

 $s \in [0, 1].$

Exercise Sheet 9

Exercise 27. Non-compactness of embeddings. For a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$ we consider the embeddings

1

Construct suitable sequences $(u_k)_{k\in\mathbb{N}}$ that prove that the embeddings are not compact. (*Hint: Try* $u_k(x) = k^{\alpha}\varphi(k^{\beta}x)$ for some function φ .)

Exercise 28. Optimal p^{∂} for the trace mapping. For a bounded Lipschitz domain $\Omega = \Gamma \times]0, 1[\subset \mathbb{R}^d$ and $p \in]1, d[$ we set $p^{\partial} = p(d-1)/(d-p) \in]p, \infty[$. Show that the trace mapping from $W^{1,p}(\Omega)$ into $L^{p^{\partial}}(\Gamma \times \{0\})$ exists as a bounded linear operator. (*Hint: For* $u \in C^1(\overline{\Omega})$ define $w(y,s) = (1-s) |v(x,s)|^{p^{\partial}}$ and write w(y,0) via na integral over