

Exercise Sheet 6

Exercise 18. A generalization of the Riemann-Lebesgue lemma. Consider a function $p \in L^{\infty}(\mathbb{R}^d)$ that is 1-periodic in all directions, i.e.

$$p(y+k) = p(y)$$
 for all $y \in \mathbb{R}^d$ and all $k \in \mathbb{Z}^d$,

and define $p_{\varepsilon}(x) = p(\frac{1}{\varepsilon}x)$ and $p_{av} = \int_{[0,1]^d} p(y) dy$. (a) Show that for all functions $\phi \in C_c^{\infty}(\mathbb{R}^d)$ we have $\int_{\mathbb{R}^d} p_{\varepsilon}(x)\phi(x) dx \to \int_{\mathbb{R}^d} p_{av}\phi(x) dx$. (*Hint: Approximate* ϕ by a suitable piecewise constant function.)

(b) Show the weak-star convergence

$$p_{\varepsilon} \stackrel{*}{\rightharpoonup} p_{\mathrm{av}} \text{ in } \mathcal{L}^{\infty}(\mathbb{R}^d), \quad \text{i.e. } \forall f \in \mathcal{L}^1(\Omega) : \quad \int_{\mathbb{R}^d} p_{\varepsilon} f \, \mathrm{d}x \to \int_{\mathbb{R}^d} p_{\mathrm{av}} f \, \mathrm{d}x.$$

Exercise 19. R1Cvx = QCvx for quadratic densities. For quadratic densities f: $\mathbb{R}^{m \times d} \to \mathbb{R}$ show that f is rank-one convex if and only if it is quasiconvex. (*Hint: Fourier transform gives* $\mathcal{F}(\nabla w) = i(\mathcal{F}w) \otimes \xi$.)

Two versions of "Mazur's separation theorem"

= geometric version of the Hahn-Banach theorem. For a Banach space X denote by $X^* = \text{Lin}(X; R)$ its dual space. We consider two non-empty, convex sets A and B such that $A \cap B = \emptyset$. Then, the following two statements hold.

(I) If A is open then there exists $\ell \in X^*$ with $\ell \neq 0$ and $\gamma \in \mathbb{R}$ such that

$$\forall a \in A \ \forall b \in B : \quad \ell(a) \ge \gamma \ge \ell(b).$$

(II) If A is closed and B is compact, then there exists $\ell \in X^*$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

 $\forall a \in A \ \forall b \in B : \quad \ell(a) \ge \gamma_1 > \gamma_2 \ge \ell(b).$

Exercise 20. Convex sets.

(a) Use one of the above separation theorems to show that a closed, convex $M \subset X$ is also weakly (sequentially) closed, i.e. $u_k \in M$ and $u_k \rightharpoonup u_*$ implies $u_* \in M$.

(b) Give an example for X and a closed M such that M is not weakly (seq.) closed.

(c) Consider the Hilbert space $\ell^2(\mathbb{N})$ and the sets

$$A = \{ (u_k)_{k \in \mathbb{N}} \mid \sum_{k \in \mathbb{N}} k^2 u_k^2 < 1 \} \text{ and } B = \{ \mathbf{b} = (b_k)_{k \in \mathbb{N}} \}$$

where $\sum_{k \in \mathbb{N}} k^2 b_k^2 = 1$. Give one case of **b** where A and B can be separated as in "(I)" and one case of **b** where the separation is not possible.