2nd CENTRAL Summer School on Analysis and Numerics of PDEs

Humboldt-Universität zu Berlin, 29. August – 2. September 2016

Tutorial exercises for Mielke's lectures

Exercise 1: Gradient structures.

(a) Consider the diffusion equation $\dot{u} = \operatorname{div}(A(x, u(x))\nabla u)$ with Neumann boundary conditions, where $u(t, x) \geq 0$ is a density. Take any convex functions $\phi : [0, \infty[\to \mathbb{R}$ (with $\phi''(u) > 0$) and define the energy $\mathcal{E}(u) = \int_{\Omega} \phi(u(x)) \, dx$. Show that there exists an Osager operator $\mathbb{K}(u)$ such that the above diffusion equation is generated by \mathcal{E} and \mathbb{K} .

(b) Consider the Reaction-Diffusion equation $\dot{u} = m\Delta u + k(4-u^2)$ for positive densities u(t,x) > 0. Construct $\mathbb{K}_{\text{RD}}(u)$ such that the equation is induced by \mathbb{K}_{RD} and $\mathcal{E}(u) = \int_{\Omega} (u \log(u/w) - u) \, dx$ for a suitable w > 0.

(c) Consider the PDE system for concentration $c(t,x) \ge 0$ and internal energy $e(t,x) \in R$ given by

$$\dot{c} = m\Delta c + k(e-c^2)$$
 reaction-diffusion equation
 $\dot{e} = m\Delta e$ heat/energy equation

completed by Neumann boundary conditions for c and e. Consider the entropy functional

$$\mathcal{S}(c,e) = \int_{\Omega} S(c(x), e(x)) \, \mathrm{d}x \quad \text{with } S(c,e) = \sigma(e) - c \log(c/\sqrt{e}) + c$$

with $\sigma''(e) \leq 0$. Show that S is a concave function and the S increases along solutions. of the PDE system.

Exercise 2: Homogenization. Set $\mathcal{J}_{\varepsilon}(u) = \int_{0}^{\ell} \frac{1}{2}u(x) \cdot G(x/\varepsilon)u(x) dx$ where G satisfies $G \in C^{0}_{per}(\mathbb{R}; \mathbb{R}^{d \times d}_{spd})$. Proof that the weak and strong Γ -limit in $L^{2}(0, \ell)$ is given by the harmonic and arithmetic mean, respectively.

Exercise 3: Γ -convergence and Mosco convergence. Consider two separable and reflexive Banach spaces X and Z such that Z is compactly embedded in X. Assume that

(i) $(\mathcal{E}_{\varepsilon})_{\varepsilon \in [0,1]}$ is equicoercive in **Z** and (ii) $\mathcal{E}_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \mathcal{E}_{0}$ in **Z**.

Show that $\mathcal{E}_{\varepsilon} \xrightarrow{\mathrm{M}} \mathcal{E}$ in **X**.

Exercise 4: Sina Reichelt's lemma. Assume $(u_{\varepsilon})_{\varepsilon \in [0,1]}$ is bounded in $W^{1,p}(0,T;\mathbf{X})$ and that $u_{\varepsilon}(t) \to u_0(t)$ for all $t \in [0,T]$. For suitable dissipation potentials Ψ_{ε} show that $\Psi_{\varepsilon} \xrightarrow{\Gamma} \Psi_0$ implies the limit estimate

$$\int_0^T \Psi_0(\dot{u}_0(t)) \, \mathrm{d}t \le \liminf_{\varepsilon \to 0} \int_0^T \Psi_\varepsilon(\dot{u}_\varepsilon(t)) \, \mathrm{d}t.$$

Hint: Approximate \dot{u}_{ε} by piecewise affine functions.