

Multidimensional Calculus of Variations Winter Term 2019/20 Prof. Alexander Mielke 17. Oktober 2019

Exercise Sheet 1

Exercise 1. Linear Algebra: Let $I(u) = \frac{1}{2}\langle u, Au \rangle - \langle b, u \rangle$ with $A \in \mathbb{R}^{n \times n}$, $b, u \in \mathbb{R}^n$, and $\langle \cdot, \cdot \rangle$ is the Euclidean scalar product.

- (a) Show that u is a critical point of I if and only if $\frac{1}{2}(A+A^{\top})u=b$ holds.
- (b) Assume that A is symmetric and positive definite. Does I attain its infimum over \mathbb{R}^d ?
- (c) Assume now that A is symmetric and positive semidefinite. Under which conditition on b do we have $\inf_{\mathbb{R}^n} I > -\infty$? Do we then have $\inf I = \min I$?

Exercise 2. Extrema without differentiablity. Consider $f_{\alpha,\beta}: \mathbb{R} \to \mathbb{R}$ given by

$$f_{\alpha,\beta}(x) = \begin{cases} \alpha & \text{for } x = 0, \\ \frac{\beta x^2}{1+x^2} & \text{for } x \neq 0, \end{cases}$$

where $\alpha, \beta \in \mathbb{R}$. Determine all extrema (local and global minima and maxima) of $f_{\alpha,\beta}$ and as well as the infimum and the supremum in dependence of α and β .

Exercise 3. Example of Weierstraß: Consider the functional $I: M \to \mathbb{R}$ with

$$I(u) = \int_{-1}^1 [xu'(x)]^2 dx \quad \text{and} \quad M = \{ \, u \in \mathrm{C}^1([-1,1]) \mid u(-1) = -1, \; u(1) = 1 \, \}.$$

Show that any sequence $(u_k)_{k\in\mathbb{N}}$ with $I(u_k)\to 0$ converges uniformly on compact subsets of $[-1,0)\cup(0,1]$ to the limit $u_*:x\mapsto \mathrm{sign}(x)$.

For x > 0 estimate $|1-u(x)| = |\int_x^1 u'(s) \, ds|$ by $\sqrt{\alpha}C(x)$, where $\alpha = I(u)$ and C is a continuous function on]0,1]. (Hint: Let $a(x) = [xu'(x)]^2$ and use $\int_{-1}^1 a(s) \, ds = \alpha$.)

Exercise 4. Semicontinuity: For functions $f: \mathbb{R}^n \to \mathbb{R}$ we define sequential upper semicontinuity (usc) and lower semicontinuity (lsc) as follows:

f is use at x_* , if $x_k \to x_*$ implies $f(x_*) \ge \limsup_{k \to \infty} f(x_k)$, f is lse at x_* , if $x_k \to x_*$ implies $f(x_*) \le \liminf_{k \to \infty} f(x_k)$

- (a) Give an (ε, δ) definition for usc and lsc.
- (b) For $\alpha, \beta \in \mathbb{R}$, consider the functions $g_{\alpha,\beta} : [0,1] \to \mathbb{R}$ with $g_{\alpha,\beta}(x) = \begin{cases} \alpha & \text{for } x = 0, \\ e^x & \text{for } x \in]0,1[, \beta & \text{for } x = 1. \end{cases}$ For which parameters do we have use and for which lsc?
- (c) For $\Omega \subset \mathbb{R}^n$ consider $f_k \in C(\Omega)$ such that $f_k(x) \nearrow f(x)$ (convergence from below). Do we have use or lse? Given an example of f_k , where f is not continuous.

Exercise 5. Example without minimizer: Consider the functional

$$I: \ell^2 \to \mathbb{R}, \ I(u) = (1 - \|u\|_2^2)^2 + \sum_{n=1}^{\infty} \frac{1}{n} u_n^2, \quad \text{where } \ell^2 = \{(u_n)_{n \in \mathbb{N}} \mid \sum_{n=1}^{\infty} u_n^2 < \infty \}.$$

- (a) Show that I is continuous and that I(u) > 0 for all $u \in \ell^2$.
- (b) Construct infimizing sequences to show inf I=0.