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Abstract

It is well-known in surface-wave theory that the secular equation for the surface-
wave speed v can be written as detM = 0 in terms of the surface impedance matrix M .
It has recently been shown by the present authors that M satisfies a simple algebraic
Riccati equation. It is shown in the present paper that a purely matrix algebraic
analysis of this equation suffices to prove that whenever a surface wave exists it is
unique.
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1 Introduction

A surface wave is a travelling wave that propagates along the surface of a half-space and
decays exponentially away from the surface. The transmitting medium may be for instance
elastic, viscoelastic or piezoelectric. Surface waves were first studied by Rayleigh (1885)
in the context of an isotropic elastic half-space and hence nowadays surface waves are also
referred to as Rayleigh waves.

The extension from an isotropic elastic half-space to a generally anisotropic elastic
half-space is non-trivial, and propagation of surface waves in the latter medium has been
one of the most exciting research areas in linear elasticity. It seems that surface waves in
an anisotropic elastic half-space were first studied by Synge (1956), but after deriving a
complex secular equation without further reductions, he concluded incorrectly that only
for certain discrete directions would the complex secular equation have a real solution for
the wave speed. Making use of a formalism first established in Stroh (1958) (now known as
the Stroh formalism), Stroh (1962) showed that Synge’s (1956) complex secular equation
can always be reduced to a purely real expression. An alternative proof of the reality
of the secular equation was given by Currie (1974). Under the framework of the Stroh
formalism, the uniqueness of surface waves in a generally anisotropic elastic half-space
was first proved by Barnett et al (1973). The existence proof was first given by Barnett
and Lothe (1974), and an alternative proof was subsequently given by Lothe and Barnett
(1976) in terms of the surface impedance matrix defined first by Ingebrigtsen and Tonning
(1969). Barnett and Lothe’s existence argument was later made more precise by Chadwick
and Smith (1977) with the aid of a careful classification of transonic states. The research
on the existence and uniqueness of surface waves in a generally anisotropic elastic half-
space culminated with the paper by Barnett and Lothe (1985) who, apart from sharpening
Chadwick and Smith’s (1977) existence results, presented a concise theory, more refined
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than that of Lothe and Barnett (1976), for the existence and uniqueness of surface waves
with the aid of the impedance matrix. In this connection, mention should also be made
of the paper by Taylor (1978) who attempted to give an existence proof with the aid of a
matrix that is i times the surface impedance matrix, but it seems that his argument is in
error.

Another thread of research on surface waves in a generally anisotropic elastic half-space
is the computation of surface wave speed and derivation of explicit secular equations. An
explicit secular equation was first derived by Currie (1979), although this paper seems
to have been ignored by subsequent researchers. Mozhaev (1995) proposed a method
based on first integrals of displacement components, and showed how an explicit secular
equation could be obtained. Recently, motivated by Mozhaev’s (1995) approach and ideas
in the Stroh formalism, Destrade (2001a, b) developed another efficient method based on
first integrals of traction components. Although both Mozhaev’s (1995) and Destrade’s
(2001a, b) methods yield explicit secular equations that can be solved numerically for the
wave speed, these secular equations also admit spurious roots that have to be carefully
eliminated. Furthermore, as pointed out by Destrade (2001), both of these methods are
only applicable to situations where the plane spanned by the direction of propagation and
the normal to the free surface is a symmetry plane of the material. More recently, Ting
(2002a, b) showed how a plethora of secular equations could be derived using a simple
procedure. But again, the secular equations derived using Ting’s method admit spurious
roots and even some of the secular equations themselves are spurious.

If one’s main concern is to compute the surface wave speed corresponding a given elastic
half-space, the numerical method recently proposed by Fu and Mielke (2002) seems to be
most practical and efficient. This method is based on the identity

(M − iR)T−1(M + iRT)−Q+ ρv2I = 0, (1.1)

where M is the surface impedance matrix, ρ is the material density, v is the surface wave
speed and components of the matrices T,R,Q are defined in terms of the elastic stiffnesses
Cijkl by

Tik = Ci2k2, Rik = Ci1k2, Qik = Ci1k1. (1.2)

In the most general case, the Hermitian matrixM involves three real components and three
complex components so that the identity (1.1) yields nine real equations, which together
with the secular equation detM = 0, can easily be solved numerically for M and v. We
note that it is advantageous to use the surface impedance matrix since detM = 0 does not
admit any spurious root.

We show in this paper that the identity (1.1) can also be used to prove the uniqueness of
surface waves in a manner that is independent of the framework of the Stroh formalism. We
note that the previous proof given by Barnett and Lothe (1985) is based on the following
properties that hold in the subsonic interval 0 ≤ v ≤ v̂ where v̂ is known as the limiting
speed:

(i). The surface impedance matrix M is Hermitian;

(ii). The matrix dM/dv is negative definite;

(iii). trM ≥ 0, and w ·Mw ≥ 0 for all real vectors w.

With the aid of these results, the uniqueness of surface waves is proved as follows.
First, it can be shown using an energy argument (see e.g. Barnett and Lothe 1985 or Fu
and Mielke 2002) that M must necessarily be positive definite at v = 0 so that all its
eigenvalues are positive when v = 0. Property (ii) above implies that the eigenvalues of
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M are monotone decreasing functions of v. Thus, a (subsonic) surface wave exists only if
an eigenvalue of M , originally positive at v = 0, decreases to zero at v = vR < v̂. It can
then be deduced that whenever such a vR exists, it is unique (i.e., detM = 0 has at most
one solution v ∈ (0, v̂)). For if it is not unique, then two of the eigenvalues of M must
be negative at v = v̂ and any real vector w lying in the eigenspace of these two negative
eigenvalues will violate result (iii) above; see Barnett and Lothe 1985, p. 145.

In the following section, we establish the three crucial properties above using an argu-
ment that is entirely free from the Stroh formalism. In fact, our derivation only involves
an elementary matrix algebraic analysis of the Riccati equation (1.1) which also provides
a formula for the desired solution M of (1.1) via two matrix-valued integrals whose inte-
grands are given explicitly in terms of T,R and Q, see Theorem 2.7. In the concluding
section we discuss connections with the Stroh formalism.

2 Main results

We consider a homogeneous, unstressed, generally anisotropic elastic half-space defined by

0 < x2 <∞, −∞ < x1, x3 <∞

relative to a rectangular coordinate system with coordinates (xi). Free surface waves are
governed by the equation of motion

Cijksuk,sj = ρüi, 0 < x2 <∞, (2.1)

the traction-free boundary condition

Ci2ksuk,s = 0 on x2 = 0, (2.2)

and the decay condition
uk → 0 as x2 →∞, (2.3)

where (uk) is the displacement, ρ the material density, a comma denotes differentiation
with respect to spatial coordinates and a dot denotes material time derivative. The Cijks

are elastic stiffnesses and are assumed to satisfy the symmetry relations

Cijks = Cksij = Cjiks, (2.4)

and the strong convexity condition

Cijksξijξks > 0 ∀ non-zero real symmetric tensors ξ. (2.5)

The strong ellipticity condition is given by

Cijksηiηkγjγs > 0 ∀ non-zero real vectors η and γ, (2.6)

and is implied by the strong convexity condition (2.5).
Without loss of generality, we may assume that the surface wave is propagating along

the x1-direction and that
u = z(mx2)e

im(x1−vt) +C.C., (2.7)

where u = (uk), i =
√
−1, m is a positive wave number, v is the propagation speed and

C.C. denotes the complex conjugate of the preceding term. The elastic half-space is said
to support a surface wave if we can find a real positive value v and a non-trivial vector
function z(y) such that (2.1)–(2.3) are satisfied.
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On substituting (2.7) into (2.1) and (2.2), we obtain

Tz′′(y) + i(R+RT)z′(y)− (Q− ρv2I)z(y) = 0, 0 < y <∞, (2.8)

Tz′ + iRTz = 0, on y = 0, (2.9)

where a prime signifies differentiation with respect to y (= mx2) and the matrices T,R,Q
are defined by (1.2). We note that satisfaction of the strong ellipticity condition (2.6)
ensures that T and Q are both positive definite and hence they are invertible.

We may view (2.8) as an initial value problem and look for a solution of the form

z = e−yEz(0), (2.10)

where E is a 3 × 3 real matrix to be determined. On substituting (2.10) into (2.8) and
(2.9), we obtain

TE2 − i(R+RT)E −Q+ ρv2I = 0, (−TE + iRT) z(0) = 0. (2.11)

Equation (2.11)2 motivates the introduction of M through −TE + iRT = −M , or equiva-
lently,

E = T−1(M + iRT). (2.12)

The matrix M is known as the surface impedance matrix. Substituting (2.12) into (2.11)1,
we obtain the simple Riccati equation (1.1) which was first given by Mielke and Sprenger
(1998) for v = 0 and by Fu and Mielke (2002) in the case of general v. Equation (2.11)2
can be written Mz(0) = 0. Thus, a surface wave exists only if (1.1) has a solution M such
that the eigenvalues of the matrix E computed according to (2.12) all have positive real
part (in order to satisfy the decay condition) and that the following secular equation is
satisfied:

detM = 0. (2.13)

It is known that the eigenvalues of any solution of (2.11)1 will all have a non-zero real part
if 0 ≤ v < v̂, where v̂ is called the limiting speed (Chadwick and Smith 1977, p. 335). A
surface wave with speed less than v̂ is said to be subsonic.

Proposition 2.1 The matrix problem

TE2 − i(R+RT)E −Q+ ρv2I = 0, Re spec E > 0, (2.14)

where “Re spec E” means the “real parts of the spectra of E”, has a unique solution for
E.

Proof. Let E be a solution of (2.14). Let λ be an eigenvalue of E and a an associated
eigenvector (so that Ea = λa). It follows from (2.14)1 that λ and a must satisfy the
eigenvalue problem

{

λ2T − iλ(R+RT)−Q+ ρv2I
}

a = 0,

and so λ is a root of the characteristic equation det
{

λ2T − iλ(R+RT)−Q+ ρv2I
}

= 0.

It can be seen that if σ is a root of this characteristic equation then so is −σ, where a bar
denotes complex conjugation. Thus, this characteristic equation has exactly three roots
with positive real part. Collecting the corresponding generalized eigenspaces defines E
QED

Theorem 2.2 If E solves (2.14), then M obtained from (2.12) is Hermitian.
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Proof. Note that M and M
T
both solve (1.1). Subtracting these two equations we find

(M −M
T
)E + E

T
(M −M

T
) = 0, (2.15)

which is a Liapunov matrix equation

XE + E
T
X = B, (2.16)

for the unknown X = M − M
T

with inhomogeneity B = 0. The standard theory of
Liapunov’s matrix equation (see, e.g., Barnett 1992, pp. 307, 246) tells us that provided
there are no eigenvalues λi, λj of E such that λi + λj = 0, equation (2.16) has a unique
solution X. For Re spec (E) > 0 it is given by

X =

∫ ∞

0
e−tE

T

B e−tE dt. (2.17)

Since we have B = 0 the unique solution of (2.15) is X = 0 and hence M = M
T
. QED

Theorem 2.3 Let M and E be the same as in Theorem 2.2. Then the matrix dM/dv is
negative definite.

Proof. On differentiating (1.1) with respect to v, we obtain

M ′E + E
T
M ′ = −2ρvI, (2.18)

where dM/ dv. Equation (2.18) is recognized as another Liapunov matrix equation, and
so it has a unique solution for M ′ given by (see (2.17))

M ′ =

∫ ∞

0
e−tE

T

(−2ρvI)e−tE dt = −2ρv
∫ ∞

0
e−tE

T

e−tE dt. (2.19)

Thus, for arbitrary non-zero complex vectors ξ we have

ξ ·M ′ξ = −2ρv
∫ ∞

0
η(t) · η(t)dt, where η(t) = e−tEξ. (2.20)

Since η(0) = ξ 6= 0 and η(t) is continuous at t = 0 (so that η(t) is non-zero at least in a
small but finite interval), we have ξ ·M ′ξ < 0 and hence M ′ is negative definite. QED

We now proceed to establish the result (iii) listed in the previous section. From now
on, we write Q− ρv2I simply as Q. We first define matrices Tθ, Rθ and Qθ by

Tθ = cos θ2T − sin θ cos θ(R+RT) + sin θ2Q,

Rθ = cos θ2R− sin θ2RT + sin θ cos θ(T −Q), (2.21)

Qθ = cos θ2Q+ sin θ cos θ(R+RT) + sin θ2T,

where θ is an arbitrary angle. We note that the ik-component of Qθ is Cijklnjnl −
ρv2 cos2 θδik and Tθ = Qθ+π

2
, where n1 = cos θ, n2 = sin θ and the summation over re-

peated subscripts ranges from 1 to 2. Thus, by the definition of the limiting speed v̂, both
Tθ and Qθ are positive definite for 0 ≤ v < v̂ and all θ, but at the limiting speed Tθ and
Qθ may be either positive definite or positive semi-definite depending on θ (there exists at
least one θ at which Tθ has an eigenvalue 0, and likewise for Qθ).

We shall use E exclusively to denote the unique solution of (2.14), and likewise, we
define Eθ to be the unique solution of the matrix problem

TθE
2
θ − i(Rθ +Rθ

T)Eθ −Qθ = 0, Re spec Eθ > 0. (2.22)
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We define Mθ according to
Eθ = Tθ

−1(Mθ + iRθ
T) (2.23)

(cf. (2.12)), so that it is Hermitian and satisfies the Riccati equation

(Mθ − iRθ)Tθ
−1(Mθ + iRθ

T)−Qθ = 0. (2.24)

We have the following result.

Proposition 2.4 The Hermitian matrix Mθ defined above is independent of θ.

Proof. On differentiating (2.21) with respect to θ, we obtain

Tθ
′ = −Rθ −Rθ

T, Rθ
′ = Tθ −Qθ, Qθ

′ = Rθ +Rθ
T, (2.25)

where again a prime denotes differentiation with respect to θ. Differentiating TθTθ
−1 = I,

we also obtain
(Tθ

−1)′ = −Tθ−1Tθ ′Tθ−1. (2.26)

To prove the Proposition, we first differentiate (2.24) with respect to θ and use (2.26) to
obtain

(Mθ
′− iRθ

′)Eθ+E
T
θ (Mθ

′+i(Rθ
′)T)− (Mθ− iRθ)Tθ

−1Tθ
′Tθ

−1(M +iRθ)−Qθ
′ = 0, (2.27)

where Eθ is calculated according to (2.23). On substituting (2.25) into (2.27), we obtain

Mθ
′Eθ+E

T
θMθ

′− i(Tθ−Qθ)Eθ+iE
T
θ (Tθ−Qθ)+E

T
θ (Rθ+Rθ

T)Eθ−Rθ−Rθ
T = 0. (2.28)

On replacing the first Qθ in the above equation by E
T
θ (Mθ + iRθ

T) and the second Qθ by
(Mθ − iRθ)Eθ, both of which can be obtained from (2.24), we obtain after simplying

Mθ
′Eθ + E

T
θMθ

′ = 0, (2.29)

which is another homogeneous Liapunov matrix equation. It then follows Mθ
′ = 0, and so

Mθ is independent of θ. QED

Since Eθ reduces to the E defined in Theorem 2.2 when θ = 0, we have Mθ ≡M , where
M is the corresponding M defined in Theorem 2.2. Thus,

Eθ = Tθ
−1(M + iRθ

T). (2.30)

On differentiating this relation with respect to θ and in turn making use of (2.26), (2.25),
(2.30) and (2.22), we obtain

Eθ
′ = −Tθ−1Tθ ′Tθ−1(M + iRθ

T ) + iTθ
−1(Tθ −Qθ)

= Tθ
−1(Rθ +Rθ

T )Tθ
−1(M + iRθ

T ) + i(I − Tθ
−1Qθ)

= Tθ
−1(Rθ +Rθ

T )Eθ + i(I − Tθ
−1Qθ)

= iTθ
−1Qθ − iEθ

2 + iI − iTθ
−1Qθ

= i(I − Eθ
2). (2.31)

On integrating this matrix differential equation subject to the conditions E0 = E, we
obtain

Proposition 2.5 We have

Eθ = (cos θI + i sin θE)−1(cos θE + i sin θI). (2.32)
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Proof. We first note that for any matrix U that is dependent on θ, we have (U−1)′ =
−U−1U ′U−1. It then follows that (U−1U ′)′ = −(U−1U ′)2 + U−1U ′′, or equivalently,
(−iU−1U ′)′ = −i(−iU−1U ′)2 − iU−1U ′′. This suggests a transformation Eθ = −iU−1U ′.
On substituting this relation into (2.31), we obtain U ′′ + U = 0. The general solution of
the latter equation is U = cos θK1+sin θK2, where K1,K2 are arbitrary constant matrices.
From the condition E0 = E we obtain E = −iK−1

1 K2. Thus U = K1(cos θI +i sin θE) and

Eθ = −iU−1U ′ = (cos θI + i sin θE)−1(cos θE + i sin θI). (2.33)

QED

If λ is an eigenvalue of E, then by (2.32) the corresponding eigenvalue of Eθ is

λθ = Ψ(λ, θ), where Ψ(λ, θ) =
λ cos θ + i sin θ

cos θ + iλ sin θ
= −i d

dθ
ln(cos θ + iλ sin θ). (2.34)

The real part of λθ is indeed positive, as required in (2.22). It then follows that

∫ π

0
λθ dθ = π. (2.35)

This leads us to

Proposition 2.6 We have
∫ π

0
Eθ dθ = πI. (2.36)

Proof. We use the spectral calculus for matrices. Choose any closed curve Γ in the complex
plane surrounding all the eigenvalues of E with positive real part and lying in the open
half plane Re λ > 0. Then, by Proposition 2.5 we have

∫ π

0
Eθ dθ =

∫ π

0

1

2πi

∮

λ∈Γ
Ψ(λ, θ)(λI − E)−1dλdθ

=
1

2πi

∮

λ∈Γ

∫ π

0
Ψ(λ, θ)dθ (λI − E)−1dλ

=
1

2πi

∮

λ∈Γ
π(λI − E)−1dλ = πI,

where we have used (2.35) in the second step. QED

On integrating (2.30) and making use of (2.36), we obtain

Theorem 2.7 The unique solution of the algebraic Riccati equation (1.1) that satisfies
Re spec (T−1(M + iRT)) > 0 is given explicitly by

M =

(
∫ π

0
Tθ
−1dθ

)−1 (

πI − i

∫ π

0
Tθ
−1Rθ

Tdθ

)

. (2.37)

Define H and S through

H =
1

π

∫ π

0
Tθ
−1dθ, S = − 1

π

∫ π

0
Tθ
−1Rθ

Tdθ. (2.38)
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Equation (2.37) may then be written as

M = H−1 + iH−1S. (2.39)

We note that since Q has been used to denote Q− ρv2I in the second half of this section,
H, S and M all depend on the wave speed v. We also note that since at the limiting speed
there exists at least one angle in [0, π] at which Tθ has a zero eigenvalue, the matrix H is
singular as v → v̂. But H−1 is well-defined for all 0 ≤ v ≤ v̂ and at v = v̂ at least one of
its eigenvalues must vanish.

It is obvious that H and S are both real matrices and H is symmetric. Since M
must necessarily be Hermitian, it follows that H−1S is skew-symmetric, a result that has
previously been obtained with the aid of the Stroh formalism. The property (iii) listed in
the previous section then follows from the facts that trM = trH−1, w ·Mw = w ·H−1w

for any real vector w, and that H−1 is positive semi-definite for 0 ≤ v ≤ v̂.

3 Connection with the Stroh formalism

The expressions (2.38) and (2.39) are well-known in the Stroh formalism, but were derived
using a different procedure (see Barnett and Lothe 1974, Lothe and Barnett 1976). The
essence of the Stroh formalism (Stroh 1958, 1962) is to write (2.8) and (2.9) in the following
form:

d

dỹ
ξ = Nξ, (3.1)

where ỹ = iy,

ξ =

(

z

t

)

, t = T
d

dỹ
z +RTz, N =

(

−T−1RT T−1

RT−1RT −Q −RT−1

)

. (3.2)

The vector t defined above is seen to be the traction; see (2.9). We recall that starting from
equation (2.21) we have been using Q for Q − ρv2I. The Stroh formalism is essentially a
Hamiltonian formulation of the travelling wave problem with the spatial variable x2 viewed
as a time-like variable. The matrix N defined above is recognized as a Hamiltonian matrix

and is much studied in control theory; see, e.g., Knobloch et al. (1993, Appendix A).
Our matrix E does not feature in the Stroh formalism, but its importance can be seen

from the relation

N

(

I
iM

)

= i

(

I
iM

)

E, (3.3)

which shows that if λ is an eigenvalue of E then iλ is an eigenvalue of N .
Our differential equation (2.31) is analogous to Barnett and Lothe’s (1976) equation

(2.13), namely
d

dθ
Nθ = −(I +N2

θ ), (3.4)

where Nθ is obtained from the expression (3.2)3 for N by replacing T,R,Q by Tθ, Rθ, Qθ,
respectively. Following the same line of argument as in the proof of Proposition 2.5, we
may deduce that the unique solution of (3.4) that satisfies the initial condition N0 = N is

Nθ = (cos θI + sin θN)−1(− sin θI + cos θN). (3.5)

Surprisingly, this explicit representation of Nθ does not seem to have previously been noted
in the literature. We now show that some well-known results in the Stroh formalism can
easily be deduced with the aid of this explicit representation.
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Let p(1), p(2), p(3) be the three eigenvalues of N that have positive imaginary parts and

ξ(1) =

(

a(1)

b(1)

)

, ξ(2) =

(

a(2)

b(2)

)

, ξ(3) =

(

a(3)

b(3)

)

(3.6)

be a set of associated eigenvectors (for simplicity we assume that N is diagonalizable). It
follows from (3.5) that the corresponding eigenvalues of Nθ are

p
(k)
θ =

p(k) cos θ − sin θ

cos θ + p(k) sin θ
=

d

dθ
ln(cos θ + p(k) sin θ), k = 1, 2, 3, (3.7)

and the associated eigenvectors are the same as those of N . Thus, Nθξ
(k) = p

(k)
θ ξ(k), k =

1, 2, 3, and so
N̄ξ(k) = iξ(k), k = 1, 2, 3, (3.8)

where

N̄ =
1

π

∫ π

0
Nθ dθ =

(

S H
* ST

)

, (3.9)

and we have made use of the property that
∫ π

0
p
(k)
θ dθ = iπ, k = 1, 2, 3,

which is deduced from (3.7). The S and H in (3.9) are given by (2.38) and the element
represented by ∗ is not written out to avoid introducing extra notation. It follows from
(3.8) that N̄(ξ(1), ξ(2), ξ(3)) = i(ξ(1), ξ(2), ξ(3)). Thus, SA+HB = iA and so

M = −iBA−1 = H−1 + iH−1S, (3.10)

where
A = (a(1),a(2),a(3)), B = (b(1), b(2), b(3)).

It was shown by Lothe and Barnett (1976) that (3.10) is also valid when N is not diago-
nalizable.

The above derivation of (3.10) under the Stroh formalism makes use of the eigenvectors
of N and the nonsemisimple case has to be considered separately. Our derivation of (3.10)
with the use of Eθ does not use such eigenvectors and seems to be more natural and more
straightforward. In addition, our proof of the three properties of M listed in Section 1 only
involves a matrix algebraic analysis of properties of M and Eθ alone.
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