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Exercise 10. Euler-Lagrange equation. Consider the domain Ω ∈ R2, the set M =
C2(Ω,R), and the functional I(u) : M → R defined via

I(u) =

∫
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9 sinuda.

Derive the associated Euler–Lagrange equation including boundary condition.

Exercise 11. Noether’s theorem for rotationally invariant systems. The density
f ∈ C2([α, β]×Rm×Rm;R) with m ≥ 2 defines the functional I(u) =

∫ β
α
f(t, u(t), u̇(t))dt.

For the rotation matrix Rϕ ∈ Rm×m with

Rϕ(y1, y2, y3, ..., ym)> = (cosϕy1−sinϕy2, sinϕy1 +cosϕy2, y3, ..., ym)>, ϕ ∈ R, y ∈ Rm,

the density f satisfies the rotational symmetry f(t, Rϕu,RϕA) = f(t, u, A) for all t, u, A, ϕ.

(a) Show that along solutions u : [α, β] → Rm of the Euler–Lagrange equation we
have conservation of the moment of momentum (Drehimpulserhaltung):

d

dt
[u1(t)∂A2f(t, u(t), u̇(t))− u2(t)∂A1f(t, u(t), u̇(t))] = 0.

(Hint: Calculate first d
dϕf(t, Rϕu,RϕA)

∣∣
ϕ=0

.)

(b) Now consider Rϕ = eϕB ∈ Rm×m for a general B ∈ Rm×m with B = −B> and assume
the symmetry f(t, Rϕu,RϕA) = f(t, u, A). Which quantity J(u, u̇) is now conserved?

Exercise 12. Weak and strong local minimizers. Consider M = C1([a, b];R), func-
tions g, h ∈ C2(R;R), and the functional I : M → R defined via

I(u) =

∫ b

a

{
g(u′(x)) + h(u(x))

}
dx.

(a) Derive the associated Euler–Lagrange equation. Which conditions guarantee that
critical points of the form u(x) = u0 = const exist?

(b) Assume that u(x) = u0 = const is a critical point of I. Show that the conditions
h′′(u∗) > 0 and g′′(0) > 0 are sufficient to imply that u is a strict weak local minimizer.

(c) Assume now that g(A) ≥ 0 = g(0) for all A ∈ R1×1 and that u0 is a local minimizer
of h. Show that u is a strong local minimizer. What additional conditions imply that u is
a global minimizer?

(please turn)



Exercise 13. Minimal surface of revolution. Consider I : M → R with

I(u) =
∫ `

0
2πu(x)

√
1+u′(x)2 dx, M = {u ∈ C1([0, `]) | u(x) ≥ 0, u(0) = r0, u(`) = r` }.

Solutions of the Euler–Lagrange equation have the form u(x) = U(c, d, x) = c cosh
(
x−d
c

)
.

(a) Consider the case r0 = r` and show that we may choose d = `/2.
Consider c as free parameter, which determines `c and thus the solution
uc and I(uc). Discuss the number of solutions for different values of
`. For these solutions plot (using a computer!) the value of I(uc) in
dependence of `c and a (multi-valued) parametric plot giving I(u) in
dependence of `. (of the curve c 7→ (I(uc), `c)).
(b) Show numerically that there is a number kcrit ∈ [1.2, 1.6] such
that max `c = kcritr0. Compare kcrit to our experimental value
13.5cm/9cm = 1.5 obtained by two volunteers on 30.10.2019.

(c) Consider arbitrary r0 > 0 and r` > 0. Derive the estimate i(r0, r1, `) := inf{ I(u) | u ∈
M } ≤ π(r2

0+r2
` ) via suitable sequences. Compare with (a).

(d) Provide a good lower bound for i(r0, r0, `) by using um = min{u(x) | x ∈ [0, `] } and
the estimate

√
1 + u′2 ≥ max{1, |u′|}. (Hint: Use |u′|dx = |du| and minimize w.r.t. um.)


