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Abstract. We formulate a model describing rate-independent hysteretic re-

sponse of shape-memory alloys under slow external forcing. Under natural as-

sumptions we prove that this model has solution. The microstructure is treated

on a “mesoscopic” level, described by volume fractions of particular phases in

terms of Young measures. The whole formulation is based on energetic function-

als for energy storage and energy dissipation. The latter is built into the model

by a dissipation distance between different values of these volume fractions.

Key Words. Martensitic transformation, Young measures, energetic formula-

tion, dissipation distance.

AMS Subject Classification: 74N30, 49S05.

1. Introduction, mesoscopic models

In the last decades the research in shape-memory alloys (SMA) received enormous at-

tention in engineering, theoretical and experimental material science, and in mathematics,

too. SMAs are characterized by the ability to transform, with a relatively small activation

energy, between the different variants of a less symmetrical phase of a crystal (i.e., tetrago-

nal, trigonal, orthorhombic, or monoclinic) or even to transform between crystallographic

phases with different symmetries (typically cubic/tetragonal, or cubic/monoclinic, etc.).

This process is called martensitic or martensitic/austenitic phase transformation (PT). In

mathematics it is common to call each of the different variants of a crystal configuration

a phase (e.g., a tetragonal martensite consists of 3 phases, contrary to what is understood

in physics as a single phase with 3 variants).

Modeling of such “smart” materials challenged a rise of variety of mathematical mod-

els. Disregarding atomistic-level models, the mathematical models based on continuum

mechanics can be classified according to a description of the microstructure in SMA to
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micro-, meso- and macro-scopic, depending on whether they use the full microscopic de-

formation, or only the macroscopic deformation together with locally averaged volume

fractions, or only the macroscopic deformation itself.

The general drawback of the calculations on the microscopic level is that they can

basically model only domains of scales far below millimeters, and predict macroscopic

response only on the assumption that this domain is representative. In other words, the

microstructure created during the loading process should be rather homogeneous and not

much chaotic. This assumption is quite realistic in laboratory experiments with single

crystals but often it is not satisfied in engineering workpieces which may have complex

geometries, are loaded in non-homogeneous ways or are made from commercially produced

SMAs which are rather polycrystals. Therefore, it is desirable to develop models on the

mesoscopic level, which is exactly the focus of this work. For microscopic models we refer

to Remark 1.2.

The essential problem of such a multiscale modeling is to keep suitable information of

the microscopic structures such that their influence on the macroscale can be described

effectively and such that an evolution law for this model can be found without resolv-

ing the microstructure in full detail. We will use (gradient-) Young measures for this

purpose. They characterize the distribution of the microscopic gradients and phases,

but they neglect the micropatterns. However, since gradient Young measures have en-

coded the knowledge about geometric compatibility of different gradients they carry a

lot of information on the possible micropattern, which often can be reconstructed in a

post-processing step from the gradient Young measures.

There are many models for the hysteretic behavior of SMA using volume fractions.

Starting from Frémond [Fre87, FrMi96, Fre02] they were further developed in [CFV90,

CoSp92] and [HNZ90] and many other works, cf. [BrSp96] or [Rou00] for further references.

Models of this sort have also been developed by Müller et al. [Mül79, MüSe01, MüWi80].

However, these models are very phenomenological and do not model correctly the mi-

croscopic interplay and geometrical compatibilities between different phases (or phase

variants). Additionally these models do not have the potential for treating fully nonlinear

elasticity and the full menagerie of phase(variant)s occuring in more complex situations,

e.g. 4, 7, or 13 different ones, or sometimes even much more. Moreover, all these models

are rate-dependent and it is not clear whether hysteretic behavior remains in the rate-

independent limit. Later, the dissipation in Frémond’s model has been augmented by

a rate-independent term in [Fre02, Sect.13.13]. Another model was proposed by James

[Jam95] but again does not involve a rate-independent rule for volume-fraction evolution.

A rate-independent model based on multiple configuration concept has been proposed by

Rajagopal and Srinivasa [RaSr95, RaSr97] though implicitly it addresses rather polycrys-

talic materials in a highly phenomenological way. Another model using rate-independent

plasticity-like dissipation was used in [TaAn03].

A different type of models was developed in [MiTh99, MiTh01, MTL02, GMH02,

The02]. This class of models is based on energy minimization of a functional depend-

ing simply on the macroscopic deformation and the macroscopic volume fractions of the

phases. The new constitutive quantity needed for this model is the effective macroscopic
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energy which depends only on the macroscopic deformation gradient and the volume frac-

tions of the phases. There, this energy is called mixture function or free energy of mixing

and it encodes the crystallographic information of geometric (in)compatibilities of differ-

ent microscopic deformation gradients. Moreover, the model uses a dissipation functional

which amounts in postulating that the dissipated energy is the product of a material

constant, depending on the two involved phases, and the volume of the part of the body

which has undergone the PT. The difficulty with this class of models is that it is based on

the free energy of mixing which, in principle, can be obtained by a quasiconvexification

but explicit formulae are only available in very special cases [GMH02, Mie00].

Another model, describing volume fractions (denoted by λ) in terms of Young measures

(denoted by ν) was proposed and computationally tested in [Rou00, Rou02]. The effective

stored energy V is evaluated automatically in this model but the definite disadvantage

of this model is that it is formulated only for scalar, anti-plane-like deformation only.

Also, the mathematical formulation using finitely-additive measures (because the time

derivative is explicitly involved) and giving results only generically with respect to the

final time horizon is not completely elegant.

Our goal is, by joining the ideas of the two latter models, to develop a mesoscopic model

which covers vectorial situations and does not need explicit knowledge of the free energy

of mixing. In fact, this combination of rate-independent mesoscopic volume-fraction evo-

lution with the usage of Young-measure relaxation to evaluate the effective energy has

been outlined already in [Mie02] for general rate-independent material models displaying

elastic and inelastic effects including damage models, elastoplasticity, micromagnetism

and SMAs. Here, we show that this framework allows for a rigorous analysis of some

models for SMAs.

Our configuration at time t, let us denote it by q(t), will thus include, beside the

macroscopic displacement u, also ν and λ. As proposed in [MiTh99], for a prescribed

dissipation (pseudo)potential R and given time-dependent loading F , the solution q will

then be characterized by stability (1.1a) and the energy inequality (1.1b):

∀ t ∀q̃ : G
(
t, q(t)

)
≤ G(t, q̃) +R

(
q(t), q̃

)
,(1.1a)

∀ t ≥ s : G
(
t, q(t)

)
+Var(q; s, t) ≤ G

(
s, q(s)

)
−
∫ t

s

∂F

∂θ

(
θ, q(θ)

)
dθ,(1.1b)

where G(t, q) = V (q) − F (t, q) is the Gibbs stored energy and Var(q; s, t) is the total

variation of the process q over the time interval [s, t] with respect to R, i.e. the dissipated

energy; cf. (2.31)–(2.33) for a detailed definition. It was shown in [MiTh99, MiTh01,

MTL02] that, in qualified cases (covering our model in the dimension n > 1), the two

inequalities (1.1) can be written in the form of a doubly nonlinear problem

∂R
(dq

dt

)

+ ∂V (q) 3 F(1.2)

where ∂ denotes the subdifferential. While (1.2) is a well–accepted model in rate–

dependent cases, where R(v) ≥ c‖v‖p for some p > 1 (see [CoVi90]), it is shown in

[MiTh01], that the rate-independent case, where R(αv) = αR(v) and hence p = 1, is

better treated in the weaker energetic formulation (1.1). In [Rou02] the doubly nonlinear
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problem (1.2) was applied to a scalar model for SMA, cf. (4.6) below. The major advan-

tage of our energetic formulation is that it allows for more general nonconvexities, since

no derivatives for the solutions nor of the involved functionals are needed.

After giving a detailed derivation and specifying the form of the Gibbs energy G and

the dissipation distance R in Section 2, we provide the analysis of the model in Section

3. Using a time discretization we obtain an incremental problem which is a minimiza-

tion problem at each time step, which corresponds to a fully implicit (backward) Euler

method. For the limit of step size going to 0 we show that the approximate solutions have

limit points which provide solutions of the time-continuous problem (1.1) and (1.1b), see

Theorem 3.4.

Remark 1.1. (Young-measure implementation.) Of course, modeling of SMA evolution

is a very ambitious goal in connection with an extremely complicated reality. This is

reflected, in particular, by involving the set of so-called gradient Young measures whose

characterization cannot be made explicit. In fact, only an implicit characterization by all

quasiconvex functions has been invented by Kinderlehrer and Pedregal [KiPe91, KiPe94],

cf. (3.27) below. Therefore, one must make some simplification to implement the model,

presumably using eventually only an inner approximation of this mysterious set e.g. by

so-called laminates up to a certain order. For 2D calculations with first-order laminates

but not rate-independent model see [RoKr98]. For steady-state models but higher-order

laminates see also [Ara01, AFO02, Kru98, Rou97]. Similar constructions were employed

for finite–strain elastoplasticity in [ORS00, MiLa01]. Yet, this issue will not be addressed

in this paper.

Remark 1.2. (Microscopic models.) There is also a variety of models on the micro-

scopic level. They originated basically from Falk’s model [Fal80]; we refer to [BrSp96]

or also [Rou00] for further references. These models are usually either rate dependent

or the possible rate-independent hysteretic response cannot be set up independently of

the stored energy, cf. [RaRo03] for a thorough discussion. A model that does not inherit

these discrepancies has been proposed in [Rou00] and further analyzed and developed in

[AGR02, PlRo02], showing ambitions to model real 3D laboratory experiments with single

crystal SMAs. Another model that plays with rate-independent hysteretic mechanism in-

dependent of the stored energy has recently been proposed by Krejč́ı et al. [KSS01] (even

for nonisothermal situations) but analyzed only in dimension one and not accompanied

with any calculations.

2. The model

The difficult question in efficient modeling of multiscale inelastic processes like those

in SMAs is how to describe the usually very complicated, multiscale configurations in

keeping only the relevant information. Moreover, one has to model the, to some extend

rather mutually independent, mechanisms describing how the material stores energy and

how it dissipates energy. Beside modeling of material properties, a macroscopic geometry

as the shape of the specimen and its external loading as well as the orientation of the

crystalic material must be dealt with, as usual.
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2.1. Stored energy, relaxation. Let Ω ⊂ Rn be a reference configuration of the (un-

deformed) body, n refer to the dimension (n = 3 is therefore the physically inter-

ested case, though we will not exclude symmetrical cases formulated for n < 3). On

a microscopic (but still continuum-mechanical) level, the configuration is standardly de-

scribed by the displacement u : Ω → Rn so that the deformed body occupies the region

{x+ u(x); x ∈ Ω} ⊂ Rn.

The energy storage mechanism is described by the specific stored energy ϕ : Ω×Rn×n →
R,

ϕ(x,∇u) = ϕ̂
(

(I+∇u)Q(x)
)

where ϕ̂ : Rn×n → R and Q : Ω→ SO(n).(2.1)

Here I ∈ Rn×n is the identity matrix and SO(n) = {Q ∈ Rn×n ; Q>Q = I = QQ>, detQ =

1} stands for the special orthogonal group, i.e., orientation-preserving rotations. The

function ϕ̂ describes phenomenologically how the material stores energy while the function

Q : Ω → SO(n) determines the orientation of the reference (austenitic) crystal lattice.

Thus, Q is constant over Ω in case of a single crystal or piecewise constant in case of a

polycrystal, the regions of constancy of Q are interpreted as grains.

The standard requirement of frame-indifference means that ϕ̂ in fact depends only on

the (right) Cauchy-Green stretch tensor C := (I+∇u)>(I+∇u).
For analytical reasons, let us assume that the potential ϕ has p-growth as well as the

respective coercivity:

∃ c1 ≥ c0 > 0 ∀(a.a.)x∈Ω ∀A∈Rn×n : c0(|A|p−1) ≤ ϕ(x,A) ≤ c1(1+|A|p)(2.2)

with some p ≥ 2n/(n+1); this value just guarantees that the traces on Γ of functions from

W1,p(Ω;Rn) are in L2(Γ;Rn). The restriction (2.2) to ϕ does not cover true nonlinear

elasticity where interpenetration of material is forbidden by assuming ϕ(x,A) = ∞ for

detA ≤ 0 and ϕ(x,A) → ∞ for detA ↘ 0. However, the deformation regime, where

SMAs are used, is usually not so large that these extreme values matter.

Of course, likewise in lab experiments or engineering applications, we must somehow

fix the body by boundary conditions to exclude rigid-body motions. Let us consider a

linear elastic support on the boundary Γ through a non-negative coefficient α, assuming

α∈L∞(Γ;Rn), ∀ i = 1, ..., n : αi ≥ 0 and measn−1{αi > 0} > 0.(2.3)

The coercivity (2.2) in ∇u and the support condition (2.3) guarantee that, through

a Poincaré-type inequality, the overall (Helmholtz-type) stored energy is coercive in the

sense that, for some ε > 0, it holds

∀u∈W1,p(Ω;Rn) :

∫

Ω

ϕqc(x,∇u)dx+

∫

Γ

(α · u)2dS ≥ ε‖u‖pW1,p(Ω;Rn) −
1

ε
(2.4)

where ϕqc(x, ·) is the quasiconvex envelope of ϕ(x, ·), i.e. the supremum of all quasiconvex

minorants of ϕ(x, ·). Recall that a function v : Rn×n → R is called quasiconvex if v(A) =

minu∈W1,∞
0 (Ω;Rn)

∫

Ω
v(A+∇u(x))dx/vol(Ω) for all A ∈ Rn×n.

To drive the system, we need to impose a time-dependent loading, e.g., through a

surface traction f : Γ → Rn, although a volume-force loading might be considered as

well. Hence, this loading will contribute to the stored energy by the boundary integral
∫

Γ
f(x)·u(x) dS. Here, we assume f ∈ Lγ(Γ;Rn) with γ ≥ (np − p)/(np − n) if p < n
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or simply γ = 1 if p ≥ n. to guarantee that f ·u|Γ ∈ L1(Γ) if u ∈ W1,p(Ω;Rn); further

qualification of f will be given below, cf. (2.20).

The assumption (2.2) allows one to prove rigorously that any minimizing sequence

{uk}k∈N of the functional u 7→
∫

Ω
ϕ(x,∇u) dx +

∫

Γ
(α·u)2 − f ·u dS does not concentrate

energy in the sense that {|∇uk|p; k ∈ N} as well as {ϕ(·,∇uk); k ∈ N} are relatively

weakly compact subsets of L1(Ω). This suggests that a correct relaxation for this mini-

mization problem can be based on the so-called gradient Lp-Young measures

Gp(Ω;Rn×n) :=
{

ν∈Yp(Ω;Rn×n) ; ∃u ∈W1,p(Ω;Rn) : Id •ν = ∇u,(2.5)

(1⊗ v) •ν ≥ v(∇u) ∀ 0 ≤ v ∈ C(p)(Rn×n) quasiconvex
}

,

where C(p)(Rn×n) := {v : Rn×n → R continuous, supA∈Rn×n v(A)/(1 + |A|p) < +∞} and

the so-called Lp-Young measures are defined as

Yp(Ω;Rn×n) :=

{

ν∈L∞
w (Ω; rca(Rn×n)) ;

∫

Ω

∫

Rn×n

|A|pνx(dA)dx < +∞,(2.6)

νx is a probability measure on Rn×n for a.a. x∈Ω
}

,

where νx := ν(x). Here, L∞
w (Ω; rca(Rn×n)) ∼= L1(Ω;C0(Rn×n))∗ is the Banach space of

weakly measurable functions from Ω to the set of Radon measures rca(Rn×n) ∼= C0(Rn×n)∗

on Rn×n. The “product” • is defined as the contraction over the measure on Rn×n but

not over x ∈ Ω:

[h •ν](x) := 〈νx, h(x, ·)〉 =
∫

Rn×n

h(x,A)νx(dA).(2.7)

In (2.5), we used it for the matrix- and scalar-valued integrands Id: Ω × Rn×n → Rn×n :

(x,A) 7→ A and (1 ⊗ v) : Ω × Rn×n → R : (x,A) 7→ v(A), respectively. The important

property is that Gp(Ω;Rn×n) contains precisely those Young measures ν for which there is

a sequence {uk}k∈N bounded in W1,p(Ω;Rn) such that δ∇uk ⇀ ν weakly*, with δA denoting

the Dirac measure supported at A ∈ Rn×n. This means, for all h ∈ L1(Ω;C0(Rn×n)), it

holds 〈δ∇uk , h〉 → 〈ν, h〉 or, in other words,
∫

Ω
h(x,∇uk(x)) dx →

∫

Ω
h •ν dx. In fact,

the above brief statements summarize (some) deep results of intensive research, especially

from [BaJa88, KiPe91, KiPe94, Mül99] and many others, cf. also [Rou97, Ch. 6] for some

details.

The original potential can be weak*-continuously extended in terms of Young measures

and the correct relaxed problem then looks as






Minimize

∫

Ω

ϕ •ν dx+

∫

Γ

((
α·u
)2 − f(t, ·)·u

)

dS

subject to ∇u = Id •ν,

(u, ν) ∈W1,p(Ω;Rn)×Gp(Ω;Rn×n).

(2.8)

Of course, ϕ •ν is meant as defined by (2.7).

Remark 2.1. Steady-state configurations have been studied intensively during the past

decades by minimization of the stored energy; cf. Ball and James [BaJa88, BaJa92] or

Müller [Mül99], see also [Rou97, Chap.6] and references therein. This assumes implicitly
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non-dissipative PT which does not require any activation energy. This viewpoint is useful

to realize how the “mesoscopic” description of the microstructure should look like. In

particular, it led to identification of the structure of Gp(Ω;Rn×n) from (2.5) although the

set of all quasiconvex test functions v is not explicitly known so the definition (2.5) is still

quite vague. Anyhow, it outlines some structure of gradient Young measures that can be

exploited in computer implementation of the problem, as mentioned in Remark 1.1.

Though thousands of SMA materials have been examined both theoretically and ex-

perimentally, concrete forms of ϕ̂ can be found in the literature only very exceptionally.

Anyhow, some examples does exist:

Example 2.2. One of such case is the cubic to tetragonal transformation of In-20.7 at%

Tl alloy for which Ericksen and James [Eri86] (see also, e.g., [CoLu89, Lus96]) used the

potential ϕ̂ (dependent on temperature θ) in the form

ϕ̂(F ) = a(θ)
6

[(
3C11

trC
− 1
)2

+
(
3C22

trC
− 1
)2

+
(
3C33

trC
− 1
)2
]

+ b
2

(
3C11

trC
− 1
) (

3C22

trC
− 1
) (

3C33

trC
− 1
)

+ c
36

[(
3C11

trC
− 1
)2

+
(
3C22

trC
− 1
)2

+
(
3C33

trC
− 1
)2
]2

+d
2
(C212+C

2
13+C

2
23+C

2
21+C

2
31+C

2
32) + e(trC − 3)2,

(2.9)

where again C = F>F , θ is a given fixed temperature, and the phenomenological coeffi-

cients take the value a(θ) = 0.38+(1.22×10−3)(θ−θT ), b = −29.23, c = 562.13, d = 3.26,

e = 5.25, (all in GPa) and θT = 70◦C. This potential is obviously frame indifferent in

the sense ϕ̂(RF ) = ϕ̂(F ) for all R ∈ SO(3) and fits with the assumption (2.2) for p = 4

because the first three terms in (2.9) are, in fact, homogeneous of degree 0 (and hence

bounded). The fourth term controls the non-diagonal part of F>F , and the last term

itself controls its trace. Hence, for bounded ϕ̂(F ), the whole matrix F is bounded since

trC = tr(F>F ) = ‖F‖2. On the other hand, it does not fit with our assumption of

continuity because ϕ̂ from (2.9) is not continuous at F = 0 but this potential is anyhow

reliable only around its 4 wells (of the form SO(3)Uα with U1 = I := diag(1, 1, 1) the

identity matrix and U2,...,4 = diag(η1, η1, η2) up to permutations with η’s numbers close to

1, cf. [Eri86] for details) so that the reader can equally imagine ϕ̂ modified far from these

wells, in particular around 0, so that ϕ̂ will indeed be continuous.

Example 2.3. Another type of potentials with more explicit reference to measured data

and more general use can be constructed as follows. We consider that the material can

occur in L stress-free configurations that are determined by distortion matrices Uα, α =

1, ..., L. One can imagine U1 = I corresponding to the cubic parent austenite in the

stress-free configuration taken as the reference one, while the others Uα are related with

particular martensitic variants. E.g., for a tetragonal martensite, Uα, α = 2, ..., L = 4

are as in Example 2.2 with η1 = a/a0 and η2 = c/a0 determined from lattice parameters

that are usually known with 4-digit accuracy; here, a0 is the size of the cubic cell of

the austenite while (a × a × c) is related with prism of the martensitic cell. In case of

orthorhombic martensite, all sides of this prism differ from each other, which gives rise to

6 diagonal matrices and then L = 7. A monoclinic martensite creates even 12 (i.e. L =

13) nondiagonal matrices. To ensure frame-indifference, the free energy of particular

phase(variant)s is considered as a function of Green’s strain tensor εα = 1
2
(F>F −U>

α Uα).
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In the simplest case, one can consider a quadratic function of the form

φ̂α(F ) =
n∑

i,j,k,l=1

εαijCα
ijklε

α
kl − cα,(2.10)

where Cα = {Cα
ijkl} is the 4th-order tensor of elastic moduli satisfying the usual symmetry

relations depending also on symmetry of the specific phase(variant) α, while cα is some

offset (depending on a temperature consider fixed, however). Let us remark that some-

times the quadratic form in (2.10) involves rather the tensor (U>
α )

−1F>FU−1
α − I instead

of εα, which is however equivalent to (2.10) provided the elastic tensor Cα is transformed

accordingly. The overall stored energy is assembled as

ϕ̂(F ) := min
α=1,...,L

φ̂α(F ) or φ̂(F ) := −kBθ ln
(

L∑

α=1

e−φ̂α(F )/kBθ

)

(2.11)

where kB is the Boltzmann constant (related per unit volume) and θ the considered (fixed)

temperature. Both options exhibit the same multi-well character, the latter option being

backed up by statistical physics while the former one being computationally simpler and

keeping the wells precisely at the orbits SO(3)Uα. Assuming that all Cα are positive def-

inite, both options fit with the assumption (2.2) for p = 4 as well as with the continuity

assumption. The former option in (2.11) has been used in [AFO02] for CoAlNi undergo-

ing cubic/orthorhombic PT and in [AGNRS03] for NiMnGa with cubic/tetragonal PT.

However, the data required for this potential are available for many other alloys; yet (up

to few exceptions) the elastic tensors Cα for the martensites are not known and have then

to be taken from the austenite as a certain approximation.

2.2. Dissipation. When loaded by a sufficiently large force, the PTs may be activated.

On a microscopic level, it means that surfaces between microscopic domains of relatively

homogeneous deformation ∇u near some well of ϕ(·, x) may start to move, changing thus

the mesoscopic volume fractions described by the measure νx. This process usually needs

some energy to be activated, which is intimately connected with a dissipation of energy. As

there is usually no markable change of structure (the martensitic PT is usually perfectly

reversible and no structural changes are observed sometimes even after 107 cycles), this

energy is obviously dissipated to heat. Anyhow, we assume a sufficiently slow loading

processes that allow us to assume that all produced heat can be transferred out of Ω and

we may neglect temperature changes.

The amount of dissipated energy is essentially influenced by defects in the atomic grid

as various impurities and dislocations. These 1- or 0-dimensional defects essentially do

not influence the energy ϕ̂ stored in the n-dimensional bulk, n ≥ 2, which says, in other

words, that the elastic and inelastic effects are to a large extent independent to each other;

this is well known from classical plasticity as well as ferromagnetism, and is equally valid

for martensitic PT.

As outlined above, the dissipation mechanisms are determined on the atomistic level

and it seems that the only efficient way to incorporate them in higher-level model is a phe-

nomenology. Our, probably quite simplified standpoint is that the amount of dissipated

energy within the PT from one phase to the other can be described by a single, phe-

nomenologically given number (of the dimension J/m3=Pa). Hence, we need to identify
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the particular phases and particular PTs according to the stretch tensor (and according, in

case of a polycrystalic alloy, to a current point x). Inspired by [MiTh99, MTL02, GMH02]

and considering L phases, we define a continuous mapping L : Ω × Rn×n → 4L where

4L := { ζ ∈ RL ; ζi ≥ 0, i = 1, ..., L,
∑L

i=1 ζi = 1 } is a simplex with L vertices. Like

(2.1), we assume

L(x,A) = L̂
(

(I+A)Q(x)
)

, with L̂ : Rn×n →4L and Q from (2.1).(2.12)

Again, L̂ is related with the material itself and thus is expected to be frame indifferent.

We have in mind that the components {L̂1, ..., L̂L} of L̂ = (L̂1, . . . , L̂L)
> form a partition

of unity on Rn×n such that Li(F ) is equal 1 if F is in the i-th phase, i.e. F is in a

neighborhood of i-th well SO(n)Ui of ϕ̂. Of course, L̂(F ) in the (relative) interior of 4L

indicates F in the spinodal region where no definite phase is specified. Hence λ plays

the rôle of what is often called a vector of order parameters or a vector-valued internal

variable, cf. [Mie03].

In terms of the mesoscopic microstructure described by the Young measure ν, the

“mesoscopic” order parameter is naturally defined as

λ = L •ν : Ω→ ∆L ⊂ RL,(2.13)

where the bilinear mapping “ •” is defined as in (2.7) with RL-valued functions. Thus,

λi(x) may be interpreted as the mesoscopic volume fraction of the i-th phase and νx ∈
rca(Rn×n) gives the distribution of the displacement gradient on the microscopic level.

From the viewpoint of rigorous analysis, it appears advantageous to consider the meso-

scopic order parameter λ as a part of the generalized configuration of the system which

is thus a triple q := (u, ν, λ). In view of both (2.8) and (2.13), we define the set Q of

admissible configurations as

Q :=
{
(u, ν, λ)∈W1,p(Ω;Rn)×Gp(Ω;Rn×n)×L∞(Ω;RL) :(2.14)

∇u = Id •ν, λ = L •ν
}
.

For a phenomenological description of the dissipation mechanism one usually postulates

a (pseudo)potential for the dissipational forces as a function of the rate of λ (i.e., the

dissipational forces are obtained as derivative of the potential with respect to the rates

of the internal variables). Here, we want to avoid specifying what the derivative means

if q ranges the manifold Q and, instead, we define the dissipation distance R(q1, q2) ≡
R(u1, ν1, λ1, u2, ν2, λ2) on Q by means of a metric % : ∆L ×∆L → [0,∞) by

R(q1, q2) ≡ R(u1, ν1, λ1, u2, ν2, λ2) =

∫

Ω

%(λ1(x), λ2(x))dx.(2.15)

For simplicity we let %(λ1, λ2) = |λ1−λ2|L for a norm |·|L on RL. The important properties

is that the “dissipation semi-distance” R on Q satisfies the triangle inequality, i.e.

∀q1, q2, q3 ∈ Q : R(q1, q3) ≤ R(q1, q2) +R(q2, q3).(2.16)

For certain SMAs it might be important to allow for an unsymmetric metric %, i.e.,

%(λ1, λ2) 6= %(λ2, λ1) is admissible. For the subsequent such an unsymmetry is perfectly

allowed.
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For the analysis below, we will need to consider rather a certain regularization of the

stored energy V which controls the spatial smoothness of λ. For this, like in [Fre02, p.364],

we will augment V by a higher-order term

V (u, ν, λ) :=

∫

Ω

(

ϕ •ν + ρ|∇λ|2
)

dx+

∫

Γ

(α·u)2dS, ρ > 0 fixed.(2.17)

For a certain interpretation and justification of this regularizing term see Remark 2.6

below.

Remark 2.4. (More general dissipation potentials.) In the case (2.15), R is also sym-

metric but we will not exploit this property. In fact, R(0, ·) is the Minkowski functional

of the set {λ ∈ L∞(Ω;RL); ∀(a.a.)x∈Ω : |λ(x)|L ≤ 1} but one can equally imagine

another bounded, convex set in L∞(Ω;RL) with a nonempty interior. Its surface can be

interpreted as an activation threshold for the PTs. If this set is not balanced with respect

to 0, % would not be symmetric, which would reflect that a PT from one phase to another

one may need a different activation energy than the reverse transformation. See [Mie03]

for more general dissipation distances when 4L is replaced by a manifold.

Remark 2.5. The λ’s indicating particular phases have also been used in [AGR02] but

without the natural requirement
∑L

i=1 λi(·, x) = 1 so that they cannot be interpreted

directly as volume fractions. Besides, λ’s indicating particular PTs rather than the phases

themselves have been proposed in [Rou02].

Remark 2.6. (A justification of the regularization.) Inspired by the so-called Ericksen-

Timoshenko beam, cf. [ReTr00, RoTr97], the ρ-term in (2.17) can be recognized as asymp-

totically resulting from the stored energy occuring in (2.4) if augmented as follows:

Vε1,ε2(u) :=

∫

Ω

(

ϕ(x,∇u) + ε1|∇2u|2(2.18)

+
1

ε2
|λ− L(x,∇u)|2 + ρ|∇λ|2

)

dx+

∫

Γ

(α · u)2dS

with ε1 > 0 a small parameter related with a bending rigidity of the material, ε2 a small

parameter allowing a (presumably small) deviation of the “macroscopic” order parameter

λ from the “microscopic” order parameter L(∇u), and with ρ > 0 a (small) regularization

parameter preventing large spatial variations of volume fractions (measured in terms of

the order parameters L’s) but still admitting sharp interfaces in ∇u. For the special case

n = L = 1 and L : (x,A) 7→ A, the stored energy (2.18) indeed coincides with Ericksen-

Timoshenko beam,
√
ε2ρ being identified as an internal length scale in [ReTr00, RoTr97].

Thus, (2.18) can be viewed as the generalization of the Ericksen-Timoshenko model.

Passing ε1 → 0, we arrive at the relaxed potential Vε2(u, ν, λ) :=
∫

Ω

(
ϕ •ν + 1

ε2
|λ −

L •ν|2+ ρ|∇λ|2
)
dx+

∫

Γ
(α·u)2dS and, passing furthermore ε2 → 0 to push the difference

λ− L •ν penalized in L2(Ω;RL)-norm to zero, we eventually obtain (2.17) together with

the constraint λ = L •ν involved in (2.14).

2.3. Solution processes and their energetics. Considering the external load f to

vary within a fixed time interval, say [0, T ], we can naturally expect the response q(t) to

vary with t ∈ [0, T ]. The delicate point is to define the solution process in such a way

which would meet the desired energetics and is still amenable to a rigorous analysis.
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As now f : [0, T ]×Γ→ R, we shall write F : [0, T ]×Q→ R defined by

F (t, q) ≡ F (t, u, ν, λ) :=
〈
f(t, ·), u

〉
=

∫

Γ

f(t, x) · u(x)dS;(2.19)

as usual, we identified f(t, ·) with a linear functional on W1,p(Ω;Rn).

We assume that F is smooth as a function of time; namely in terms of f :

f ∈W1,1(0, T ; Lγ(Γ;Rn));(2.20)

recall that γ ≥ (np − p)/(np − n) for p < n or simply γ = 1 for p ≥ n. Then, naturally,

we will write

∂F

∂t
(t, q) :=

∫

Γ

∂f

∂t
(t, x) · u(x)dS.(2.21)

Furthermore, let us abbreviate the Gibbs stored energy by

G(t, q) := V (q)− F (t, q).(2.22)

The modeling of rate-independent processes is based on the assumption that the scale

of the macroscopic processes enforced by the external loading varying with the (process)

time t, is much slower than any internal time scale due to internal viscous effects. Hence,

for each time the system is in a relaxed and hence stable state. Of course, stability

here must include the rate-independent frictional-type forces modeled via the dissipation

semi-distance (2.15). At time t, we define the stability set, i.e. the set of stable states, by

S(t) :=
{
q ∈ Q; ∀q̃ ∈ Q : G(t, q) ≤ G(t, q̃) +R(q, q̃)

}
.(2.23)

We impose a global stability: we consider a state q stable if and only if q ∈ S(t), i.e. the
gain of Gibbs’ energy G(t, q)−G(t, q̃) at any other state q̃ is not larger than the dissipation

R(q, q̃); cf. [MTL02] for a discussion.

We will denote by S : [0, T ] →→ Q the set-valued mapping t 7→ S(t). The following

structural assertion is essential to the theory, cf. also [MiTh01].

Proposition 2.7. Let (2.2), (2.3) and (2.20) hold. Consider a sequence (tk, qk) with tk →
t, qk → q weakly* in W1,p(Ω;Rn)×L∞

w (Ω; rca(Rn×n))×W1,2(Ω;RL) and qk ∈ S(tk). Then,
(i) q ∈ S(t) (i.e., the graph of the set-valued map S is (sequentially) weakly* closed)

(ii) G(tk, qk)→ G(t, q) for k →∞.

Proof. Using νk → ν weakly* in L∞
w (Ω; rca(Rn×n)) and lim inf |A|→∞ ϕ(x,A) ≥ 0 (due to

(2.2)), we can claim that lim infk→∞

∫

Ω
ϕ •νk dx ≥

∫

Ω
ϕ •ν dx. (In fact, by arguments we

use later, it even holds limk→∞

∫

Ω
ϕ •νk dx =

∫

Ω
ϕ •ν dx.) Using further the weak lower

semicontinuity of the quadratic terms in V , we have

lim inf
k→∞

V (qk) = lim inf
k→∞

∫

Ω

ϕ •νk + |∇λk|2dx+

∫

Γ

(α · uk)2dS(2.24)

≥
∫

Ω

ϕ •ν + |∇λ|2dx+

∫

Γ

(α · u)2dS = V (q).

By (2.20) we have f ∈ C
(
[0, T ]; Lγ(Γ;Rn)

)
, hence F (tk, qk) =

∫

Γ
f(tk, x) · uk(x) dS →∫

Γ
f(t, x) · u(x)dS = F (t, q). Altogether, we have obtain the lower semicontinuity

G(t, q) ≤ lim inf
k→∞

G(tk, qk)(2.25)
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Second, we have also limk→∞R(qk, q̃) = R(q, q̃) for any q̃ ∈ Q because, by (2.15) and by

the triangle inequality (2.16), we have

∣
∣R(qk, q̃)−R(q, q̃)

∣
∣ ≤ R(qk, q) =

∫

Ω

%(λk, λ)dx = ‖λk − λ‖L1(Ω;RL) → 0(2.26)

if RL is equipped with the norm | · |L; of course, in (2.26) we used the compact embedding

W1,2(Ω;RL) ⊂ L1(Ω;RL).

Thus, starting from qk ∈ S(tk) and using both (2.25) and (2.26), we have

G(t, q) ≤ lim inf
k→∞

G(tk, qk) ≤ lim
k→∞

G(tk, q̃) +R(qk, q̃) = G(t, q̃) +R(q, q̃).(2.27)

Inserting q̃ = q we obtain (ii) since all “≤” must be equalities, which implies that the

“lim inf” is a limit (by using a contradiction argument).

Since q̃ ∈ Q was arbitrary in (2.27), to conclude that q ∈ S(t) it remains to show that

q ∈ Q. For this, we will prove an a-priori estimate for | · |p •νk. Using (2.2), we find

∫

Ω

∫

Rn×n

|A|p[νk]x(dA)dx ≤ meas(Ω)(2.28)

+c−10

∫

Ω

∫

Rn×n

ϕ(x,A)[νk]x(dA)dx ≤ meas(Ω) + c−10 V (qk),

From the assumption qk ∈ S(tk) by using the definition (2.23) with q̃ = (0, {δ0}, λ̃) ∈ Q

(hence inevitably λ̃(x) = L(x, 0)), we obtain the estimate

V (qk) ≤ G(tk, qk) + F (tk, qk)(2.29)

≤
∫

Ω

ϕ(x, 0) + |λk(x)− L(x, 0)|Ldx+

∫

Γ

f(tk, x) · uk(x)dS.

Realizing that λk → λ in L1(Ω;RL) and, again due to (2.20), f(tk, ·)→ f(t, ·) in Lγ(Γ;Rn),

from (2.28) and (2.29) we can see that

sup
k∈N

∫

Ω

∫

Rn×n

|A|p[νk]x(dA)dx < +∞.(2.30)

As λk = L •νk and ∇uk = Id •νk, by [Bal89] we find in the limit λ = L •ν and ∇ = Id •ν

because these relations are linear and thus conserved under weak* limits; here we used

the estimate (2.30) and that the growth of both Id(x, ·) and L(x, ·) is less than p-power.
In view of the definition (2.14) of Q, we have still to show ν ∈ Gp(Ω;Rn×n). Based on

(2.30) and on an explicit construction of gradient Young measures with “nonconcentrat-

ing energy” [Kri94, FMP98], this requires a rather fine technique and is outlined in the

Appendix in Lemma 4.3. ¤

Definition 2.8. We say that a process q : [0, T ]→ Q : t 7→ q(t) is stable if q(t) ∈ S(t) for

all t ∈ [0, T ] (for S see (2.23)), i.e.

∀ t∈ [0, T ] ∀q̃ ∈ Q : G
(
t, q(t)

)
≤ G(t, q̃) +R

(
q(t), q̃

)
.(2.31)
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Furthermore, we say that the process q : [0, T ] → Q satisfies the energy inequality if, for

all s, t ∈ [0, T ], s ≤ t, it holds

G
(
t, q(t)

)

︸ ︷︷ ︸

Gibbs’s energy
at time t

+ Var(q; s, t)
︸ ︷︷ ︸

dissipated
energy

≤ G
(
s, q(s)

)

︸ ︷︷ ︸

Gibbs’ ener-
gy at time s

−
∫ t

s

∂F

∂θ

(
θ, q(θ)

)
dθ

︸ ︷︷ ︸

reduced work
of external load

,(2.32)

where the total variation of the process q over the time interval [s, t] (with respect to the

semidistance R) is defined standardly, without using explicitly any time derivative, as

Var(q; s, t) := sup
I∑

i=1

R
(
q(ti−1), q(ti)

)
,(2.33)

where the supremum is taken over all I ∈ N and over all partitions of [s, t] in the form

s = t0 < t1 < ... < tI−1 < tI = t. In particular, (2.32) requires the mapping [0, T ] → R :

t 7→ ∂
∂t
F (t, q(t)) measurable.

We will address an initial-value problem, hence we should consider a prescribed initial

condition q0 satisfying

q0∈Q and G(0, q0) ≤ G(0, q̃) +R(q0, q̃) ∀q̃∈Q.(2.34)

In view of (2.23), this assumption simply says that q0 ∈ S(0), i.e. the initial state is stable.
Note that it implies, in particular, that V (q0) < +∞; cf. also Remark 3.2 below.

Therefore, the quantities we play with are the stored energy V , the dissipative (semi-)

distance R, the external loading F , and the initial condition q0. In view of this, we will

speak about a problem (V,R, F, q0) and define the notion of its solution like in [Mie03,

MiTh01, MTL02, The02]. Let us agree to understand the space BV([0, T ];Z) of functions

with bounded variations as containing measurable functions defined everywhere on [0, T ],

and normed by ‖z‖BV([0,T ];Z) := ‖z‖L1(0,T ;Z) + Var(z; 0, T ) with “Var” defined like (2.33)

but with ‖ · − · ‖Z instead of R(·, ·).
Definition 2.9. The process q : [0, T ] → Q : t 7→ q(t) will be considered as a solution to

the problem (V,R, F, q0) if

1) u ∈ L∞(0, T ;W1,p(Ω;Rn)) and λ ∈ BV([0, T ];L1(Ω;RL)),

2) q(t) ∈ Q for all t ∈ [0, T ],

3) it is stable in the sense (2.31), and

4) it satisfies the energy inequality (2.32) for all s, t ∈ [0, T ] with s ≤ t,

5) q(0) = q0.

Remark 2.10. By the “reduced work” in (2.32) we mean (up to a sign) the usual work,

i.e.
∫ t

s

〈
f, du

dθ

〉
dθ, but reduced by F (s, q(s))−F (t, q(t)) which is just the difference between

the Gibbs’ and Helmholtz’ energy at times s and t.

3. Existence via time discretization

We will prove the existence of a response q with the above mentioned properties rather

constructively by a semi-discretization in time, using the fully implicit (backward) Euler

scheme; also, this is often called Rothe’s method. This also suggests implementable
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numerical approach after further spatial discretization like in [AFO02, RoKr98]. For

simplicity, let us consider an equi-distant partition of the time interval [0, T ] with a time

step τ > 0, assuming T/τ integer, and assume τ → 0 in such a way that the equi-distant

partitions will be nested; for example, the reader can think about a sequence of time steps

τ = 2−kT for k ∈ N.

Then we put q0τ = q0, a given initial condition, and, for k = 1, ..., T/τ we define qkτ
recursively as a solution of the time-incremental minimization problem

{

Minimize V (q) +R(qk−1τ , q)− F (kτ, q)

subject to q ≡ (u, ν, λ)∈Q ,
(3.1)

where Q is from (2.14), V is from (2.17), R from (2.15), and F from (2.19). If a so-

lution (i.e. a global minimizer) to (3.1) is not unique, we just take an arbitrary one for

qkτ . Then we define the piecewise constant interpolation qτ ∈ L∞
(
0, T ;W1,p(Ω;Rn) ×

L∞
w (Ω; rca(Rn×n)) × L∞(Ω;RL)

)
so that qτ |((k−1)τ,kτ ] = qkτ for k = 1, ..., T/τ . Likewise,

Fτ will denote the piecewise constant interpolation so that Fτ (t, q) := Fτ (kτ, q) for any

q ∈ Q and t ∈ ((k−1)τ, kτ ]. Moreover, we define naturally the piece-wise constant ap-

proximation of Gibbs’ enegry by

Gτ (t, q) := V (q)− Fτ (t, q).(3.2)

Proposition 3.1. Let (2.2), (2.3), (2.20), and (2.34) hold. Then qτ “constructed” re-

cursively by (3.1) does exist and this qτ is stable in the sense of Definition 2.8 with Gτ

taken instead of G, i.e.

∀q̃ ∈ Q : Gτ

(
t, qτ (t)

)
≤ Gτ (t, q̃) +R

(
qτ (t), q̃

)
(3.3)

for all t ∈ [0, T ], and satisfies the two-side approximate energy inequality

−
∫ t2

t1

∂F

∂t

(
t, qτ (t)

)
dt ≤ G

(
t2, qτ (t2)

)
+Var(qτ ; t1, t2)(3.4)

−G
(
t1, qτ (t1)

)
≤ −

∫ t2

t1

∂F

∂t

(
t, qτ (t−τ)

)
dt,

for all t1 ≤ t2 from the set {kτ}T/τk=0, where naturally qτ (t) := q0 for t < 0. Also, the

following a-priori estimates hold:

‖uτ‖L∞(0,T ;W1,p(Ω;Rn)) ≤ C1,(3.5)

‖(1⊗ | · |p) •ντ‖L∞(0,T ;L1(Ω)) ≤ C2,(3.6)

‖λτ‖L∞(0,T ;W1,2 (Ω;RL)∩L∞(Ω;RL))∩BV([0,T ];L1 (Ω;RL)) ≤ C3,(3.7)

‖Gτ‖BV([0,T ]) ≤ C4 where Gτ (t) := Gτ

(
t, qτ (t)

)
.(3.8)

Remark 3.2. If the initial condition q0 ∈ Q has just finite energy, i.e. V (q0) < +∞,

instead of being stable as in (2.34), we would get only the second estimate in (3.4) while

the first one could obviously break down for t1 = 0.

Proof. The existence of a solution to (3.1) is demonstrated in Lemma 4.2 in Appendix

below.
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Let us abbreviate F k
τ (q) := F (kτ, q) and Gk

τ (q) := G(kτ, q). As in [MTL02, Thm.3.4],

by using successively (3.1) and (2.16), we derive stability from the minimization property

of qkτ in (3.1) and the triangle inequality:

V (qkτ ) ≤ V (q̃) +R(qk−1τ , q̃)−R(qk−1τ , qkτ )− F k
τ (q̃) + F k

τ (q
k
τ )(3.9)

≤ V (q̃) +R(qkτ , q̃)− F k
τ (q̃) + F k

τ (q
k
τ )

for any k = 1, ..., T/τ . In view of the definition of qτ and Fτ , it just means that (3.3)

holds for all t ∈ (0, T ]. For t = 0, stability is assumed in (2.34).

Moreover, consider 0 ≤ k1 ≤ k2 ≤ T/τ , and t1 = k1τ , t2 = k2τ . As in [MTL02,

Formula (2.13)], we can test the first inequality in (3.9) by q̃ = qk−1τ ∈ Q, and sum it for

all k = k1, ..., k2. After a small re-arrangement, it gives

Gk2
τ (qk2

τ )−Gk1
τ (qk1

τ ) +

k2∑

k=k1

R(qkτ , q
k−1
τ ) ≤

k2−1∑

k=k1

F k
τ (q

k
τ )− F k+1

τ (qkτ )(3.10)

= −
∫ t2

t1

∂Fτ
∂t

(
t, qτ (t− τ)

)
dt.

As qτ is piecewise constant and jumps only at t = τ, 2τ, ..., we have a simple explicit

formula for its variation, namely

Var(qτ ; t1, t2) =

k2∑

k=k1

R(qkτ , q
k−1
τ ).(3.11)

In particular, from (3.10) we get the second inequality in the two-side estimate (3.4).

Using (3.9) to express the stability of qk−1τ with respect to qkτ , we find

V (qkτ )− F k
τ (q

k
τ ) +R(qk−1τ , qkτ )− V (qk−1τ )− F k

τ (q
k−1
τ ) ≥ F k−1

τ (qkτ )− F k
τ (q

k
τ ).(3.12)

Note that, for k = 1, we use the assumption (2.34). Summing up (3.12) for k = k1, ..., k2,

we obtain

V (qk2
τ ) − F k2

τ (qk2
τ )− V (qk1

τ )− F k1
τ (qk1

τ ) +

k2∑

k=k1

R(qk−1τ , qkτ )(3.13)

≥
k2−1∑

k=k1

F k
τ (q

k+1
τ )− F k+1

τ (qk+1τ ) =

∫ t2

t1

−∂Fτ
∂t

(
t, qτ (t)

)
dt ,

which gives the first inequality in (3.4).

From the coercivity (2.4), for any q = (u, ν, λ) ∈ Q, we obtain the estimate

ε‖u‖pW1,p(Ω;Rn) ≤
∫

Ω

ϕqc(x,∇u)dx+

∫

Γ

(α · u)2dS + ε−1(3.14)

=

∫

Ω

ϕ •ν dx+

∫

Γ

(α · u)2dS + ε−1

≤
∫

Ω

ϕ •ν + ρ|∇λ|2dx+

∫

Γ

(α · u)2dS + ε−1 = V (q) + ε−1.
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Using (3.14) for q = qkτ and also (3.10) for k1 = 0 and written in u-component, we obtain

ε‖uk2
τ ‖pW1,p(Ω;Rn) ≤

∫

Γ

(

fk2
τ · uk2

τ +

k2−1∑

k=0

(fkτ − fk+1τ ) · ukτ
)

dS + C0(3.15)

with a constant C0 depending on q0 and on ‖f(0)‖Lγ(Γ;Rn) only. Using the short-hand

Uτ = maxk=1,...,T/τ ‖ukτ‖W1,p(Ω;Rn), we find

εUp
τ ≤

(

max
t∈[0,T ]

‖f(t, ·)‖Lγ(Γ;Rn) +

∫ T

0

∥
∥
∥
∂f

∂t
(t, ·)

∥
∥
∥
Lγ(Γ;Rn)

dt
)

Uτ + C0,(3.16)

which gives (3.5) when using (2.20), i.e. f ∈ W1,1(0, T ; Lγ(Γ;Rn)). Now we can see that

the right-hand side of (3.10) written for k1 = 0 is a-priori bounded independently of k2,

hence Gk2
τ (qk2

τ ) is a-priori bounded, and thus V (qk2
τ ), too. Using (2.28), we arrive at (3.6).

Improving (3.14), cf. (2.17), to get even ε‖u‖pW1,p(Ω;Rn) + %‖λ‖2W1,2(Ω;RL) ≤ V (q) + ε−1, we

obtain the L∞-part of (3.7); realize that always λτ (t, x) ∈ ∆L which is bounded in RL.

Furthermore, the R-term in (3.10) gives the remaining BV-estimate in (3.7) if (3.11) is

taken into account.

Finally, using (3.10) for k2 = k and k1 = k − 1 and (3.12), we find

|Gk
τ (q

k
τ )−Gk−1

τ (qk−1τ )| ≤ R(qkτ , q
k−1
τ )(3.17)

+max
(
|F k

τ (q
k−1
τ )− F k−1

τ (qk−1τ )| , |F k
τ (q

k
τ )− F k−1

τ (qkτ )|
)

for k = 1, ..., T/τ . Due to the already proved estimate (3.5), the BV-estimate in (3.7)

and due to assumption (2.20) of F , the right-hand side of (3.17) is boundedly summable,

which eventually gives (3.8). ¤

Now, we want to use and modify the results from [MiTh01, MTL02] to investigate the

convergence of the processes qτ (·) for τ → 0. For this, it seems inevitable to require

that the dissipative mechanism described by L is sufficiently strong (with respect to the

loading regime F and the geometry of Ω) in the sense that

∀t ∈ [0, T ] ∀qi = (ui, νi, λi) ∈ S(t) : λ1 = λ̃2 ⇒ u1 = ũ2.(3.18)

This can equally be formulated as

∀t ∈ [0, T ] ∀q = (u, ν, λ) ∈ S(t) ∀q̃ = (ũ, ν̃, λ) ∈ Q :(3.19)

ũ 6= u ⇒ G(t, q̃) > G(t, q).

Note that (3.18) thus requires uniqueness of the u-component of the minimizer of the

relaxed problem (2.8) augmented by the (compatible) constraint L •ν = λ. Realizing the

coercivity of R from (2.15), it prevents variation of macroscopic displacement u without

changing the stored energy and without dissipating any energy. This seems a reasonable

requirement in real experiments with (or applications of) SMAs if one counts, of course,

fixing the body by the elastic support on Γ to prevent rigid-body motions. In particular,

the condition (3.18) excludes buckling-type response on a given load regime.

Based on Proposition 2.7, we obtain the following auxiliary result.

Proposition 3.3. Let (3.18) hold and let qk = (uk, νk, λk) ∈ S(tk) with tk → t and

λk → λ weakly in W1,2(Ω;RL). Then, uk → u weakly in W1,p(Ω;Rn).
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Proof. Using (3.14) written for q = qk and (2.28), we can see that {uk}k∈N is bounded in

W1,p(Ω;Rn). Hence, up to a subsequence, we can assume uk → u and νk → ν weakly*

in W1,p(Ω;Rn) and in L∞
w (Ω; rca(Rn×n)), respectively. By Proposition 2.7, q = (u, ν, λ) ∈

S(t), and by (3.18) this limit u (contrary, in general, to ν!) is determined uniquely. Hence

even the whole sequence {uk}k∈N converges to it. ¤

Let us recall the concept of a net from general topology. A set Ξ is called directed by

an ordering “¹” if, for any ξ1, ξ2 ∈ Ξ, there is ξ3 ∈ Ξ such that both ξ1 ¹ ξ3 and ξ2 ¹ ξ3.

A subset A of a directed set Ξ is called cofinal if for any ξ1 ∈ Ξ there is ξ2 ∈ A such that

ξ1 ¹ ξ2. Having a directed set Ξ and another set X, we say that {xξ}ξ∈Ξ is a net in X if

there is a mapping Ξ → X : ξ 7→ xξ. If X is a topological space, we write x = limξ∈Ξ xξ
if, for any neighbourhood N of x there is ξ0 ∈ Ξ such that xξ ∈ N whenever ξ0 ¹ ξ, and

then we say that the net {xξ}ξ∈Ξ converges to x (in the so-called Moore-Smith sense).

Having another net {x̃ξ̃}ξ̃∈Ξ̃ in X, we say that this net is finer than the net {xξ}ξ∈Ξ if

there is a mapping j : Ξ̃→ Ξ such that, for any ξ̃ ∈ Ξ̃, it holds x̃ξ̃ = xj(ξ̃) and moreover,

for any ξ ∈ Ξ there is ξ̃ ∈ Ξ̃ large enough so that j(ξ̃1) º ξ whenever ξ̃1 º ξ̃. For example,

every non-decreasing mapping j : Ξ̃ → Ξ such that j(Ξ̃) is cofinal in Ξ produces a finer

net by putting x̃ξ̃ = xj(ξ̃). Obviously, a finer net may have an index set of strictly greater

cardinality than the original net. Compact sets are characterized by the property that

every net posseses a finer net that converges. We use Ξ ⊂ N (ordered standardly, hence

a net indexed by Ξ is called a sequence) and Ξ̃ ⊂ {finite subsets of [0, T ]} ordered by

inclusion. Note that Ξ̃ is indeed directed by this way.

Theorem 3.4. [Convergence and existence]

Let the assumptions of Proposition 3.1 and together with (3.18) be valid. Then there are

a net {qτξ}ξ∈Ξ, finer than the sequence {qτ}τ=T/2k, k∈N and such that limξ∈Ξ τξ = 0, and a

process q : [0, T ]→W1,p(Ω;Rn)×Yp(Ω;Rn×n)×W1,2(Ω;RL) : t 7→ q(t) =
(
u(t), ν(t), λ(t)

)

such that:

(i) w-limξ∈Ξ uτξ(t) = u(t) (weak convergence in W1,p(Ω;Rn)) for all t ∈ [0, T ], and

u ∈ L∞(0, T,W1,p(Ω;Rn))

(ii) w∗-limξ∈Ξ ντξ(t) = ν(t) (weak* convergence in L∞
w (Ω; rca(Rn×n)) for all t ∈ [0, T ],

(iii) w∗-limξ∈Ξ λτξ(t) = λ(t) (weak* convergence in L∞(Ω;RL) ∩ W1,2(Ω;RL)) for all

t ∈ [0, T ], and λ ∈ BV([0, T ];L1(Ω;RL)),

(iv) limξ∈ΞGτξ(t, qτξ(t)) = G(t, q(t)) for all t ∈ [0, T ].

Moreover, every q : [0, T ] → Q obtained as such a limit is a solution process according

to Definition 2.9, in particular u and λ are measurable, ν(t) ∈ Gp(Ω;Rn×n), ∇u(t) =

Id •ν(t), λ(t) = L •ν(t) for all t ∈ [0, T ], and the energy equality holds for all s, t ∈ [0, T ]

with s < t:

(3.20) G(t, q(t)) + Var(q, [s, t]) = G(s, q(s))−
∫ t

s

∂F

∂t
(θ, q(θ))dθ.

Proof. For clarity, let us divide it into six steps.

Step 1: The point (iii) sequentially. By the a-priori estimates (3.5) and (3.7) and by a slight

modification of Helly’s theorem [MTL02, Cor.2.8], we can select a subsequence, indexed for

simplicity again by τ , such that uτ → u weakly* in L∞(0, T,W1,p(Ω;Rn)) and λτ (t)→ λ(t)

weakly in W1,2(Ω;RL) for any t ∈ [0, T ], and this limit λ is measurable and belongs to
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BV([0, T ];L1(Ω;RL)). The a-priori estimate of λτ (t) in L
∞(Ω;RL)∩W1,2(Ω;RL), cf. (3.7),

then gives the mode of convergence claimed in the point (iii). Besides, we can assume

that we selected the subsequence in such a way that also the approximate Gibbs energy

Gτ , see Proposition 3.1, converges pointwise to some G ∈ BV([0, T ]).

Step 2: The point (i) sequentially. Fixing t, we already know that λτ (t)→ λ(t) weakly in

W1,2(Ω;RL). By (2.31) and in view of the definition of Gτ , we can write qτ (t) ∈ S(ϑ(t, τ))
for some ϑ(t, τ) ∈ [t, T ] such that limτ→0 ϑ(t, τ) = t; in fact, ϑ(t, τ) is mink∈N∪{0}{kτ ≥ t}.
Then we can use readily Proposition 3.3 to get the claim (i) for the subsequence selected

already in Step 1.

Step 3: The point (ii). The set L∞
w

(
Ω; rca(Rn×n)

) ∼= L1
(
Ω;C0(Rn×n)

)∗
endowed by the

weak* topology is a metrizable compact set. ThenX := L∞
w

(
Ω; rca(Rn×n)

)[0,T ]
endowed by

the standard product topology is, by the famous Tikhonov’s theorem, compact (although

not metrizable since the index set [0, T ] is uncountable). Considering ντ ≡ {ντ (t)}t∈[0,T ]
as an element of X, there is a finer net, denoted by {qτξ}ξ∈Ξ, such that {ντξ}ξ∈Ξ converges

in X. Let ν ≡ {ν(t)}t∈[0,T ] denotes its limit. Thus, we obtain the convergence claimed at

the point (ii), while the others at the points (i) and (iii) are preserved for this finer net,

too. Hence, altogether, w*-limξ∈Ξ qτξ(t) = q(t).

Step 4: q(t) ∈ S(t) for all t and the point (iv). Let us fix t. When endowed with the weak*

topology, bounded sets in W1,p(Ω;Rn)×L∞
w (Ω; rca(Rn×n))×W1,2(Ω;RL) are metrizable

and therefore we can, for a moment, consider a sequence {qτξk (t)}k∈N, not necessarily

finer than {qτξ(t)}ξ∈Ξ, that anyhow converges to q(t) weakly*. Using qτ (t) ∈ S(ϑ(t, τ))

with ϑ(·, ·) as in Step 2 and Proposition 2.7, we can see that q(t) ∈ S(t). In particular,

we thus proved λ(t) = L •ν(t), ∇u(t) = Id •ν(t), and ν(t) ∈ Gp(Ω;Rn×n). Realizing

Gτ (t, qτ (t)) → G(t, q(t)), like in (2.27), we find G(t, q(t)) ≤ G(t) ≤ G(t, q̃) + R(q(t), q̃).

As we just proved q(t) ∈ Q, we can choose q̃ = q(t), which results to G(t, q(t)) = G(t).

Hence the point (iv) has been proved, too.

Step 5: The energy (in)equality (2.32) almost everywhere. One can pass to the limit

in (3.4) considered with t1 = 0 and t2 = t with t being some grid-point belonging

to some partition of [0, T ] so that (3.4) is at our disposal for each finer partition (for

the limit passage, we will therefore consider only those partitions, i.e. with τ small

enough with respect to these t). Note that the set of such t’s is dense in [0, T ]. We

use limξ∈ΞGτξ(t, qτξ(t)) = G(t, q(t)) proved in Step 4., and similarly for s in place of t.

From the pointwise converge of λτξ(·) and from the definition (2.33) of Var( · ; 0, t), we
find lim infξ∈ΞVar(qτξ ; 0, t) ≥ Var(q; 0, t). Moreover,

lim
ξ∈Ξ

∫ t

0

Fτξ
(
θ, qτξ(θ)

)
dθ = lim

ξ∈Ξ

∫

[0,t]×Γ

fτξ(θ, x)uτξ(θ, x)dS dθ(3.21)

=

∫

[0,t]×Γ

f(θ, x)u(θ, x)dS dθ =

∫ t

0

F
(
θ, q(θ)

)
dθ

with fτ denoting naturally the piecewise constant approximation of f inducing the approx-

imation Fτ . By (2.20), ‖f−fτ‖L1(0,T ;Lγ(Γ;Rn)) = O(τ) giving (3.21), since, by the already

proved point (i) and by the continuity of the trace operator u 7→ u|Γ : W1,p(Ω;Rn) →
Lγ/(γ−1)(Γ;Rn)), we also have uτ |[0,T ]×Γ → u|[0,T ]×Γ weakly* in L∞(0, T ; Lγ/(γ−1)(Γ;Rn)).
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Hence, the reduced work of the external forces
∫ t

0
∂
∂t
F (θ, qτ (θ−τ)) dθ, occuring on the

right-hand side of (3.4) converges to the same limit as
∫ t

0
∂
∂t
F (θ, qτ (θ))dθ occuring on the

left-hand side of (3.4), i.e. to
∫ t

0
∂
∂t
F (θ, q(θ)) dθ by similar argument as already used for

(3.21); here we need that the shifted uτ (· − τ) has the same weak* limit as uτ , which can

quite easily be proved by testing it by functions of type χ[kτ,lτ ](t)g which forms a dense

subset in L1([0, T ] × Ω;Rn). This holds for any finer net, too. Then, we can pass to the

limit in both inequalities in (3.4) with t1 = 0 and t2 = t, proving thus

m(t) := G
(
t, q(t)

)
−G

(
0, q(0)

)
+Var(q; 0, t)−

∫ t

0

∂F

∂θ

(
θ, q(θ)

)
dθ = 0(3.22)

at each t of the form kτ ∈ [0, T ], k = 1, ..., T/τ , τ from the considered sequence of time

steps. The (only countable) set of such t’s is dense in [0, T ] and thus (3.22) must hold

also at each t ∈ [0, T ] at which all functions involved in (3.22) are continuous. Since

all functions have a bounded variations, they are continuous with the exception of at

most countable number of points. Hence, (3.22) holds everywhere on [0, T ] with the only

exception of at most countable number of points.

Step 6: The energy (in)equality (2.32) everywhere. As λ is a BV-mapping, it possesses lim-

its from the left and from the limits at each t ∈ [0, T ], in particular at a point ϑ where some

function involved in (3.22) is not continuous. Denote λ−(ϑ) := limt↗ϑ λ(t) and λ
+(ϑ) :=

limt↘ϑ λ(t). By Proposition 3.3, there are also weak limits u−(ϑ) :=w*-limt↗ϑ u(t) and

u+(ϑ) :=w*-limt↘ϑ u(t). By a-priori estimate (3.6) we can assume (for a subsequence

of t’s) that also the limits of ν’s do exists, so that altogether we have q+(ϑ) =w*-

limt↘ϑ q(t) and q
−(ϑ) =w*-limt↗ϑ q(t). Furthermore, put G−(ϑ) := limt↗ϑG(t, q(t)) and

G+(ϑ) := limt↘ϑG(t, q(t)); in fact, these limits exists even without selecting a subse-

quence as the Gibbs energy has a bounded variation. From Proposition 3.3(ii) we know

G+(ϑ) = G
(
ϑ, q+(ϑ)

)
and G−(ϑ) = G

(
ϑ, q−(ϑ)

)
.(3.23)

As we have proved q(ϑ) ∈ S(ϑ) in Step 4, putting q̃ := q+(ϑ) into (2.31) written, of

course, for t = ϑ, we obtain

G
(
ϑ, q(ϑ)

)
≤ G

(
ϑ, q+(ϑ)

)
+R

(
q(ϑ), q+(ϑ)

)
.(3.24)

Likewise, by Proposition 2.7 also q−(ϑ) ∈ S(ϑ) and thus, together with (3.24),

G−(ϑ) = G
(
ϑ, q−(ϑ)

)
≤ G

(
ϑ, q(ϑ)

)
+R

(
q−(ϑ), q(ϑ)

)
(3.25)

≤ G+(ϑ) +R
(
q−(ϑ), q(ϑ)

)
+R

(
q(ϑ), q+(ϑ)

)
.

By definition (2.33), we have Var(q; s, t) = Var(q; s, ϑ) + Var(q;ϑ, t) for s < ϑ < t.

Moreover, lims↗ϑVar(q; s, ϑ) = R(q−(ϑ), q(ϑ)) and limt↘ϑVar(q;ϑ, t) = R(q(ϑ), q+(ϑ)).

Passing to the limit in (3.22) and using (3.23) we obtain

G+(ϑ)−G−(ϑ) +R
(
q−(ϑ), q(ϑ)

)
+R

(
q(ϑ), q+(ϑ)

)
= 0,(3.26)

which shows that (3.25) and hence (3.24) are in fact equalities. For ϑ > 0 we find

m(ϑ)− lim
s↗ϑ

m(t) = G
(
ϑ, q(ϑ)

)
−G−(ϑ) +R

(
q−(ϑ), q(ϑ)

)
= 0.
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Hence m(s, ·) is proved to be continuous from the left. Similarly, we find

lim
t↘ϑ

m(t)−m(ϑ) = G+(ϑ)−G(ϑ, q(ϑ)) +R(q(ϑ), q+(ϑ)) = 0,

which is continuity from the right. Together with (3.22) we conclude m(t) = 0 for all

t ∈ [0, T ]. However, the claimed energy equality (3.20) is equivalent to m(t) = m(s) and

thus is established. ¤

Remark 3.5. (Sequential approach.) One might be tempted to formulate more conven-

tionally (and explicitly) Theorem 3.4 in terms of sequences and to obtain measurability

of ν in time, too. This attempt, however, brings the following trouble. From a weak*

convergence ντ → ν ≡ {νt,x}(t,x)∈[0,T ]×Ω in L∞
w ([0, T ] × Ω; rca(Rn×n)), one cannot deduce

convergence of ντ (t) for a.a. t. To show that ν(t) ∈ Gp(Ω;Rn×n), by Kinderlehrer and

Pedregal’s results [KiPe91, KiPe94], one must ultimately show Jensen’s inequality

∀v∈C(p)(Rn×n) quasiconvex, nonnegative(3.27)
∫

Rn×n

v(A)νt,x(dA) ≥ v(Id •νt,x) = v
(
∇u(t, x)

)
,

for a.a. (t, x) ∈ [0, T ]× Ω, cf. the definition (2.5). As ντ (t) ∈ Gp(Ω;Rn×n) for all t∈[0, T ],
(3.27) holds with ντ and uτ in place of ν and u, respectively. In particular, for all O ⊂ Ω

measurable, it holds
∫

O

∫

Rn×n

v(A)
[
ντ
]

t,x
(dA)dx ≥

∫

O

v(∇uτ (t, x))dx(3.28)

for all v∈C(p)(Rn×n) quasiconvex and positive and all t ∈ [0, T ]. Our goal now is to pass

to the limit with τ ↘ 0 but we can rely only on the weak* convergence of ντ → ν if

restricted on a fix interval [t1, t2]. For a.a. t ∈ [0, T ], we know that, by Theorem 3.4(i),

uτ (t) → u(t) weakly. As v ∈ C (p)(Rn×n) is quasiconvex and nonnegative, one has weak

lower semicontinuity of u 7→
∫

O
v(∇u)dx at disposal [KiPe92], i.e.

∀t ∈ [0, T ] : lim inf
τ→0

∫

O

v
(
∇uτ (t, x)

)
dx ≥

∫

O

v
(
∇u(t, x)

)
dx.(3.29)

Then, by (3.28) and (3.29) and by Fatou’s lemma, for all 0 ≤ t1 < t2 ≤ T one can estimate

lim
τ→0

∫ t2

t1

∫

O

∫

Rn×n

v(A)
[
ντ
]

t,x
(dA)dxdt ≥ lim inf

τ→0

∫ t2

t1

∫

O

v
(
∇uτ (t, x)

)
dxdt(3.30)

≥
∫ t2

t1

(

lim inf
τ→0

∫

O

v
(
∇uτ (t, x)

)
dx

)

dt ≥
∫ t2

t1

∫

O

v
(
∇u(t, x)

)
dxdt.

However, then one would still need to estimate the left-hand side in (3.30) from above

by
∫ t2
t1

∫

O

∫

Rn×nv(A)νt,x(dA) dx dt and then (3.27) follows because O, t1 and t2 can vary

arbitrarily. Unfortunately, while just the opposite estimate and the sought estimate for

v with growth less than p are obvious, the proof for a general v ∈ C (p)(Rn×n) would

require a uniform (in t, at least in an integrable sense) nonconcentration of the energy of

a sequence attaining ν(t). This seems difficult.

On the other hand, the possible gain of measurability of ν in time would bring a loss

of the (Moore-Smith) convergence of ντ (t) for all t.
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4. Appendix

Following and modifying [Rou97], we will present a suitable locally compact extension

of W1,p(Ω;Rn). This gives a certain general viewpoint on the problem itself which can be

extended continuously on this extension and offers some fine results needed.

For this, let us take H ⊂ Carp(Ω;Rn×n) a suitable normed, separable, linear space

of some Carathéodory integrands h : Ω×Rn×n → R with p-growth. More in detail,

h : Ω×Rn×n → R is called a Carathéodory integrand if h(x, ·) : Rn×n → R is continuous

for a.a. x ∈ Ω and h(·, A) : Ω→ R is measurable for all A ∈ Rn×n and

Carp(Ω;Rn×n) :=
{

h : Ω×Rn×n → R; Carathéodory,(4.1)

∃a∈L1(Ω) ∃b∈R : |h(x,A)| ≤ a(x) + b|A|p
}

,

which can be normed naturally by putting ‖h‖ := inf ‖a‖L1(Ω) + b where the infimum is

taken over all (a, b) satisfying, for the integrand h in question, the estimate in (4.1). E.g.,

the space

H =
{

(x,A) 7→ a1φ(x,A) + a2|A|p + g1(x)·λ(x,A) + g2(x):A+ h;(4.2)

a1, a2∈R, g1∈L1(Ω;RL), g2∈Lp/(p−1)(Ω;Rn×n), h∈L1
(
Ω;C0(Rn×n)

)}

is separable in Carp(Ω;Rn×n), contains all possible nonlinearities which can appear in our

problem (3.1) or which we need for its analysis, in particular all test-functions for Young

measures, i.e. L1
(
Ω;C0(Rn×n)

)
. The notation in (4.2) is standard: the dot means scalar

product of vectors while g :A means
∑n

i,j=1 hij(x)Aij.

Then we define the embedding jH : W1,p(Ω;Rn) → W1,p(Ω;Rn) × H∗ × L∞(Ω;RL)

by putting jH(u) = (u, iH(∇u),L(∇u)) where iH : Lp(Ω;Rn×n) → H∗ is defined as

h 7→
∫

Ω
h(x,∇u(x)) dx. Taking into account the assumed coercivity of at least one

integrand from H, here e.g. ϕ or 1 ⊗ | · |p, the set of “generalized Young functionals”

Y p
H(Ω;Rn×n), defined as the weak* closure of iH(L

p(Ω;Rn×n)), endowed with the weak*

topology of H∗, is a convex, locally sequentially compact envelope of the Lebesgue space

Lp(Ω;Rn×n); cf. [Rou97]. Moreover, iH is a (norm,weak*)-homeomorphical embedding.

Furthermore, we set

Q̄ := w*-cl jH
(
W1,p(Ω;Rn)

)
=
{

(u, η, λ)∈W1,p(Ω;Rn)×H∗×L∞(Ω;Rl);(4.3)

η∈Gp
H(Ω;R

n×n), Id •η = ∇u ,L •η = λ
}

where the set of “gradient generalized Young functionals” is defined via Gp
H(Ω;Rn×n) :=

{η ∈ Y p
H(Ω;Rn×n); η = w*- limk→∞ iH(∇uk), uk ∈ W1,p(Ω;Rn)}, the “product” Id •η ∈

Lp(Ω;Rn×n) is defined by 〈Id •η, g〉 := 〈η, g:Id〉 for any g ∈ Lp/(p−1)(Ω;Rn×n), and L •η ∈
L∞(Ω;RL) is defined analogously. The extension Q̄ forms a locally sequentially compact

envelope of the Sobolev space W1,p(Ω;Rn). However, Q̄ is not convex for n ≥ 2, which is

the case of our interest. As H from (4.2) contains L1(Ω;C0(Rn×n)), we can consider Q as

a subset of Q̄ because every Lp-Young measure ν determines a functional η ∈ Y p
H(Ω;Rn×n)
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by

〈η, h〉 =
∫

Ω

∫

Rn×n

h(x,A)νx(dA)dx.(4.4)

Conversely, if η is p-nonconcentrating in the sense that η =w*-limk→∞ iH(yk) for some

sequence {yk}k∈N ⊂ Lp(Ω;Rn×n) such that {|yk|p}k∈N is relatively weakly compact in

L1(Ω), then η admits only one ν ∈ Yp(Ω;Rn×n) that determines it by this way; cf. [Rou97]

for more details.

Lemma 4.1. (Kristensen [Kri94], Fonseca, Müller, Pedregal [FMP98], reformulated.)

Any q̄ = (u, η, λ) ∈ Q̄ admits a p-nonconcentrating modification q = (u,
◦
η, λ) ∈ Q̄ in the

sense that
◦
η is p-nonconcentrating and 〈η, h〉 = 〈 ◦η, h〉 for any h ∈ H with growth less than

power p, i.e. lim|A|→∞ ‖h(·, A)‖L∞(Ω)/(1 + |A|p) = 0.

This important assertion is based on a modification on a set with small Lebesgue

measure (in fact, converging to 0) of a sequence {uk}k∈N ∈ W1,p(Ω;Rn) whose gradients

attain η ∈ Gp
H(Ω;Rn×n) such that {|∇uk|p}k∈N is relatively weakly compact in L1(Ω);

this was done in [Kri94, Theorem 3.10] and later, independently and more explicitly,

in [FMP98, Lemma 1.2]. This modified sequence just attains
◦
η and, as Id and L have

certainly a growth strictly less than power p, it holds Id •η = Id •
◦
η and L •η = L •

◦
η.

The problem (3.1) can be continuously extended onto Q̄ by
{

Minimize V̄ (q̄) +R(qk−1τ , q̄)− F (kτ, q̄)

subject to q̄ ≡ (u, η, λ)∈ Q̄ ,
(4.5)

with V̄ (u, η) = 〈η, 1⊗ ϕ〉+ ρ‖∇λ‖2L2(Ω;Rn×L) + ‖α·u‖2L2(Γ;Rn), while R and F are as before

because these functionals act only on λ’s and u’s, respectively.

Lemma 4.2. The extended problem (4.5) has a solution q̄kτ = (ukτ , η
k
τ , λ

k
τ ) and every ηkτ

obtained by this way has an Lp-Young measure representation νkτ ∈ Yp(Ω;Rn×n) in the

sense of (4.4) with ηkτ and νkτ instead of η and ν, respectively, and qkτ = (ukτ , ν
k
τ , λ

k
τ ) solves

(3.1).

Sketch of the proof. Existence of a solution to (4.5), let us denote it by q̄kτ = (ukτ , η
k
τ , λ

k
τ ) ∈

Q̄, follows by standard arguments from the coercivity and weak* lower semicontinuity

of the functional V̄ minimized on the locally compact set {q ∈ Q̄; L •η ∈ W1,2(Ω;RL)}
equipped with the topology projectively induced from the weak* topology of Q̄ and,

via η 7→ L •η, by the weak topology on W1,2(Ω;RL). Here, L •η is naturally defined

by the formula
∫

Ω
(L •η)g dx := 〈η, g·L〉 for all g ∈ L1(Ω;RL). Considering the p-

nonconcentrating modification
◦
η
k

τ of ηkτ from Lemma 4.1, and assuming that ηkτ itself

is not p-nonconcentrating, by the coercivity (2.2) we get 〈ηkτ , ϕ〉 > 〈 ◦ηkτ , ϕ〉 (see [Rou97,

Lemma 4.2.3(ii)]), hence (ukτ ,
◦
ηkτ , λ

k
τ ) is an admissible state for (4.5) yielding a lower energy

than q̄kτ , a contradiction. Hence ηkτ =
◦
ηkτ , so η

k
τ itself is p-nonconcentrating, and therefore

has an (even unique) Lp-Young measure representation νkτ . As Q ⊂ Q̄, q = (ukτ , ν
k
τ , λ

k
τ )

solves (3.1). ¤

Lemma 4.3. Assume the situation in Proposition 2.7, in particular qk → q weakly*,

qk ∈ S(tk), tk → t. Then ν ∈ Gp(Ω;Rn×n).
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Sketch of the proof. Let us consider qk embedded into Q̄ by the formula (4.4) with νk
instead of ν. By estimate (2.30), we can select a subsequence such that qk → q̄ =

(u, η, λ) ∈ Q̄ weakly*. Passing to the limit in qk ∈ S(tk), like (2.27) we obtain V̄ (q̄) −
F (t, q̄) ≤ V̄ (q̃)+R(q̄, q̃)−F (t, q̃) for any q̃ ∈ Q, and thus by continuity even for any q̃ ∈ Q̄.

This is rather trivial due to the definition (2.14) of Q̄ by closure. Fixing λ, we can therefore

see that, in particular, (u, η) minimizes the functional (ũ, η̃) 7→ V̄ (ũ, η̃, λ)−
∫

Γ
f(t, ·)ũdS

over {(ũ, η̃); (ũ, η̃, λ) ∈ Q̄}. Now, again by Lemma 4.1 and by the contradiction argument

as in the proof of Lemma 4.2, we can see that η must be p-nonconcentrating, and therefore

has an (even unique) Lp-Young measure representation ν. By Lemma 4.1, this ν can be

generated by gradients. ¤

Remark 4.4. (Doubly nonlinear inclusion.) Let us mention a relation with an inclusion

of the type (1.2) in the scalar case n = 1. To have a link to [Rou02], we formulate it

in terms of a “reduced” state q = (u, η); our original “full” state is q̄ = (q,Λq) with

Λq := L •η. Thus Λ : W1,p(Ω;Rn) × H∗ → L∞(Ω;RL) is the linear operator which is

adjoint to Λ′ : L1(Ω;RL)→W1,p(Ω;Rn)∗×H : g 7→ (0, g⊗λ). Using the notation R(λ) =
∫

Ω
|λ|L dx (hence R(q̄1, q̄2) ≡ R(u1, η1, λ1, u2, η2, λ2) = R(λ1−λ2)), V(q) := V̄ (q,Λq),

Q :=
{
(u, η)∈W1,p(Ω;Rn)×H∗; η∈Gp

H(Ω;Rn×n), Id •η = ∇u
}
, and 〈F(t), q〉 := F (t, q),

we can formulate the doubly nonlinear inclusion as in [Rou02]:

Λ∗∂R
( d

dt
Λq
)

+ ∂[V + δQ](q) 3 F(t),(4.6)

where ∂ denotes the subdifferential and δQ denotes the indicator function of Q so that

∂δQ(q) is just the normal cone to Q at q.

In [Rou02], q ∈ L∞
w (0, T ;W1,p(Ω;Rn) × H∗) was called a weak solution to (4.6) if

there exist ω ∈ L∞([0, T ] × Ω;RL), z ∈ L∞
w (0, T ;B∗), and µ ∈ vba([0, T ] × Ω;RL) ∼=

L∞([0, T ]×Ω;RL)∗, also the limits limt↘0G(t) = G(0) and limt↗T G(t) = G(T ) with the

Gibbs energy G(t) = V(q(t))−〈F(t), q(t)〉 do exist, Λ′ω+z = F with µ|C([0,T ]×Ω;RL) = Λ d
dt

q

in the sense of distributions, and
∫ T

0

(

〈ξ, v〉 − 〈ω, v〉 −
〈dF

dt
, q
〉)

dt− 〈µ, ξ〉 ≥ G(T )−G(0)(4.7)

for all v ∈ L1([0, T ] × Ω;RL) and ξ ∈ L∞([0, T ] × Ω;RL) such that ξ(t) ∈ ∂R
(
v(t)

)
for

a.a. t ∈ [0, T ], and
∫ T

0

〈z − ξ, q− v〉dt ≥ 0(4.8)

for all v ∈ L1(0, T ;W1,p(Ω;Rn) × H∗) and ξ ∈ L∞
w (0, T ; (W1,p(Ω;Rn) × H∗)∗) such that

ξ(t)∈∂[V + δQ](v(t)) for a.a. t ∈ [0, T ]. In [Rou02], such weak solution has been proved

to exists generically with respect to T , i.e. for a.a. T > 0, and it has been shown (see

[Rou02, Prop.1]) that this weak solution indeed solves (4.6) in a classical sense at least if

G, 〈 d
dt

F, q〉, and µ are absolutely continuous (as functions or as a measure, respectively).

In [Rou02, Proof of Lemma 3] it has further been shown (even for multidimensional but

scalar problems) that, for a.a. t ∈ [0, T ], q(t) minimizes the functional q̃ 7→ V(q̃) −
〈F(t), q̃〉+ ‖Λq̃−L(t)‖L1(Ω;RL) on Q with L(t) = Λq(t) considered fixed, which is just the

stability condition (2.31). Moreover, the energy inequality (2.32) follows from (4.7)–(4.8)
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at least under the above mentioned absolute-continuity assumption; cf. [Rou02, Formula

(3.11)].

The converse relation, i.e. how (2.31)–(2.32) leads to the doubly-nonlinear inclusion of

the type (4.6) has, in a general context, been investigated in [MTL02, Theorem 2.3].

Remark 4.5. (Maximum-dissipation principle.) The dissipation mechanism through the

convex, homogeneous potential R is intimately related with Hill’s maximum-dissipation

principle [Hil48]. In fact, (4.6) can be written as the system of two inclusions: Λ∗ω+∂[V+

δQ](q) 3 F and ω ∈ ∂R( d
dt
Λq). Denoting λ := Λq, the latter relation means equivalently

that 〈ω − z, d
dt
λ− v〉 ≥ 0 for all pairs (z, v) such that z ∈ ∂R(v). In particular, for v = 0

one gets the statement about maximum dissipation:
〈 d

dt
λ, ω

〉

= max
z∈∂R(0)

〈 d

dt
λ, z
〉

.(4.9)

This says that, for the considered volume-fraction rate d
dt
λ, the driving energies ω makes

the dissipation caused by the PTs maximal among all other admissible driving energies,

i.e. those from ∂R(0). In plasticity theory, this maximum-dissipation principle can al-

ternatively be expressed as a normality in the sense that the rate of plastic deformation

belongs to the cone of outward normals to the elasticity domain. Here, this would result

in the observation that the rate d
dt
λ of PTs belongs to the normal cone of the “elasticity

domain” ∂R(0) at the point ω. In particular, (4.9) says that d
dt
λ = 0 (i.e. the volume

fractions do not change) if ω is inside ∂R(0) (i.e. there in not enough stress to activate

PT). Also recall that ∂R is maximal responsive in the sense of [ERR90].
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