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Abstract

We consider the nonlinear model of an infinite oscillator chain embedded in a
background field. We start from an appropriate modulation ansatz of the space-
time periodic solutions to the linearized (microscopic) model and derive formally the
associated (macroscopic) modulation equation, which turns out to be the nonlinear
Schrödinger equation. Then we justify this necessary condition rigorously for the
case of nonlinearities with cubic leading terms, that is, we show that solutions which
have the form of the assumed ansatz for t = 0 preserve this form over time-intervals
with a positive macroscopic length. Finally, we transfer this result to the analogous
case of a finite, but large periodic chain and illustrate it by a numerical example.
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1 Introduction

One of the most challenging problems in multiscale analysis is that of finding continuum
models for discrete, atomistic models. In statistical physics these questions were already
addressed one hundred years ago, but many problems remain open until today. Most
prominently is the question of how to obtain irreversible thermodynamics as a macro-
scopic limit from microscopic models which are reversible (Hamiltonian). For a survey
on the methods and results of the mathematical justification of nonequilibrium statistical
mechanics we refer e.g. to [Spo91, Bol96].

In this paper we consider another part of this field which is far from thermodynamic
fluctuations. We are interested in reversible, macroscopic limits of atomistic models which
are obtained by choosing well-prepared initial conditions. One chooses the initial data in
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2 The NLS equation for a cubically nonlinear oscillator chain

a specified class of functions and hopes to obtain an evolution within this function class.
The associated evolution equation will be called the macroscopic limit problem.

This point of view is quite different from the traditional mathematical approach to
large discrete systems, where specific solution classes are investigated like traveling fronts,
pulses, wave trains or breathers [FW94, FP99, Ioo00, IK00, Jam03, FP02]. Instead, our
approach is very close to the theory of modulation equations which evolved in the late
1960’s for problems in fluid mechanics (see [Mie02] for a recent survey on this subject). If
the linearized model has a space-time periodic solution one asks how initial modulations
of this pattern evolve in time. The modulations occur on a much larger space and time
scale, such that the modulation equation is a macroscopic equation.

To be more specific we consider a one-dimensional discrete system of the form

ẍj = V ′(xj+1−xj)− V ′(xj−xj−1)−W ′(xj), j ∈ J , (1.1)

where the index set J is either Z or the finite cyclic group Zm = Z/mZ, m ∈ N. These
are the equations of motion for the deviations xj from the rest position j of (a chain
of) atoms with equal mass 1. V is the potential for the nearest-neighbor interaction and
W is an external potential which might arise through embedding of the atomic chain
in a background field. Special solution classes for (1.1) with J = Z are investigated in
[MA94, IK00, Jam03, FM02]. Closest to our work is the justification of the KdV limit in
[Kal89] (Prop. 7.1) and [SW00], where W ≡ 0 and solutions of the form

xj(t) = ε2U(ε3t, ε(x−ct)) +O(ε4) (1.2)

are studied, where U satisfies the macroscopic limit equation

∂τU + κ1U∂ξU + κ2∂
3
ξ U = 0, (1.3)

which is the Korteweg-de Vries equation. These solutions appear to be constant on a
microscopic level, i.e., on bounded sets for t and j when ε ¿ 1. Thus, this case is called
the long wave-length limit.

We investigate solutions which are microscopically periodic in space and time. As-
suming V (d) = v1

2
d2 +O(d3) and W (y) = w1

2
y2 +O(y3) we find the linearized system

ẍj = v1(xj+1−2xj+xj−1)− w1xj, j ∈ J ,

where we always assume min{w1, w1+4v1} > 0 in order to obtain stability. The linear
system has the solutions

xj(t) = ei(eωt+ϑj) with ω̃2 = ω(ϑ)2 := 2v1(1− cos ϑ) + w1.

Fixing ϑ and hence ω̃ = ω(ϑ), we study modulated solutions of the type

xj(t) = XA
j (t) +O(ε2) with XA

j (t) := εA(ε2t, ε(j−ct))ei(eωt+ϑj) + c.c.. (1.4)

In Figure 1 such a sequence (xj(0))j∈Z is displayed together with the envelopes ±2|A(0, ·)|.
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Figure 1: A modulated initial datum (xj(0))j∈Z (dots) together with the envelopes
±2|A(0, ·)| .

In Section 2 we show that this provides a useful approximation for solutions of (1.1)
only if the group velocity c equals −ω′(ϑ) and A satisfies the associated nonlinear Schrö-
dinger equation (NLSE)

i∂τA =
1

2
ω′′(ϑ)∂2

ξA + ρ|A|2A, (1.5)

where ρ can be calculated explicitly. Here τ = ε2t is the macroscopic time and ξ = ε(j−ct)
is the macroscopic space variable. This derivation of (1.5) is formal, since we assumed
that solutions in the form (1.4) exist.

In Section 3 we justify the ansatz (1.4) by showing that solutions t 7→ (xj(t))j∈J which
start at t = 0 in the form (1.4) stay in this form over intervals [0, τ0/ε

2], which have a
positive macroscopic length.

Theorem 3.2 states the following: Given a sufficiently smooth solution A of NLSE
(1.5), τ0 > 0 and d > 0, there exist ε0 > 0 and C > 0 such that any solution x of (1.1)
with

‖(x(0), ẋ(0))− (XA(0), ẊA(0))‖`2×`2 ≤ dε3/2

satisfies the estimate

‖(x(t), ẋ(t))− (XA(t), ẊA(t))‖`2×`2 ≤ Cε3/2 for t ∈ [0, τ0/ε
2]. (1.6)

An essential, technical assumption of our theory is that the nonlinearity in (1.1) starts
with cubic terms, i.e. V ′′′(0) = W ′′′(0) = 0. For such systems a relatively easy proof
for the justification of NLSE was developed in [KSM92]. We believe that the same is
true without this assumption, however, the proof will be much more difficult (see, e.g.,
[Sch98]) and is postponed to future work [GM03]. In [Kal89] (Prop. 7.2) results are stated
without proof providing estimates like (1.6) under much stronger conditions, namely that
the nonlinearity has to be analytic and that the solution A of (1.5) has to be analytic and
rapidly decaying.

Moreover, the case without the stabilizing background potential W is also more dif-
ficult, since Galileian invariance may interact with our modulated patterns. In that case
more complicated modulation equations are to be expected.

In Section 4 we provide an analogous result for the case of a finite, but large periodic
chain. Moreover, we present numerical results which compare the macroscopic limit equa-
tion NLSE (1.5), posed on (0, 2π) with periodicity conditions, with (1.1) for J = Zm,
where m = 100, . . . , 4000 corresponds approximately to ε = 0.06, . . . , 0.0016.
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Note that our solutions given through (1.4) as well as those in (1.2) are small and thus
lead to dynamics which are close to the linear one. Only the extremely long time scales
allow for the accumulation of the nonlinear effects which are inherent to NLSE.

On shorter time scales, namely for τ = εt with ξ = εj, one only sees hyperbolic
transport effects, but no dispersion. For the linear case we refer to [Mie03], where Wigner
measures are used to describe the energy transport in multi-dimensional lattices. For
larger nonlinear microscopic oscillations see [HLM94, DKV95, FV99, DK00, DH02], where
the Whitham equation is derived to describe the associated modulations.

2 Formal derivation of the NLSE

In this section we formally derive the NLSE as a macroscopic limit, also called modulation
equation. We give the calculations in full detail, since so far such an analysis is not yet
standard. Moreover, we want to present the results in such a way, that they can be
used for the rigorous analysis in the next section. Here we treat the general case, where
quadratic nonlinearities are also allowed. The oscillator chain is modeled by

ẍj = V ′ (∂+
j x

)− V ′ (∂−j x
)−W ′(xj), j ∈ Z, (2.1)

where xj = xj(t) ∈ R, t ≥ 0, j ∈ Z, and ∂±j x := ±(xj±1−xj) (implying ∂+
j x = ∂−j+1x,

∂−j x = ∂+
j−1x). The potentials V,W ∈ C5(R) are of the form

V (d) = v1

2
d2 + Ṽ (d), W (y) = w1

2
y2 + W̃ (y),

with Ṽ (d) = v2

3
d3 + v3

4
d4 +O(d5) and W̃ (y) = w2

3
y3 + w3

4
y4 +O(y5).

The linear part of (2.1) reads

ẍj = Ljx := v1

(
∂+

j x−∂−j x
)− w1xj = v1 (xj+1−2xj+xj−1)− w1xj, j ∈ Z, (2.2)

and has the basic solutions xj(t) = ei(eωt+ϑj), if the dispersion relation

ω̃2 = ω(ϑ)2 := − [
v1

(
eiϑ−2+e−iϑ

)−w1

]
= 2v1(1− cos ϑ) + w1

is satisfied. We always assume min{w1, w1+4v1} > 0, such that ω(ϑ)2 > 0 for all ϑ.
Subsequently we fix a value ϑ ∈ (−π, π], and write shortly ω, ω′, ω′′ to denote ω(ϑ),
ω′(ϑ), ω′′(ϑ), respectively. The associated basic mode E(t, j) := ei(ωt+ϑj) is considered to
be the microscopic pattern.

Our aim is to understand the macroscopic evolution of modulations of the microscopic
pattern, which are given by a modulation function A:

xj(t) = XA
j (t) +O(ε2) with XA

j (t) = εA(ε2t, ε(j−ct))E(t, j) + c.c.,

where τ = ε2t and ξ = ε(j−ct) play the role of a macroscopic time and space variable,
respectively. Inserting such an ansatz into the nonlinear problem (2.1) will generate higher
harmonic terms (i.e., En). Hence, we insert the multiple scale ansatz

X
(A)
j (t) :=

∑

k∈N
εk

k∑

n=−k

Ak,n(τ, ξ)E(t, j)n (j ∈ Z, t ≥ 0) (2.3)



The NLS equation for a cubically nonlinear oscillator chain 5

in (2.1), where Ak,n(τ, ξ) ∈ C and Ak,−n = Ak,n (implying Ak,0 ∈ R for all k ∈ N). In the
following we will use the abbreviation

∑
k,n for the summation over k ∈ N and n ∈ Z,

|n| ≤ k. It will be sufficient to consider only terms with k ≤ 3, but it is instructive to
keep the full generality.

For the left hand side we obtain

Ẍ
(A)
j =

∑

k,n

εk
[−(nω)2Ak,n−2εniωc∂ξAk,n+ε2

(
c2∂2

ξAk,n+2niω∂τAk,n

)

−2ε3c∂ξ∂τAk,n+ε4∂2
τAk,n

]
En, (2.4)

where the arguments (τ, ξ) of Ak,n are omitted.
With

∂±j X(A)(t) = ±
∑

k,n

εk
[
Ak,n(τ, ξ±ε)e±inϑ−Ak,n

]
E(t, j)n (2.5)

the linear part of the right hand side reads

LjX
(A) = v1

(
X

(A)
j+1−2X

(A)
j +X

(A)
j−1

)
− w1X

(A)
j

=
∑

k,n

εk
{
v1

[
Ak,n(τ, ξ+ε)einϑ−2Ak,n+Ak,n(τ, ξ−ε)e−inϑ

]−w1Ak,n

}
En.

From the expansion

Ak,n(τ, ξ±ε) = Ak,n ± ε∂ξAk,n + ε2 1

2
∂2

ξAk,n ± ε3 1

6
∂3

ξAk,n

(
τ, ξ±θ±k,nε

)
, θ±k,n ∈ (0, 1),

we obtain

LjX
(A) =

∑

k,n

εk { −ω(nϑ)2Ak,n+ε[2iω(nϑ)ω′(nϑ)]∂ξAk,n

+ε2[ω′(nϑ)2+ω(nϑ)ω′′(nϑ)]∂2
ξAk,n+ε3rk,n

}
En (2.6)

with rk,n = v1

6

[
einϑ∂3

ξAk,n

(
τ, ξ+θ+

k,nε
)−e−inϑ∂3

ξAk,n

(
τ, ξ−θ−k,nε

)]
. Here we used that ω2 =

2v1(1− cos ϑ) + w1 implies ωω′ = v1 sin ϑ and (ω′)2 + ωω′′ = v1 cos ϑ.
With (2.6) we have obtained an expansion in terms of εkEn of the linear part of

the right hand side of the microscopic equation (2.1) with x = X(A). It remains to

obtain a similar expansion for the nonlinear part Nj(X
(A)) := Ṽ ′(∂+

j X(A))−Ṽ ′(∂−j X(A))−
W̃ ′(X(A)

j ). We start by deriving an expansion only in terms of εk. At first we note

Nj(X
(A)) = v2

[
(∂+

j X(A))2−(∂−j X(A))2
]− w2(X

(A)
j )2 + v3

[
(∂+

j X(A))3−(∂−j X(A))3
]

− w3(X
(A)
j )3 + V̂ ′(∂+

j X(A))− V̂ ′(∂−j X(A))− Ŵ ′(X(A)
j )

with V̂ ′(d) = Ṽ ′(d) − v2d
2 − v3d

3 = O(d4) and Ŵ ′(y) = W̃ ′(y) − w2y
2 − w3y

3 = O(y4).
With (2.5) and (2.3) we obtain

∂±j X(A) = ε
(
a±1 +εb±1

)
+ ε2a±2 + ε3r±1 and X

(A)
j = εa1 + ε2a2 + ε3r1,
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respectively, where

a±1 = ± (
e±iϑ−1

)
A1,1E + c.c., b±1 = ∂ξA1,0 +

(
e±iϑ∂ξA1,1E + c.c.

)
,

a±2 = ± (
e±iϑ−1

)
A2,1E±

(
e±2iϑ−1

)
A2,2E

2 + c.c.,

r±1 = ±
1∑

n=−1

e±inϑ 1

2
∂2

ξA1,n

(
τ, ξ ± θ̂±1,nε

)
En +

2∑
n=−2

e±inϑ∂ξA2,n

(
τ, ξ ± θ̃±1,nε

)
En

±
∑

k≥3

εk−3

k∑

n=−k

[
Ak,n(τ, ξ±ε)e±inϑ−Ak,n

]
En with θ̂±1,n, θ̃±1,n ∈ (0, 1),

a1 = A1,0 + (A1,1E + c.c.) , a2 = A2,0 +
(
A2,1E + A2,2E

2 + c.c.
)
,

r1 =
∑

k≥3

εk−3

k∑

n=−k

Ak,nE
n.

Insertion into the nonlinearity gives

Nj(X
(A)) = ε2

{
v2

[
(a+

1 )2−(a−1 )2
]−w2a

2
1

}

+ ε3
{
2v2

[
a+

1 (b+
1 +a+

2 )−a−1 (b−1 +a−2 )
]
+v3

[
(a+

1 )3−(a−1 )3
]−2w2a1a2−w3a

3
1

}

+ ε4
(
r+
2 −r−2 −r2

)
+ V̂ ′(∂+

j X(A))− V̂ ′(∂−j X(A))− Ŵ ′(X(A)
j ) (2.7)

with

r±2 = 2v2a
±
1 r±1 +3v3(a

±
1 )2(b±1 +a±2 +εr±1 )+(v2+3v3εa

±
1 )(b±1 +a±2 +εr±1 )2+v3ε

2(b±1 +a±2 +εr±1 )3,

r2 = 2w2a1r1+3w3a
2
1 (a2+εr1) + (w2+3w3εa1) (a2+εr1)

2 +w3ε
2 (a2+εr1)

3 ,

where the last three terms in (2.7) are of order O(ε4), since we have V̂ ′(d) = O(d4),

Ŵ ′(y) = O(y4) and X
(A)
j , ∂±j X(A) = O(ε).

The general procedure for deriving modulation equations consists in equating the
left hand side and right hand side coefficients of each term εkEn in equation (2.1) with
x = X(A)

Ẍ
(A)
j = LjX

(A) + Nj(X
(A)) (2.8)

separately. Thereby, we can omit the equations for n < 0 since they are the complex
conjugates of the equations for n > 0. We start with k = 1, where we use that the
nonlinearity generates only terms of the power k ≥ 2. Thus, we obtain from (2.4), (2.6),
and (2.7) for k = 1 and n = 0, 1

for ε1E0: 0 = −w1A1,0;

for ε1E1: −ω2A1,1 = −ω2A1,1.

From w1 > 0 we conclude A1,0 = 0, and A1,1 remains free at this stage. Using A1,0 = 0,
calculation of the terms appearing in (2.7) yields

Nj(X
(A)) =− ε2

[
w2|A1,1|2E0+ (v2s1c1+w2) A2

1,1E
2+c.c.

]

+ ε3
{ [

2v2c1Ā1,1∂ξA1,1 − 2w2Ā1,1A2,1

]
E0
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+
[
2 (v2s1c1−w2) Ā1,1A2,2 − 2w2A1,1A2,0 − 3

(
v3c

2
1+w3

) |A1,1|2A1,1

]
E

+ [2v2c1(c1−3)A1,1∂ξA1,1 − 2 (v2s1c1+w2) A1,1A2,1]E
2

+
[
2
[
v2s1(c1+s2

1)−w2

]
A1,1A2,2 +

[
v3c

2
1(3−c1)−w3

]
A3

1,1

]
E3 + c.c.

}

+ ε4
(
r+
2 −r−2 −r2

)
+ V̂ ′(∂+

j X(A))− V̂ ′(∂−j X(A))− Ŵ ′(X(A)
j ) (2.9)

with s1 := 2i sin ϑ, c1 := 2(1− cos ϑ). For k = 2 we obtain from (2.4), (2.6), and (2.9), by
comparing the terms associated with ε2En, n = 0, 1, 2,

for ε2E0: 0 = −w1A2,0 − 2w2|A1,1|2;
for ε2E1: −ω2A2,1 − 2iωc∂ξA1,1 = −ω2A2,1 + 2iωω′∂ξA1,1;

for ε2E2: −4ω2A2,2 = −ω(2ϑ)2A2,2 − (v2s1c1+w2) A2
1,1.

With w1 > 0 the equation for ε2E0 gives

A2,0 = −2w2

w1

|A1,1|2. (2.10)

The equation for ε2E1 yields c = −ω′. To proceed further in the general case we have to
assume the nonresonance condition 4ω2 6= ω(2ϑ)2, such that the equation for ε2E2 implies

A2,2 =
v2s1c1+w2

4ω2−ω(2ϑ)2
A2

1,1. (2.11)

However, in the case of cubic nonlinearities (where v2 = w2 = 0) we do not need this
nonresonance condition, since we may simply set A2,2 = 0. The function A2,1 remains free
at this stage. In the same manner, by equating the left hand side and right hand side
coefficients of the terms ε3En for n = 0, 1, 2, 3 we obtain

for ε3E0: 0 = −w1A3,0 +
(
2v2c1Ā1,1∂ξA1,1−2w2Ā1,1A2,1+c.c.

)
;

for ε3E1: −ω2A3,1 − 2iωc∂ξA2,1 + c2∂2
ξA1,1 + 2iω∂τA1,1

= −ω2A3,1 + 2iωω′∂ξA2,1 + [(ω′)2+ωω′′]∂2
ξA1,1 + 2(v2s1c1−w2)Ā1,1A2,2

−2w2A1,1A2,0 − 3(v3c
2
1+w3)|A1,1|2A1,1;

for ε3E2: −4ω2A3,2 − 4iωc∂ξA2,2 = −ω(2ϑ)2A3,2 + 2iω(2ϑ)ω′(2ϑ)∂ξA2,2

+2v2c1(c1−3)A1,1∂ξA1,1 − 2(v2s1c1+w2)A1,1A2,1;

for ε3E3: −9ω2A3,3 = −ω(3ϑ)2A3,3 + 2[v2s1(c1+s2
1)−w2]A1,1A2,2 + [v3c

2
1(3−c1)−w3]A

3
1,1.

From the equation for ε3E1 we obtain with c = −ω′, (2.10), and (2.11) the nonlinear
Schrödinger equation

i∂τA1,1 =
1

2
ω′′∂2

ξA1,1 +

[
(v2s1c1)

2−w2
2

ω (v1c2
1+3w1)

+
2w2

2

ωw1

− 3 (v3c
2
1+w3)

2ω

]
|A1,1|2A1,1. (2.12)

From the equation for ε3E3 we obtain with (2.11)

A3,3 =
1

ω(3ϑ)2−9ω2

{
2
[
v2s1(c1+s2

1)−w2

] v2s1c1+w2

v1c2
1+3w1

+
[
v3c

2
1(3−c1)−w3

]}
A3

1,1, (2.13)
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where

ω(3ϑ)2−9ω2 = −8w1+v1c
2
1(c1−6) = −8

[
w1+v1

(
2+ cos3 ϑ−3 cos ϑ

)]
< 0

for all ϑ ∈ (−π, π], since f(ϑ) = 2+ cos3 ϑ−3 cos ϑ has (global) minimum 0 and maximum
4 and we have assumed min{w1, w1+4v1} > 0. The amplitude functions A3,0 and A3,2 can
be calculated from A1,1 by the equations for ε3E0 and ε3E2, respectively, if additionally
A2,1 is specified. However, here this will not be needed. The function A3,1 remains free.

Thus, we have established the following result.

Theorem 2.1 If the microscopic oscillator chain equation (2.1) has for all ε ∈ (0, ε0)
solutions of the form

xj(t) = XA
j (t) +O(ε2) with XA

j (t) = εA(ε2t, ε(j−ct))E(t, j) + c.c.,

where A : [0, τ0]× R→ C is a smooth function, then A has to satisfy the NLSE (2.12).

We call this result a formal derivation, since the existence of solutions satisfying this
ansatz is not clear at all. The purpose of the next section is to show that solutions which
start in this form will maintain it on suitably long time scales.

Let us now consider the case where the nonlinearity in our oscillator chain model (2.1)

Nj(x) = Ṽ ′(∂+
j x)− Ṽ ′(∂−j x)− W̃ ′(xj) has no quadratic terms, i.e., the case v2 = w2 = 0.

In this case we obtain from (2.10) and (2.11) (or can set, if 4ω2 = ω(2ϑ)2) A2,0 = A2,2 = 0,
and from the equations for ε3E0 and ε3E2 we obtain (or can set) A3,0 = A3,2 = 0. The
nonlinear Schrödinger equation (2.12) reads

i∂τA1,1 =
1

2
ω′′∂2

ξA1,1 + ρ |A1,1|2A1,1 with ρ := −3 (v3c
2
1+w3)

2ω
, (2.14)

where c1 = 2(1− cos ϑ), and from (2.13) we obtain

A3,3 = ΨA3
1,1 with Ψ :=

v3c
2
1(3−c1)−w3

ω(3ϑ)2−9ω2
. (2.15)

Up to this stage there are no conditions posed on A3,1 and A2,1, or on Ak,n for (k, n) ∈
N×Z with k ≥ 4, |n| ≤ k. Hence, setting deliberately also A3,1 = A2,1 = 0 and Ak,· = 0

for k ≥ 4, the general multiple scale ansatz X
(A)
j (t) in (2.3) obtains the special form

ZA
j (t) := εA(τ, ξ)E(t, j) + ε3ΨA3(τ, ξ)E(t, j)3 + c.c. (j ∈ Z, t ≥ 0) (2.16)

with τ = ε2t, ξ = ε(j+ω′t), and leads to the nonlinear Schrödinger equation (NLSE)
(2.14) with A1,1 = A, which is the sought-after macroscopic or modulation equation.

3 Justification of the NLSE

We will prove rigorously that if A is a solution of the NLSE (2.14)

i∂τA =
1

2
ω′′∂2

ξ A + ρ |A|2A with ρ = −3 (v3c
2
1+w3)

2ω
, c1 = 2(1− cos ϑ),
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then
XA

j (t) = εA(τ, ξ)E(t, j) + c.c. (j ∈ Z, t ≥ 0) (3.1)

with τ = ε2t, ξ = ε(j+ω′t), is a reasonable approximation to solutions of the oscillator
chain model (2.1) with cubic leading terms of the nonlinearities (i.e. V ′′′(0) = W ′′′(0) = 0).
Up to now no systematic theory for the justification of modulation equations for discrete
systems has been developed. For this reason we give all the estimates in full detail. In
particular, it is not enough to estimate errors at each point j ∈ J like in the formal
derivation of the previous section. We rather need estimates in suitable Banach spaces.
To this end, we transform (2.1) into the first-order ordinary differential equation

˙̃x = Lx̃ +N (x̃) with x̃ := (x, ẋ) (3.2)

in the Banach space Y := `2×`2, with L and N given by

[Lx̃]j := (ẋj, Ljx) with Ljx = v1

(
∂+

j x−∂−j x
)−w1xj, (3.3)

[N (x̃)]j := (0, Nj(x)) with Nj(x) = Ṽ ′ (∂+
j x

)− Ṽ ′ (∂−j x
)− W̃ ′ (xj) . (3.4)

In addition to the standard norm on the Banach space Y we use the energy norm
‖ · ‖Y with ‖(x, y)‖2

Y := ‖x‖2
E + ‖y‖2, where ‖ · ‖ denotes the standard `2-Norm, i.e.,

‖y‖2 := ‖y‖2
`2 =

∑
j∈Z |yj|2, and ‖ · ‖E denotes the energy norm

‖x‖2
E :=

∑

j∈Z

(
v1

∣∣∂+
j x

∣∣2 + w1|xj|2
)

= v1

∑

j∈Z

∣∣∂+
j x

∣∣2 + w1‖x‖2.

For min{w1, w1+4v1} > 0 the norms ‖ · ‖ and ‖ · ‖E are equivalent with

min{w1, w1+4v1}‖x‖2 ≤ ‖x‖2
E ≤ max{w1, w1+4v1}‖x‖2.

Clearly, the full oscillator chain is a Hamiltonian system whose solutions make the
sum H of kinetic and potential energy

H(x, ẋ) =
1

2
‖ẋ‖2 +

∑

j∈Z

[
V (∂+

j x) + W (xj)
]

constant with respect to time. The norm ‖ · ‖Y is defined in such a way that its square
is twice the quadratic part of H. The following result states the well-known fact that the
flow of the linearized system (2.2) preserves this norm.

Proposition 3.1 The solutions x̃ : t 7→ x̃(t) = etLx̃(0) of (2.2) satisfy ‖x̃(t)‖Y = ‖x̃(0)‖Y

for all t ∈ R.

Proof: Since xj ∈ R for all j ∈ Z, we have by definition

d

dt
‖x̃(t)‖2

Y =
d

dt

∑

j∈Z

[
ẋ2

j + v1 (xj+1−xj)
2 + w1x

2
j

]

= 2
∑

j∈Z
ẋj [ẍj − v1 (xj+1−2xj+xj−1) + w1xj] = 2

∑

j∈Z
ẋj · 0,
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since the linear system ˙̃x = Lx̃ reads ẍj − v1 (xj+1−2xj+xj−1) + w1xj = 0, j ∈ Z. ¤

The following theorem constitutes our justification of the validity of the NLSE (2.14)
as a macroscopic limit for the oscillator chain model (2.1) with cubic nonlinearities (i.e.,
with v2 = w2 = 0 in the potentials V , W ).

Theorem 3.2 Assume that V, W ∈ C5(R) in (2.1) satisfy V (d) = v1

2
d2 + O(d4) and

W (y) = w1

2
y2 + O(y4) with min{w1, w1+4v1} > 0. Let A : [0, τ0]×R → C be a solution

of the NLSE (2.14) with A(0, ·) ∈ H5(R) and let XA be the formal approximation (3.1).
Then, for each d > 0 there exist ε0, C > 0 such that for all ε ∈ (0, ε0) the following
statement holds:

Any solution x̃ of (3.2) with an initial condition x̃(0) satisfying

∥∥∥x̃(0)− X̃A(0)
∥∥∥

Y
≤ dε3/2, (3.5)

fulfills the estimate

∥∥∥x̃(t)− X̃A(t)
∥∥∥

Y
≤ Cε3/2 for t ∈ [0, τ0/ε

2].

Proof: Using the standard theory of semilinear wave equations [Tem88, Paz83], there
exists CA > 0 such that the solution A of NLSE satisfies

‖∂k
ξ ∂l

τA(τ, ·)‖L2(R) ≤ CA for τ ∈ [0, τ0] and k, l ∈ N0 with k+2l ≤ 5. (3.6)

Inserting the approximation (2.16) ZA = XA+Y A with XA = εAE + c.c., Y A :=
ε3ΨA3E3 + c.c. into (3.2), we obtain the residual term

ρ̃A := (0, ρA) :=
˙̃
ZA − LZ̃A −N (Z̃A) with ρA

j = Z̈A
j − LjZ

A −Nj(Z
A). (3.7)

By (2.3) and (2.16), ZA equals X(A) with A1,0 = A2,0 = A2,1 = A2,2 = A3,0 = A3,1 =
A3,2 = Ak,n = 0 for k ≥ 4, n = −k, . . . , k, and A1,1 = A, A3,3 = ΨA3. Hence, proceeding
like in the previous section, and using (2.4) with c = −ω′, (2.6) and (2.9), we obtain by
formal comparison of the coefficients of the terms εkEn of (2.8), with ZA instead of X(A),
the expansion

ρA
j = Z̈A

j − LjZ
A −Nj(Z

A) = ε4
{[

ε∂2
τA+2ω′∂ξ∂τA−r1,1

]
E + c.c.

}

+ ε4Ψ
{[

ε3∂2
τA

3+2ε2ω′∂ξ∂τA
3+ε

(
(ω′)2∂2

ξA
3+6iω∂τA

3
)
+6iωω′∂ξA

3 − r̃3,3

]
E3 + c.c.

}

+ ε4(r−2 −r+
2 +r2)− V̂ ′(∂+

j ZA) + V̂ ′(∂−j ZA) + Ŵ ′(ZA
j ) (3.8)

with

r1,1 =
v1

6

[
eiϑ∂3

ξA
(
τ, ξ+θ+

1,1ε
)−e−iϑ∂3

ξ A
(
τ, ξ−θ−1,1ε

)]
,

r̃3,3 = v1

[
ei3ϑ∂ξA

3
(
τ, ξ+θ̃+

3,3ε
)
−e−i3ϑ∂ξA

3
(
τ, ξ−θ̃−3,3ε

)]
,

r±2 = v3

[
3(a±1 )2(b±1 +εr±1 )+3εa±1 (b±1 +εr±1 )2+ε2(b±1 +εr±1 )3

]
,

r2 = w3

(
3εa2

1r1+3ε3a1r
2
1+ε5r3

1

)
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and

a1 = AE+c.c., a±1 = ± (
e±iϑ−1

)
AE+c.c., b±1 = e±iϑ∂ξAE + c.c., r1 = ΨA3E3 + c.c.,

r±1 = ±e±iϑ 1

2
∂2

ξA(τ, ξ±θ̂±1,1ε)E+Ψ
[
± (

e±i3ϑ−1
)
A3+εe±i3ϑ∂ξA

3(τ, ξ±θ̃±3,3ε)
]
E3+c.c.,

where θ±1,1, θ̃
±
3,3, θ̂

±
1,1 ∈ (0, 1). In accordance to the formal derivation of the previous section,

in (3.8) there appear no terms of order εk, k = 1, 2, 3, since we assumed v2 = w2 = 0,
c = −ω′, and that A solves the NLSE (2.14) with Ψ given by (2.15).

From (3.8) we obtain the estimate

∣∣ρA
j (t)

∣∣ ≤ ε4 C1

(
1 + max

m+2n≤4
‖∂m

ξ ∂n
τ A(τ, ·)‖∞

)
max

k+2l≤4
sup
|s|≤1

∣∣∂k
ξ ∂l

τA (τ, ε(j+ω′t+s))
∣∣

for all ε ≤ ε0, τ = ε2t ≤ τ0, and j ∈ Z. The coefficient C1 > 0 depends only on ε0, CA, V
and W . (Recall that V̂ ′(d) = O(d4), Ŵ ′(y) = O(y4).) Applying the subsequent Propo-
sition 3.3 to φ = ∂k

ξ ∂l
τA(τ, ·), and using the Sobolev embedding ‖u‖∞ ≤ CSob‖u‖H1(R) for

u ∈ H1(R), as well as (3.6), we obtain for ρ̃A = (0, ρA) the estimate
∥∥ρ̃A(t)

∥∥
Y
≤ ε7/2C1 (1+CSobCA)3

√
8CA =: ε7/2Cρ for ε ≤ ε0 and t ≤ τ0/ε

2. (3.9)

From Ỹ A
j = (Y A

j , Ẏ A
j ) = ε3Ψ(A3E3+c.c., 3A2(ε2∂τA+εω′∂ξA + iωA)E3+c.c.) we simi-

larly obtain

‖Ỹ A(t)‖Y ≤ ε5/2|Ψ|C2 CSob C3
A for ε ≤ ε0 and t ≤ τ0/ε

2 (3.10)

with C2 > 0 depending only on ε0, V, W .
Above we have estimated the residual term ρ̃A. Now we have to show that this implies

that the error between the approximation Z̃A and the true solutions x̃ remains small on
the interval [0, τ0]. For the error x̃−Z̃A we use the ansatz R̃ = (R, Ṙ) = ε−3/2(x̃−Z̃A).

Hence, it is our aim to show that R̃ remains bounded independent of ε ∈ (0, ε0). From
(3.2) and (3.7) we obtain

˙̃
R = LR̃ + (0,M)− ε−3/2ρ̃A (3.11)

with (0,M) := ε−3/2
[
N (ε3/2R̃+Z̃A)−N (Z̃A)

]
. By definition (3.4) we have

ε3/2Mj = Ṽ ′ (ε3/2∂+
j R+∂+

j ZA
)− Ṽ ′ (∂+

j ZA
)− Ṽ ′ (ε3/2∂−j R+∂−j ZA

)
+ Ṽ ′ (∂−j ZA

)

− W̃ ′ (ε3/2Rj+ZA
j

)
+ W̃ ′ (ZA

j

)
.

From the mean value theorem we obtain

Mj = Ṽ ′′ (ε d+
j

)
∂+

j R− Ṽ ′′ (ε d−j
)
∂−j R− W̃ ′′ (ε yj) Rj

with d±j := ϑ±j ε1/2∂±j R+1
ε
∂±j ZA, yj := ϑjε

1/2Rj+
1
ε
ZA

j , where ϑ±j , ϑj ∈ (0, 1).
From ZA = εAE+ ε3ΨA3E3 +c.c., (3.6), and Sobolev’s imbedding theorem we obtain

∣∣d±j
∣∣ , |yj| ≤ ε1/2 (|Rj+1|+|Rj|+|Rj−1|) + 6‖A(τ, ·)‖∞ + ε26|Ψ|‖A(τ, ·)‖3

∞

≤ ε1/23‖R̃‖Y + 6CSobCA + ε26|Ψ|(CSobCA)3 for all j ∈ Z, ε ≤ ε0, ε2t ≤ τ0.
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Thus, for given D > 0 there exists a sufficiently small ε0 > 0, such that the estimate

∣∣d±j
∣∣ , |yj| ≤ 7CSobCA =: C̃

holds for all j ∈ Z, ε ≤ ε0, ε2t ≤ τ0, and ‖R̃‖Y ≤ D.

Now, we use the cubic form of the nonlinearity. Since Ṽ ′′(d) = 3v3d
2 + O(d3) and

W̃ ′′(y) = 3w3y
2 +O(y3), we can, if necessary, decrease ε0 further, to obtain

|Mj| ≤ ε2 Ĉ√
3

(|Rj+1|+|Rj|+|Rj−1|) with Ĉ := 4
√

3(2v3+w3)C̃
2

for ε ≤ ε0, ε2t ≤ τ0, ‖R̃‖Y ≤ D and, thus,

‖(0, M)‖Y = ‖M‖ ≤ ε2Ĉ‖R̃‖Y for ε ≤ ε0, ε2t ≤ τ0, ‖R̃‖Y ≤ D. (3.12)

The semigroup associated to the linear problem
˙̃
R = LR̃ is given by G(t) = etL. By

the variation of constants formula, (3.11) can be transformed into

R̃(t) = G(t)R̃(0) +

∫ t

0

G(t−s)
[
(0,M(s))− ε−3/2ρ̃A(s)

]
ds.

From Assumption (3.5) of the theorem and (3.10) it follows

‖R̃(0)‖Y ≤ ε−3/2
(∥∥∥x̃(0)− X̃A(0)

∥∥∥
Y

+
∥∥∥Ỹ A(0)

∥∥∥
Y

)
≤ 2d

for ε ≤ ε0 and sufficiently small ε0. Using this estimate and (3.9), (3.12) as well as
Proposition 3.1, which gives ‖G(t)‖Y→Y = 1 for all t ≥ 0, we obtain

‖R̃(t)‖Y ≤ 2d + ε2

(∫ t

0

Ĉ‖R̃(s)‖Y ds + tCρ

)
for ε ≤ ε0, ε2t ≤ τ0, ‖R̃‖ ≤ D.

By Gronwall’s inequality, it follows

‖R̃(t)‖Y ≤
(
2d+ε2tCρ

)
eε2t bC for t ≤ τ0/ε

2 with ε ≤ ε0.

Of course, this estimate is only valid as long as ‖R̃(t)‖Y ≤ D. Hence, we now choose

D = (2d+τ0Cρ)e
τ0 bC . Then, decreasing ε0 > 0 sufficiently in the manner leading to

(3.12), it follows that the Gronwall estimate holds for all t ∈ [0, τ0/ε
2] with ε ≤ ε0.

This estimate together with (3.10) proves the desired result, since ‖x̃(t) − X̃A(t)‖Y ≤
ε3/2‖R̃(t)‖Y + ‖Ỹ A(t)‖Y . ¤

In the above proof we used the following result, which is a sharpened version of the
first estimate in [SW00, Lemma 3.9].

Proposition 3.3 For φ ∈ H1(R), ε ∈ (0, 1), and c ∈ R we have the estimate

∑

j∈Z
sup
|s|≤1

|φ (ε(j+c+s))|2 ≤ 8

ε
‖φ‖2

H1(R).
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Proof: Let φ ∈ H1(R), j ∈ Z, and x, x′ ∈ (j+c−1, j+c+1). From the fundamental
theorem of calculus we obtain

|φ(x)| ≤ |φ(x′)|+
∫ j+c+1

j+c−1

|φ′(ξ)| dξ.

Integration over x′, the estimate (a+b)2 ≤ 2(a2+b2), and Cauchy–Schwarz inequality yield

|φ(x)| ≤ ∫ j+c+1

j+c−1
(|φ(ξ)|+|φ′(ξ)|) dξ ≤ √

2
∫ j+c+1

j+c−1
(|φ(ξ)|2+|φ′(ξ)|2)1/2

dξ

≤ 2
(∫ j+c+1

j+c−1
(|φ(ξ)|2+|φ′(ξ)|2) dξ

)1/2

,

and, hence, sup|s|≤1 |φ (ε(j+c+s))|2 ≤ 4 ‖φ(ε·)‖2
H1((j+c−1,j+c+1)) . Summing over j ∈ Z, we

obtain ∑

j∈Z
sup
|s|≤1

|φ (ε(j+c+s))|2 ≤ 8‖φ(ε·)‖2
H1(R).

The substitution ξ = εx yields

‖φ(ε ·)‖2
H1(R) =

∫
x∈R

(|φ(εx)|2+
∣∣ d
dx

φ(εx)
∣∣2) dx = 1

ε

∫
ξ∈R

(|φ(ξ)|2+ε2
∣∣∣ d
dξ

φ(ξ)
∣∣∣
2

) dξ ≤ 1
ε
‖φ‖2

H1(R)

for ε ∈ (0, 1), which is the desired estimate. ¤

4 The periodic case

The modulation theory can be also applied to finite chains if the number of atoms is
sufficiently large. We impose periodicity conditions for the discrete system and obtain a
nonlinear Schrödinger equation with generalized periodicity conditions. We follow here
the analogous approach of [MSZ00], where modulations in the Swift-Hohenberg equation
were described via a Ginzburg-Landau equation.

We denote by (4.1)m the oscillator chain

ẍj = V ′(∂+
j x)− V ′(∂−j x)−W ′(xj), j ∈ Zm, (4.1)

where Zm = Z/mZ is the cyclic group with m elements. We use exactly the same ansatz
XA as in (3.1), namely

XA
j (t) = εA(τ, ξ)E(t, j) + c.c. with τ = ε2t, ξ = ε(j−ct). (4.2)

However, to obtain periodicity in j we need A(τ, ξ+εm)eiϑm = A(τ, ξ). Thus, we pose
NLSE on the interval (0, `) with a generalized boundary condition:

i∂τA = 1
2
ω′′∂2

ξA + ρ|A|2A,
A(τ, ξ+`)eiΘ = A(τ, ξ)

}
for ξ ∈ R and τ ∈ [0, τ0] (4.3)

with ρ = −3(v3c21+w3)
2ω

, where c1 = 2(1− cos ϑ). To indicate the parameters we write
(4.3)`,Θ for the NLSE with generalized periodicity eiΘ on the interval (0, `). Of course,
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it suffices to solve NLSE on (0, `) with the boundary conditions A(τ, `)eiΘ = A(τ, 0) and
∂ξA(τ, `)eiΘ = ∂ξA(τ, 0).

To make (4.1)m and (4.3)`,Θ compatible via the ansatz (4.2) we need to have

` = εm and Θ = ϑm mod 2π. (4.4)

For given ϑ and Θ the relation (4.4) has infinitely many solutions (m, ε) if and only if ϑ
and Θ are rational multiples of 2π and there exists m0 ∈ N with Θ = ϑm0 mod 2π.

Theorem 4.1 Assume ` > 0 and Θ, ϑ ∈ 2πQ∩S1, such that (4.4) has a solution (m, ε) ∈
N× (0,∞). Moreover, let A ∈ C([0, τ0], H

5
loc(R,C)) solve NLSE (4.3)`,Θ.

Then, for each d > 0 there exist ε0 > 0 and C > 0, such that the following holds: If
(m, ε) solves (4.4) with ε ∈ (0, ε0) and if x is a solution of (4.1)m whose initial datum

x̃(0) = (x(0), ẋ(0)) ∈ Rm × Rm satisfies ‖x̃(0)−X̃A(0)‖Rm×Rm ≤ dε3/2, then x satisfies

‖x̃(t)−X̃A(t)‖Rm×Rm ≤ Cε3/2 for t ∈ [0, τ0/ε
2].

The proof of this result is identical to the one on the infinite chain. We just have to
replace sums over Z by sums over Zm and integrals over R by integrals over R/`Z.

By using classical perturbation analysis for NLSE we may generalize the result to the
case that the solutions of (4.1)m are compared with XAm , where Am solves (4.3)`,Θm with

|Θm−Θ| ≤ dε =
d`

m
, ‖Am(0)‖H5(R) ≤ C and ‖Am(0)−A(0)‖H5(R) ≤ dε =

d`

m
.

Finally, we illustrate the result by a numerical example. This example shows that
reasonable approximation properties can be expected for sufficiently small ε. To make
the numerics as simple as possible we have chosen v1 = w1 = 1, Ṽ ≡ 0, W̃ (xj) = 1

4
x4

j and
` = 2π, ϑ = π

2
. The associated NLSE (4.3)2π,0 reads

i∂τA = − 1
6
√

3
∂2

ξA− 3
2
√

3
|A|2A,

A(τ, ξ+2π) = A(τ, ξ), A(0, ξ) =

{
[1+ cos(ξ−π)]2 for |ξ−π| ≤ π

2
,

0 else.

(4.5)

We solved this problem numerically for τ ∈ [0, τ0] with τ0 = 0.25, see Figure 2.
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Figure 2: Solution of NLSE (4.5): |A(κτ0, ·)| (left) and Re A(κτ0, ·) (right), κ = 0.1, . . . , 1.
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Since Θ = 0, any m ∈ 4N and ε = 2π/m satisfy (4.4). We solved (4.1)m for several
m from 100 to 4000 with the initial condition obtained from (4.2) and A(0, ·) from (4.5).
To compare the discrete solutions with NLSE we reconstructed |A(τ, ·)| and Re A(τ, ·) via
the formulae

|A(ε2t, ε(j+ω′t))| =
1

2ε

[
xj(t)

2 +
1

ω2
ẋj(t)

2

]1/2

,

Re A(ε2t, ε(j+ω′t)) =
1

2ε

[
xj(t) cos(ωt+ϑj)− ẋj(t)

sin(ωt+ϑj)

ω

]
.

These functions are plotted in Figure 3 for different τ ∈ [0, τ0] and m = 4000.
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Figure 3: |A| (left) and Re A (right) from the solution of (4.1)m with m = 4000.

Finally, in Figure 4 we compare the solutions at the final macroscopic time τ = τ0 for
different values of m. Note that the initial pulse A(0, ·) has a symmetric shape. However,
in the discrete system (4.1)m the pulse travels with microscopic speed c = −ω′ = −1/

√
3

to the left. This certainly breaks the symmetry. Figure 4 shows clearly that the symmetry
is broken and that the unsymmetry disappears for m →∞.
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Figure 4: Comparison |A(0.25, ·)| for m = 100, . . . , 4000 (to the right: magnification).

It should be noted that the numerical effort for the calculation of A(τ0, ·) from the
discrete system grows like m3: On the one hand the size of the system is proportional
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to m. Moreover, the time steps can be chosen independently of m, since the right hand
sides are uniformly bounded (in fact, because of ε = `/m the solutions are smaller and
smaller). On the other hand the macroscopic time is τ = ε2t. To reach τ0 we need to
integrate the microscopic time from 0 to m2τ0/`

2 for each of the m atoms. (In comparison
to this, the numerical effort for the calculation of A(τ0, ·) from the NLSE (4.5) is obviously
independent of m.) During this time the pulse travels mτ0|c|/`2 times around Zm. For
m = 4000, τ0 = 0.25, c = −1/

√
3 and ` = 2π this means that the pulse travels around

Z4000 more than 14 times!
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