Existence theory for finite-strain crystal
plasticity with gradient regularization

Alexander Mielke

Abstract We provide a global existence result for the time-contirselastoplastic-

ity problem using the energetic formulation. The strairstaris decomposed multi-
plicatively into an elastic part and the plastic tenBpwhich is driven by the plastic
slip strain rateg;. We allow for self-hardening as well as cross-hardening: Th
strain gradient§lp; andJP are used to regularize the problem, thus introducing a
length scale and preventing the formation of microstruetur

1 Introduction

Elastoplasticity at finite strain is usually based on thetiplitative decomposi-
tion 0¢ = F = FeFy, introduced in [Lee69]. This decomposition reflects the Lie

group structure of GL(d) = {F € RY*Y | detF > 0}, where the elastic paf,
will contribute to the energy storage whereas the plastisdeP = F evolves ac-
cording to a plastic flow rule. The plastic tensor maps theenmtframe (crystallo-
graphic lattice) onto itself and is usually assumed to lighie special linear group
SL(d) £ {PecR¥d|detP=1}.

In this paper we combine the formal ideas for single-crygtakticity from
[OrR99, Mie03] with the recent analytical developments ihaMO08] proving a
global-in-time existence result for solution in finiteatr elastoplasticity. The dif-
ficulty is to find a formulation that allows us to use functibanalytical tools that
are compatible with the strong nonlinearities generatethbytie group structures
resulting from GL (d) and SL(d). We use here the theory of energetic solutions for
rate independent systems as developed in [MTLO02, MieO%.re€bently developed
geometric formulation on abstract topological spacedfci06, MRS08, Mie08])
was strongly motivated by the present application and, fmevides the first math-
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ematical foundation to treat the existence theory for taependent finite-strain
elastoplasticity.

To be more specific we introduce some notations.¢.etQ — RY denote the
deformationP : Q — SL(d) the plastic tensor, angl: Q — [0,%[™ is the vector of
slip strains. Then, we assume that the stored-energy anadtiakes the form

£(t..Pp) = [ WO 0pP %, p, 0P 0p) dx— (£(1). ).

Here Feast= O¢ P~ represents the multiplicative decomposition. The grasien
(OP,Op) introduce a length scale and will be essential to providegartness, thus
preventing the formation of microstructure, cf. [CHMO02, B@]. Such regularizing
terms are also common in engineering models, cf. [DiK70, [ILAFIHI97, Gur00,
Gur02, BaJ02].

In our quasistatic setting we will assume that

¢ (t) minimizes the energ§(t, -, P(t), p(t)) (1)
subject tog (t,x) = gpir (t,X) for x € Npjr,
which provides the usual elastic equilibrium equationai¢ f,o in Q ando-v =
firact ON the Neumann part of the bounda@, whereo = dW is the first Piola-
Kirchhoff stress tensor.

The evolution of the plastic variabl®andp is governed by the plastic flow rule
which will be assumed to be formulated by a dissipation peR(X, P, p, P, p)
such that

s v ((OPW(-) —div (GpW(- -
0€ 9% RXP.p,P,p) + <0';WE' . ; - d:x EOSZ’WE' a 53 > ' ?

It would be possible to supplemefitby a surface integral involving the plastic
variables, namely

|, P00, pO)
0Q

wherep : Q xSL(d) — S9-1 — R is a nonnegative Caratheodory function. This
term could be used to account for surface effects due tagtgdi.e., accumulation
of dislocation). The boundary conditions associated wijrafe

OpW(---)Vv+dpp =0, OqpW(---)v+3dpp =0.

wherev is the outer normal vector. To simplify the presentation wetahis term.
In (2) R(x,P, p,-,-) is convex on the tangent space aifgl R denotes the corre-

sponding subdifferential. This flow rule is rate mdepertdiaﬁt(x P,p,-,-) is posi-
tively homogeneous of degree 1, i.B(x,P, p,A (P,p)) = ARX,P, p,P, p). By the
proper choice oR we will guarantee that this row rule contains the essentiak
matic relation between the plastic tensor and the sliprtraiamely
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P:(Z;n:lpasa)P, whereSy, =m?@n®, a=1,...,m, (3)

are the the slip systems. Har& € RY is the (unit) normal vector of the slip system
Sy andm® € R™Mis the slip direction satisfyingn® - n* = 0.

A major step for deriving an existence theory is the replaz@nof the dissipa-
tion potentialR by the associated dissipation distarizesee (5). The dissipation
functional

D(F. po.Pu. 1) = | DO Ro(x). Po(x) PL(). pa) e

measures the minimal amount of energy dissipated when doamy the state
(Po, po) to (P1, p1). An important fact is thafD satisfies the (unsymmetric) trian-
gle inequality. A major difficulty arises from the fact thathas only logarithmic
growth because of plastic invariance, see (6). As a consegde cannot be coer-
cive on linear function spaces. The energetic approaclaterindependent systems
(Q,&,D) is exactly suited for this situation. However, we still wilhve extra work
to establish coercivity of the energy, see Section 3.1.

The energetic formulation of rate-independent systemsiges a weak form
of the system (1) and (2). For this we choose a state spdoe q = (¢,P, p) by
identifying suitable weakly closed subsets of Sobolev epawerQ. A mapping
g=(¢,P,p): [0,T] — Qis calledenergetic solutionif for all t € [0, T| thestability
condition(S) and theenergy balanc¢E) hold:

(S) &(t.q(t)) < &(t, @)+ D(q(t),q) forallg € Q,
(E) &(t,q(t)) + Dissp (q; 0,t]) = £(0,q(0)) + Jp Is€(s,4(8)) ds:

Here Diss) (q; [r,9) = supyy D(P(tj-1), p(Tj-1),P(1;), p(1})), where the supre-
mum is taken over all partitions ¢f, §. IN the case of external loadings and time-
independent boundary conditions we haw@(t,q) = —(¢(t), ¢).

However, if gpiy depends on time the power of the displacement loadings is
more difficult to express in a mathematically correct wapcsi the stresses on
the boundary are not well defined. Following [FrM06, MaM083 write the un-
known displacement as a compositig(t,x) = gpi (t,y(t,x)), wherey : Q — RY
is the new unknown satisfying(t,x) = x for x € I'p;;. With g = (y,z) we write
E(t,q) = &(t,gpir (t)oy,2) and find thatg E(t,q) can be expressed in terms of the
Kirchhoff stress tensor and a convected derivative.

In Section 2 we follow [Mie03] for discussing the mechanitaldeling of elasto-
plasticity and for explaining why the concept of energetitisons can be seen as
a weak version of the classical plasticity formulation. Thajor advantage of (S)
and (E) is that it avoids derivatives and is based solely erfuhctionalst andD,
which need not be smooth or even continuous. In Section 2.foweulate pre-
cise assumptions AV, D, andgp;; that allow us to construct solutions in suitable
Sobolev spaces. The main result is Theorem 1 which stategdbal existence of
energetic solutions for single-crystal plasticity. Fog ttases of kinematical harden-
ing and isotropic hardening we refer to [MaMO08].

(4)
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2 Modeling assumptions and results

We first provide an exact description of the mechanical modkelrms of the consti-
tutive functions, namely the stored-energy dengtyand the dissipation potential
R. Here we discuss the main symmetries and the basic kinemgdditons. Next
we discuss the assumptions that are necessary to develojpamadical existence
theory. Finally, this section closes by stating the mairstexice result and the un-
derlying abstract theory developed in [MaMO08].

2.1 Mechanical modeling

We recall the multiplicative decompositidip = F = F¢Fp, where the plastic ten-
sorP = Fy € SL(d) maps the material space crystallographic lattice onttf.itEee
slip strainsp; are combined into a vectqr € [0,%[™. To simplify notations we let
z=(P,p) € Z=SL(d)x [0,[" and useA as a place holder fdfiz= (0P, Op).

The stored-energy density = W(x, F,P,p,A) and the dissipation potentiRl=
Ifi(x P, p,P, p) have to satisfy the following symmetry properties:

(Sy1)Objectivity (frame indifference)
W(x,QF,P, p,A) =W(x,F,P,p,A) for all Q € SO(d);
(Sy2)Plastic indifference
W(XFP PP, P, A=W (xFPp, A)
R(x, PP, p,PP, p) = R(x, P, p,P, p)
(Sy3)Material symmetry
W(x,F,PS 1isp, MTsA) = W(x, F, P, p, A)
R(x, PS p, PS 78p) = R(X, P, p,P. p)
In (Sy3) the groupS is the material-symmetry group which acts on the plastic
strain by a permutationg : p — (p,b(l),...,p,b(m)), see [Mie03, Sect. 3.4.4], and
Ms(0OP, p) = O(PS 1p). In the sequel we will drop the explicit dependencexon
for notational simplicity. However, the whole theory idlstalid if W andR depend
onx € Q, which would be the case for polycrystals.
A consequence of (Sy2) is that andR can be written in a reduced form via

W(F,P,p,A) =W(FP%,p,A) and R(P,p,P,p) =R(p,PP 1, p),

whereé = PPt e sl(d) = TySL(d) = { & € R%9 | tr& = 0}. We now define the
dissipation distancB(-,-) onZxZ via

} for all P € SL(d);

} forall Se & c O(d).

D(20,21) mf{/ R(z(9),2(9))ds| ze CL([0,1],2),2(0) = 20,2(1) =z }. (5)

Thus,D has the dimension of an energy density and measures the aof@nergy
per volume that has to be spent to transform a material paint the internal state
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Zp into z;. The plastic indifference (Sy2) implies that the dissipatdistanceD is
right-invariant, namely

D(PL pla P27 p2) = D(17 07 PZP]Tla pz_pl) for a” Pla P27 pla p2' (6)

We specifyR further in such a way that the slip kinematics (3) is enforaetb-
matically byR(p, &,Vv) < «, namely

221:1 KaVa fOI’rS = zg':l VaS] andVE [O,oo[m,
o otherwise,

Rp.£) - { @)
where the threshold parameteqs (cf. [OrR99, Gur00] are assumed to be bounded
positive constants. Note that the slip strain behave mancaty and are not al-
lowed to decrease. However, oft&q, », = —S; for a < m/2, thenP may take
any value.

Sincev= pandP = &P, the flow rule (2) implies the slip kinematics (3), because
the subdiﬁerentiaﬁ(p’mﬁ is nonempty if and only iR is finite.

def

We assume that the set of slip systeths: { Sy |a =1,...,m} is large enough to
generate the whole group 81). More precisely, a slip systeBy has to be consid-
ered as an element of d) = T1SL(d), such thaP, (1) = €’ = 14-1S, is a simple
shear. We say that $dl) is generated b, if eachP € SL(d) can be written in the
form Py, (1) - - - Pay (Tn), WhereN € N, ay € {1,...,m}, andti € R. By the standard
theory of Lie groups and their Lie algebras this is equivatersaying that gd)
is the smallest Lie algebra containid (with respect to the standard Lie bracket
[€1,&2) = £1&2— €2&1). Obviously,& generates S{d), if the linear hull of & equals
sl(d), and this is the case in many cases of crystal plasticity{Ge@05]. However,
this is by far not necessary, for an example consiler {e;®e,, e2e€;}, which
generates S[2), see [HMMO03].

Subsequently we will not write down this condition &7 since it is not essential.
If it is not satisfied, we just have to replace (8l by the smaller Lie groug C
SL(d) that is generated b. The whole theory will still hold for any such subgroup.

2.2 Precise mathematical assumptions

For notational simplicity we restrict to the case of disglaent boundary conditions
that are independent of time and use volume and surfacesfavakive the system.
We refer to [FrM06, MaMO8] to the case of time-dependent la@um conditions.

The domainQ c RY is bounded and has a Lipschitz boundary. The Dirichlet
part/pj of the boundary is assumed to have positive surface medsurgp;, we
assume that it can be extended to alRSfas follows:

goir € CY([0, T]xR%:RY),  Ogpir € BCY([0, T]xRY, Lin(RY;RY)) ®
and|Ogpjr (t,x) 2| < Cforall (t,x) € [0, T|xRY,
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where “BC” stands for bounded and once continuously differentiabhaus, for
eacht € [0, T] the mappingpi (t,-) : RY — RY is a global diffeomorphism.
We seek forp(t,-) in the form

(t,x) = goir (t,Y(X)) Withy € Y = {y € Y|y|n,, =id} andY = W-¥ (Q;RY).

We setq = (y,z) and E(t,y,P, p) = &(t,9pir (t,-)oy, P, p). Since no confusion can
arise, we denoté again byc.
The internal variable ig = (P,p) € Z £ SL(d)x [0,[", where the spac& of

internal states is chosen as

2= {(P.p) € Z|(P(x),p(x)) € ZandD(1,0,P(x), p(x)) < @ a.e.inQ},
whereZ = W' (Q; R¥<4x R™) with r > d.

The stored-energy functionéland the dissipation distan@etake the forms

E(t,Y,2) = Jo W(Ogoir (t,y(x)) Dy()P(x) 1, 2(x), 0z(x)) lx,
D(20,21) = [ D(20(x), 21(x)) x,

whereD is defined in (5) vidRin (7).

The conditions o'W are much more involved. In particular, they include co-
ercivity assumptions and convexity assumptions to obtairet semicontinuity. To
shorten notation we lt(d:m £ gdxdxd, pm=<d and yseA as a placeholder faiz=
(OP,0p) € L@M . The functionM : R4 — Rk with pg = 59, (9% = (%) -1
maps a matrix to all its minors (subdeterminants). The Kiafhstress tensor is
defined viaK (F, p,A) = drW(F, p,A)F T. We impose the following:

there exist§¥V : RHa x RMx (@M _ R, :
(i) W is lower semicontinuous (9a)
(i) W(F,p,A) = W(MEF), p.A),
(iily W(x,-, p,-):RHaxL4M _ R, is convex;
there existc > 0, gy, r > d, gp > 1 such that
W(F, p,A) > c(|F|% +[p|% + |A) - 1/c.

there existy/, ¢, anda € (0,1] such that folE| < 1/(2d)
[K(F, p,A)| < & (W(F, p,A)+cF) (9¢)
[K(A+E)F, p,A)—K(F. p,A)| < ¢ (W(F, p,A)+cg) E|*.

(9b)

Thus, (9a) implies that the mappiig— W(x,F,z A) is polyconvex, cf. [Bal76].
Condition (9b) implies the necessary coercivity, whicHues (self or cross) hard-
ening via the lower bound|p|9. Note that we do not assume a coercivityAn
Condition (9c) will be used to control the power of the timgpéndent Dirichlet
boundary data.
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2.3 Statement of the result

We now formulate our existence result, which will be prove&ection 3.

Theorem 1.Let the spaceQ = YxZ C YxZ = Q and the functional§ andD be
defined as above such that the conditi@is (11), (9) hold.
Letay = (Yo,20) € QN (YxZ) be a stable initial condition, i.e.,

£(0,qp) < o and &£(0,q,) < &(0,9) + D(dy,,q) forall g € Q.

Then, there exists an energetic solutpn([§, T| — Q for (Q,&,D) with q(0) = q,
andge L*([0,T];Y xZ).

For similar results involving kinematic or isotropic hanidgg models in finite-
strain plasticity, we refer to [MaMO08]. All these existen@sult are based on the
abstract theory of energetic solutions for rate-indepahpicesses on topological
spaces developed in [MaMO05, FrM06, MiR08]

We consider two reflexive and separable Banach sp¥casdZ and weakly
closed subset$ andZ, respectively. The state space for the full system is thesrgi
by Q = YxZ c Q£ YxZ, and the states are denoteddpy- (y,z). The evolution
is described in terms of the stored-energy functiochall0, T]xQ — R. and the
dissipation distanc® : ZxZ — [0,]. The set in whicht takes finite values is
denoted by

domé = {(t,q) € [0, T]|xQ|&(t,q) < o }.

The triple(Q, &, D) is called arate-independent energetic system
For the stored-energy function&limpose two general conditions:

Compactness of energy sublevels:
forallt € [0,T] andE > O the sublevel§qe Q| E(t,q) <E} (E1)
are bounded and weakly closed@n

Uniform control of the powed; &:
there exist5,cE > 0 such that for allt.,q) € domé : (E2)
&(-,q) € CY[0,T]) and|&&(t,q)| < cE(c5+E&(t,q)) for all t.

For the dissipation distan@® : ZxZ — [0, ] we impose two general conditions:

Extended quasi-distance:
() Va,eZ: D(z1,2) =0<= 71 = 2, (D1)
(Y Va,n,3€Z: D(z71,z3) < D(21,2) + D(2, 7).

Weak lower semi-continuity: (D2)
Z—z%—2 = D(z2) <Iliminfy_cD(z, %)

To formulate the existence result we need to impose additimmditions which
provide a suitable compatibility between the two functigrtaandD. For this we
define theset of stable states at timevia
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S(t) 2 {qe Q| E(t,q) < o, £(t,q) < £(t,8) +D(q,q) for all }.

Moreover, we define the notion obtable sequendé, Oy )ken Via SURe € (tk, Ax) <
o andqy € S(tx) for all k € N. A functionq: [0,T] — Q is called arenergetic so-
lution of (Q,&,D), if t — G &(t,q(t)) is integrable and if for alt € [0, T] we have
global stability (S) and energy balance (E) in (4).

Theorem 2.Let& andD satisfy conditions (E) and (D). Moreover, let the following
compatibility condition hold:

For all stable seq(t;, q;)jen With (tj,4;) — (t.,9,)

Then, for eaclyglc $(0) there exists a solutiog 40, T] — Q of the rate-independent
energetic systerf, £, D) satisfyingg{0) = q,. Moreover, the solution can be cho-
sen such thajq[0,T] — Q is measurable.

3 Coercivity and lower semicontinuity

In this section we show that the assumptions in Section 2.2h® elastoplastic
problem are sufficient to establish the abstract assumffpfor the stored-energy
functional &, (D) for the dissipation distanc®, and the compatibility conditions
(C). Having done this, the Existence Theorem 1 for the efdastic problem is a
direct consequence of the abstract existence result inréhe?.

3.1 Stored energy potential

To establish the coercivity of we note that we always use the matrix noffj <

(F:F)¥2. In particular, we havéAB| < |A||B|, which implies
Ogoir Dy P~ > |0y|/(|0goir| [P]) > c|Oy|/[P],

where here and in the sequedndC denote small and large positive constants that
may vary from occurrence to occurrence. These constanydepend on the data
and are independent of the statps

Integrating the last estimate we obtain, forg Q, the estimate

100 Oy P4, > cl| Oyl /IIPIIE > cfj Oy |4, e ClPle
> clog ([|OyllLav) = Cllp[lL= —C,
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where we used (8) and (11e), which can be applied sibd@® P(x), p(x)) € D by the
definition of Z. The last estimate follows from the rough lower estimdte>e. It

is the missing coercivity if® that forces us to use such weak logarithmic estimates.
Using the coercivity (9b) ofV and the embedding W(Q) ¢ C(Q) we obtain

&(t,q) > clog (|| OyllLav ) — Cl|pllL=+cl| pl|{% + ¢l (OP,Op) L —C
> clog (|| Oyl av ) +clog (||P|| =) +¢l[p][ & +¢| (OP, Op) || —C,

where we used (11e) once again. This proves coercivityesiggd|q — « implies
E(ta qk) — .

The weak sequential lower semi-continuity &ft,-) follows similarly as in
[MaMO08, Thm.5.2]. In fact, the proof is even simpler, sinbe tveak convergence
g, — q implies the uniform convergence (&, py) — (P, p) in CO(Q;RI*IxR™).
Thus, the convexity semi-conditions (9a) ¥r(via W) allow us to use the standard
techniques developed in [Bal76]. Thus, we have establishedollowing result,
which means that the abstract assumption (E1) holds.

Lemma 1. Assuméd9) and(11e)hold. Then the functiondl(t, -) restricted toY x Z
is weakly lower semicontinuous and coercive.

Finally, we investigate the differentiability @f(t, q) with respect to time. For this
we recall the definition of the Kirchhoff stress tensor frdd), famelyK (F, p,A) =
OW(F,p,AF T € sl(d) = TySL(d). Forq = (y,P, p) € Q with £(0,q) < « we in-
troduce the abbreviation

Kq(x,F) £ rW(x, FP(x) 1, P(x), p(x), OP(x),0p(x))(FP(x)~1)T.

The following result was established in [MaMO08] (by combigiPropositions 4.3
and 4.4 with Theorem 5.3 there) and using the property (lt2péshed below.

Lemma 2 (Power of the boundary conditions).If assumption(8) and (9) hold,
thené satisfieE2)and(C1). In particular, there exist constant§«£ Rand f >0
and a modulus of continuity such that the following holds:

For (t,q) € domé we havet(-,q) € C([0,T]) with

AE(1,0) = | Ka(x g (t.y00) Y00V (1. y() o, (10a)
where Mt,y) = (Ogpir (t,Y)) - %DgDir (t.y),

|G&(t,q)| < cf (E(t,@)+c5), and (10b)

|GkE (12, @)~ AE(t2,Q)| < w(|t2—ta]) (E(tz, @) +C5). (10c)

The importance of formula (10a) is th&g is in LY(Q) for all q € doméf(t,-),
wheread/ lies in C(Q) because of the smoothness of the given boundarygdata
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3.2 Dissipation potential D

The first result provides some elementary properties fodtbgipation distanc®
def

defined via (7) and (5). We |& = { (P, po, P1, p1) | D(Po, po, P1, p1) < © }, which
is a closed subset ¢BL(d)xR™M)?, andn = (1,1,...,1) € R™,

Lemma 3. Assume that R has the for{n). Then D definedb) satisfies

D:ZxZ — [0,] is lower semicontinuoys (11a)
D:D — [0,] is continuous (11b)
D(z1,2) =0 <= 7 =12z; (11c)
D(z1,z3) < D(z1,2) + D(2, 23); (11d)
there exist constantg @, > 0 such that

(P, Po.PL,p1) € D —> [PL—Po| < oy (2Pl -1); (11e)
for eache > O there exists P< SL(d) andpe > 0 such that (11f)

(1,0,P,en) € D forall P € SL(d) with [P—P:| < pe.

While the proof of the properties (11a)—(11e) is standard [Mie02, MaMO08], the
property (11f) is not so obvious. To show this, we recall thelicit assumption that
{S1,...,Sn} generates Sld). Moreover, we let

Ag ={v e CY[0,1;RM| Vg >0, v(1)—-v(0) =¢€n},
Pe ={P(1)|P e CY[0,1];SL(d)), P(0) =1, P(-)P(-) * € A },
Z=301Su Ke=Yg_1Ka, andNg =expeZ),

and obtairN; € P, andD(1,0,P.en) < ek, < o forall P € P;.

Now the control theory on non-commutative Lie groups shdvasNl, is in fact
an interior point of the reachable skt. Thus we may se&®: = N and have found
pe > 0, such that (11f) holds.

Condition (11a) implies thab is well defined and the positivity (D1)(i) follows
from (11c). Integrating the pointwise triangle inequalityLd) we see that (D1)(ii)
holds.

Using again that, — zin Z impliesz — zin C°(Q) and thatD is nonnegative
and lower semicontinuous in bothvariables, the classical lower semicontinuity
theory implies the lower semicontinuity @&f, namely (D2).

3.3 Compatibility conditions (C2)

To apply Theorem 2 it remains to establish the compatibditgdition (C2), which
states that weak limits of stable sequences are stable.ayairstablish this by
constructing so-called joint recovery sequences, cf. [I&S
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Assume that a stable sequertgq;)jen With tj — t. andq; — q, is given.
We have to show, € §(t.). For any given test sta@we have to showi(t,,q,) <
&(t.,q)+D(z.,2). If D(z.,2) = » the estimate holds and nothing needs to be shown.
For the caseD(z.,2) < « we establish this condition by construction a joint
recovery sequendg j)jen that satisfies

(8) £(t.8) — £(t.8), () D(z.2)— D(z.2). (12)

From these conditions the desired stabilitygoffollows by using the stability of;,
i.e., E(tj,d;) < &(t5,q;) +D(z,2). Passing to the limij — « the left-hand side
can be estimated by weak lower semi-continuity and the +tigimd side converges
to the desired limit.

The problem in deriving (12b) is the lack of continuity of thdegrandD of
D. Hence, we have to chooge= (I3j, p;) carefully. For this we use property (11f)
where we additionally observe th@:, ps ) must satisfyfP: — 1 andp, — 0 because
of (11e). We le®; = ||zj—2||~, which satisfied; and choose a sequen@g); such
thatd; < Pg; — 0. We set

P =NgP, pj = p+&n, P =NgP, pj = p+ejn, (13)
and find by the triangle inequality

D(P}, pj. Py, Bj) < D(P}, py, Py B)) + (P}, B, Py, B))
= JoD(1,0,Ng PP, p—pj+&in) dx+D(P,p,P, p),

where we have used plastic invariance for the second terraoBstruction the inte-
grand of the first term can be estimateddyy; and we obtain limsup.., D(zj,Zj) <
D(z,2). Since the opposite estimate follows by lower semi-corntynwe have es-
tablished (12b). The convergence (12a) follows easily tyrggy; = ¥ and applying
Lebesgue’s dominated convergence theorem.
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