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An abstract model of second order elliptic boundary problems in cylindrical domains is
studied from the dynamical point of view. It is proved that under natural assumptions
the essential solutions of such problems can be described in terms of global attractors of
the associated trajectory dynamical systems. It is shown that these attractors may have
an infinite fractal dimension and infinite topological entropy. Moreover, sharp upper and
lower bounds for Kolmogorovs e-entropy of such attractors are given.

§0 INTRODUCTION

Spatial dynamical systems arise as nonlinear elliptic problems on cylindrical domains
where the axial coordinate plays the role of time. The use of dynamical-system methods
in such situations was initiated in [Kir82] where a local center manifold for a semilinear
elliptic equation on a strip was constructed. This method of spatial center—manifold re-
duction, nowadays also called Kirchgéassner reduction, was further developed and applied
in many situations, in particular in nonlinear elasticity and hydrodynamical problems,
see [Mie88,Mie90,loM91,10K92,GrT97]. The special case of elliptic variational prob-
lems was studied in [Mie91] where the Hamiltonian structure of the reduced flow on the
spatial center manifold was obtained.

The use of global ideas from dynamical-systems theory for elliptic problems was
developed in parallel starting with [CMS93,Mi94a,Mi94b]|. The general idea is to intro-
duce an auxiliary elliptic problem in a semi-infinite cylinder Q4 := (0,00) X w (where
(t,z) € Q4), endowed by an additional boundary condition u‘ = ug at t = 0 and
study the ’evolution’ operator

t=0

(0.1) Sy 2 u(0) = u(t),

Typeset by ApS-TEX



where u(t,x) is a bounded solution of this problem, from the dynamical point of view.
Then, as known, if the attractor of (0.1) exists it is generated by all essential solutions
of the initial problem in a complete cylinder {2 = R X w, i.e. by all solutions existing
and bounded on 2. This relation admits to study the ’dynamics’ of essential solutions
investigating the dynamical properties of the evolution operator (0.1) on the attractor.

Unfortunately, a bounded solution of the introduced auxiliary problem usually is not
unique and thus, in general, (0.1) can be rigorously defined only as a semigroup of
multivalued maps. The usage of multivalued maps can be overcome using the so-called
trajectory approach under which one considers the set T of all bounded solutions of
the auxiliary problem, equipped by a suitable topology, as a (trajectory) phase space
for the semi-flow, defined by the translation semigroup (7x)n>0 via

(0.2) (Thu)(t, z) = u(t+h, x) for (t,z) € Qy, h > 0.

If an associated attractor exists it is called the trajectory attractor of the system. If it can
be embedded into a finite—dimensional invariant manifold this manifold is called essen-
tial manifold as it contains all essential solutions, see [Mie94b,ViZ96,CSVI7,SVWZ99].
(See also [ChV97] for applications of the described trajectory approach to various
evolutionary equations of mathematical physics, for which the uniqueness problem is
not solved yet, such as 3D Navier-Stokes equations, nonlinear hyperbolic equations with
supercritical nonlinearities, etc.)

For the case of second order elliptic systems there is another way to avoid the mul-
tivalued maps. We replace the evolution operator (0.1) by the following one:

(0.3) St : (u(0), zu(0)) — (u(t), Opu(t)), (u(0),0:u(0)) € KT

where KT is a set of (u(0),0;u(0)) for which the auxiliary problem has a bounded
solution. Then under certain assumptions this solution will be unique and (0.3) defines a
continuous semigroup on the phase space K™ (see [CMS93]). Moreover, this semigroup is
occurred to be homeomorphic to the semigroup of shifts (0.2), defined on the trajectory
space KT (see e.g. Section 2 for details).

The alternative approach of a direct study of the ’evolution’ operator (0.1) using the
proper generalization of the attractor theory to the case of multivalued semigroups was
suggested in [Bab95a].

Further ideas from dynamical-systems theory can be applied to elliptic problems
on cylinders. In [PSS97] exponential dichotomies are constructed to study bifurca-
tions of solitary waves. A Floquet theory near spatially periodic states is developed in
[Mi94a,DFKM96]. In [FSV98] Conley’s connection index is employed to obtain hete-
roclinic front solutions. A structure of attractors for the case where the corresponding
elliptic system possesses a global Liapunov function and where solutions of the auxiliary
problem are unique is described in [ViZ99].

Note however, that very few is known about the Hausdorff and fractal dimension
for attractors of elliptic equations, although there is a highly developed industry of
estimating these dimensions for the case of evolutionary equations (see e.g. [Tem88]). In
a fact up to the moment we know only two rather restrictive classes of elliptic equations
with finite—dimensional attractors. The first of them is the case of uniqueness where
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the situation is very similar to the case of evolutionary problems (see [ViZ99]) and
the second one is the case of an essential manifold existence where the dimension of the
attractor is naturally majoranted by the dimension of an essential manifold (see [Mi94b,
Ba95b]).

The aim of the present paper is to show that the dimension of the attractor may be
infinite for the elliptic equations beyond of the mentioned classes and to give quantitative
bounds for the ’size’ of such attractors in terms of their Kolmogorov epsilon-entropy.

We consider an abstract semilinear elliptic problem in the form

U —yiu— Au = F(u,4) fort >0,
(0.4) { gl (u, %)

ul,_, = uo,

Here u(t) is element of a Hilbert space H with scalar product (-,-). The linear operator
A : D(A) — H is selfadjoint; moreover (Au,u) > Agllul|> with Ag > 1 and A~! is
compact. We define (H®)scr, to be the scale of Hilbert spaces generated by A, i.e.
H® = DA%, |- |ls = || - llgs = ||A*/? -|. We also introduce the Hilbert spaces
H* = H® x H*" ! equipped with the natural induced scalar product.

Moreover, 7 is a bounded symmetric operator in H and the nonlinearity F' is assumed
to satisfy the following conditions. There exists a constant C, a small positive exponent
d, and for all 4 > 0 there exists a monotone function @, : Rt — R* such that

F € CY(H3?7% x HY/?*7% H)

D, F(u,v) > —C — 3 A,

(F(u,v),u) > =C = 1/2(||ullf+]lv]1*),

17 (u, 0)I1* < Qulllully2) + wllull + C(lulli+(0]%)-

~—r
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The particular form of the abstract problem (0.4) is motivated by the following elliptic
system in a cylindrical domain 2, = R* X w, where w C R" is bounded:

(0.6) { i —yu+ Azu = f(u,4) + g(z) for (t,z) € Q4
- ulg s 0 =0 ul,_y = o,
where u = (ul,...,u*F) e R¥, v = v* € L(R¥,R*), g € L?(w), which arises for instance

under studying traveling wave solutions of the corresponding evolution equation in an
unbounded cylindrical domain 2 = R x w (see e.g. [CMS93], [Bab95a|, or [ViZ96]).

The existence of a bounded solution u(t), ¢ > 0 of the problem (0.4) for every fixed
up € H®/? is verified in Section 1. Moreover, in this Section we derive a dissipative
estimate for bounded solutions u € W2;(R") (see Definition 1.1) of the problem (0.4),
which has a fundamental significance for applying the trajectory approach, described
above.

In Section 2 we show that the abstract system (0.4) has a trajectory attractor A =
A3l ie. that the semigroup (0.2), defined the space KT of all bounded solutions
U € ng (RT), possesses a global attractor A, which is generated by all essential solutions
of the problem (0.4).

AT =TI, K,
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where K C W2, (R) is a set of all essential solutions of (0.4) and I is a restriction
operator to the semiaxis RT.
Moreover, under the additional assumption

(0.7) Do F(u, 0)[[ 15 + | Do F(u, 0) | < Q[[ulls/2+v]l1/2)

(where @ is an appropriate monotonic function) on the nonlinear term F' we prove that
a bounded solution u(t) of (0.4) is uniquely determined by the pair »(0) and 0;u(0)
and verify thus, that the semigroup (0.3) is well defined on K*. This result relies on
logarithmic convexity estimates for elliptic problems, see [AgIN67,CMS93]. We verify
also that a natural projection Il : KT — KT, defined via Ipu := (u(0), ;u(0)) realizes a
Holder continuous homeomorphism and consequently the semigroup (0.3) can be defined
via

(0.8) Sp :=HoTr (ITp) ™1

This result guarantees the existence of a global attractor A C K+ for the semigroup
(0.3) as well and gives the relation

(0.9) A = [Ip At

In Section 3 we apply the concept of Kolmogorov’s e-entropy to study quantitative prop-
erties of the obtained attractor A®™® of the abstract elliptic system (0.4). See [KoT93]
for a detailed study of this concept and [ChV98,CoE99,Zel99,Zel99a,CoE00,Zel01] for

its application to evolutionary equations of mathematical physics. The main result of
Section 3 is the following upper estimate of the Kolmogorov e-entropy H, (.Atraj ‘ (0 T)>
of the restriction A% to an arbitrary finite interval (0,T):

: R R
(0.10) H, (A™| 1) <C [T-l— In ?‘)] In, ?0

where C and R, are positive constants independent of ¢ > 0 and 7" > 0, and In; z :=
max{In z,0}. The upper estimate (0.10) is not strong enough to conclude that the fractal
dimension dgact(A) is finite and, as it shown in Section 4, it is really may be infinite.
In fact, we give an example of an operator A and a nonlinear map F satisfying (0.5)
and (0.7) such that the Kolmogorov entropy of the corresponding attractor possesses
the lower bound

!/
(0.11) H, (A" 1) > C'TIny %

for a some C’ > 0, Rj, > 0 which are independent of T' > 1 and ¢ > 0. Moreover, using
the logarithmic convexity arguments we derive from it that

i\ 3/2
(0.12) H. (A) > C" (ln+ &)
13
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and consequently the fractal dimensions are infinite:
dimgracy <Atraj‘(0,T)) = dimyract (A) =

Our example is built around a counterexample for Floquet theory in linear elliptic
problems provided in [DFKM96]. This example has the form

v — Av = Ll(t)’l) + LQ(t)’U,

where L, and L, are periodic in t € R. The example is such that there exists a nontrivial
. . . 2

solution v : R — H? which decays like ||v(t)||2 < ce™* . For the counterexample to work

we need

Ly € Cper (R, L(H*'™ | H®)) and La € Cper(R, L(H*T™>, H?))

with ;1 > 1 and 79 > 0 and some s > 0. On the other hand our existence theory for
the compact attractor (see (0.5), (0.7)) needs 71 < 1 and r < 0. Hence, we are exactly
in the borderline case.

In Section 5 we give a more precise study of the complexity for the trajectory dynam-
ical system (0.2) associated with the example constructed in Section 4. In particular,
we show that in contrast to the case of dynamical systems (DS) generated by ODEs
and the many natural evolution PDEs in bounded domains, this system has infinite
topological entropy. The chaotic nature of this system is exhibited by a homeomorphic
embedding of a Bernoulli shift on an infinite number of symbols. Moreover, this type
of chaotic behavior occurs to be very close to the behavior of DS associated with the
evolution in PDEs on unbounded domains (see [Zel00,Zel00al).

The elliptic problem (0.6) in the infinite cylinder Q = R X w can be interpreted as
an equation for the equilibria of the corresponding reaction—diffusion problem in €:

{ Opu =14 —yu+ Azu — f(u, %) —g(z), (t,z) €Q, n>0,

0.13
(013) u‘nzo =u?, ulpq =0,

where ¢ is still a spatial variable and n > 0 denotes the physical time. It is known (see
[BaV92,MiS95,EfZ99]) that under natural assumptions on the nonlinearity f and on the
external force g this equation possesses a global attractor A81°° C W2,(R). Evidently
one has an embedding

(0.14) K C AP

where I is a set of all essential solutions of the elliptic boundary problem (0.6). The
analogs of the estimates (0.10) and (0.11) for the e-entropy of the global attractor Ag°P
were obtained in [CoE99, Zel99, EfZ99], see also Section 5 for a deeper discussion of
this analogy.

In future work we will study the question under which conditions the fractal dimen-
sion dgract(A) and/or topological entropy hiop(Sh, A) are finite. By now, such results
exist only in the case of spectral gaps allowing for the construction of essential manifolds
[Mi94b] or in the case of v > id where (0.4) is uniquely solvable, see [CSVI7,ViZ99]
and Remark 2.3.

Acknowledgements. The authors are grateful to M. Efendiev, D. Turaev and M.
Vishik for stimulating and helpful discussions. The research was partially supported by
Deutsche Forschungsgemeinschaft under DANSE, Mi 459/2-3.
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§1 A-PRIORI ESTIMATES. EXISTENCE OF SOLUTIONS.

In this section we provide a number of a—priori estimates for solutions of (0.4) and
based on these estimates we obtain the existence of bounded solutions. To this end we
need to define the corresponding functional spaces.

Definition 1.1. For every —oco < T} < Ty < +00 and [ € RT we define
(1.1) WYTy, Ty) = L2(Th, Ty), H) N WhH2((Ty, Ts), H).

As a shorthand we will write W!(T') instead of W!(T,T+1). By W\ _(R*) we denote
the Fréchet space generated by the seminorms || - ||y (1), T € RT. Moreover, we define

(1.2) Wia(RY) = {u € Wi (R™) : [lullip = suprers ullwi(ry < oo}

The spaces W] (R) and W} (R) are defined analogously by taking T € R.

The main result of this section is the following theorem.

Theorem 1.2. Let the assumptions (0.5) hold. Then, for every ug € H3/? there exists
at least one solution u € W2 ;(R") for (0.4). Moreover there exist Cy,ax > 0 and
a monotone function @ : Rt — RY such that every solution u € W2;(RT) of (0.4)
satisfies

(1.3) lullwez, () < Q(|luollz/2)e™*T + Cx  for T > 0.

Proof. We deduce firstly the a-priori estimate (1.3). The existence of a solution will be
derived below basing on this estimate.

Following [ViZ99] we multiply the equation (0.4) by p(t)u(t) in H and integrate over
t € [1,+00). Here p: Rt — (0,00) is a weight function such that [ p(t) dt < co and
|p(t)| < ep(t) for all t > 0. After integrating by parts twice and using the fact that v is
symmetric we find

@) [ Pl de + [ZodullP=2 (v, w)],_,
. 2 2
= [ [ G P o = (it (/2] s

oo
1 . .
</ [C+5 (lulli+llall®)+ellulll @]+l lul*] o dt.
.,

Here we have used the assumption (0.5)(c). Taking p(t) = e*(*=7) and choosing £ > 0
small enough we deduce that

d
(1.5) d—||u(T)||2 <O+ C'u(r)|* for > 0.
T
Applying Gronwall’s lemma we obtain a first a—priori estimate for the simple H norm:

(1.6) lu@®)]|? < e“Hluol|®> + €€t —1 fort > 0.
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Of course this estimate is only useful for small ¢ due to the exponential growth with
C' > 0.

Next we derive an analogue of (1.3) for the norm in W!(T) where the right—hand
side does not grow for t — oo. Therefore we need to take special care of the initial
condition ug = ul¢=¢. According to the abstract trace theorem there exists a bounded
linear operator T : H3/2 — W?2(R") such that v = Tug satisfies

(1.7) v(0) = up, suppv C[0,1] and |[[v|lw20) < C|luolls/2-
Rewriting the equation (0.4) with respect to a new unknown function w = u— v we find

(1.8) { W —yw — Aw = F(w+v, w+v) — h(t),

w|t=0 =0,
where h = v — v — Av and consequently
(1.9) supp b € [0,1], [[Rllz2(0) < C1lluollz/2

Taking the scalar product of (1.8) with p(¢)w(t) we obtain as above by integration over
t € Rt (but now using w(0) = 0)

t10) [ (10l + Julf] pa

= /OOO [— (w, F (v+w, v+10)) — (w, h) + %[(vw,w) = 2<w,w)]}pdt

The difficult term to estimate is the first one involving F.

Recall that v(t) # 0 and h # 0 only for ¢t € [0,1]. Thus, for ¢t € [0,1] we have to
use the weaker estimates (0.5)(b)+(d) while for ¢ > 1 we can use the better estimate
(0.5)(c). For nontrivial v we obtain

—(w, F(v+w, v+w)) = —(w, F(v+w, v+w) — F(v, 0+w)) — (w, F (v, v+w))
< Cllwll? + ol + o llwll? + allF (o, + )]
< C(a)|lwl* + %Hw”f +aQullvlly2) + apllvllz + aC(llvllf + [o+@]*)
< C(a)llwl* + %||w||§ + Qu(@)(luollz/2) + 2aC]lw]|*.
For ¢t > 1 we will use the better estimate (0.5)(c) since v = 0:
—(w, F(v+w, v+1)) = —(F (w, ), w) < Cy + 1/2(||w||3 + ||w||?)-

Inserting these estimates in (1.10) with a and € = sup |p|/p small enough and using
the inequality (1.6) for estimating C(a)||w(t)||? for ¢ € [0, 1] we arrive at

oo

o0 ) 1 3 '
/0 [l [+ lw]lZ] p dt < / Qs (luolls/)p dt + / (€25 02 +lwll2] ] p .
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We now employ the special weight function p(t) = e™* *=T| for T > 0 and obtain

T+1 fe’s)
leolZs oy = /T Tl + [|w]|?] dt < e / ] + o2 e<1=Tlat

—E|tl— 68 —&
< def SFP]G =T1 Qo (||uollay2) + e gcz < 5Q2(||uollz/2)e™" + 10Cy /e.
t€[0,1

Together with the estimate in (1.7) for v we find with u = v4+w

(1.11) lullwecry < Qs(llwolla2)e™" + Cs.

Now we are in position to complete the proof of the theorem by providing an a—
priori estimate in W?2(T'). To this end we use regularity theory for the linear equation
Z — Az = f with Dirichlet data, which is an abstract elliptic problem. Introduce the
interval Jr = (max{0,7—1},T+1} and a cut—off function ¢ : R — [0,1] such that
Y(t) =1for t € [0,1] and 9(t) = 0 for ¢t ¢ [—1,2]. We let ¢r(t) = ¢ (t—T) and define
wr = Yprw. With (1.8) this leads to the equation

wr — Awy = fr = Yr(yw+F (u, 0)+h) + 2w + Ppw  for t € Jp,
wr =0 forte dJr.

(1.12) {

Applying the linear regularity theory and assumptions (0.5) to (1.12) we will have

(1.13) ”wT”%/VZ(JT) S C[||w||%V1(JT) + ||h||%2(JT) + ||¢TF(U, ’U,)H%Q(JT)
< Qa(lluolls/2)e™" + Ca + /J ClQullu®)llr/2) + ppr (t)*lw(t) 3] dt
< Q5(||u0||3/2)e_€T + C'5 + Cu||wT||%/V2(JT)

The first estimate uses (0.5)(d) and the W (T') estimate for w; the second estimate uses
(1.11). Taking p in (1.13) small enough, we conclude that

(1.14) lwllwz(ry < Cllwrllws(r,) < 2Qs(lluollsj2)e™" + 2Cs.

Thus, the a—priori estimate stated in Theorem 1.2 is proved. So it remains to verify the
existence of a solution u € W;(R") of this problem. To this end we construct firstly a
solution uy (t) for the following auxiliary problem of type (0.4) on a finite interval:

Uy —yuny — Au = F(un, @ fort € (0,N),
(1.15) { N —YUuN (un,in) (0,N)

un|,_o = o, un|,_y =0
for every N € N and obtain a solution of the initial problem by letting N — oc.

Repeating word by word the proof of the estimate (1.3) we derive that every solution
uny € W2(0,T) of the problem (1.15) satisfies the estimate

(1.16) ”UN“W?(T) S Q(||u0||H3/z)e_aT + C* for T € [O,N - 1]
8



where the function ) and the constants C, and « are the same as in (1.3) and conse-
quently are independent of N € N. Observe also that, due to (0.5)(a) and due to the
abstract trace theorem, the nonlinear operator F' : u — F(u, %) is compact and contin-
uous as a map from W2(0, N) to W°(0, N) for every finite N. Thus, the existence of a
solution upy for the problem (1.15) can be derived from (1.16) in a standard way using
the Leray-Schauder fixed point principle, see e.g. [ViZ96,ViZ99].

In order to construct now a solution u of the initial problem (0.4) we note that
due to (1.16) the sequence uy is uniformly bounded in W2(0,T) for every T > 0.
Consequently, due to the reflexivity of W?2(0,T) and using Cantor’s diagonal procedure,
we may assume without loss of generality that uy converges weakly in W2 _(R;) to a
some function u € W2;(R"). Passing to the limit N — oo in the equations (1.15) we
derive that u is a solution of (0.4). Indeed, passing to the limit in linear terms of (1.15)
is evident and passing to the limit in the nonlinear term also gives no problems since

(un, tn) — (u, @) strongly in Cloe(H3270 x HY/?79)
for every 0 > 0 and since the assumption (0.5)(a) holds. Theorem 1.2 is proved.

§2 THE ATTRACTOR

This section is devoted to study the behavior of the solutions of (0.4) for t — oc.
Note that the conditions (0.5) guarantee only the existence of a solution u but not the
uniqueness of it, consequently we cannot apply the attractor technique in a direct way.
To overcome this difficulty we will use the trajectory attractor approach, developed
in [ChV97] for evolutionary equations without uniqueness and in [ViZ96] for elliptic
problems.

First we define the phase space KT of our DS to be the set of all solutions on RT
which stay bounded for t — o0, i.e., we set

K+ = {u e W2 (R") : u solves (0.4) for some uy € H/?}.

Since our equation does not depend explicitly on ¢, we can define a semigroup (7x)n>0
of translations along the t—axis:

(2.1) Tn: KT = KT, (Thuw)(t) = u(t+h), h>0

We endow the set KT by the local topology, induced by embedding KT into the Fréchet
space W2_(RT). Since W2 (R") is metrizable, the subset KT is also a metrizable
topological space.

Definition 2.1. The set KT endowed by the local topology is called the trajectory
phase space of (0.4); the semigroup (7n)n>o0 defined in (2.1) is called the trajectory
dynamical system generated by (0.4); the (global) attractor A of (7n)r>0 in KT is called
the trajectory attractor of (0.4) and denoted by A3

Remark 2.2. Recall that by the definition of the global attractor A of 75 in KT
attracts all bounded subsets of KXt but boundedness is a metric concept which a—priori
9



may depend on the choice of metric in W2_(R*). But it is not difficult to prove, using
the estimate (1.3), that in our situation any set B C KT is bounded in W} (R) if and
only if B is bounded in W2;(R") and consequently the concept of ‘bounded’ set in L+
has a well-defined meaning.

Remark 2.3. It is worth to emphasize here that the topology in KT is chosen in such a
way that in the case when the problem (0.4) has unique solution which continuously de-
pends on ug (see [CSV97,ViZ99] for sufficient conditions) the semigroup 7 coincides up
to homeomorphism (even up to C'-diffeomorphism under the assumptions of [ViZ99])
with the ‘ordinary’ semigroup Sy, : H3/? — H3/2, Spug = u(h).

To formulate the next result we introduce the notion of essential solutions. These
are solutions of (0.4) defined for ¢ € R and lying in W;(R). By K C W2,(R) we denote
the essential set of (0.4) which is the union of all essential solutions ([Mi94b]).

Theorem 2.4. Under the above assumptions equation (0.4) possesses a unique trajec-
tory attractor A = A which can be described as

where K C W24(R) is the essential set of (0.4) and Il is a restriction operator to the
semi—azis R .

Proof. According to the existence theory for attractors of abstract semigroups (see for
example [BaV92]) it is sufficient to verify that:

(i). The set KT is a complete metric space.

(ii). The semigroup Ty : Kt — K7 is continuous for every fixed h.

(iii). The semigroup 7 possesses a precompact absorbing set By in KV, i.e., for every
bounded subset B C KT there is 7 = 7(B) such that 7, B C By if h > .
ad (i). Since the space W2 (R") is complete the first assertion follows from the
closedness of KT in VVI%)C (RT). The latter fact is easily seen as the topology is generated
by uniform convergence on compact subsets of R* = [0, 00) in W?2. Clearly, the limit of
solutions of (0.4) is again a solution with the corresponding limit initial value ug (see
the end of the proof of Theorem 1.2).

ad (ii). The continuity of 7}, is also evident since the map 7, is a simple translation.

ad (iii). It remains to construct a precompact absorbing set By C K*. Using the
estimate (1.3) we see that the set

(2.3) B, = {u€ W2, (RY) : [lullwz, s < 20} NK* #

is an absorbing set for the semigroup 75 on K*. Hence By = 71 B, is also an absorbing
set of Ty,.

To complete the proof of the theorem it suffices to show that By is precompact in
W2 .(R"). For this we use elliptic regularity theory. Using Cantor’s diagonal procedure
we have to prove that for every T > 1 the set B*‘[T,T—H] = {ulfrr41) : v € Bi} is

precompact in W?(T). Indeed, let (u,)nen be an arbitrary sequence in B,. Using
10



the cut—off function ¢ as defined above of (1.12) we see that 27, = ¥7u, solves the
equation

(2.4) { 57 m — Azr i = B = Y1 (Yin+F (U, i) )+ 20700 + O7tin,

2T.n (T—l) = ZT7n(T+2) = 0.

Using the boundedness of the sequence (uy,)nen in W2, (R1), the compactness of the
embedding W2((T—1,T+2)) Cc W((T—1,T+2)) and the compactness of the nonlinear
function from assumption (0.5)(a), we may assume (after extracting a subsequence
if necessary) that hr, — hr in L?((T—1,T+2)). Then according to the abstract
regularity theorem applied to (2.4) zr,, = Yru, — ur in W2((T—1,T+2)), and because
of ¢¥r(t) =1 of [T, T+1] we have u,, — u in W?2(T). Thus, Theorem 2.4 is proved.

In the second part of this section we give another interpretation of the DS generated
by (0.4) which clarifies the nature of the nonuniqueness for the problem (0.4). To
this end we need the additional assumption (0.7) on the nonlinear term F. To study
uniqueness and continuity properties of the semiflow we consider two solutions uy, us €
W2,(R") and want to estimate their difference v(t) = ua(t)—u1(¢) which satisfies the
abstract linear elliptic equation

(25) v — Av = Ll(t)’l) + Lg (t)’l)

where the operators L; are given via L1(t) = fol D, F(u1(t)+sv(t), w1 (t)+s0(t))ds and

Ly(t) = v+ fol D, F(uy(t)+sv(t),a1(t)+s0(t))ds. By the assumptions (0.7) and Theo-
rem 1.2 we conclude that

(2.6) | Ly(t) | smr + | Lo(t) |l < M, teRF

where the constant M depends only on ||u1(0)]||gs/2 and ||u2(0)|| gs/2, and consequently
is uniformly bounded on bounded subsets of K*. For equation (2.5) we have the fol-
lowing abstract result.

Theorem 2.5. Let J = (0,T) and v € W2(J). Assume there exists M > 0 such that

(2.7) sup |y ()|mm <M, sup | La(t)|lasn < M.
teJ teJ

(Recall | Ll it = |LA™Y2 o) Define y(t) = [[o(®) |2+][0()][2, then y : J — R
satisfies the following two estimates. For any t € J we have

(2.8)  y(t) > y(0)e M =0t yhere b= AM—4(A3*u(0), AY*5(0)) /y(0)
and
(2.9) y(t) < [y(0)]' T [y(m)) T 2M O DT,
The continuous embedding W2((0,T)) — C([0,T], H*'?) n C'([0,T], H*/?) makes

all the terms in the above theorem well-defined.
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Proof. The proof of this theorem uses the theory of [AgN67] which is based on loga-
rithmic convexity. Introduce the function

(2.10)  £(t) = <28 fﬁiggg;) with € € Wy (J)? C Coa(J, HY? x HV/?).

It can be easily derived from equation (2.5) that & satisfies the linear equation
- _ oo [(—AYE 0 _ LG C()
1) &0 - B = e wim 5= (40 0. ) e =5 (0 &),

where C; = Lo+L1A~Y? and Cy = Ly—L,A~'/2. A simple calculation gives 2y(t) =
I1E@)||12 = [|€2(8)||2+]|€2(2)])?. According to assumption (2.7) the operator C(t) satisfies

(2.12) ICH)E|ls < 2M||€]| for all ¢ € J.

Assume that y(7) > 0 for some 7 € J (otherwise there is nothing to prove). With
(2.10) we conclude that there is a maximal relatively open interval J in [0, 7] such that
T € J, and y(t) > 0 for t € J.. On J, define the function

t

(2.13) a(t) = Iny(t) — / ®(s) ds with (t) = <C(t)£§2’)£(t»*,

where (-, ), is the scalar product in H x H.
Simple computations involving the definition of ®(¢) and (2.11) gives the formulae

2y

&= (BEE) Sy, = §[<n, M+ (0,CE).]  with n = Be— :.

Applying the Cauchy—Schwarz inequality and estimate (2.12) we find

) 4O 2
a(t) > o > —4M* fort e J,.

This shows that the function J, 3 ¢t — &(t) = a(t)+2M?¢? is convex. Asy:J — R is
bounded from above so is a. Together with convexity this implies that J, has to equal
[0, T].

Now the estimate (2.8) follows by exponentiating &(t) > &(0) + &(0)t:

y(t) > y(0)e M EHEO+f5 2(s)ds

With |®(s)| < 4M and & = 4(A%/*v, AY*)) we obtain estimate (2.8).
Similarly, estimate (2.9) follows from the estimate &(t) < (1—t/T)a&(0) + (¢/T)a(T).
This proves Theorem 2.5.

Recall H* = H® x H*~!, introduce the continuous linear (trace) mapping

(2.14) Iy : W2, (RY) — H2;  IIou = (u(0),%(0)).
12



and define the set K = oKt ¢ H3/2. Then, KT is closed and Theorem 2.5 implies
that IIo| «+ : KT = K* is one-to-one. This means that the Cauchy problem

{ i —yu — Au = F(u, 1),
u(0) = ug, u(0) = v,

has a unique solution u € W2, (RT) for every (ug,vp) € Kt and consequently the
semigroup (Sp)p>0 on KT is well defined via

(2.16) Sp: KF = K*; Sp(u(0), @(0)) = (u(h), u(h))

or, which is the same, via S;, = IIy7,(Ilp)~1. The following corollary of Theorem 2.5
shows that the semigroup (2.16) is Holder continuous on K.

(2.15)

Corollary 2.6. Let the assumptions of Theorem 1.2 hold and let in addition condition
(0.7) be satisfied. Then the semigroup (2.16) is Holder continuous with Holder exponent
a for every 0 < a < 1, i.e.

(2.17) IShz1—Shzallg> < CaeMal’||zi—2| 5%, 21,2 € K*

where the constants Cy,, and M, depend only on « and ||z;||gs/2, i =1, 2.

Proof. Indeed, fixing in (2.9) t = h and T = h/a and taking into the account that wu;
and ug are bounded as t — oo we derive that

(2.18) IShz1—Shzallim < CLeMal’||z1—2||12®, 21,20 € KY

In order to derive (2.17) from (2.18) it is sufficient to note that the abstract regularity
theorem applied to the equation (2.5) together with the trace theorem gives

(2.19)  [lo(B)llgz/2 + l0(B)][ 22 < Cllvllw2ny) < Crllv(0)llgz/2 + Collvllw n,p+2)
where the constants C' and C; depend only on the operator A and the constant C,

depends also on the constant M from (2.6). Combining (2.18) and (2.19) we derive
(2.17). Corollary 2.6 is proved.

Our next task is to show that the DS (Sp)p>0 on Kt and the trajectory DS (73)n>0
on K are topologically conjugated by a homeomorphism IIy. To this end we fix in the
space K the following metric:

4
(2.20) d(uy,us) := sup e T w1 —uz|lw2(r)
TeR+

From the one side it is not difficult to verify that the topology induced on KT by metric
(2.20) coincides with the topology induced by the embedding KT C W2 (RT) (due to
the fact that KT C W2;(R") and from the other side the estimate (2.17) implies that

(2.21) d(u1,uz) < Cq ([Jur(0)—ua(0)|| gar2 + [lita (0) =2 (0)| r/2) " ™"

holds for every u;,us € K+ and every 0 < a < 1. Here we have used also the estimate

(2.22) lvllwzmy < Cllvliemptism329001 (hoht 158172
for the solutions of (2.5), which is a simple corollary of the abstract regularity theorem
and of the estimate (2.6).
Thus, we have proved that the semigroups (2.16) and (2.1) are really topologically
conjugated and consequently Theorem 2.4 implies the following result.
13



Theorem 2.7. Let the assumptions of Theorem 1.2 hold and let in addition (0.7) be
valid. Then the semigroup Sy, possesses a global attractor A in K+, and

(2.23) A =TTy A

§3 THE ENTROPY OF THE ATTRACTOR: THE UPPER BOUNDS.

In this section we will study the trajectory attractor of the equation (0.4) using the
concept of Kolmogorov’s e—entropy.

First we recall briefly the definition of e—entropy. For the detailed study of this
concept see [KoT93]. The applications of this concept to the evolutionary equations of
mathematical physics are given in [ChV98,CoE99,Zel99,Zel99a,Zel01].

Definition 3.1. Let M be a metric space and let K be a precompact subset of it. For a
given € > 0 let N.(K) = N.(K, M) be the minimal number of e-balls in M which cover
the set K (this number is evidently finite by compactness). By definition, Kolmogorov’s
e—entropy of K in M is the following number

(3.1) H.(K)=H.(K,M) =1lnN.(K)
Example 3.2. Let K be compact n—dimensional Lipschitz manifold in M. Then the
evident estimates imply that C; (%)n < N(K) < O (%)n and consequently H.(K) =
(n+ 0(1)eo) In 1.

This example justifies the following definition.

Definition 3.3. The fractal (box—counting) dimension of the set K CC M is defined
to be the following number:

H. (K
(3.4) dimgract (K) = dimgraes (K, M) = lim sup ] (1 )
e—0 nz-

Note that we have constructed the attractor A for (0.4) which is compact only in the
local topology of W2 _(RT), that is why we will consider the e-entropy of restrictions

loc

A‘[o ) and study its dependence on two parameters T and €. To this end we need

weighted analogues for Wi, (RT).
Definition 3.4. For weight functions ¢ € C(R, (0,00)) we define the spaces

(35)  Wyay(R) = {u € Wige(RY) : [[ulliba,p = suprep+ {(T)lullwi(r)} < oo}

Following to [MiS95,Mi97,EfZ01,Mi00,Zel99a] we introduce also a class of admissible
weight functions.

Definition 3.5. A function ¢ € L2 (R) is called a weight function with the growth

loc

rate p > 0 if there exists C' > 0 such that the conditions
(3.6) $(z+y) < Ce'lo(y),  ¢(z) >0

are satisfied for every x,y € R.
It is not difficult to deduce from (3.6) that ¢(z +y) > C~le #=l$(y) is also satisfied
for every z,y € R.
The main result of this section is the following theorem.
14



Theorem 3.6. Let the assumptions of Theorem 1.2 hold. Then the following estimates
are valid

Ry

(3.7) H (A" W2,((0,T))) < C[T+1Iny %} In, 10

‘(O,T)’

where In, v = max{0,Inv} and the constants C' and Ry are independent of T and €.

The proof of this Theorem is based on a series of intermediate results and will be
finished after Lemma 3.9.

Proposition 3.7. Let K C W2(R) be defined as in Theorem 2.4 such that A% =
I1. K is the trajectory attractor of (0.4). Then for every o > 0 there exists a constant
C = C(a) such that for any solutions ui,us € K and any T € R we have

(38) ||U1—’U,2||W2(T) < Ciuﬂ}g {e_a|T—t| ||U1_U2||W0(t)} .
€

Proof. Indeed, define v(t) = uy(t) — u1(t) as in the proof of Theorem 2.5. Then, v
satisfies (2.5). The abstract interior estimate applied to (2.5) implies that

(39) ||’U||W2(T) < C||hv||W0(T_1,T+2)’ where hv = Ll(t)’l) + L2(t)'U

and C is independent of T € R. Multiplying (3.9) by e~*T=M| and taking supremum
over T' € R from both sides of the obtained inequality we derive the following version

of regularity theorem in weighted space Wlf de—alT—M|"

(3.10) sup { e~ M||o|| 2z } < C1 sup {e= ™M ||hy o) |
TeR TeR

where the constant C is independent of M. So it remains to estimate only the right—
hand side of (3.10). To this end we observe that the assumption (0.5)(a) together with
the boundedness of K in W;(R) implies that

(3.11) ILa (Dl 22 + 1 L2(®) | /2 < R

where R, is independent of ¢ and of uy,us € K. Thus, according to (3.11) and to
interpolation inequalities (see [Tri78]) we obtain that

(3.12) 1B @)llwory < CaRullvllwarziry < pllvllwery + Cullvllwo ()

where > 0 is arbitrary and C,, > 0 is a positive constant depending on p but is
independent of T' and uq,us € K. Fixing 4 = 1/(2C1) in (3.12) and inserting it to
(3.10) we finally derive that

(313)  sup {e T Ml ullyacry } < 201G, sup {e M ol yyocr) |
TeR TeR
15



The evident inequality
lollw=uy < e~ sup {e= M fofjwecr) |
TeR

completes the proof of Proposition 3.7.

Now consider the family of weight functions

(3.14) balt) = { 1 for |t| < R,
- B eR-1H for lt| > R,

where R € Rt. These functions satisfy (3.6) with 4 = 1 and Cy = 1 which are both
independent of R.

Corollary 3.8. Let K C W2 (R) be defined as above. Then there exists a constant
Cx > 0 such that for all ui,us € K and all R > 0 the following estimate is valid:

(3.15) lur—v2llwz, , @ < Cxllm—uallzz, , @

Indeed, taking o = 2 in (3.8), multiplying it by ¢r(T) and applying supycp to the
both sides of the obtained inequality we obtain after simple transformations the estimate
(3.15) (see [Zel99a]). Moreover, since (3.6) holds for ¢ uniformly with respect to R > 0
then the constant Cx in (3.15) is also independent of R.

Note that the weight functions ¢ are chosen such that

||U|(07R)||W§d((O,R)) < ||v||W§d,¢R(R)
for all v € W2, (R); hence
(3.16) HL(A™] ) WE((0, R) < Ho(K, Wiy (R))

So, following [Zel99a], we will estimate the entropy of the set I of all bounded solutions
u € W24(R) for equation (0.4) in the weighted space Wiy . (R) instead of the estimating

the entropy of restriction .A| (0,R)" To this end we need the following lemma. It makes
essential use of the estimate (3.15) and the fact that the embedding of W2,(R) into
L%d, . (R) is compact.

Lemma 3.9. The entropy of K satisfies the recurrence formula

/

R
(B1T)  Hepa(IC, Wiy g (R) < L[R+1+Iny —2] + HL(K, Wy 4, (R),

where the constants L and R{y in (3.17) are independent of R > 0 and € > 0.

Proof. Let {B(u’,¢, Wiiags) i =1,..., N} be an e~covering of K (here and below we

denote by B(v, u, X) the ball of radius p with center v in the metric space X). Note

that K N B(u?, Ce, Wii4,(R)) is compact in Lg, , (R), consequently every such set
16



can be covered by a finite number of ¢/(2Cx)-balls {B(u*?,e/(2Ck), L%dxﬁa (R)), 7 =
1,---,M;(e)}, where Cx is the same as in (3.15) and

(3.18) Mi(€) := Nejao) (K N B(u' e, Wig 4, (R)), Lig 4., (R)))-

Then, due to (3.15), {B(u?,e/2, Wy 4. (R)) i =1,..., N, j =1,...,Mi(e)} is a
¢/2—covering of K. This leads to the recurrence formula

(3.19) H, /5K, Wy 4, (R)) < __max In M;(e) + He (K, Wig 4, (R)).

937 s 4iVe

So it remains to estimate M,(e) defined in (3.18). To this end we note that, according
to (1.3), |lullwz, @) < C for each u € K, consequently

40,
(3.20) lullwz_zy < /(ACk) if |T| > T. = R+ Iny Cgo’c.

Thus, we can estimate

(321) Mi(e) < Nejiacn (K N Bty e, Wiy g (R), L2 4, (<12, 1))
< NE/(4C)c) (B(uz7 &, Wt?d,q.’)R((_T& TE)))7 L%d,q&R ((_T€7 TE)))
< Nijace) (B0, 1, Wiy 4. (—T:, T2))), L g 4, (T, T2))).
In the first estimate we use the ’tale’s’ estimate (3.20). In the second one we just
omitted ‘N’ making Ne/4cy)(- .- ) larger. In the third estimate we use the scaling and

translation invariance of balls in Banach spaces.
Thus, it remains to estimate the entropy of the embedding operator

(3.22) szd,¢R((_T7 T)) C Ll23d,¢R((_Ta T)).

To this end we introduce smooth analogs g € C*°(R) of the weight functions ¢p in
such a way that

max{|[Yr(t)], [Pr(t)]} < Yr(t) and C'r(t) < Yr(t) < C"¢r(t)

where C’ and C” are independent of R. Then it is not difficult to verify that the map
Fr : u — 1/)}%/ %u realizes the linear isomorphism between the Banach pairs B(T) =

(Wea((=T, 7)), LEa((=T, T))) and Br(T) = (Wiy 4, (=T, T)), Liq 4, ((=T,T))). Mo-
reover,

(3.23) IFe ll5r)—8r 1) + IFR 8 (1)—8r) < Ca

where Cy is independent of T and R (see [Zel99a] for details). Consequently,

(3-24)  InMi(e) < Hijack)(B(0,1, Wig 9, (=Te, T2))), Lpg g, (=T, Te)))

< Hl/(4C;¢C§)(B(0’ L, ng((_TE’ TE)))’ L%d((_TE’ TE)))'
17



The evident assertion

HM(B(()? 17 ng((_T’ T)))’ L%d((_Tv T))) <
< (2T+1)H,,/»(B(0,1, Wia((=1,1))), Lpa((=1,1)))

completes now the proof of Lemma 3.9.

Final step of the proof of Theorem 3.6. Note that, due to (1.3), He, (K, Wl?d,dm (R) =0
for every R > 0. Iterating the estimate (3.17) we deduce that

1 ok—1

R
(3.25) H, o, (K, Wiy 4, (R) < L(R+1+1n; =2 o )k for all k € N.

For given ¢ > 0 we choose k such that 27kC, < e < 27k, and thus the estimate
(3.7) is obtained. Theorem 3.6 is proved.

We conclude this Section applying Theorem 3.6 to study the elliptic boundary prob-
lem (0.6) in a cylindrical domain 2, = R* X w, where w CC R" is a smooth bounded
domain. For simplicity we formulate the assumptions for the nonlinear function f(u, )
only for the case n < 3. These assumptions are

1. f € CH(RF x Rk RF),

2. f(u,v)-u>-C; D, f(u,v) > —C,

3. |f (u,0)| + [ Dy f(u,0)| < C(1+ [u*) (1 + |u[*2),
4. |Dy f(u,v)] < C(L+ [u[®),

(3.26)

where 0 < kg <land 0<k; < :—f‘;’(l —k2). Note that for the case where the nonlinear
term is independent of d;u (and consequently ko = 0) we obtain the growth conditions
on f(u) introduced in [Bab95a].

Corollary 3.10. Let v = v* € L(R*R¥), g € L%(w), n < 3, and the nonlinearity
[ satisfy (3.26). Then the equation (0.6) satisfies all assumptions of Theorem 3.6 and
consequently possesses a trajectory attractor A*™® the entropy of which can be estimated

by (3.7).

Proof. Let us rewrite the problem (0.6) in an abstract form (0.4). Indeed, in this case
H = L?*(w), A= —A, (with Dirichlet boundary conditions) and F(u,v) := f(u,v) + g.
So it remains to verify that the operator F'(u,v) thus defined satisfies the conditions
(0.5). To this end we recall that the spaces H® := D((—A,)~*/?) satisfy for s > 0 the
embedding H®* C H®*(w), where H*(w) is a classical Sobolev space (see e.g. [Tri78]).
Note also that since n < 3 we have the embedding H3/2 C LP for every p < co and
consequently for every fixed p < oo there is § = 6(p) > 0 such that H3/2-9 C L?.

Let us verify now the condition (a) of (0.5). Indeed, according to (3.26)(3) and due
to Holder’s inequality we have

IDu F(u,v)0l|72 < CIIL+ [ul**) (1 + [v]*2)|6]?] 22 <

k k
< (L ollzz) @+l 25 o) 10174 /0-k0 < QUIullgsrz—s + N10llL2) 1011 Frs/2-s
18



for a sufficiently small § > 0. The condition
| Dy F(u, v)0|| < Qllullmzrz-s + vl zr1/2-5)110]| mr1/2-

can be verified analogously. The continuity of F', D, F' and D,, F' also can be deduced in
a standard way using (3.26)(a). The assumption (0.5)(a) is verified. The assumptions
(0.5)(b) and (0.5)(c) are immediate corollaries of (3.26)(2). So it remains only to derive
(0.5)(d) from (3.26)(3). Indeed, due to Holder inequality and Sobolev’s embedding
theorem, we have

(3.27) 1 (u, 0) 172 < CA+IlIZ2) + ullpy < CL+ llollZ2) + Cullully.

where p := 2k; /(1 —k2) and % = 3 — 5. If s < 1/2 then (3.27) implies (0.5)(d). Assume
that s > 1/2. Then, according to the interpolation inequality

25—1)/3, ||(4—25)/3
(3.:28) [ull e ) < Callull ) lulli s
Note that (3.27) and (3.28) implies (0.5)(d) if p(2s—1)/3 < 2. Let us verify this inequal-
ity. Recall that due to our assumptions p < 2(n+3)/(n—1), consequently s < 2n/(n+3)
and therefore p(2s—1)/3 < 2(n+3)/3(n—1) - 3(n—1)/(n+3) = 2. Thus, the assumption
(0.5)(d) is also verified. Corollary 3.10 is proved.

§4 THE ENTROPY OF THE ATTRACTOR: AN EXAMPLE WITH SHARP LOWER BOUNDS.

In this section we construct an example of equation (0.4) for which the estimate (3.7)
is in a sense sharp. Particularly, the fractal dimension of A will be infinite for this
example.

The example is based on a counterexample in the Floquet theory for abstract elliptic
problems in cylinders which was considered in [Mi94a,DFKM96]. Consider the linear
elliptic equation in the strip R x w = R x (0, 7):

(4.1) it + 0%u = Li(t)u + Lo(t)u, 0

U|Rx8w =
Here Ly (t) and Lo (t) are linear operators which depends T-periodically on ¢. The point
of the counterexample is to construct L; and Lj in such a way that equation (4.1) has a
solution u, which decays faster than exponential for ¢ — +o0o. This clearly contradicts
the applicability of the Floquet theory where solutions must be linear combinations of
products of exponential functions with periodic functions. The following result is proved
in Appendix A of [DFKM96], pp. 261-262.

Theorem 4.1. There exist T -periodic operators L;(t) with
(4.2) Ly € C(R, L(H H®)) and Ly € C5(R, L(H®, H®)) fors€R

with Lj(t+T) = L;(t) for all t € R such that equation (4.1) possesses a solution u €
W?2(R) which satisfies the estimate

(4.3) Cre " < |lu()||p2(w) < Cae™®  fort €R,
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with positive constants 3,C; and Cy. Moreover, every Fourier coefficient u,(t) =
f07r u(t, x) sin(nz) dz has finite support in R. (We denote by H® here the scale, gen-
erated by the Laplacian in w with Dirichlet boundary conditions.)

Note that together with u all the functions obtained by shifts with kT, k € Z,
(i.e., Tgru : t — u(t—kT)) are linearly independent bounded solutions of (4.1) and
consequently, the linear elliptic operator on L?(R x w) defined by (4.1) has an infinite
dimensional kernel. We define the set

(4.4) LE{UZZ%ETU s ap €R, sup\ak|<oo}
kEZ

kez
and obtain the following result.

Lemma 4.2. Let u be the solution constructed in Theorem 4.1 and L as in (4.4). For
uy : t— [ u(t,z)sinz de assume also that there exists r € R and N € (0,T) such that
& # suppuy C [r,r+N] . Then

(4.5) Crsup |ag| < [[v]lwz,®) < C2sup |a]
keZ kEZ

holds for every v € L.

Proof. Indeed, the left inequality is follows from the fact that the sets supp 7xru; does
not intersect for a different k.
For a proof of the right inequality we note that from (4.3) and from the regularity

theory we obtain the decay estimate ||ul|y2(r) < Cye7"/2 for the given solution u. For
elements v € L this implies that

_ _ 2
(4.7) [vllwairy < larllullw> (r—ery <Y lag|Cae™ /2 < C'sup |ag|
kEZ kEZ kez
Thus, Lemma 4.2 is proved.

Note that taking if necessary IT instead of T' we may assume without loss of generality
that the assumption on supp u; holds for the solution constructed in Theorem 4.1.

Lemma 4.3. Let the assumptions of Lemma 4.2 hold and let
(4.8) Lr ={veL: [jvllwz,wr < R}

Then, there exist positive C(R), My and ey such that for M > My and ¢ € (0,¢¢) the
lower estimate

(4.9) H, (L 50y, Woa((0, M))) > C(R)Mn -

holds.

Proof. Without loss of generality we assume suppu; C [0,7]. Let ]L’f{ ={v € Lg :
v(t) = Zle aru(t—iT)}, then for every vl ,v? € L% we have

(4.10) [0 =0?lwz 0,6+ 1)1y = 10" =02l o, (k41)11,8) > K s la;—a]
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Wlth K = ||u1||C([O,T]) > 0.

For sufficiently large M chose k = kjs in such a way that (k+1)T > M > kT. Then
the upper bound in (4.5) says that a function v € L belongs to Lg if all |ag| < R/Cs.
According to (4.10) two functions v and vs from L are e separated if |a} —a?| > ¢/K
for at least one ¢ € {0,...,k}. Consequently,

KR} +1>k

(4.11) Neya (L WEa((0.0M)) = (2[ -

and Lemma 4.3 is proved as k ~ M.

Now we are in position to construct the equation of the type (0.4) which satisfy the
assumptions of Theorem 3.6 in such a way that its attractor A contains the set 11, Lg
for a sufficiently small R. Then, according to Lemma 4.3 we obtain the lower bounds
for its e—entropy.

Let the operators L, and Ly are such as in Theorem 4.1. Since these operators are
T periodic (for simplicity we assume below that 7' = 27) then there exists smooth
operator families Ly € C(R2, L(H*1, H*)) and Ly € C®(R2, L(H?®, H*)) such that

~ ~

(4.12) Ly (wy,ws) = La(wy, ws) = 0 for \w1|2+|w2\2 > 2
and
(4.13) Li(t) = Ly(cost,sint), Lo(t) = Ly(cost, sint).

However, the pair w(t) = (cost,sint) can be obtained as a solution of the following
second order system of ordinary differential equations

2(Jw|?w — 3w)

4.14 0 —w =

Let ¢r(z) : R — R be a cutoff function such that ¢p = 1 if |z| < R? and ¢p = 0 if
|z| > 2R2. Consider the following system:

{ W —w = 2(|w|2w—3w)/(1+|w[*),

(4.15) ) . - - .
i+ 0ju = ¢R(||“||§{1(w)+||u||%2(w)) [Ll(w17 wa)u+La(w, wz)u].

Then, on the one side, due to the embedding W%;(R) C Cha(R, H") N CLy(R, H), we
have the inequality

(4.16) lu@lz + @Iz < P2lullye

for the appropriate positive constant P, and consequently the essential set IC of this
system contains {(cost,sint)} x Lp,p as a large subset. On the other side this equation
satisfies assumptions (0.5) and (0.7) with H = R? x L?*(w), A = diag{1,1,—02}, vy =0

and
2(|wl?w — 3w) /(1 + [w]4) )
g

F = )
(¢R(||u||%{1(w)+||u||%2(w)) [Ll(wla wz)u-i-Lz(wl, wz)u
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Indeed, it follows from the definition of operators L;, ¢+ = 1,2, that
[ L1 (w1, wo)ul g2 + || L2 (w1, we)il[ 2 < C (lullgr + [l%lz2)

where the constant C is independent of w, and consequently ||F(w,u,)|z < Cf,
where C}, is independent of w, u and 4. Thus, the conditions (0.5)(c) and (0.5)(d) are
verified. Analogously, using the smoothness of L; with respect to w and the fact that
¢r has a finite support we derive that

| Dw F(w, u, @) g2 mr + || D F(w, u, @) i + || Da Fw, w, @) o < C,

where C% is also independent of w, u and #%. Therefore, the condition (0.5)(a) and (0.7)
are also fulfilled. It remains to note that the condition (0.5)(b) is also an immediate
corollary of the last estimate.

Thus, we have verified that the nonlinearity F(w,u, @) satisfies assumptions (0.5)
and (0.7) and consequently the assertions of Theorem 2.7 and 3.6 holds for the equation
(4.15). Particularly, combining results of Theorem 3.6 and Lemma 4.3, we obtain the
following two-sided estimate for the e-entropy of its attractor.

Theorem 4.4. The equation (4.15) possesses the trajectory attractor A™® and there
exist positive constants Ty, g, C1, and Cy such that the e—entropy of A" satisfies

1 : 1.1
(4.17) C1TIn _ < HE(A“*”|(O7T), W2,((0,T))) < Co(T +1In g) In .

forT > Ty and e € (0,¢ep).

Note that the left-hand side of estimate (4.17) is sharp only for T > ln% and is far
from optimal for T' < In % Particularly, (4.17) gives no information on the entropy of
a global attractor A on a cross section. The following theorem gives a lower bound for

the entropy of the global attractors in the case when the trajectory attractor satisfies
estimate (4.17).

Theorem 4.5. Let the assumptions of Theorem 2.7 hold and let the trajectory attractor
At of the problem (0.4) satisfy (4.17). Then there exist positive constants C and &
such that the entropy of the global attractor A constructed in Theorem 2.7 satisfies

3/2
(4.18) H. (A, HY?) > C <ln %) , fore e (0,e0).

Proof. The proof of this result uses the logarithmic convexity estimates from Theorem
2.5. Since the solutions in A" are bounded by ||(u(t),u(t))|lm < Bs, estimate (2.9)
gives

| (u1—uz, 41 —12)[|c(0,q,m)

< ||(u1 (0)—u2(0), i1 (0)—12 (0)) ||];Il—t/TBi/Te2M(M+4/T)t(T—t)
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for any t < T. Choosing T = 2t this implies Holder continuity with exponent 1/2.
Assuming without loss of generality that ¢, M > 1 we find the estimate

HM(S) (Atraj’ C([Oa t]a Hl)) < H. (Aa Hl) with ,u,(g) = 81/2Bi/2e20M2t2.
After renaming ¢ into T the lower estimate (4.17) applied to the left—hand side gives

1.1 1
H.(A,H') > C,Tln p(e) = ClT(5 In- — 2B, - 20M2T2>.
€

Maximizing the right-hand side with respect to T (or choosing T' = - (ln

1\1/2
: : roar (I 2) ") we
obtain the assertion of the theorem.

€

§5 CHAOS IN SPATIAL DYNAMICAL SYSTEMS

In this concluding section we give a more comprehensive interpretation of the results
obtained above in the spirit of DS theory. To this end we need to recall some quantitative
characteristics which measure the complexity of a DS. We start with the classical concept
of topological entropy (see, e.g., [KaH95])

Definition 5.1. Let (M, d) be a compact metric space and Sy, : M — M, h € R", be
a (continuous) semiflow on it. For every R > 0 define a new metric dg on M via the
expression

(5.1) dr(m1, mz) = sup,<g d(Spmi, Spma), mi,ma € M,

Then, evidently, (M, dgr) is also a compact metric space. The topological entropy of the
semiflow Sp on M is defined to be the following number:

1
(5.2) Ptop(Sh, M) := lim limsup —H.(M, dg),
20 Ryoo IR
where H. (M, dr) means the e-entropy of the set M in the metric (5.1).

It is well known (see [KaH95]) that the topological entropy (5.2) is independent of
the concrete choice of the initial metric d on M and depends only on the topology on
M.

In order to apply the general Definition 5.1 to our trajectory DS (2.1) one should fix
a metric on A", To this end we need the following simple proposition.

Proposition 5.2. Let the weight function ¢ € Cpa(R) satisfy limy_,o ¢(t) = 0 and
#(t) > 0. Then the topology, induced on A" by the embedding A C Wig s (RY)
coincides with the local topology of W2 .(Ry) on A™8.

Indeed, the assertion of the proposition is an immediate corollary of the boundedness
of A3 in W2, (RT).

Fix now an arbitrary weight function ¢, satisfying the assumptions of Proposition
5.2 and define a metric on A%® via

(5.3) dg(u1,u) 1= [[ur — usllwz, @), wa,up € A",

Then, due to Theorem 2.4 and Proposition 5.2, (A", d,) is a compact metric space
and we may define the topological entropy Aop (7, Atad) of the trajectory dynamical
system (2.1) via (5.2). The following proposition gives a more convenient formula for
its computation.
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Proposition 5.3. The topological entropy hiop(Th, A®8) s independent of the choice
of the weight function ¢ and can be computed by the following expression:

. 1 :
tr B : tr 2
(5.4) heop (Th, A™™) = éll_r)r(l) lljlpjolip THS (A aJ|(O7T), W4 (0, T)) :
The proof of the formula (5.4) is more or less evident and given e.g. in [Zel00].
Note now, that in contrast to classical DS generated by ODEs or by the major part
of natural evolution PDEs in bounded domains (see, e.g. [Tem88]), the topological
entropoy may be infinite in our case. Particularly, it is so in the case of system (4.15).

Corollary 5.4. The topological entropy of the DS (T, A%™)) generated by equation
(4.15) is infinite:

(5.5) hsop(Thy AT¥) = o,

Indeed, (5.5) is an immediate corollary of (5.4) and (4.17).

Note also that DS with infinite topological entropy naturally arise in studying the
spatial and temoral complexity of global attractors .48'°° for evolution PDEs in un-
bounded domains, particularly for equations in the form (0.13) (see, e.g. [Zel00,Zel00a]).
Thus, keeping in mind the embedding (0.14), it seems natural to apply the methods
developed there to study our trajectory DS (2.1). We start by introducing one of the
possible generalizations of topological entropy (see [LiW00], [Zel00]).

Definition 5.5. Let (M, d) be a compact metric space and Sy, : M — M be a semiflow
on it. Then the modified topological entropy of S}, is defined to be the following number:

- 1\ " 1
(5.6) htop(Sh, (M, d)) := lim sup (ln —) limsup —=H. (M, dR),
e—0 € R—o0 R

where the metric dp is defined by (5.1). Moreover, following to [LiW00], introduce a
mean topological dimension dimy,, by the following expression:

(5.7) dimyop (Sh, M) := inf heop(Sh, (M, d)),
d

where the infinum is taken over all metrics d on M which generate the same topology
as d on M.

In contrast to the topological entropy, the value (5.6) is not preserved under general
homeomorphisms, but only under Lipschitz continuous ones (like a fractal dimension).
This is the reason to introduce the value (5.7), which is a topological invariant of a DS,
in complete analogy with classical topological entropy.

Thus, fixing as before an arbitrary weight function ¢ satisfying the assumptions
of Proposition 5.2 and defining the metric dy on A" via (5.3) one may define the

modified topological entropy /i\ztop(ﬁl, (At d,)) and the mean topological dimension
dimgop (7, A™) of the trajectory DS (2.1) by (5.6) and (5.7), respectively. (We em-
phasize that the infinum in (5.7) has to be taken not only over metrics in the form of
(5.3) but over all metrics in A*®, which generate the local topology of I/Vlf)c on it.)
The following assertion is in complete analogy to Proposition 5.3.
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Proposition 5.6. The modified topological entropy /ﬁtop('ﬁ“ (A dy)) is independent
of the choice of the weight function ¢ and can be computed by the following expression:

~ . 1\ ! 1 .
(5.8)  htop(Th, (AT, dg)) = limsup (hl g) lim sup THE (Atraj‘(o,T)a Wl?d(oaT)> .

e—0 T—o0

The proof of (5.8) is analogous to the proof of (5.4) (see [Zel00]).

The value in the right-hand side of (5.8) has been interpreted in [CoE99] as a (frac-
tal) dimension per unit volume of the corresponding attractor (compare with (3.4)).
The finiteness and positiveness of this characteristic for the global attractor .A8!°P
of a large class of evolution PDEs in unbounded domains has been established in

[CoE99,Ef799,Ze199a,Zel00,Zel01]. The following corollary shows that this value is finite
and may be strictly positive for the attractors of equations (0.4) as well.

Corollary 5.7. Under the assumptions of Theorem 2.4 the modified topological entropy
of the trajectory DS (2.1) is finite:

(5.9) Ttop (Thy AT < C < oc.
Moreover, this value is strictly positive for the case of equation (4.15):
(5.10) 0 < C1 < hiop(Th, AF) < C < o0.

Indeed, the estimate (5.9) is an immediate corollary of (5.8) and (3.7) and the esti-
mate (5.10) follows from (4.17).

Recall that in the classical theory of DS the chaotic behavior is usually demonstrated
and explained constructing a homeomorphic embedding of the Bernoulli shift dynamics
into the DS under consideration (see [KaH95| and references therein). Note, however,
that classical Bernoulli shifts with a finite number of symbols have a finite topological
entropy and consequently cannot be considered as an adequate model for the case of
infinite topological entropy. In this case it seems natural to use Bernoulli shifts with
infinitely many symbols.

Definition 5.8. Let M := [—1,1]Z be the compact topological space endowed with
the Tikhonov topology. Recall that M consists of all functions v : Z — [—1,1] and the
topology can be generated e.g. by the following standard metric:

(5.11) d(v1,v2) Z 27 Mor (4) — w2 (9)-

Define the model DS (7;, M) of shifts on M via
(5.12) (Tiw)(@) :==wv(i+1), i,l€Z, ve M.

It is well-known that hgop(7;, M) = 0o and Etop (Ti, M, d)) = dimyop (71, M) = 1.
The following theorem constructs an embedding of the DS (7;, M) into the trajectory
DS associated with equation (4.15).
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Theorem 5.9. Let IC be the set of all essential solutions of the equation (4.15). Then
there 1s a homeomorphic embedding k : M — K, such that

(5.13) Trik(v) = k(Tiv), l€Z, veM

where T > 0 is the period introduced in Theorem 4.1 (and fized to equal 27 in (4.13)).
Moreover, this embedding is Lipschitz continuous in the following sense:

(5.14) olzeTll\vl vy (3)] <

1=—00

< (o0 w2l e <Ca 32 i) -ua(0)

1=—00

Proof. According to our construction of equation (4.15), the set Lg, defined by (4.4)
and (4.8), is contained in K for a some R > 0. Therefore, it is sufficient to construct an
embedding k : M — Lgr. We claim that such an embedding is given by the following
formula:

(5.15) =R Z u(t—1iT), ve M

1=—00

where u(t) is the solution defined in Theorem 4.1. Indeed, assertion (5.13) is an im-
mediate corollary of definition (5.15). So it remains to verify the continuity (5.14).
Analogously to (4.7) we derive that

|k()|lw2@r) < C Z |v(i)\e_(7_"T)2/2 for T e R
=00
The right—hand side estimate of (5.14) is an immediate corollary of this inequality. In

order to obtain the left part of (5.14) we recall that due to Theorem 4.1, the first Fourier
coefficient u;(t) of the function u(t) has a finite support supp u; C [0,T]. Consequently,

Ie()llw2(ry = 6 (0); en)llwz (7,r41) = [0([7/TDI - lurllwz 0,1y = Clo([7/T])]

The left part of (5.14) follows immediately from this inequality. Theorem 5.9 is proved.

Recall that equation (4.15) satisfies the assumptions of Theorem 2.7, consequently
the trajectory DS (2.1) is topologically conjugated with the DS (S, K) defined via (2.17)
on the cross—section. The following corollary reformulates the assertion of Theorem 5.9
in terms of this DS.

Corollary 5.10. Let A = IIg A% be the global attractor associated with equation
(4.15). Then, there is a homeomorphic embedding &k : M — A such that

(5.16) STir(v) = K(Tiv) for alll € Z and v € M.
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Moreover, this homeomorphism preserves the quantities (5.6) and (5.7), i.e.

(5.17)  hiop(Shy RM)) = T hiop (T1, M), dimyep(Sh, RM)) = T~ dimyep (77, M)

Proof. Indeed, according to Corollary 2.6 the projection operator Iy : L — A realizes a
homeomorphism, which is Holder continuous with Holder exponent « arbitrarily close
to 1 under a certain choice of the weight function in K (see (2.21) and (2.22)). Define
now the homeomorphism & := Iy o k. Then (5.16) is an immediate corollary of (5.13).
Since mean topological dimension is a topological invariant then the second equality of
(5.17) is evident. The factor T—! appears due to time rescaling (the semigroup (7;, M)
is conjugated to (71, K) via k). In order to verify the first equaliy of (5.17) we recall
that  is Lipschitz continuous in the sense (5.14). Consequently, using the invariance
of the modified topological entropy under Lipschitz continuous transformations and the
fact that it is independent of the concrete choice of the weight function ¢ satisfying
Proposition 5.2 in the metric (5.3), we derive that

(5.18) Riop (Thy K(M)) = T~ hyop (Ti, M)

Analogously, since Il is a Holder continuous homeomorphism with Holder constant o
arbitrarily close to 1, then hiop(7h, K(M)) = htop(Sh, K(M)). Corollary 5.10 is proved.

Corollary 5.11. The mean topological dimension of the DS associated with equation
(4.15) is strictly positive:

(5.19) dimgop (T, A™™) = dimgep(Sh, A) > T71 > 0

Indeed, it is known (see [LiW00]) that dimep(7;, M) = 1. Estimate (5.19) now is an
immediate corollary of (5.17).

The following corollary shows that every finite dimensional dynamics can be realized
up to a homeomorphism by restricting S; to an appropriate invariant subset of the
attractor A of equation (4.15).

Corollary 5.12. Let A be the global attractor of equation (4.15) and let K C RN be
a compact set and F' : K — K be a homeomorphism. Then, there is a homeomorphic
embedding T : K — A such that

(5.20) SnroT(k) = 7(Fk) for all k € K.

Proof. Indeed, due to Corollary 5.10, it is sufficient to embed the DS (F, K) into (7;, M).
Moreover, without loss of generality we may assume that K C [~1,1]Y. Then the
desired embedding can be defined via

(5.21) 7(k)(i) == (F™(k));, i=mN+j, m,j€Z, 0<j<N-—1

where F(™) means the mth iteration of the map F and (k) j is a jth coordinate of the
point k¥ € [—1,1]". Then the map 7 := K o 7 evidently satisfies the assertions of the
corollary.
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Remark 5.13. Recall that the abstract elliptic equation (0.4) can be formally inter-
preted as a second order evolution equation. Moreover, this interpretation is partially
justified under the assumptions of Theorem 2.7 by considering the continuous DS (S, K)
associated with the equation (0.4). But in contrast to the case of natural evolution equa-
tions, the DS associated with elliptic equations are not Lipschitz continuous in general
(one cannot take & = 0 in (2.18)), but only Holder continuous with Holder constant arbi-
trarily close to 1 (as in the case of equation (4.15)). The absence of Lipschitz continuity
allows such systems to have infinite dimensional attractors with infinite topological en-
tropy. Namely, it can be proved in a standard way that if some equation, satisfying the
assumptions of Theorem 2.7, possesses also Lipschitz continuity property in the form

ISh(21)—Sh(22)llmm < Qn(ll21l|mer2 +22llme2) [[21—22][m, 2 €K

then the associated global attractor has finite fractal dimension and consequently the
topological entropy is also finite (as in the case of evoulution equations).

Remark 5.14. Note also that as in the case of classical DS, our embedding of Bernoulli
shifts dynamics to the trajectory DS associated with equation (4.15) is based on finding
appropriate homoclinic orbits. Indeed, the solution ¢ +— (sint,cost, u(t)) where wu(t)
is the function constructed in Theorem 4.1 is a homoclinic orbit with respect to the
2m—periodic solution ¢ +— (sint,cost,0). But in contrast to usual constructions of multi-
bump solutions, in our situation we may sum shifted versions of this homoclinic solution
not only with coefficients from {0,1} but from the interval [—1, 1] (see (5.15)). More-
over, Theorem 5.9 shows that the periodic orbit (sint, cost,0) is ‘infinitely degenerate’.
Indeed, there is a one—parameter family of other 2r—periodic orbits near it, which can be
parametrized by constant functions v. € M, ¢ € [—1,1] (i.e., v.(i) = ¢ for i € Z). Anal-
ogously, there is a two-parameter family of 47—periodic solutions, a three—parameter
family of 6m—periodic solutions and so on. The closure of this huge amount of periodic
orbits gives us the embedding of the Bernoulli shifts (7;, M) constructed in Theorem
5.9.

Remark 5.15. For a large class of reaction-diffusion systems of type (0.13) homeomor-
phic embeddings of the model DS (7;, M) into the associated spatial DS (73, .48°P) on
global attractor A8'°® have been constructed in [Zel00,Zel00a]. According to the embed-
ding constructed there the image of M is contained in the strongly unstable manifold
(with respect to temporal direction) of a certain spatially homogeneuous equilibria point
of the evolution equation under consideration. Theorem 5.9 shows that for some evo-
lution equations in unbounded domains this type of spatial chaos can be found even
inside of the set K of equilibria points, which is much smaller than 48P,
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