

Exercise Sheet 13

Exercise 37. Constraint sets. Consider a closed subset C of \mathbb{R}^m and a bounded domain $\Omega \subset \mathbb{R}^d$. For $p \in [1, \infty]$ define $\mathcal{C}_p = \{ u \in L^p(\Omega; \mathbb{R}^m) \mid u(x) \in C \text{ a.e. in } \Omega \}$. (In the case $p = \infty$ we mean weak^{*} convergence.)

(a) Show that \mathcal{C}_p is strongly closed in $L^p(\Omega; \mathbb{R}^m)$.

(b) Show that C_p is weakly closed if C is convex.

(c) Show that weak closedness of \mathcal{C}_p implies convexity of C.

Exercise 38. Variational inequalities generalize the Lax-Milgram lemma. On a Hilbert space H, we consider a symmetric, bounded, and coercive bilinear form B: $H \times H \to \mathbb{R}$. Moreover, let M be a closed convex subset of H. For $\xi \in H^*$ we consider the following variational inequality:

Find $u \in M$ such that $B(u, w-u) \ge \langle \xi, w-u \rangle$ for all $w \in M$.

(a) Construct for each ξ a solution u exists and show that it is unique, thus defining $U: H^* \to M \subset H; \xi \mapsto u = U(\xi).$

(b) Show that U is Lipschitz continuous.

(c) Give a case where U is explicit and nonlinear.

Exercise 39. Quadratic densities. Assume that $f : \mathbb{R}^{m \times d} \to \mathbb{R}$ is quadratic, i.e. f(A) = (MA):A for some $M \in \text{Lin}(\mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$. The following equivalences hold, where (i) and (iii) have been established in earlier excercises.

(i) f is convex $\iff f(A) \ge 0$ for all A.

(ii) f is polyconvex $\iff \exists \beta \in \mathbb{R}^{\tau_2(m,d)} \ \forall A \in \mathbb{R}^{m \times d} : f(A) \ge \beta_* \cdot T_2(A).$

(iii) f is rank-one convex and quasiconvex $\iff \forall \xi \in \mathbb{R}^m, \eta \in \mathbb{R}^d : f(\xi \otimes \eta) \ge 0.$

(a) Show the direction \Leftarrow in (ii).

(*Hint: Construct a convex function* $g(A, \alpha) = h(A) + \gamma \cdot \alpha$.)

(b) Establish the direction \implies in (ii). (*Hint: Use* $f(\lambda A) = \lambda^2 f(A)$.)

(c) Show that for $\min\{m, d\} \le 2$ for quadratic densities f we have that polyconvexity is equivalent to rank-one convexity.