

Multidimensional Calculus of Variations Winter Term 2019/20 Prof. Alexander Mielke 24. Oktober 2019

Exercise Sheet 2

Exercise 5. Example without minimizer: Consider the functional

$$I: \ell^2 \to \mathbb{R}, \ I(u) = (1 - ||u||_2^2)^2 + \sum_{n=1}^{\infty} \frac{1}{n} u_n^2 \text{ with } \ell^2 = \{ (u_n)_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} u_n^2 < \infty \}. \ \text{(Eq.1)}$$

- (a) Show that I is continuous and that I(u) > 0 for all $u \in \ell^2$.
- (b) Construct infimizing sequences to show inf I = 0.

Exercise 6. Local minimizers. Construct $I \in C^1(\mathbb{R}^2; \mathbb{R})$ with the following properties:

- (i) For all straight lines $\gamma_v : \mathbb{R} \ni t \mapsto tv \in \mathbb{R}^2$ the restriction of I has a strict local minimum at t = 0.
- (ii) x = 0 is not a local minimizers of I, i.e. $\forall \varepsilon > 0 \ \exists y \in B_{\varepsilon}(0) : \ I(y) < I(0)$.

Hint: Look for I which is negative between two parabolas and positive outside.

Exercise 7. Lemma of du Bois-Reymond.

Consider $T = \{ v \in C^1([\alpha, \beta]; \mathbb{R}^m) \mid v(\alpha) = v(\beta) = 0 \}$ and $f, g \in C^0([\alpha, \beta]; \mathbb{R}^m)$.

- (a) Show that $\int_{\alpha}^{\beta} g(x) \cdot v'(x) dx = 0$ for all $v \in T$ implies that g is constant on $[\alpha, \beta]$. (Hint: Construct a $v \in T$ with $v'(x) = g(x) \gamma$.)
- (b) Now assume $\int_{\alpha}^{\beta} [f(x) \cdot v(x) + g(x) \cdot v'(x)] dx = 0$ for all $v \in T$. Conclude $g \in C^1([\alpha, \beta]; \mathbb{R}^m)$ and g'(x) = f(x) for all $x \in [\alpha, \beta]$.

(Note that we gain smoothness of g without imposing it.)

Exercise 8. Variations and local extrema. Reconsider $I: \ell^2 \to \mathbb{R}$ from (Eq.1).

(a) Show that the Gâteaux derivative exists and that the first variation takes the form

$$DI(u)[v] = 2(||u||^2 - 1)\langle u, v \rangle + \sum_{n \in \mathbb{N}} \frac{1}{n} \langle u, e_n \rangle \langle v, e_n \rangle \quad \text{(where } e_n = (0, ..., 0, 1, 0, ...))$$

and derive a formula for the second variation $D^2I(u)[v,w]$.

- (b) Show that for all $k \in \mathbb{N}$ there exist three critical points of the form $u = \beta e_k$.
- (c) Derive definiteness properties of the quadratic form $v \to D^2 I(\beta e_k)[v,v]$ and try to determine extremal properties.

Exercise 9. Quadratic forms on $L^2(\Omega)$. For functions $f \in L^2(\Omega; \mathbb{R}^m)$ and $A \in L^1(\Omega; \mathbb{R}^{m \times m})$ with $A(x) = A(x)^\top \geq 0$ a.e. in Ω we define

$$I: L^2(\Omega; \mathbb{R}^m) \to \mathbb{R}_{\infty}; \ I(u) = \int_{\Omega} \left(\frac{1}{2} \langle A(x)u(x), u(x) \rangle - \langle f(x), u(x) \rangle \right) dx.$$

- (a) Explain why $I(u) \in \mathbb{R}_{\infty}$ is always well-defined.
- (b) Discuss necessary and sufficient conditions on A and f for coercivity.
- (c) Give necessary and sufficient conditions on A and f for existence of a global minimizer $u_* \in X$. Given examples (i) without a minimizer and (ii) with minimizer but no coercivity.
- (d) Argue in favor or against lower semi-continuity for general A.