04, AP04] we set

h(z) =

{
c1|z| + c2

2
|z|2 if |z| ≤ c3,

∞ else
(35)

and define the dissipation through

D(z0, z1) =

∫

Ω

κ|z1(x) − z0(x)| dx = κ‖z1 − z0‖L1(Ω).

For σ > 0 we can define the state space Q = F×Z with F = H1
Dir(Ω,R

d) and Z = H1(Ω, S0).
The state space is equipped with the weak topology. Note that H1(Ω, S0) is compactly
embedded in L1(Ω, S0) and hence D is continuous on Z ×Z.

The power of external forces is given by

∂tE(t, ũ, z
︸︷︷︸

fixed

) =

∫

Ω

∂eW (e(uDir(t) + ũ) − z)[e(u̇Dir(t))] dx

=

∫

Ω

(
e(uDir(t) + ũ) − z

)
: C : e(u̇Dir) dx.

With the assumption uDir ∈ C1([0, T ],H1(Ω; Rd)) we find the estimate

|∂tE(t, ũ, z)| ≤ c ‖e(u̇Dir)‖L2

︸ ︷︷ ︸

≤c̃

‖e(uDir + ũ) − z‖L2

︸ ︷︷ ︸

≤c1(E(t,ũ,z)+c0)
1/2
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Figure 11: h(z)

strain

c1

stress

c2

c3

Figure 12: Hysteresis

Theorem 4.4 (Existence Result) For all stable initial conditions there exists an ener-
getic solution

(ũ, z) ∈ L∞([0, T ],H1(Ω; Rd) × H1(Ω, S0)).

Moreover, since E is uniformly convex, there holds (ũ, z) ∈ CLip([0, T ],H1(Ω; Rd)×H1(Ω, S0)).

The uniqueness is still an open problem. However, if h defined in (35) is replaced by
an approximation h ∈ C3(S0,R), which satisfies suitable growth bounds, then E(t, ·) will be
three times continuously differentiable on H1(Ω; Rd)×H1(Ω, S0) and the methods in [MT04]
provide uniqueness results.

4.4 Large-strain model for shape-memory alloys

Given a deformation ϕ and the deformation gradient F = ∇ϕ ∈ Rd×d, we assume in the
following det∇ϕ > 0 to avoid local self-interpenetration.
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Ω

ΓDir

deformation ϕ

ϕDir (t)

Figure 13: Deformation

We use J.M. Ball’s polyconvex material laws and define

W (F, z) =

{

a(z)|F |p + b(z)
(det F )r + c(z) for detF > 0

∞ for detF ≤ 0,

It is assumed that p > d and a, b, r > 0. (Ogden type material)
The energy potential E : W1,p(Ω; Rd) × H1(Ω; Rm) → R∞ is defined through

E(ϕ, z) :=

∫

Ω

W (∇ϕ, z) +
σ

2
|∇z|2 dx.

E attains the value +∞ on a dense set, namely for each ϕ having det∇ϕ ≤ 0 on a set of
positive measure.
How do we implement time-dependent Dirichlet conditions?

First we try an ansatz with additive decomposition as above, i.e. ϕ(t, x) = ϕDir(t, x)+u,

where ϕ denotes the desired solution, ϕDir the given data and u ∈ W1,p
ΓDir

(Ω) = F has to be
calculated. We have the time dependent energy potential Ē(t, u, z) = E(ϕDir(t) + u, z) with

∂tĒ(t, u, z) =

∫

Ω

∂FW (∇ϕDir(t) + ∇u, z)[∇ϕ̇Dir] dx,

where

∂FW (F, z) = a(z)p|F |p−2F − b(z)r

(detF )r+1
cofF

= ap|F |p−2 − br

(detF )r
F−T

with cof F = (detF )F−T if detF 6= 0. Here, ∂FW (∇ϕ) is the 1. Piola-Kirchhoff stress
tensor. The assumption E(ϕ, z) <∞ yields W (∇ϕ, z) ∈ L1(Ω), and so

‖∇ϕ‖Lp <∞, and ‖ 1

det∇ϕ‖Lr <∞.
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Unfortunately, this does not imply that the first Piola-Kirchhoff stress tensor is an element
of L1(Ω).

Instead we introduce the additional assumption that the Kirchhoff stress tensor, which
is defined through

K(F ) = ∂FW (F )F⊤, (36)

is bounded from above by the energy [Bal02]:

|K(F )| ≤ cW1 (W (F ) + cW0 ). (37)

Our example satisfies this condition since

|K(F )| =

∣
∣
∣
∣
ap|F |p−2FF⊤ − br

(detF )r
I

∣
∣
∣
∣

≤ max{p, r}W (F ).

Remark 4.5 The Kirchhoff tensor K can be seen as a left-invariant derivative on the Lie
group GL+(d) = {F ∈ Rd×d | detF > 0 }. While the 1. Piola-Kirchhoff tensor ∂FW (F )
lies in T ∗

FGL+(d) the Kirchhoff tensor K(F ) lies in gl(D)∗ = T ∗
ΠGL+(d). We refer to

[Mie02, Mie06b] for more information on these Lie group aspects.

From the observation above it turns out that the additive decomposition, which is nat-
ural from the physical point of view, fails for mathematical reasons. Therefore, we try
multiplicative decomposition in a second ansatz, i.e.

ϕ(t, x) = ϕDir(t, ψ(t, x)),

where ψ has to be calculated.

On the Dirichlet boundary ΓDir there holds ϕ = ϕDir, and equivalently ψ = id on ΓDir.
Therefore, we choose

F =
{
ψ ∈ W1,p(Ω,Rd); ψ|ΓDir

= id
}

and
Ẽ(t, ψ, z) = E(ϕDir(t) ◦ ψ, z).

By the chain rule we obtain

∇ϕ = ∇ϕDir(t, ψ(x))∇ψ(x), det∇ϕ = (det∇ϕDir)(det∇ϕ).

With A = ∇ϕDir∇ψ and B = ∇ϕ̇Dir∇ψ we see that

∂FW (A)[B] = tr(∂FW (A)B⊤)

= tr
(
∂FW (A)∇ψ⊤∇ϕ̇⊤

Dir

)

= tr
(
∂FW (A)∇ψ⊤∇ϕ⊤

Dir∇ϕ−⊤
Dir∇ϕ̇⊤

Dir

)

= K(A) : (∇ϕ̇Dir∇ϕ−1
Dir).
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And therefore

∂tẼ(t, ψ, z) =

∫

Ω

∂FW (∇ϕDir∇ψ, z)[∇ϕ̇Dir(t, ψ)∇ψ] dx

=

∫

Ω

K(∇ϕDir∇ψ, z) : (∇ϕ̇Dir∇ϕ−1
Dir) dx.

If Ẽ(t, ψ, z) < ∞ then the assumption (36) implies K(∇ϕDir∇ψ, z) ∈ L1(Ω). If in addition
the given data satisfies (∇ϕ̇Dir∇ϕ−1

Dir) ∈ C0(Ω̄), then ∂tẼ(t, ψ, z) is well defined.
This leads to the following Proposition:

Proposition 4.6 If ϕDir ∈ C2([0, T ] × Rd,Rd) and ∇ϕDir,∇ϕ−1
Dir ∈ C1([0, T ] × Rd,Rd×d),

then (E2) and (E3) hold for the above defined W .

Thus, defining a suitable dissipation distance D(z0, z1) =
∫

Ω
D(x, z0(x), z1(x))dx, it is possi-

ble to derive existence of energetic solutions, see [FM06].

4.5 Damage, delamination and fracture

In the following the damage variable is denoted by z ∈ [0, 1], where z = 1 means no damage,
whereas z = 0 stands for totally damaged material. We choose the dissipation metric as

R(ż) =







−ρż
︸︷︷︸

≥0

if ż ≤ 0

+∞ if ż > 0,
(38)

which gives the dissipation

+∞

ż

Figure 14: Dissipation metric R(ż)

D(z0, z1) =

{ ∫

Ω
ρ(z0(x) − z1(x)) dx if z1 ≤ z0 a.e.

∞ else
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from which the dissipation distance can be determined via

DissD(z, [s, t]) = sup
finite partitions

N∑

j=1

D(z(τj−1), z(τj)).

We have DissD(z, [s, t]) < ∞ if and only if z(s) is a monotone path. In this case it is
DissD(z, [s, t]) = D(z(s), z(t)). For details see [MR06b].

The dissipation D is not continuous, even not in the strong W1,p(Ω) topology and there-
fore, we cannot apply proposition 3.9 to show that (CCa) and (CCb) of the existence theorem
3.4 are satisfied. We can compensate the missing continuity of D by showing that the sets
of stable states are closed.

For (CCb) we have to prove that for every stable sequence (tj, qj) with qj ∈ S(tj),
sup E(tj , qj) <∞ and (tj , qj) → (t∗, q∗) we have

q∗ ∈ S(t∗).

This is equivalent to prove that ∀q̂ ∈ Q : −E(t∗, q∗) + E(t∗, q̂) + D(q∗, q̂) ≥ 0.
By assumption we have for every j and for every q̃ ∈ Q that −E(tj, qj)+E(tj, q̃)+D(qj, q̃) ≥ 0.
Property (CCb) follows if there exists a joint recovery sequence (JRS) q̂j → q̂ such that

0
qj∈S(tj)

≤ lim sup(−E(tj, qj) + E(tj, q̂j) + D(qj, q̂j))
JRS

≤ E(t∗, q̂) + D(t∗, q̂) − E(t∗, q∗)

The second inequality motivates the assumption on the existence of a joint recovery sequence.

Proposition 4.7 (Existence of joint recovery sequences) Assume that for all stable
sequences (tj , qj)j∈N with (tj, qj) → (t∗, q∗) and for all q̂ ∈ Q there exists a sequence (q̂j)j∈N

with q̂j → q̂ and

lim sup
j→∞

(E(tj, q̂j) + D(qj, q̂j) − E(tj, qj)) ≤ E(t∗, q̂) + D(q∗, q̂) − E(t∗, q∗) . (39)

Then q∗ ∈ S(t∗).

A simple damage model

The following nonlocal damage model is treated in [MR06b]. It is inspired by engineering
models in [FN96, Fré02, HS03].

We consider the energy functional

E(t, u, z) =

∫

Ω

W1(e(u)) + zW2(e(u)) +
σ

r
|∇z|r dx− 〈l(t), u〉 .

Like in the previous examples the displacements are denoted by u ∈ F := H1
ΓDir

(Ω; Rd)
and z ∈ Z := {z ∈ W1,r(Ω) | z(x) ∈ [0; 1]} is the damage variable. The density W1
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corresponds to the unbreakable matrix while W2 describes the breakable fibers. We assume
W1(e) ≥ c|e|2 − c, i.e. coercivity and W2(e) to be non-negative. The regularization term is
necessary to have the embedding W1,r(Ω) →֒ C0(Ω̄). Thus, we have to assume r > d, where
d is the space dimension. Finally the dissipation distance is

D(z0, z1) =

∫

Ω

R(z1(x) − z0(x)) dx ,

where R is defined like in (38), see also Figure 14.
We are going to prove that the JRS-condition holds. Given a sequence (tj, uj, zj) →

(t∗, u∗, z∗) ∈ R × H1
weak ×W

1,r
weak and an arbitrary test state (û, ẑ) we want to construct a

recovery sequence (ûj, ẑj) such that (39) holds. Note that (ûj, ẑj) → (û, ẑ) actually is not
needed.

Observe that only D(q∗, q̂) = D(z∗, ẑ) < ∞ is interesting. Hence we may assume ẑ ≤ z∗
almost everywhere. To find (ẑj)j∈N such that D(zj, ẑj) → D(z∗, ẑ) we need ẑj ≤ zj almost
everywhere and ẑj → ẑ in W 1,r. For instance, we may take

ẑj = max{0, ẑ − ‖zj − z∗‖∞} .

Then ẑj → ẑ strongly (since r > d) and E(tj, ûj, ẑj) → E(t, û, ẑ) for a suitable choice of ûj.
For instance we may choose ûj to be the minimizer of E(tj, ·, ẑj). Thus (39) is valid.

Crack propagation in brittle fracture

As next example we consider crack propagation in an elastic body. This is an example
without a Banach space structure and is investigated in detail in [FM93, FM98, DT02,
FL03, DFT05]. We will only state the problem and refer to the above references for the
details.

A crack Γ is defined to be a closed subset of the considered domain Ω̄ with finite Hausdorff
measure Hd−1. We do not distinguish two crack if the symmetric difference has zero Hausdorff
measure and introduce equivalent classes via

Γ0 ∼ Γ1 :⇐⇒ Hd−1 ((Γ0 \ Γ1) ∪ (Γ1 \ Γ0)) .

We take
Z∼ :=

{
Γ∼ | Γ ⊂ Ω̄ closed ,Hd−1(Γ) <∞

}

and consider the topology defined by the Hausdorff distance d∼(Γ0,Γ1) := distH(Γ0,Γ1).
Note that (Z∼, d∼) is a compact metric space [].

The dissipation distance is defined by

D(Γ0,Γ1) =

{

Hd−1(Γ1 \ Γ0) if Γ0 ⊂ Γ1

∞ else

and the energy functional is

E(t, u,Γ) =

∫

Ω\Γ

W (e(u)) dx− 〈l(t), u〉 .
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The admissible set is given by

Q = {(u,Γ) | Γ ∈ Z∼ , u ∈ GSBV(Ω), J(u) ⊂ Γ} ,

where GSBV(Ω) denotes the space of generalized special functions of bounded variations
and J(u) denotes the jump set of u.

The main difficulty of this problem consists in the construction of the joint recovery
sequence. To handle this the jump transfer lemma is essential, see Francfort and Larsen in
[FL03].

5 Γ-convergence of energetic formulations

This last section deals with the convergence of sequences of rate-independent evolutionary
problems and is based on [MRS06]. Since energetic solutions are defined via functionals
it turns out that Γ-convergence provides an appropriate setting. General introductions to
(static) Γ-convergence can be found in [Dal93, Bra02].

In the following we consider a sequence of the two functionals,

En : [0;T ] ×Q −→ R∞

Dn : Z × Z −→ [0;∞] .
(40)

We assume that the assumptions (E1)-(D3), (CCa) and (CCb) hold for all n ∈ N. Thus,
due to Theorem 3.4, for every n ∈ N and arbitrary initial conditions q0

n ∈ Sn(0) there exists
an energetic solution qn : [0;T ] → Q associated with (40).

We consider the situation that the sequences of the two functionals and the solutions,
respectively, converge to some limit,

En  E , Dn  D , qn  q .

Here ” “ denotes the convergence in a suitable sense. Now the question is if the limit
function q solves the energetic formulation of the problem associated with E and D.

A typical application for the convergence of energetic formulations is a finite element
approximation. In that case we have

En(t, q) =

{

E(t, q) if q ∈ Qn

∞ else
, Dn = D .

where for the sequence of state spaces holds

Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ . . .Q and
⋃

n∈N

Qn = Q .

We will discuss this problem in more detail in section 5.3
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5.1 Γ-convergence of functionals

At first we recall the notion of Γ-convergence.

Definition 5.1 (Γ-convergence of functionals) A sequence of functionals (En)n∈N on Q
Γ-converges to some functional E : Q → R∞, i.e. En

Γ−→ E , if the following two conditions
hold

(Γ1) lim inf-estimate:
qn  q =⇒ E(q) ≤ lim inf

n→∞
En(qn)

(Γ2) lim sup-estimate/existence of a recovery sequence:

∀ q̂ ∈ Q ∃ q̂j  q̂ : E(q̂) ≥ lim sup
n→∞

En(q̂n) .

Here ” “ again denotes the convergence in a suitable sense. In many applications this is
convergence in the weak sense. To illustrate the definition we will only give two simple
examples for the application of Γ-convergence. For further details we refer to the book
[Bra02] which provides a proper introduction to the topic appropriate for PhD students.

A numerical example

We consider the energy functional

E(t, u, z) =
1

2
〈Aq; q〉 − 〈l(t); u〉

for q ∈ Q some Hilbert space and a linear operator A with 0 < α ≤ A = A∗ ≤ β. Assume
(Qn)n∈N to be a sequence of finite dimensional subspaces of Q such that

Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ . . .Q and
⋃

n∈N

Qn = Q .

We define

En(t, q) =

{

E(t, q) if q ∈ Qn

∞ else
.

If Pn : Q → Qn denotes the orthogonal projections then of course Pnq̂ → q̂ for all q̂ ∈ Q.
Now we check the two conditions for Γ-convergence. Let qn ⇀ q. Due to the definition

of En we have En(qn) ≥ E(qn). Since E is w.l.s.c. we obtain E(q) ≤ lim infn→∞ En(qn). Thus
we have (Γ1). Given q̂ ∈ Q we choose q̂n := Pnq. Then En(q̂n) = E(q̂n) → E(q̂) since q̂n → q̂

strongly. This proves (Γ2).
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A homogenization problem

For a second example we consider a typical homogenization problem. We define Q =
H1((a; b); Rm) and

En(u) =

∫ b

a

(A(nx) · u′(x)) · u′(x) dx ,

where A(y) ∈ Rm×m. We assume 0 < α ≤ A(y) = A∗(y) ≤ β. Then, for n → ∞ we obtain

En
Γ−→ E where

E(u) =

∫ b

a

(Aeff · u′(x)) · u′(x) dx , Aeff =

(∫ b

a

A(y)−1 dy

)−1

.

5.2 Convergence Result

We consider (En,Dn)n∈N, assume that (E1)-(D3) holds uniformly and

En(t, ·) Γ−→ E(t, ·) , Dn
Γ−→ D as n→ ∞ .

As compatibility condition we need the following (joint recovery sequences):
For every stable sequence (tn, qn)n∈N (i.e. qn ∈ Sn(tn)) with (tn, qn) → (t∗, q∗), the

relations (Γ-CCa), (Γ-CCb) here below are satisfied:

∂tEn(tn, qn) → ∂tE(t∗, q∗), (Γ-CCa)

q∗ ∈ S(t∗). (Γ-CCb)

Theorem 5.2 Under the above assumptions the following holds: If qn : [0, T ] → Q is an
energetic solution to (En,Dn) for all n ∈ N,

qn(0) −→ q0 and E(0, qn(0)) −→ E(0, q0)

then there exists a subsequence (qnk
)k∈N and a function q : [0, T ] → Q such that

1. q is an energetic solution to (E ,D) with q(0) = q0

2. for all t ∈ [0, T ] holds

Enk
(t, qnk

(t)) −→ E(t, q(t))

DissD(qnk
, [0, T ]) −→ DissD(q, [0, T ])

znk
(t) −→ z(t) .

(42)

As in Section 3 we have a simple sufficient condition for the compatibility condition (Γ-CC).

Proposition 5.3 If Dn
c−→ D, then (CCa) and (CCa) hold.
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Here “Dn
c−→ D” denotes continuous convergence which is defined as

(zn, z̃n) −→ (z, z̃) =⇒ Dn(zn, z̃n) −→ D(z, z̃) .

Note that this is different from uniform convergence.
The following analog to Proposition 4.7 is proved in [MRS06].

Proposition 5.4 If for all stable sequences (tn, qn)n∈N with (tn, qn) → (t∗, q∗) and for all
q̂ ∈ Q there exists a joint recovery sequence (q̂n)n∈N such that

lim sup
n→∞

En(tn, q̂n) + Dn(qn, q̂n) − En(tn, qn) ≤ E(t∗, q̂) + D(q∗, q̂) − E(t∗, q∗) , (43)

then (CCb) holds.

5.3 Numerical methods for linearized elasticity

Here we treat the simplest nontrivial case and refer to [MR06a] for more general situations. In
this section we apply the convergence result stated above to numerical methods for linearized
elastoplasticity. We have

Q = F × Z , F = H1
ΓDir

(Ω; Rd) , Z = L2(Ω, S0)

for Ω ⊂ Rd and S0 := {A ∈ Rd×d | A = A⊤, trA = 0} and we consider an energy formulation
defined by the following energy and dissipation functionals

E(t, u, z) =
1

2

〈

A
(
u

z

)

;

(
u

z

)〉

− 〈l(t); u〉,

D(z0, z1) = R(z1 − z0) =

∫

Ω

R(z1(x) − z0(x)) dx .

(44)

The linear operator A is assumed to be symmetric and bounded from above and below and
l is assumed to be continuous, see also section 2.3. Note that the functional R is in general
not continuous, but only lower semi-continuous since it may take the value “+∞”.

We choose a sequence of finite dimensional subspaces of Q corresponding to triangulations
Tn of Ω:

Qn = Fn ×Zn

where Fn consists of piecewise linear and Zn of piecewise constant functions. We assume
that

Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ . . .Q and
⋃

n∈N

Qn = Q .

Let furthermore
Pn : Q −→ Qn (45)
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be a not necessarily orthogonal projector with

Pnq −→ q , R(Pnq) −→ R(q)

where we assume strong convergence for n→ ∞. As above we define the sequences of energy
and dissipation functionals according to

En(t, q) =

{

E(t, q) q ∈ Qn

∞ else
, Dn = D .

Due to the conditions stated above we have En
Γ−→ E , see the example in section 5.1.

In this case Proposition 5.3 is not applicable since R is only lower semi continuous. We
need Proposition 5.4. For a sequence (qn)n∈N with qn ⇀ q in H1

ΓDir
×L2 and arbitrary q̂ with

R(q̂ − q) = D(q, q̂) <∞ we define the joint recovery sequence by

q̂n = qn + Pn(q̂ − q) .

Then we have

D(qn, q̂n) = R(q̂n − qn) = R(Pn(q̂ − q))

→ R(q̂ − q) = D(q, q̂)
(46)

Note that q̂n ⇀ q only converges weakly, but not strongly. In general we have E(t, q̂) ≤
lim infn→∞ E(t, q̂n) where “=” holds if and only if the convergence is strong. But due to the
quadratic structure of E we have

En(tn, q̂n) − En(tn, qn) = E(tn, q̂n) − E(tn, qn)

=
1

4
〈A(q̂n − qn), q̂n + qn〉 − 〈l(tn), q̂n − qn〉

→ 1

4
〈A(q̂ − q), q̂ + q〉 − 〈l(t), q̂ − q〉

= E(t, q̂) − E(t, q) .

Here we used that q̂n − qn = Pn(q̂ − q) → q̂ − q (strong), q̂n + qn ⇀ q̂ + q (weak), and
l(tn) → l(t) (strong). Together with (46) we finally find that the condition (43) is satisfied
and theorem 5.2 provides the convergence of our numerical scheme.
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[Fré02] M. Frémond. Non-Smooth Thermomechanics. Springer-Verlag, Berlin, 2002.

[HS03] K. Hackl and H. Stumpf. Micromechanical concept for the analysis of damage evolution
in thermo-viscoelastic and quasi-static brittle fracture. Int. J. Solids Structures, 30, 1567–
1584, 2003.
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