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Abstract: The parabolic Anderson problem is the Cauchy problem for the heat

equation ∂tu(t, z) = ∆u(t, z) + ξ(z)u(t, z) on (0,∞) × Z
d with random potential

(ξ(z) : z ∈ Z
d). We consider independent and identically distributed potentials, such

that the distribution function of ξ(z) converges polynomially at infinity. If u is

initially localised in the origin, i.e., if u(0, z) =
�
0(z), we show that, as time goes

to infinity, the solution is completely localised in two points almost surely and in

one point with high probability. We also identify the asymptotic behaviour of the

concentration sites in terms of a weak limit theorem.

1. Introduction and main results

1.1 The parabolic Anderson model and intermittency.

We consider the heat equation with random potential on the integer lattice Z
d and study

the Cauchy problem with localised initial datum,

∂tu(t, z) = ∆u(t, z) + ξ(z)u(t, z), (t, z) ∈ (0,∞) × Z
d,

u(0, z) = � 0(z), z ∈ Z
d,

(1.1)

where

(∆f)(z) =
∑

y∼z

[f(y) − f(z)], z ∈ Z
d, f : Z

d → R

is the discrete Laplacian, and the potential (ξ(z) : z ∈ Z
d) is a collection of independent

identically distributed random variables.

The problem (1.1) and its variants are often called the parabolic Anderson problem. It origi-
nated in the work of the physicist P. W. Anderson on entrapment of electrons in crystals with

impurities, see [An58]. The parabolic version of the problem appears in the context of chem-
ical kinetics and population dynamics, and also provides a simplified qualitative approach to
problems in magnetism and turbulence. The references [GM90], [Mo94] and [CM94] provide

applications, background and heuristics around the parabolic Anderson model. Interesting
recent mathematical progress can be found, for example, in [GH06], [HKM06], and [BMR07],
and [GK05] is a recent survey article.

One main reason for the great interest in the parabolic Anderson problem lies in the fact
that it exhibits an intermittency effect : It is believed that, at late times, the overwhelming
contribution to the total mass of the solution u of the problem (1.1) comes from a small
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number of spatially separated regions of small diameter, which are often called the relevant

islands. As the upper tails of the potential distribution gets heavier, this effect is believed

to get stronger, the number of relevant islands and their size are believed to become smaller.
Providing rigorous evidence for intermittency is a major challenge for mathematicians, which
has lead to substantial research efforts in the past 15 years.

An approach, which has been proposed in the physics literature, see [Z+87] or [GK05],

suggests to study large time asymptotics of the moments of the total mass

U(t) =
∑

z∈Zd

u(t, z), t > 0 . (1.2)

Denoting expectation with respect to ξ by 〈 · 〉, if all exponential moments 〈exp(λξ(z))〉 for

λ > 0 exist, then so do all moments 〈U(t)p〉 for t > 0, p > 0. Intermittency becomes manifest
in a faster growth rate of higher moments. More precisely, the model is called intermittent if

lim sup
t→∞

〈U(t)p〉1/p

〈U(t)q〉1/q
= 0, for 0 < p < q. (1.3)

Whenever ξ is nondegenerate random, the parabolic Anderson model is intermittent in this
sense, see [GM90, Theorem 3.2]. Further properties of the relevant islands, like their asymp-
totic size and shape of potential and solution, are reflected (on a heuristical level) in the

asymptotic expansion of log〈U(t)p〉 for large t. Recently, in [HKM06], it was argued that
the distributions with finite exponential moments can be divided into exactly four different
universality classes, with each class having a qualitatively different long-time behaviour of

the solution.

It is, however, a much harder mathematical challenge to prove intermittency in the original

geometric sense, and to identify asymptotically the number, size and location of the relevant
islands. This programme was initiated by Sznitman for the closely related continuous model
of a Brownian motion with Poissonian obstacles, and the very substantial body of research he

and his collaborators created is surveyed in his monograph [Sz98]. For the problem (1.1) and
two universality classes of potentials, the double-exponential distribution and distributions
with tails heavier than double-exponential (but still with all exponential moments finite),

the recent paper [GKM07] makes substantial progress towards completing the geometric
picture: Almost surely, the contribution coming from the complement of a random number of
relevant islands is negligible compared to the mass coming from these islands, asymptotically

as t → ∞. In the double-exponential case, the radius of the islands stays bounded, in the
heavier case the islands are single sites, and in Sznitman’s case the radius tends to infinity
on the scale t1/(d+2).

Questions about the number of relevant islands remained open in all these cases, and consti-
tute the main concern of the present paper. Both in [GKM07] and [Sz98] it is shown that an

upper bound on the number of relevant islands is to(1), but this is certainly not always best

possible. In particular, the questions whether a bounded number of islands already carry the
bulk of the mass, or when just one island is sufficient, are unanswered. These questions are
difficult, since there are many local regions that are good candidates for being a relevant

island, and the known criterion that identifies relevant islands does not seem to be optimal.
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In the present paper, we study the parabolic Anderson model with potential distributions
that do not have any finite exponential moment. For such distributions one expects the

intermittency effect to be even more pronounced than in the cases discussed above, with
a very small number of relevant islands, which are just single sites. Note that in this case
intermittency cannot be studied in terms of the moments 〈U(t)p〉, which are not finite.

The main result of this paper is that, in the case of potentials with polynomial tails, almost

surely at all large times there are at most two relevant islands, each of which consists of
a single site. In other words, the proportion of the total mass U(t) is asymptotically con-

centrated in just two time-dependent lattice points. Note that, by the intermediate value
theorem, the total mass cannot be concentrated in just one site, if this site is changing in
time on the lattice. Hence this is the strongest form of localisation that can hold almost

surely. However, we also show that, with high probability, the total mass U(t) is concentrated
in a single lattice point.

The intuitive picture is that, at a typical large time, the mass, which is thought of as a
population, inhabits one site, interpreted as a city. At some rare times, however, word

spreads that a better site has been found, and the entire population moves to the new site,
so that at the transition times part of the population still lives in the old city, while part
has already moved to the new one. This picture inspired the term ‘two cities theorem’ for

our main result, which was suggested to us by S.A. Molchanov. The present paper is, to the
best of our knowledge, the first where such a behaviour is found in a model of mathematical
physics.

Concentration of the mass in a single site with high probability has been observed so far

only for quite simple mean field models, see [FM90, FG92]. The present paper is the first
instance where it has been found in the parabolic Anderson model or, indeed, any comparable
lattice-based model. We also study the asymptotic locations of the points where the mass

concentrates in terms of a weak limit theorem with an explicit limiting density. Precise
statements are formulated in the next section.

1.2 The parabolic Anderson model with Pareto-distributed potential.

We assume that the potentials ξ(z) at all sites z are independent and Pareto-distributed with

parameter α > d, i.e., the distribution function is

F (x) = Prob(ξ(z) < x) = 1 − x−α, x ≥ 1. (1.4)

In particular, we have ξ(z) ≥ 1 for all z ∈ Z
d, almost surely. Note from [GM90, Theorem 2.1]

that the restriction to parameters α > d is necessary and sufficient for (1.1) to possess a

unique nonnegative solution u : (0,∞) × Z
d → [0,∞). Recall that

U(t) =
∑

z∈Zd

u(t, z)

is the total mass of the solution at time t > 0. Our main result shows the almost sure

localisation of the solution u(t, · ) in two lattice points Z (1)

t and Z (2)

t , as t→ ∞.
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Theorem 1.1 (Two cities theorem). Suppose u : (0,∞) × Z
d → [0,∞) is the solution to

the parabolic Anderson problem (1.1) with i.i.d. Pareto-distributed potential with parameter

α > d. Then there exist processes (Z (1)

t : t > 0) and (Z (2)

t : t > 0) with values in Z
d, such that

Z(1)

t 6= Z(2)

t for all t > 0, and

lim
t→∞

u(t, Z (1)

t ) + u(t, Z (2)

t )

U(t)
= 1 almost surely.

Remark 1. At least two sites are needed to carry the total mass in an almost sure limit the-
orem. Indeed, assume that there is a single process (Zt : t > 0) such that u(t, Zt) > 2U(t)/3

for all large t. As u( ·, z) is continuous for any z ∈ Z
d, this leads to a contradiction at jump

times of the process (Zt : t > 0). From the growth of U(t) one can see that this process is
not eventually constant, and thus has jumps at arbitrarily large times. �

Our second result concerns convergence in probability. We show that the solution u(t, · ) is
localised in just one lattice point with high probability.

Theorem 1.2 (One point localisation in probability). The process (Z (1)

t : t > 0) in Theo-

rem 1.1 can be chosen such that

lim
t→∞

u(t, Z (1)

t )

U(t)
= 1 in probability.

Remark 2. The proof of this result given in this paper uses strong results provided for the
proof of Theorem 1.1. However, it can be proved with less sophisticated tools, and a self-

contained proof can be found in our unpublished preprint [KMS06]. �

Remark 3. We conjecture that the one-point localization phenomenon holds for a wider class

of heavy-tailed potentials, including the stretched exponential case. We also believe that it
does not hold for all potentials in the ‘single-peak’ class of [HKM06]. �

Remark 4. The asymptotic behaviour of logU(t) for the Anderson model with heavy-tailed
potential is analysed in detail in [HMS08]. In the case of a Pareto-distributed potential it
turns out that already the leading term in the asymptotic expansion of logU(t) is random.

This is in sharp contrast to potentials with exponential moments, where the leading two
terms in the expansion are always deterministic. More precisely, introducing

q =
d

α− d
and θ =

2dB(α− d, d)

qd(d− 1)!
, (1.5)

where B(·, ·) denotes the Beta function, in [HMS08, Th. 1.2] it is shown that

(log t)q

tq+1
logU(t) =⇒ Y, where P(Y ≤ y) = exp{−θyd−α}, (1.6)

and ⇒ denotes weak convergence. Note that the upper tails of Y have the same asymptotic

order as the Pareto distribution with parameter α − d, i.e., P(Y > y) � yd−α as y → ∞.
The proof of [HMS08, Th. 1.2] also shows that there is a process (Zt : t > 0) such that

(log t)q

tq+1
log u(t, Zt) =⇒ Y, where P(Y ≤ y) = exp{−θyd−α}. (1.7)

Note, however, that a combination of (1.6) with (1.7) does not yield the concentration
property in Theorem 1.2 since the asymptotics are only logarithmic. Much more precise
techniques are necessary for this purpose. �
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In Section 1.3 we see how the process (Z (1)

t : t > 0) in Theorem 1.2 can be defined as the
maximiser in a random variational problem associated with the parabolic Anderson problem.

Our third result is a limit theorem for this process. Recall the definition of q and θ from (1.5),
and denote by | · | the `1-norm on R

d.

Theorem 1.3 (Limit theorem for the concentration site). The process (Z (1)

t : t > 0) in

Theorem 1.2 can be chosen such that, as t→ ∞,

Z(1)

t

( log t

t

)q+1
=⇒ X (1),

where X (1) is an R
d-valued random variable with density

p(1)(x1) = α

∫ ∞

0

exp{−θyd−α}dy

(y + q|x1|)α+1
.

Remark 5. The proof of this result uses the point process technique developed in [HMS08].

A more elementary proof can be found in our unpublished preprint [KMS06]. �

Remark 6. If we choose the processes (Z (1)

t : t > 0) and (Z (2)

t : t > 0) such that, with

probability tending to one, u(t, Z (1)

t ) and u(t, Z (2)

t ) are the largest and second largest value
of u(t, z), we show that , as t→ ∞,

(Z(1)

t , Z(2)

t )
( log t

t

)q+1
=⇒ (X (1), X(2)),

where (X (1), X(2)) is a pair of R
d-valued random variables with joint density

p(x1, x2) =

∫ ∞

0

α exp{−θyd−α}dy

(y + q|x1|)α(y + q|x2|)α+1
.

By projecting this result on the first component we obtain the convergence in distribution
statement of Theorem 1.3, where the density of X (1) is given by

p(1)(x1) =

∫ ∞

0

(∫

Rd

dx2

(y + q|x2|)α+1

) α exp{−θyd−α}
(y + q|x1|)α

dy .

The inner integral equals yd−α−1 2dq−dB(α + 1 − d, d)/(d − 1)!. Recalling (1.5) and using
the functional equation B(x+ 1, y) (x + y) = B(x, y)x for x, y > 0, yields

p(1)(x1) = (α− d)θ

∫ ∞

0
yd−α−1 exp{−θyd−α}

(y + q|x1|)α
dy = α

∫ ∞

0

exp{−θyd−α}dy

(y + q|x1|)α+1
,

using integration by parts in the last step. Moreover, from the proof of Theorem 1.3 one can
easily infer the joint convergence

( log t

t

)q+1 (
Z(1)

t ,
log u(t, Z (1)

t )

log t

)
=⇒ (X,Y ) ,

where the joint density of (X,Y ) is

(x, y) 7→ α
exp

{
−θyd−α

}

(y + q|x|)α+1
. �
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1.3 Overview: The strategy behind the proofs.

Throughout the paper we will say that a statement occurs eventually for all t when there

exist a time t0 such that the statement is fulfilled for all t > t0. Note that when a statement
is said to hold true almost surely eventually for all t, the corresponding t0 can be random.

As shown in [GM90, Theorem 2.1], under the assumption α > d, the unique nonnegative
solution u : (0,∞) × Z

d → [0,∞) of (1.1) has a Feynman-Kac representation

u(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z}

]
, t > 0, z ∈ Z

d, (1.8)

where (Xs : s ≥ 0) under P0 (with expectation E0) is a continuous-time simple random walk
on the lattice Z

d with generator ∆ starting at the origin. Hence, the total mass of the
solution is given by

U(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
.

Heuristically, for a fixed time t > 0, the paths (Xs : 0 ≤ s ≤ t) that have the greatest impact
on the average U(t) spend most of their time at a site z which,

• has a large potential value ξ(z),

• and can be reached quickly, i.e., is sufficiently close to the origin.

For ρ ∈ (0, 1), the strategy Az,ρ
t of wandering to a site z during the time interval [0, ρt) and

staying at z during the time [ρt, t] has, for |z| � t, approximately the probability

P0 (Az,ρ
t ) ≈ exp

{
− |z| log |z|

eρt
+ η(z)

}
,

where η(z) = logN(z) and N(z) denotes the number of paths of length |z| starting at zero

and ending at z (see Proposition 4.2 for details). Then the integral in the Feynman–Kac
formula is bounded from below by t(1 − ρ)ξ(z) for the paths of the random walk following
the strategy Az,ρ

t . Hence, we obtain by optimising over z and ρ ∈ (0, 1),

1

t
logU(t) ' sup

z∈Zd

sup
ρ∈(0,1)

[
(1 − ρ)ξ(z) − |z|

t
log

|z|
eρt

+
η(z)

t

]
= max

z∈Zd
Φt(z),

where

Φt(z) =
[
ξ(z) − |z|

t
log ξ(z) +

η(z)

t

]
� {tξ(z) ≥ |z|}. (1.9)

The restriction tξ(z) ≥ |z| arises as otherwise the globally optimal value ρ = |z|/(tξ(z))
would exceed one. This bound, stated as Proposition 4.2, is a minor improvement of the
lower bound obtained in [HMS08]. In addition, we show that max Φt also gives an asymptotic
upper bound for 1

t logU(t), which is much harder and constitutes a significant improvement

of the bound obtained in [HMS08], see Proposition 4.4. Altogether

1

t
logU(t) ≈ max

z∈Zd
Φt(z),

and it is plausible that the optimal sites at time t are the sites, where the two largest values

of the random functional Φt are attained. This is indeed the definition of the processes
(Z(1)

t : t ≥ 0) and (Z (2)

t : t ≥ 0), which is underlying our three main theorems.
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The remainder of the paper is organised as follows:

In Section 2 we provide several technical results for later use. In particular, we study the
behaviour of η(z) and of the upper order statistics of the potential ξ, and we derive spectral
estimates similar to those obtained in [GKM07].

In Section 3 we study the asymptotic properties of the sites Z (1)

t , Z(2)

t , and Z (3)

t , where Φt

attains its three largest values, as well as the properties of Φt(Z
(i)

t ), for i = 1, 2, 3. Here

we prove Proposition 3.4, which states that, almost surely, the gap Φt(Z
(1)

t ) − Φt(Z
(3)

t ) is
eventually large enough. This is the main reason for u(t, z) being concentrated at just two
sites Z (1)

t and Z (2)

t . Observe that a similar statement about the gap Φt(Z
(1)

t ) − Φt(Z
(2)

t ) is

not true as, by continuity, there are arbitrarily large times t such that Φt(Z
(1)

t ) = Φt(Z
(2)

t ),
which is the main technical reason for the absence of one point almost sure localisation.

In Section 4 we study the total mass of the solution and its relation to Φt. We split U(t)

into five parts according to five groups of paths, and show that only one of them makes an
essential contribution, namely the one corresponding to paths which visit either Z (1)

t or Z (2)

t

and whose length is not too large. Then we prove Propositions 4.2 and Proposition 4.4,

which are the very precise upper and lower approximations of 1
t logU(t) by Φt(Z

(1)

t ) needed
for Theorem 1.1.

In Section 5 we prove Theorem 1.1. We split the probability space into three disjoint events:

• the gap Φt(Z
(1)

t ) − Φt(Z
(2)

t ) is small and the sites Z (1)

t and Z (2)

t are close;
• the gap Φt(Z

(1)

t ) − Φt(Z
(2)

t ) is small but the sites Z (1)

t and Z (2)

t are far away;

• the gap Φt(Z
(1)

t ) − Φt(Z
(2)

t ) is large.

Correspondingly, we prove Propositions 5.1, 5.2, and 5.3, which justify Theorem 1.1 for each

event. In each case, we decompose u(t, z) in two components (differently for different events)
and show that one of them localises around Z (1)

t and Z (2)

t , and the other one is negligible.

Finally, in Section 6 we prove Theorems 1.2 and 1.3. We use the point processes technique

developed in [HMS08], which readily gives Theorem 1.3. Theorem 1.2 is obtained using a
combination of the point processes approach and Theorem 1.1.

2. Notation and preliminary results

For z ∈ Z
d, we define N(n, z) to be the number of paths of length n in Z

d starting at the

origin and passing through z. Recall that N(z) = N(|z|, z), where here and throughout the
paper | · | denotes the `1-norm. For n ≥ |z|, we define

η(n, z) = logN(n, z) and η(z) = logN(z).

It is easy to see that 0 ≤ η(z) ≤ |z| log d. We define two important scaling functions

rt =

(
t

log t

)q+1

and at =

(
t

log t

)q

, (2.1)

where rt will turn out to be the appropriate scaling for Z (i)

t and at for Φt(Z
(i)

t ), i = 1, 2, 3.

For each r > 0, denote ξ(1)
r = max

|z|≤r
ξ(z) and

ξ(i)
r = max

{
ξ(z) : |z| ≤ r, ξ(z) 6= ξ(j)

r ∀j < i
}

for 2 ≤ i ≤ `r, where `r is the number of points in the ball {|z| ≤ r}. Hence,

ξ(1)
r > ξ(2)

r > ξ(3)
r > · · · > ξ(`r)

r
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are precisely the potential values in this ball.

Fix 0 < ρ < σ < 1
2 so that σ < 1 − ρ

d , and ν > 0. We define four auxiliary scaling functions

ft = (log t)−
1
d
−ν , gt = (log t)

1
α−d

+ν , kt = bbrtgtcρc, mt = bbrtgtcσc,

and two sets

Ft =
{
z ∈ Z

d : |z| ≤ rtgt,∃i < kt such that ξ(z) = ξ(i)
rtgt

}
,

Gt =
{
z ∈ Z

d : |z| ≤ rtgt,∃i < mt such that ξ(z) = ξ(i)
rtgt

}
,

which will be used throughout this paper. In words, Ft, respectively Gt, is the set of those
sites in the ball {|z| ≤ rtgt} in which the kt−1, respectively mt−1, largest potential sites are

attained. Hence Ft ⊂ Gt, and Ft, respectively Gt, has precisely kt − 1, respectively mt − 1,
elements.

2.1 Two technical lemmas.

We start by proving an estimate on η(n, z), which we will use later in order to prove that if
z is a point where the potential is high, then a path passing through z only contributes to

the Feynman–Kac formula if its length is close to |z|.

Lemma 2.1. There is a constant K such that for all n ≥ |z|,

η(n, z) − η(z) ≤ (n− |z|) log
2den

n− |z| +K.

Proof. We fix z = (z1, . . . , zd) ∈ Z
d and without loss of generality assume that zi ≥ 0.

Denote by Pn,z the set of paths of length n starting at the origin and passing through z.

Each y ∈ Pn,z can be described by the vector (y1, . . . , yn) of its increments, where |yi| = 1 for
all i. Since the path y passes through z, there is a subsequence (yi1 , . . . , yi|z|) corresponding
to a path from P|z|,z. Thus, every path from Pn,z can be obtained from a path in P|z|,z by

adding n− |z| elements to its coding sequence. As there are only 2d possible elements and(
n

n−|z|

)
possibilities where the elements can be added, we obtain an upper bound

N(n, z) ≤ N(z)(2d)n−|z|

(
n

n− |z|

)
≤ N(z)

(2dn)n−|z|

(n− |z|)! ≤ N(z)eK
( 2den

n− |z|
)n−|z|

,

with K such that m! ≥ e−K(m/e)m for all m. Taking the logarithm completes the proof. �

In the next lemma we derive some properties of the upper order statistics of the potential ξ,

which will be used later to prove that Φt(Z
(1)

t ) is an approximate upper bound for 1
t logU(t).

Lemma 2.2. There exists c > 0 such that, with probability one, eventually for all t

(i) tc < ξ(kt)
rtgt < tq−c and ξ(mt)

rtgt /ξ
(kt)
rtgt < t−c;

(ii) Ft ∩ {|z| ≤ t(q+1)σ+c} = ∅;

(iii) Gt is totally disconnected, that is, if x, y ∈ Gt then |x− y| 6= 1.

Proof. (i) Note that ξ̂(z) = α log ξ(z) defines a field of independent exponentially distributed
random variables. It has been proved in [HMS08, (4.7)] that, for each κ ∈ (0, 1),

lim
n→∞

log ξ(bnκc)
n

log n
=
d− κ

α
almost surely.
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Substituting n = rtgt and κ = ρ, respectively κ = σ, we obtain

lim
t→∞

log ξ(kt)
rtgt

log t
=

(d− ρ)(q + 1)

α
and lim

t→∞

log ξ(mt)
rtgt

log t
=

(d− σ)(q + 1)

α
. (2.2)

The result follows, since (d−ρ)(q+1)
α ∈ (0, q) for ρ ∈ (0, 1) and (d−ρ)(q+1)

α > (d−σ)(q+1)
α for ρ < σ.

(ii) Because σ < 1 − ρ
d , we can pick c and ε small enough such that σ + cd

qα + 2ε
q < 1 − ρ

d .

Then by [HMS08, Lemma 3.5] we obtain

max
|z|≤t(q+1)σ+c

ξ(z) ≤ t
d
α

[(q+1)σ+c]+ε = tqσ+ cd
α

+ε < t
(d−ρ)q

d
−ε

eventually, which, together with the first part of (2.2) implies the statement.

(iii) For each n ∈ N, denote hn = bnσc and

Ĝn =
{
z ∈ Z

d : |z| ≤ n,∃i < hn such that ξ(z) = ξ(i)
n

}
.

Since Gt = Ĝbrtgtc, it suffices to show that Ĝn is totally disconnected eventually.

First, consider the case d ≥ 2. The set Ĝn consists of hn different points belonging to the
ball Bn = {|z| ≤ n}. Denote them by a0, . . . , ahn−1, where ai is such that ξ(ai) = ξ(i)

n . For
i 6= j, the pair (ai, aj) is uniformly distributed over all pairs of distinct points in Bn. Hence

the probability of ai and aj being neighbours, written ai ∼ aj , can be estimated by

Prob
(
ai ∼ aj

)
≤ max

|z|≤n
Prob

(
ai ∼ z | aj = z

)
≤ 2d

`n − 1
,

where `n is the number of points in Bn. Summing over all pairs, we get

Prob
(
Ĝn is not totally disconnected

)
≤

∑

0≤i<j<hn

Prob (ai ∼ aj) ≤
2dh2

n

`n − 1
≤ Cn2σ−d, (2.3)

for some C > 0. As σ < 1/2 and d ≥ 2, this sequence is summable. By the Borel–Cantelli

lemma Ĝn is eventually totally disconnected.

The situation is more delicate if d = 1. Pick σ ′ ∈ (σ, 1/2) and denote h′n = bnσ′c and

Ĝ′
n =

{
z ∈ Z

d : |z| ≤ n,∃i < h′n such that ξ(z) = ξ(i)
n

}
.

Further, let pn = 2blog2 nc such that pn ≤ n < 2pn.

It is easy to see that Ĝ′
pn

is totally disconnected eventually. Indeed, (2.3) remains true
with Ĝn and hn replaced by Ĝ′

n and h′n, respectively and one just needs to notice that∑∞
n=1 2n(2σ′−d) <∞ for d = 1 and σ′ < 1/2.

The final step is to prove that Ĝn ⊂ Ĝ′
2pn

. Let κn be the cardinality of Ĝ′
2pn

∩ Bn and
observe that for this purpose it suffices to show that κn ≥ hn. Indeed, on this set the κn

largest values of ξ over Bn are achieved. We actually prove a stronger statement, showing

that there are at least h2pn points from Ĝ′
2pn

in the ball Bpn . From now on we drop the

subscript n. We write

Ĝ′
2p = {a′0, . . . , a′h′

2p−1},

where a′i is such that ξ(a′i) = ξ(i)

2p . Let X = (Xi : 0 ≤ i < h′2p) with Xi = � {|a′i| ≤ p} and

|X| =

h′
2p−1∑

i=0

Xi.
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Since h′2p = o(p) and |Bp| = 2p+ 1, |B2p| = 4p+ 1, we obtain, using that the points in Ĝ′
2p

are uniformly distributed over B2p without repetitions, that for large p

Prob (Xj = 1 |Xi = xi ∀i < j) < 3/4 and Prob (Xj = 0 |Xi = xi ∀i < j) < 3/4

for all j < h′2p and all (x0, . . . , xj−1) ∈ {0, 1}j . Hence, for all x ∈ {0, 1}h′
2p ,

Prob(X = x) ≤ (3/4)h′
2p .

This yields

Prob (|X| < h2p) =

h2p−1∑

i=0

∑

|x|=i

Prob (X = x) ≤
h2p−1∑

i=0

(
h′2p

i

)
(3/4)h′

2p ≤ h2p(h
′
2p)

h2p−1(3/4)h′
2p

≤ exp
{
−h′2p log(4/3) + h2p log h′2p + log h2p

}
= e−c(2p)σ′

,

for some c > 0. Since this sequence is summable, we have |X| ≥ h2p eventually. �

2.2 Spectral estimates.

In this section we exploit ideas developed in [GKM07]. Let A ⊂ Z
d be a bounded set and

denote by ZA ∈ A the point, where the potential ξ takes its maximal value over A. Denote

by

gA = ξ(ZA) − max
z∈A\{ZA}

ξ(z)

the gap between the largest value and the rest of the potential on A. Denote by A∗ the
connected component of A containing ZA. Let γA and vA be the principal eigenvalue and
eigenfunction of ∆ + ξ with zero boundary conditions in A∗ extended by zero to the whole
set A. We assume that vA is normalised to vA(ZA) = 1. Recall that under Pz and Ez the

process (Xt : t ∈ [0,∞)) is a simple random walk with generator ∆ started from z ∈ Z
d. The

entrance time to a set A is denoted τA = inf{t ≥ 0: Xt ∈ A}, and we write τz instead of τ{z}.
Then, as in [GKM07, (4.4)], the eigenfunction vA admits the probabilistic representation

vA(z) = Ez

[
exp

{∫ τZA

0
[ξ(Xs) − γA] ds

}
� {τZA

< τAc}
]
, z ∈ A. (2.4)

It turns out that vA is concentrated around the maximal point ZA of the potential.

Lemma 2.3. There is a decreasing function ϕ : (2d,∞) → R+ such that lim
x→∞

ϕ(x) = 0 and,
for any bounded set A ⊂ Z

d satisfying gA > 2d,

||vA||22
∑

z∈A\{ZA}

vA(z) ≤ ϕ(gA).

Proof. It suffices to consider z ∈ A∗. By the Rayleigh–Ritz formula we have

γA = sup
{
〈(∆ + ξ)f, f〉 : f ∈ `2(Zd), supp(f) ⊂ A∗, ‖f‖2 = 1

}

≥ sup {〈(∆ + ξ)δz , δz〉 : z ∈ A∗} = sup {ξ(z) − 2d : z ∈ A∗}
= ξ(ZA) − 2d.

Since the paths of the random walk (Xs) in (2.4) do not leave A and avoid the point ZA

where the maximum of the potential is achieved, we can estimate the integrand using the

gap gA. Hence, we obtain

vA(z) ≤ Ez

[
exp

{
τZA

(ξ(ZA) − gA − γA)
}]

≤ Ez

[
exp

{
− τZA

(gA − 2d)
}]
.
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Under Pz the random variable τZA
is stochastically bounded from below by a sum of |z−ZA|

independent exponentially distributed random variables with parameter 2d. If τ denotes

such a random time, we therefore have

vA(z) ≤
(

E
[
e−τ(gA−2d)

])|z−ZA|
=

( 2d

gA

)|z−ZA|
.

The statement of the lemma follows easily with

ϕ(x) =
( ∑

z∈Zd

(2d/x)2|z|
)( ∑

z∈Zd\{0}

(2d/x)|z|
)
,

which obviously satisfies the required conditions. �

Let now B ⊂ Z
d be a bounded set containing the origin and Ω ⊂ B. Denote

gΩ,B = min
z∈Ω

ξ(z) − max
z∈B\Ω

ξ(z).

and denote, for any (t, z) ∈ (0,∞) × Z
d,

uΩ,B(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � {τΩ ≤ t, τBc > t}

]
.

Lemma 2.4. Assume that gΩ,B > 2d. Then, for all z ∈ Z
d and t > 0,

(a) uΩ,B(t, z) ≤
∑

y∈Ω

uΩ,B(t, y) ||v(B\Ω)∪{y} ||22 v(B\Ω)∪{y}(z),

(b)

∑
z∈B\Ω uΩ,B(t, z)

∑
z∈B uΩ,B(t, z)

≤ ϕ(gΩ,B).

Proof. (a) This is a slight generalisation of [GKM07, Th. 4.1] with a ball replaced by an
arbitrary bounded set B; we repeat the proof here for the sake of completeness. For each
y ∈ Ω, by time reversal and using the Markov property at time s, we obtain a lower bound

for uΩ,B(t, y) by requiring that the random walk (now started at y) is at y at time u and has
not entered Ω\{y} before. We have

uΩ,B(t, y) = Ey

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = 0} � {τΩ\{y} ≤ t, τBc > t}

]

≥ Ey

[
exp

{∫ u

0
ξ(Xs) ds

}
� {Xu = y} � {τΩ\{y} > u, τBc > u}

]

× Ey

[
exp

{∫ t−u

0
ξ(Xs) ds

}
� {Xt−u = 0} � {τBc > t− u}

]
. (2.5)

Using an eigenvalue expansion for the parabolic problem in (B\Ω) ∪ {y} represented by the
first factor on the right hand side of the formula above, we obtain the bound

Ey

[
exp

{∫ u

0
ξ(Xs) ds

}
� {Xu = y} � {τΩ\{y} > u, τBc > u}

]
≥ euγ(B\Ω)∪{y}

v(B\Ω)∪{y}(y)
2

||v(B\Ω)∪{y} ||22
,

where we have used that Z(B\Ω)∪{y} = y since gΩ,B > 0. Substituting the above estimate

into (2.5) and taking into account that v(B\Ω)∪{y}(y) = 1, we obtain

Ey

[
exp

{∫ t−u

0
ξ(Xs) ds

}
� {Xt−u = 0} � {τBc > t− u}

]
≤ e−uγ(B\Ω)∪{y}||v(B\Ω)∪{y} ||22uΩ,B(t, y).

The claimed estimate is obvious for z /∈ B. For z ∈ Ω, it follows from v(B\Ω)∪{z}(z) = 1,

which is implied by gΩ,B > 0 and hence Z(B\Ω)∪{z} = z. Let us now assume that z ∈ B\Ω.
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Using time reversal, the strong Markov property at time τΩ, and the previous lower bound
with u = τy we obtain

uΩ,B(t, z) =
∑

y∈Ω

Ez

[
exp

{∫ τy

0
ξ(Xs) ds

}
� {τy = τΩ ≤ t, τBc > τy}

Ey

[
exp

{∫ t−u

0
ξ(Xs) ds

}
� {Xt−u = 0} � {τBc > t− u}

]
u=τy

]

≤
∑

y∈Ω

uΩ,B(t, y)||v(B\Ω)∪{y} ||22 Ez

[
exp

{∫ τy

0

[
ξ(Xs) − γ(B\Ω)∪{y}

]
ds

}
� {τy < τBc}

=
∑

y∈Ω

uΩ,B(t, y)||v(B\Ω)∪{y} ||22 v(B\Ω)∪{y}(z).

(b) It suffices to apply Lemma 2.3 to A = (B\Ω) ∪ {y}, note that gA ≥ gΩ,B, and use
monotonicity of ϕ. Using (a), we obtain

∑

z∈B\Ω

uΩ,B(t, z) ≤
∑

y∈Ω

uΩ,B(t, y)
∑

z∈B\Ω

||v(B\Ω)∪{y} ||22 v(B\Ω)∪{y}(z)

≤
∑

y∈Ω

uΩ,B(t, y)ϕ(g(B\Ω)∪{y}) ≤ ϕ(gΩ,B)
∑

y∈B

uΩ,B(t, y),

which completes the proof. �

3. Properties of the maximisers Z (i)

t and values Φt(Z
(i)

t )

In this section we introduce the three maximisers Z (1)

t , Z(2)

t and Z (3)

t and analyse some of
their crucial properties. In Section 3.1 we concentrate on the long term behaviour of the
maximisers themselves, and in Section 3.2 we prove that the maximal value Φt(Z

(1)

t ) is well

separated from Φt(Z
(3)

t ).

3.1 The maximisers Z
(1)

t
, Z

(2)

t
and Z

(3)

t
.

Recall that Z (1)

t , Z(2)

t and Z (3)

t denote the first three maximisers of the random functional Φt

defined in (1.9). More precisely, we define Z (i)

t to be such that

Φt(Z
(1)

t ) = max
z∈Zd

Φt(z), Φt(Z
(2)

t ) = max
z∈Zd\{Z

(1)
t }

Φt(z), Φt(Z
(3)

t ) = max
z∈Zd\{Z

(1)
t ,Z

(2)
t }

Φt(z). (3.1)

Lemma 3.1. With probability one, Z (1)

t , Z(2)

t and Z (3)

t are well-defined for any t > 0.

Proof. Fix t > 0. Let ε ∈ (0, 1 − d
α). By [HMS08, Lemma 3.5] there exists a random radius

ρ(t) > 0 such that, almost surely,

ξ(z) ≤ ξ(1)

|z| ≤ |z| d
α

+ε ≤ |z|
t
, for all |z| > ρ(t). (3.2)

Consider |z| > max{ρ(t), edt}. If tξ(z) < |z| then Φt(z) = 0. Otherwise, using η(z) ≤ |z| log d
and estimating ξ(z) in two different ways, we obtain

Φt(z) ≤ ξ(1)

|z| −
|z|
t

log
|z|
dt

≤ |z|
t

[
1 − log

|z|
dt

]
< 0.

Thus, Φt takes only finitely many positive values and therefore the maxima in (3.1) exist. �
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Remark 7. The maximisers Z (1)

t , Z(2)

t and Z (3)

t are in general not uniquely defined. However,
almost surely, if t0 is sufficiently large, they are uniquely defined, for all t ∈ (t0,∞) \ T ,

where T is a countable random set, and for t ∈ T it can only happen that Z (1)

t = Z(2)

t 6= Z(3)

t

or Z (1)

t 6= Z(2)

t = Z(3)

t . Thus, the non-uniqueness only occurs at the time when the maximal

(or the second maximal value) relocates from one point to the other. It can be seen from
the further proofs (see Lemma 3.2) that T consists of isolated points. �

To prove Proposition 3.4 below, we need to analyse the functions t 7→ Φt(Z
(i)

t ), i = 1, 2, 3,
locally. It turns out that they have some regularity and that, using rather precise asymptotics
for |Z (i)

t | and Φt(Z
(i)

t ), we can have good control on their increments.

Lemma 3.2. Let ε > 0. For i = 1, 2, 3, almost surely eventually for all t,

(i) Φt(Z
(i)

t ) > at (log t)−ε and ξ(Z (i)

t ) > at(log t)
−ε;

(ii) tξ(Z (i)

t ) > |Z (i)

t |;

(iii) rt(log t)
− 1

d
−ε < |Z (i)

t | < rt (log t)
1

α−d
+ε

;

(iv) Φu(Z(i)
u ) − Φt(Z

(i)

t ) ≤ u−t
t au (log u)

1
α−d

+ε
for all u > t;

(v) u 7→ Φu(Z(i)
u ) is increasing on (t,∞).

Proof. As an auxiliary step, let us show that, for any c > 0 and any i ∈ N,

ξ(i−1)
r > r

d
α (log r)−c eventually. (3.3)

Obviously, the distribution of ξ(i−1)
r is given by

Prob
(
ξ(i−1)
r ≤ x

)
=

i−1∑

k=0

(
`r
k

)
x−αk(1 − x−α)`r−k,

where `r ∼ κdr
d is the number of points in the ball {|z| ≤ r}, and κd is a positive constant.

Using that
(
`r

k

)
≤ `kr ∼ κk

dr
dk, we get

Prob
(
ξ(i−1)
r ≤ r

d
α (log r)−c

)
≤ (1 + o(1))

i−1∑

k=0

κk
d(log r)

cαk(1 − r−d(log r)cα)`r−k

≤ (1 + o(1)) iκi−1
d (log r)cα(i−1)(1 − r−d(log r)cα)`r−i+1

= exp {−κd(log r)
cα(1 + o(1))} ,

which is summable along the subsequence rn = 2n. Hence, by the Borel–Cantelli lemma the
inequality (3.3) holds eventually along (rn)n∈N. As ξ(i−1)

r is increasing, we obtain eventually

ξ(i−1)
r ≥ ξ(i−1)

2blog2 rc ≥
(
2blog2 rc

) d
α (log 2blog2 rc)−c ≥ 2−

d
α r

d
α (log r − log 2)−c > r

d
α (log r)−2c,

which is equivalent to (3.3).

Now we prove parts (i) − (v) of the lemma. We assume throughout the proof that t is
sufficiently large to use all statements which hold eventually.

(i) Let z1, z2, z3 be the points where the three largest values of ξ in {|z| ≤ rt(log t)
−ε} are

achieved. Take c < ε(α − d)/(2α) and observe that (3.3) implies for each i eventually

ξ(zi) > r
d
α
t (log t)−

εd
α (log rt − ε log log t)−c > at(log t)

− εd
α
−2c.
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By [HMS08, Lemma 3.5] we also have

log ξ(zi) ≤ log ξ(1)

rt(log t)−ε < log rt ≤ (q + 1) log t.

We obtain, observing that tξ(zi) > tat(log t)
− εd

α
−2c > rt(log t)

−ε ≥ |zi|, that

Φt(zi) ≥ ξ(zi) −
|zi|
t

log ξ(zi) > at(log t)
− εd

α
−2c − rt

t
(q + 1)(log t)1−ε > at(log t)

−ε

as εd
α + 2c < ε and (rt/t) log t = at. Since the inequality is fulfilled for the three points z1, z2

and z3, it is also fulfilled for the maximisers Z (1)

t , Z(2)

t and Z (3)

t , completing the proof of the
first inequality in (i). As Φt(Z

(i)

t ) 6= 0 we must have ξ(Z (i)

t ) ≥ |Z (i)

t |/t, and hence

ξ(Z (i)

t ) = Φt(Z
(i)

t ) +
|Z(i)

t |
t

log ξ(Z (i)

t ) − η(Z (i)

t )

t
≥ Φt(Z

(i)

t ) +
|Z(i)

t |
t

log
|Z(i)

t |
dt

> Φt(Z
(i)

t ) − d/e.

The second inequality in (i) follows now from the lower bound for Φt(Z
(i)

t ).

(ii) This is an obvious consequence of (i) as Φt(Z
(i)

t ) 6= 0.

(iii) To prove the upper bound, let us pick c ∈ (0, ε(α−d)
2α ). Then for each z such that

|z| ≥ rt(log t)
1

α−d
+ε we obtain by [HMS08, Lemma 3.5], eventually,

ξ(z)

|z| ≤ |z| d
α
−1(log |z|) 1

α
+c≤o(1/t).

Hence (ii) implies that z 6= Z (i)

t , which implies the upper bound on |Z (i)

t |.

To prove the lower bound, suppose that |Z (i)

t | ≤ rt(log t)
− 1

d
−ε. By [HMS08, Lemma 3.5],

ξ(Z (i)

t ) ≤ |Z (i)

t | d
α (log |Z (i)

t |) 1
α

+c ≤ at(log t)
− dε

α
+2c,

which contradicts (i) if we pick c ∈ (0, εd
2α ).

(iv) Let t be large enough so that the previous eventual estimates hold for all u ≥ t. Then,
for each s ∈ [t, u], according to (iii), we have that Φs(Z

(i)
s ) is the ith largest value of Φs over

a collection of finitely many points. Hence s 7→ Φs(Z
(i)
s ) is a continuous piecewise smooth

function. On the smooth pieces, using again [HMS08, Lemma 3.5] and (iii) with ε/2, we
can estimate its derivative by

d

ds
Φs(Z

(i)
s ) =

|Z(i)
s |
s2

log ξ(Z (i)
s ) − η(Z (i)

s )

s2
≤ |Z(i)

s |
s2

log |Z (i)
s | d

α
+c <

as

s
(log s)

1
α−d

+ε.

Finally, we obtain

Φu(Z(i)
u ) − Φt(Z

(i)

t ) =

∫ u

t

d

ds
Φs(Z

(i)
s ) ds ≤ u− t

t
au(log u)

1
α−d

+ε,

which completes the proof.

(v) Using η(z) ≤ |z| log d in the second, and (i) in the last step, we see that

d

ds
Φs(Z

(i)
s ) =

|Z(i)
s |
s2

log ξ(Z (i)
s ) − η(Z (i)

s )

s2
≥ |Z(i)

s |
s2

log
ξ(Z (i)

s )

d
> 0,

eventually for all t. �
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3.2 Lower bound for Φt(Z
(1)

t
) − Φt(Z

(3)

t
).

In this section we prove that Φt(Z
(1)

t ) and Φt(Z
(3)

t ) are well separated from each other. The
crucial estimate for this is provided in Lemma 3.3.

First, it is important to make the density of the random variable Φt(z) explicit. Observe
that, on the set {tξ(z) ≥ z}, the event {Φt(z) < x} has the form {χa(ξ(z)) ≤ x − η(z)/t},
where we abbreviated a = |z|/t and introduced the map χa(x) = x−a log x. Note that χa is
an increasing bijection from [a,∞) to [a− a log a,∞), hence on {tξ(z) ≥ z} we can describe
{Φt(z) < x} using the inverse function ψa : [a− a log a,∞) → [a,∞) of χa. In order to also

include the complement of {tξ(z) ≥ z}, we extend ψa to a function R → [a,∞) by putting
ψa(x) = a for x < a− a log a. Then we have, for each t, z, and x > 0,

{
Φt(z) ≤ x

}
=

{
ξ(z) ≤ ψ |z|

t

(
x− η(z)/t

)}
. (3.4)

Lemma 3.3. Fix β > 1 + 1
α−d and let λt = (log t)−β. Then there exists a constant c > 0

such that

Prob
(
Φt(Z

(1)

t ) − Φt(Z
(3)

t ) ≤ 2atλt

)
≤ cλ2

t , for t > 0.

Proof. This proof, though tedious, is fairly standard and is carried out in four steps. In the
first step, we show that there exists a constant C1 > 0 such that, for all sufficiently large t,

and all s ≥ (log t)−1/2,

Prob
(
Φt(Z

(1)

t ) ∈ d(ats), Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≤ 2atλt

)

≤ C1 a
3
t λ

2
t Prob

(
Φt(Z

(1)

t ) ≤ ats
)[ ∑

z∈Zd

(
ats+ |z|

t log |z|
dt

)−α−1
]3

ds .
(3.5)

In the second step we evaluate the infinite sum and show that there exists C2 > 0 such that

∑

z∈Zd

(
ats+ |z|

t log |z|
dt

)−α−1 ≤ C2 a
−1
t sd−α−1 . (3.6)

To bound the right hand side of (3.5) further, we show in the third step that there exists a

constant C3 > 0 such that, for all (log t)−1/2 ≤ s ≤ 1,

Prob
(
Φt(Z

(1)

t ) ≤ ats
)
≤ exp

{
− C3 s

d−α
}
. (3.7)

In the fourth step we combine these three equations and integrate over s to get the result.

For the first step we use independence to obtain

Prob
(
Φt(Z

(1)

t ) ∈ d(ats), Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≤ 2atλt

)

≤
∑

z1,z2,z3∈Zd

distinct

Prob
(
Φt(z1) ∈ d(ats); Φt(zi) ∈ at[s− 2λt, s] for i = 2, 3;

Φt(z) ≤ ats for z 6∈ {z1, z2, z3}
)

≤
( ∑

z∈Zd

Prob(Φt(z) ∈ d(ats))

Prob(Φt(z) ≤ ats)

)( ∑

z∈Zd

Prob(Φt(z) ∈ at[s− 2λt, s])

Prob(Φt(z) ≤ ats)

)2

×
∏

z∈Zd

Prob
(
Φt(z) ≤ ats

)
.

(3.8)
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All the denominators in (3.8) converge to one, uniformly in z and s ≥ (log t)−1/2 − 2λt.
Indeed, by (3.4), we get

Prob
(
Φt(z) ≤ ats

)
= Prob

(
ξ(z) ≤ ψ |z|

t

(ats− η(z)
t )

)

≥ Prob
(
ξ(z) ≤ ats− |z|

t log d+ |z|
t log |z|

t

)
≥ Prob

(
ξ(z) ≤ ats− d

e

)
≥ 1 + o(1) ,

using that η(z) ≤ |z| log d, x log(x/d) ≥ −d/e, and ψa(x) ≥ x+a log a (with a = |z|/t), where

the latter is obvious for x ≤ a−a log a and follows from ψa(x) = x+a logψa(x) ≥ x+a log a
otherwise.
Further, we use (3.4) to observe that, by a coordinate transformation, the density of Φt(z)

at x is given as

ψ′
|z|
t

(
x− η(z)

t

)
α

(
ψ |z|

t

(x− η(z)
t )

)−α−1
if x− η(z)

t > |z|
t − |z|

t log |z|
t .

If t is large enough, the latter condition is satisfied for x = ats, all z and s ≥ (log t)−1/2−2λt,
and moreover, using again ψa(x) ≥ x+ a log a, we have

ψ |z|
t

(
ats− η(z)

t

)
≥ ats− η(z)

t + |z|
t log |z|

t ≥ ats+ |z|
t log |z|

dt .

Hence, if t is big enough to satisfy at[(log t)
−1/2 − 2λt] > tq/2 we get

t
|z| ψ |z|

t

(ats− η(z)
t ) ≥ 1

|z| t
1+q/2 + log |z|

dt ≥ min
r>0

{
tq/2r − log(rd)

}
= log etq/2

d .

Differentiating the equality ψa(x) − a log ψa(x) = x with respect to x, for x > a, we obtain
ψ′

a(x) = (1 − a/ψa(x))
−1. This implies that, as t ↑ ∞,

ψ′
|z|
t

(ats− η(z)
t ) =

(
1 − |z|

t /ψ |z|
t

(
ats− η(z)

t

))−1
−→ 1 uniformly in z and s.

Hence

Prob
(
Φt(z) ∈ d(ats)

)
≤ (α + o(1)) at

(
ats+ |z|

t log |z|
dt

)−α−1
ds . (3.9)

Integrating (3.9) over the interval [s− 2λt, s] yields

Prob
(
Φt(z) ∈ at[s− 2λt, s]

)
≤ (α+ o(1)) 2atλt

(
at(s− 2λt) + |z|

t log |z|
dt

)−α−1
.

Using that x log(x/d) ≥ −d/e we obtain

at(s− 2λt) + |z|
t log |z|

dt

ats+ |z|
t log |z|

dt

= 1 − 2atλt

ats+ |z|
t log |z|

dt

≥ 1 − 2atλt

ats− d/e
≥ 1 + o(1),

hence, uniformly in z ∈ Z
d and s ≥ (log t)−1/2 − 2λt,

Prob
(
Φt(z) ∈ at[s− 2λt, s]

)
≤ (α+ o(1)) 2atλt

(
ats+ |z|

t log |z|
dt

)−α−1
. (3.10)

Inserting (3.9) and (3.10) in (3.8), and estimating all denominators uniformly by a constant
factor yields (3.5).

In the second step we estimate the infinite sum in (3.6). Recalling that rd
t = aα

t and that the

number of points in the ball {|z| ≤ r} is equal to κdr
d(1 + o(1)) we obtain

∑

|z|≤rt/ log t

(
ats+ |z|

t log |z|
dt

)−α−1 ≤
∑

|z|≤rt/ log t

(
ats− d

e

)−α−1

≤ (κd + o(1))
rd
t

(ats)α+1[log t]d
= o

(
a−1

t sd−α−1
)
.

(3.11)
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We have log |z|
dt ≥ (1 + o(1)) q [log t] uniformly over all z ∈ Z

d with |z| ≥ rt/ log t. Therefore,
∑

|z|≥rt/ log t

(
ats+ |z|

t log |z|
dt

)−α−1 ≤ (1 + o(1)) (ats)
−α−1

∑

|z|≥rt/ log t

(
1 + q |z|

rts
log t

)−α−1

= (1 + o(1))
(rts)

d

(ats)α+1

∫

Rd

(
1 + q |x|

)−α−1
dx ≤ C2a

−1
t sd−α−1.

Combining this with (3.11) yields (3.6).

In the third step we show (3.7) by a direct calculation. First, let us show that for ε > 0

ψ |z|
t

(ats) ≤ ats+
|z|
t

(q + ε) log t (3.12)

for all large t, rt
log t ≤ |z| ≤ rt log t and (log t)−

1
2 ≤ s ≤ 1. By definition,

ψ |z|
t

(ats) = ats+
|z|
t

logψ |z|
t

(ats),

hence it suffices to prove that ψ |z|
t

(ats) ≤ tq+ε.

Assume this is false for some large t, z and s. Then using the monotonicity of x 7→ x−a log x
for x ≥ a, we obtain

tq+
ε
2 ≥ at ≥ ats = ψ |z|

t

(ats) −
|z|
t

logψ |z|
t

(ats) ≥ tq+ε − |z|
t

(q + ε) log t ≥ tq+ε − tq+
ε
2 ,

which is a contradiction. Now we can compute

Prob
(
Φt(Z

(1)

t ) ≤ ats
)

=
∏

z∈Zd

Prob
(
Φt(z) ≤ ats

)
≤

∏

rt
log t

≤|z|≤rt log t

Prob
(
ξ(z) ≤ ψ |z|

t

(ats−
η(z)

t
)
)

≤
∏

rt
log t

≤|z|≤rt log t

Prob
(
ξ(z) ≤ ats+

|z|
t

(q + ε) log t
)

using (3.4), ψ |z|
t

(ats− η(z)
t ) ≤ ψ |z|

t

(ats) and (3.12). Inserting the explicit form of the distri-

bution function we get

Prob
(
Φt(Z

(1)

t ) ≤ ats
)
≤ exp

{
− (1 + o(1))

∑

rt
log t

≤|z|≤rt log t

(
ats+ |z|

t (q + ε) log t
)−α}

≤ exp
{
− (1 + o(1)) sd−α

∫

Rd

du

(1 + (q + ε)|u|)α

}

using a Riemann sum approximation as in the second step. This proves (3.7).

Coming to the fourth step, we now use (3.5), (3.6) and (3.7) to get

Prob
(
Φt(Z

(1)

t ) − Φt(Z
(3)

t ) ≤ 2atλt

)

≤ Prob
(
Φt(Z

(1)

t ) ≤ at(log t)
−1/2

)

+

∫ ∞

(log t)−1/2

Prob
(
Φt(Z

(1)

t ) ∈ d(ats), Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≤ 2atλt

)

≤ exp
{
− C3 (log t)

α−d
2

}

+ C1C
3
2 λ

2
t

[ ∫ 1

(log t)−1/2

exp{−C3 s
d−α}ds

s3(α−d+1)
+

∫ ∞

1

ds

s3(α−d+1)

]
.
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The first term is o(λ2
t ) by choice of λt, and the expression in the square bracket is bounded

by an absolute constant. This completes the proof. �

Now we turn the estimate of Lemma 3.3 into an almost sure bound.

Proposition 3.4. Almost surely, eventually for all t,

Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≥ atλt.

Proof. Let ε ∈ (0, 2β−1) be such that β > 1+ 1
α−d +2ε and let tn = enγ

, where γ ∈ ( 1
2β ,

1
2β−ε).

Note that γ < 1. Since λ2
tn = n−2γβ is summable, Lemma 3.3 and the Borel–Cantelli lemma

imply that

Φtn(Z(1)

tn ) − Φtn(Z(3)

tn ) ≥ 2atnλtn eventually for all n.

For each t ∈ [tn, tn+1) we obtain by Lemma 3.2(iv,v)

Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≥ Φtn(Z(1)

tn ) − Φtn+1(Z
(3)

tn+1
)

=
[
Φtn(Z(1)

tn ) − Φtn(Z(3)

tn )
]
−

[
Φtn+1(Z

(3)

tn+1
) − Φtn(Z(3)

tn )
]

≥ 2atnλtn − tn+1 − tn
tn

atn+1(log tn+1)
1

α−d
+ε. (3.13)

Notice that eventually

tn+1 − tn
tn

= e(n+1)γ−nγ − 1 = γnγ−1(1 + o(1)) = γ(log tn)
γ−1

γ (1 + o(1)) ≤ (log tn)−2β+1+ε.

Denote by n(t) the integer such that t ∈ [tn(t), tn(t)+1). Since tn+1/tn → 1 we have tn(t) ∼ t
and tn(t)+1 ∼ t. Substituting this and the last estimate into (3.13), we obtain

Φt(Z
(1)

t ) − Φt(Z
(3)

t ) ≥ 2atλt(1 + o(1)) − at(log t)
1

α−d
−2β+1+2ε(1 + o(1)) ≥ atλt

eventually since λt = (log t)−β and (log t)
1

α−d
−β+1+2ε = o(1), which makes the second term

negligible compared to the first one. �

4. Total mass of the solution

In this section we show that the total mass U(t) of the solution can be well approximated

by exp{tΦt(Z
(1)

t )}. The main tool is the Feynman–Kac formula in (1.8) and a technical
lemma provided in Section 4.1. In Section 4.2 we prove the lower bound for 1

t logU(t). In
Section 4.3 we split the set of all paths into five path classes four of which turn out to give

negligible contribution to the Feynman–Kac formula for U(t). In Section 4.4 we show that
the remaining class yields a useful upper bound for 1

t logU(t).

4.1 A technical lemma.
We bound contributions to the Feynman–Kac formula for U(t) coming from path classes that

are defined according to their number of steps and the maximum along their path. Denote
by Jt the number of jumps of the random walk (Xs : s ≥ 0) up to time t. Recall the notation
from the beginning of Section 2 and let H = (Ht)t>0 be some family of sets Ht ⊂ Ft, and let

h = (ht)t>0 be some family of functions ht : Z
d → N0. Denote by

UH,h(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
�
{
∃z ∈ Ft\Ht : max

s∈[0,t]
ξ(Xs) = ξ(z), ht(z) ≤ Jt ≤ rtgt

}]

the contribution to the total mass that comes from paths which attain their maximal poten-

tial value in some z ∈ Ft \Ht with step number in {ht(z), . . . , brtgtc}.
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Lemma 4.1. There is δ > 0 such that, almost surely, for t→ ∞,

(a)
1

t
logUH,h(t) ≤ max

z∈Ft\Ht

{
Φt(z)+

1

t
max

n≥ht(z)

[
η(n, z)− η(z)− n−|z|

2 log ξ(z)
]}

+O(tq−δ),

(b)
1

t
logUH,h(t) ≤ max

z∈Ft\Ht

Φt(z) +O(tq−δ).

Proof. We write UH,h(t) as

UH,h(t) =
∑

z∈Ft\Ht

UH,h(t, z), (4.1)

where we define, for any z ∈ Z
d,

UH,h(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
�
{

max
s∈[0,t]

ξ(Xs) = ξ(z), ht(z) ≤ Jt ≤ rtgt

}]
.

Denote by

Pn,z =
{
y = (y0, y1, . . . , yn) ∈ (Zd)n+1 : y0 = 0, |yi − yi−1| = 1, max

0≤i≤n
ξ(yi) = ξ(z)

}

the set of all discrete time paths in Z
d of length n starting at the origin, going through z, such

that the maximum of the potential over the path is attained at z. Let (τi)i∈N0 be a sequence
of independent exponentially distributed random variables with parameter 2d. Denote by E

the expectation with respect to (τi). Averaging over all random paths following the same

path y (with individual timings) we obtain

UH,h(t, z) =

brtgtc∑

n=ht(z)

∑

y∈Pn,z

UH,h(t, z, y), (4.2)

where

UH,h(t, z, y) = (2d)−n
E

[
exp

{ n−1∑

i=0

τiξ(yi) +
(
t−

n−1∑

i=0

τi

)
ξ(yn)

}
�
{ n−1∑

i=0

τi ≤ t <
n∑

i=0

τi

}]
.

Note that, as y can have self-intersections, some of the values of ξ over y may coincide.

We would like to avoid the situation when the maximum of ξ over y is taken at more than
one point. Therefore, for each path y, we slightly change the potential over y. Namely, we
denote by i(y) = min {i : ξ(yi) = ξ(z)} the index of the first point where the maximum of

the potential over the path is attained. Then we define the modified version of the potential
ξy : {0, . . . , n} → R by

ξy
i =

{
ξ(yi), if i 6= i(y),
ξ(yi) + 1, if i = i(y).

Repeating the computations (4.16) and (4.17) from [HMS08] we obtain

UH,h(t, z, y) ≤ e
tξy

i(y)
−2dt

∏

i6=i(y)

1

ξy
i(y) − ξy

i

≤ etξ(z)
n∏

i=1

1

1 + ξ(z) − ξ(yi)
. (4.3)

Let us now find a lower bound for the number of sites on the path where the potential is
small compared to ξ(z) or, more precisely, we estimate the number of indices 1 ≤ i ≤ n such
that ξ(yi) ∈ Gc

t . First, we erase loops that the path y may have made before reaching z for

the first time and extract from (y0, . . . , yi(y)) a self-avoiding path (yi0 , . . . , yil(y)
) starting at

the origin, ending at z and having length l(y) ≥ |z|, where we take i0 = 0 and

ij+1 = min{i : yl 6= yij ∀l ∈ [i, i(y)]}.
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Since this path visits l(y) different points, at least l(y) − mt of them belong to Gc
t . By

Lemma 2.2 (ii) we have |z| > t(q+1)σ+c > mt and hence l(y) − mt is eventually positive.
Second , for each 0 ≤ j ≤ l(y)− 1, consider the path (yij+1, . . . , yij+1−1), which was removed

during erasing the j-th loop. Obviously, it contains an even number ij+1 − ij − 1 of steps, as
yij = yij+1−1 and yij and yij+1−1 are neighbours. Notice that, as Gt is totally disconnected
by Lemma 2.2 (iii), at least half of the steps, (ij+1− ij −1)/2, belong to Gc

t . Third , consider

the remaining piece (yi(y)+1, . . . , yn). Again, since Gt is totally disconnected, there will be at
least (n− i(y))/2 points belonging to Gc

t . Summing up these three observations, we obtain
that y makes at least

l(y) −mt +

l(y)−1∑

j=0

ij+1 − ij − 1

2
+
n− i(y)

2
= l(y) −mt +

n− l(y)

2
≥ |z| −mt +

n− |z|
2

steps that belong to Gc
t .

Now we can continue estimating UH,h(t, z, y). Recall that the potential is at most ξ (mt)
rtgt on

the set Gc
t . If we drop the terms corresponding to the points from Gt in (4.3), we obtain

UH,h(t, z, y) ≤ etξ(z)
[
ξ(z) − ξ(mt)

rtgt

]−
(
|z|−mt+

n−|z|
2

)
.

Substituting this into (4.2) and using |Pn,z| ≤ N(n, z), we get

1

t
logUH,h(t, z) ≤ 1

t
log

rtgt∑

n=ht(z)

∑

y∈Pn,z

etξ(z)
[
ξ(z) − ξ(mt)

rtgt

]−
(
|z|−mt+

n−|z|
2

)

≤ 1

t
log max

ht(z)∨|z|≤n≤rtgt

{
N(n, z) etξ(z)

[
ξ(z) − ξ(mt)

rtgt

]−
(
|z|−mt+

n−|z|
2

)}
+ o(1)

= max
ht(z)∨|z|≤n≤rtgt

{
ξ(z) +

η(n, z)

t
− 1

t

[
|z| −mt +

n− |z|
2

]
log

(
ξ(z) − ξ(mt)

rtgt

)}
+ o(1).

In order to simplify the expression under the maximum, we decompose

[
|z| −mt +

n− |z|
2

]
log

(
ξ(z) − ξ(mt)

rtgt

)

=
[
|z| + n− |z|

2

]
log ξ(z) +

[
|z| −mt +

n− |z|
2

]
log

(
1 − ξ(mt)

rtgt

ξ(z)

)
−mt log ξ(z)

and show that the last two terms are negligible. Indeed, for the second term, we use
Lemma 2.2 (i) in the second step to obtain, for each δ < c,

∣∣∣
[
|z| −mt +

n− |z|
2

]
log

(
1 − ξ(mt)

rtgt

ξ(z)

)∣∣∣ ≤ n
∣∣∣ log

(
1 − ξ(mt)

rtgt

ξ(kt)
rtgt

)∣∣∣ ≤ rtgtt
−c = O(tq+1−δ)

uniformly for all n ≥ |z|. For the third term, we use [HMS08, Lemma 3.5] and obtain

log ξ(z) ≤ O(log t) uniformly for all |z| ≤ rtgt. For δ < (q + 1)(1 − σ) this implies that

mt log ξ(z) ≤ O((rtgt)
σ log t) = O(tq+1−δ).
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Hence, there is a small positive δ such that

1

t
logUH,h(t, z) ≤ max

ht(z)∨|z|≤n≤rtgt

{
ξ(z) +

η(n, z)

t
− 1

t

[
|z| + n−|z|

2

]
log ξ(z)

}
+O(tq−δ)

=
[
ξ(z) +

η(z)

t
− |z|

t
log ξ(z)

]

+
1

t
max

ht(z)∨|z|≤n≤rtgt

{
η(n, z) − η(z) − n−|z|

2 log ξ(z)
}

+O(tq−δ).

(4.4)

To prove (a), observe that for each z ∈ Ft we have ξ(z) > ed. Hence either tξ(z) ≥ |z| or

ξ(z) +
η(z)

t
− |z|

t
log ξ(z) ≤ ξ(z) − |z|

t
log

ξ(z)

d
≤ ξ(z)

[
1 − log

ξ(z)

d

]
< 0.

In any case we obtain, using (4.1) and (4.4),

1

t
logUH,h(t) = max

z∈Ft\Ht

[1

t
logUH,h(t, z)

]
+ o(1)

≤ max
z∈Ft\Ht

[
Φt(z) +

1

t
max

ht(z)≤n

{
η(n, z) − η(z) − n−|z|

2 log ξ(z)
}]

+O(tq−δ).

To prove (b), we show that the second term on the right hand side of (4.4) is negligible.
Let z ∈ Ft. By Lemma 2.2 (i) we have ξ(z) > tc eventually. Further, for n ≥ |z|, we use
Lemma 2.1 and the substitution r = n/|z| − 1 to get

max
ht(z)∨|z|≤n≤rtgt

{
η(n, z) − η(z) − n−|z|

2 log ξ(z)
}
≤ max

n≥|z|

[
(n− |z|) log 2den

(n−|z|)
√

ξ(z)

]
+K

≤ |z|max
r≥0

[
r log

2de(r + 1)

rtc/2

]
+K. (4.5)

If t is large enough, the expression in the square brackets is negative for r ≥ 1, hence the

maximum is attained at some r < 1. Using this to estimate the numerator and optimising
the estimate, we obtain

max
r≥0

[
r log

2de(r + 1)

rtc/2

]
≤ max

r≥0

[
r log

4de

rtc/2

]
= 4dt−c/2. (4.6)

Finally, since |z| ≤ rtgt, we obtain, combining (4.5) and (4.6) and, if necessary, decreasing δ
so that it satisfies δ < c/2,

max
ht(z)∨|z|≤n≤rtgt

{
η(n, z) − η(z) − n−|z|

2 log ξ(z)
}
≤ rtgt 4dt−c/2 +K = O(tq+1−δ).

Using this on the right hand side of (a) completes the proof. �

4.2 A lower bound for the growth of the mass.
We now derive a lower bound for U(t), which is a slight improvement on the bound given

in [HMS08, Lemma 2.2]. This argument does not rely on Lemma 4.1.

Proposition 4.2. Almost surely, eventually for all t

1

t
logU(t) ≥ Φt(Z

(1)

t ) − 2d+ o(1).

Proof. The proof follows the same lines as in [HMS08, Lemma 2.2], so that we will shorten
some computations if they are the same as there. Let ρ ∈ (0, 1] and z ∈ Z

d with |z| ≥ 2.

Denote by

Az,ρ
t = {Jρt = |z|, Xs = z ∀s ∈ [ρt, t]}
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the event that the random walk X reaches the point z before time ρt, making the minimal
possible number of jumps, and stays at z for the rest of the time. Denote by Pλ(·) the

Poisson distribution with parameter λ. Then, using Stirling’s formula, we obtain

P0(A
z,ρ
t )=

N(z)P2dρt(|z|)P2d(1−ρ)t(0)

(2d)|z|
=exp

{
η(z) − |z| log |z|

eρt
− 2dt+O(log |z|)

}
,

where the last error term is bounded by the multiple of log |z| with an absolute constant. As
ξ(z) ≥ 0 almost surely for all z, we obtain, for all ρ and z as above,

U(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
≥ et(1−ρ)ξ(z)

P0(A
z,ρ
t )

≥ exp
{
t(1 − ρ)ξ(z) + η(z) − |z| log |z|

eρt
− 2dt+O(log |z|)

}
.

Since log |z| = o(t) for |z| ≤ tβ for any fixed positive β, this implies

1

t
logU(t) ≥ max

0<ρ≤1
max

1≤|z|≤tβ

[
(1 − ρ)ξ(z) +

η(z)

t
− |z|

t
log

|z|
eρt

]
− 2d+ o(1). (4.7)

Let η̂ ∈ ( d
α , 1) and β = (1 − η̂)−1(1 + ε), ε > 0. By [HMS08, Lemma 3.5] there is r0 such

that ξ(1)
r ≤ rbη for all r > r0. We thus have, using the bound η(z) ≤ |z| log d and a similar

computation as in [HMS08, Lemma 2.2],

max
|z|>max{r0,tβ}

[
(1 − ρ)ξ(z) +

η(z)

t
− |z|

t
log

|z|
eρt

]
≤ max

|z|>max{r0,tβ}

[
(1 − ρ)ξ(1)

|z| −
|z|
t

log
|z|
deρt

]

≤ max
|z|>max{r0,tβ}

[
|z|bη

(
1 − ρ− tε log

tβ−1

deρ

)]
< 0, (4.8)

eventually for all t. Recall that 1
t logU(t) ≥ 0 and take t large enough so that tβ > r0.

Then (4.8) implies that the maximum in (4.7) can be taken over all z instead of |z| ≤ tβ.

It is easy to see that this maximum is attained at ρ = |z|
tξ(z) unless this value exceeds one.

Substituting this ρ into (4.7) we obtain

1

t
logU(t) ≥ max

z∈Zd

[
ξ(z) +

η(z)

t
− |z|

t
log ξ(z)

]
� {tξ(z) > |z|} − 2d+ o(1)

= Φt(Z
(1)

t ) − 2d+ o(1),

which completes the proof. �

4.3 Negligible parts of the total mass.

In this section we show that the main contribution to the Feynman–Kac formula for U(t)
comes from those paths that pass through Z (1)

t or Z (2)

t and do not make significantly more
than |Z (1)

t | ∧ |Z (2)

t | steps. For this purpose, we define five path classes and show that the

latter four of them each give a negligible contribution to the total mass U(t).
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In the sequel, we assume that δ is taken small enough so that Lemma 4.1 holds and δ < q.
We decompose the set of all paths [0, t] → Z

d into the following five classes

Ai =





{
Jt ≤ rtgt,∃z ∈ {Z (1)

t , Z(2)

t } : max
s∈[0,t]

ξ(Xs) = ξ(z), Jt < |z|(1 + t−δ/2)
}
, i = 1,

{
Jt ≤ rtgt,∃z ∈ {Z (1)

t , Z(2)

t } : max
s∈[0,t]

ξ(Xs) = ξ(z), Jt ≥ |z|(1 + t−δ/2)
}
, i = 2,

{
Jt ≤ rtgt,∃z ∈ Ft\{Z (1)

t , Z(2)

t } : max
s∈[0,t]

ξ(Xs) = ξ(z)
}
, i = 3,

{
Jt ≤ rtgt, max

s∈[0,t]
ξ(Xs) ≤ ξ(kt)

rtgt

}
, i = 4,

{
Jt > rtgt

}
, i = 5,

and split the total mass into five components U(t) =
∑5

i=1 Ui(t), where

Ui(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� Ai

]
, 1 ≤ i ≤ 5.

Lemma 4.3. Almost surely, limt→∞ Ui(t)/U(t) = 0 for 2 ≤ i ≤ 5.

Proof. Case i = 2: Denote ht(z) = |z|(1+t−δ/2) andHt = Ft\{Z (1)

t , Z(2)

t }. By Lemma 4.1 (a),

1

t
logU2(t) ≤

1

t
logUH,h(t)

≤ max
z∈{Z

(1)
t ,Z

(2)
t }

{
Φt(z) +

1

t
max

n≥|z|(1+t−δ)

[
η(n, z) − η(z) − n−|z|

2 log ξ(z)
]}

+O(tq−δ).
(4.9)

For each z ∈ {Z (1)

t , Z(2)

t } we have by Lemma 3.2(i), for any c > 0, that ξ(z) > (2de)2tq−c

eventually. Together with Lemma 2.1 this implies

max
n≥|z|(1+t−δ/2)

[
η(n, z) − η(z) − n−|z|

2 log ξ(z)
]
≤ max

n≥|z|(1+t−δ/2)

[
(n− |z|) log 2denξ(z)−

1
2

n−|z|

]
+K

≤ max
n≥|z|(1+t−δ/2)

[
(n− |z|) log nt−

q−c
2

n−|z|

]
+K = |z| max

r≥t−δ/2

[
r log (r+1)t−

q−c
2

r

]
+K.

It is easy to check that, eventually for all t, the function under the maximum is decreasing

on (t−
q−c
2 ,∞) if c < q. Since δ < q we can choose c so small that δ < q − c. The maximum

is then attained at r = t−δ/2 and, as |z| ≥ tq+1− δ
4 by Lemma 3.2 (iii), we obtain

max
n≥|z|(1+t−δ/2)

[
η(n, z) − η(z) + n−|z|

2 log ξ(z)
]
≤ −|z| t−δ/2 log

(
t

q−c−δ
2

)
+K ≤ −tq+1− 3δ

4

eventually for all t. Combining this with (4.9) and using Proposition 4.2 we finally get

1

t
log

U2(t)

U(t)
≤ max

i=1,2

{
Φt(Z

(i)

t ) − tq−
3δ
4
}
− Φt(Z

(1)

t ) +O(tq−δ) = −tq− 3δ
4 +O(tq−δ) → −∞.

Case i = 3: Pick ht(z) = 0 and Ht = {Z (1)

t , Z(2)

t }. By Lemma 4.1 (b) we obtain

1

t
logU3(t) ≤

1

t
logUH,h(t) ≤ max

z∈Zd\{Z
(1)
t ,Z

(2)
t }

Φt(z) +O(tq−δ) = Φt(Z
(3)

t ) +O(tq−δ).

It remains to apply Propositions 4.2 and 3.4 to get eventually

1

t
log

U3(t)

U(t)
≤ Φt(Z

(3)

t ) − Φt(Z
(1)

t ) +O(tq−δ) ≤ −atλt +O(tq−δ) → −∞.
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Case i = 4: We estimate the integral in the Feynman–Kac formula by tξ (kt)
rtgt. Lemma 2.2 (i)

implies that there is c > 0 such that eventually

1

t
logU4(t) ≤ ξ(kt)

rtgt
≤ tq−c.

On the other hand, it follows from [HMS08, Th. 1.1] that, for each ĉ > 0, we have 1
t logU(t) ≥

tq−bc eventually. Since ĉ can be taken smaller than c, the statement is proved.

Case i = 5: We decompose the Feynman–Kac formula according to the number Jt of jumps.
Observe that the integral there can be estimated by tξ (1)

Jt
and use that Jt has Poisson distri-

bution with parameter 2dt. Thus, we obtain

U5(t) =
∑

n>rtgt

E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Jt = n}

]
≤

∑

n>rtgt

exp
{
tξ(1)

n − 2dt+ log (2dt)n

n!

}
.

Pick 0 < ε < ν/(q+1) and assume that t is large enough. It follows from [HMS08, Lemma 3.5]

that ξ(1)
n < n

d
α (log n)

1
α

+ε for all n > rtgt. Further, it follows from Stirling’s formula that
n! > (n/e)n for all n > rtgt. Then, for all n > rtgt, we obtain, using monotonicity in n,

tξ(1)
n − 2dt+ log (2dt)n

n! < tn
d
α (log n)

1
α

+ε + n log 2det
n ≤ −n d

α .

Combining the last two displays we obtain that U5(t) = o(1). �

4.4 An upper bound for the growth of the mass

Lemmas 4.1 and 4.3 make it possible to prove an upper bound for 1
t logU(t), which is

asymptotically equal to the lower bound of Proposition 4.2.

Proposition 4.4. Fix δ > 0 as in Lemma 4.1. Then, almost surely, eventually for all t,

1

t
logU(t) ≤ Φt(Z

(1)

t ) +O(tq−δ).

Proof. Consider Ht = ∅ and ht = 0. Then UH,h(t) = U1(t) + U2(t) + U3(t). Since for the
remaining two functions we have U4(t) + U5(t) ≤ U(t)o(1) by Lemma 4.3, we obtain by
Lemma 4.1 (b) that 1

t logU(t) ≤ 1
t logUH,h(t)(1 + o(1)) ≤ Φt(Z

(1)

t ) +O(tq−δ). �

5. Almost sure localisation in two points

In this section, we prove Theorem 1.1. In Section 5.1 we introduce a decomposition into three
events, formulate our main steps and provide some technical preparation. The remaining
Sections 5.2–5.4 give the proofs of the localisation on the three respective events.

5.1 Decomposition into three events.

In the proof of Theorem 1.1, we distinguish between three disjoint events constituting a
partition of the full probability space:

• Φt(Z
(1)

t ) − Φt(Z
(2)

t ) is small and the sites Z (1)

t and Z (2)

t are close to each other;
• Φt(Z

(1)

t ) − Φt(Z
(2)

t ) is small but the sites Z (1)

t and Z (2)

t are far away from each other;

• Φt(Z
(1)

t ) − Φt(Z
(2)

t ) is large.

and prove the two point localisation on each event by different arguments. To be precise, for

i = 1, 2, denote by

Γ(i)

t =
{
z ∈ Z

d : |z − Z (i)

t | + min{|z|, |Z (i)

t |} < |Z (i)

t |(1 + t−δ/2)
}
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the set containing all sites z such that there is a path of length less than |Z (i)

t |(1 + t−δ/2)

starting from the origin passing through both z and Z (i)

t . Further, denote

Γt =
{
z ∈ Z

d : |z − Z (1)

t | + min{|z|, |Z (1)

t |} < |Z (1)

t |(1 + 6t−δ/2)
}
.

In Sections 5.2–5.4 we prove the following three propositions.

Proposition 5.1. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t ,Z

(2)
t }

u(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2, Z
(2)

t ∈ Γ(1)

t } = 0.

Proposition 5.2. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t ,Z

(2)
t }

u(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2, Z
(2)

t /∈ Γ(1)

t } = 0.

Proposition 5.3. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t }

u(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2} = 0.

Obviously, Theorem 1.1 follows immediately from the three propositions. For each of them,
the idea of the proof is to decompose u into a sum of two functions u1 and u2 (which is
different in different cases) such that u2 is negligible and localisation of u1 can be shown

with the help of our spectral bounds derived in Section 2.2. If the gap between Φt(Z
(1)

t ) and
Φt(Z

(2)

t ) is small (Cases 1 and 2) then both points Z (1)

t and Z (2)

t contribute to the total mass.

However, the strategy of the proof is different, since in the second case the points Z (1)

t and
Z(2)

t do not interact as they are far away from each other, whereas in the first case they do.

If the gap between Φt(Z
(1)

t ) and Φt(Z
(2)

t ) is large (Case 3) only the site Z (1)

t contributes to
the total mass. In the remaining part of this section, we prove a lemma, which is used in
the proof of each of the three propositions.

Lemma 5.4. There is c ∈ (0, q) such that, almost surely eventually for all t,

(i) ξ(z) < ξ(Z (1)

t ) − tq−c for all z ∈ Γt\{Z (1)

t , Z(2)

t },
(ii) ξ(z) < ξ(Z (1)

t ) − tq−c for all z ∈ Γt\{Z (1)

t } if Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2,

(iii) ξ(z) < ξ(Z (2)

t ) − tq−c for all z ∈ Γ(2)

t \{Z (1)

t , Z(2)

t } if Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2,

(iv) Γ(1)

t ⊂ Γt. If Z (2)

t ∈ Γ(1)

t then Γ(2)

t ⊂ Γt.

Proof. We prove (i)–(iii) simultaneously, first making the following observations:

(1) By Proposition 3.4 we have Φt(Z
(1)

t ) − Φt(z) > atλt/2 for all z /∈ {Z (1)

t , Z(2)

t }.
(2) Φt(Z

(1)

t ) − Φt(z) ≥ Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2 for all z 6= Z (1)

t by assumption.

(3) Using Proposition 3.4 and our assumption we obtain Φt(Z
(2)

t ) − Φt(Z
(3)

t ) > atλt/2.
Hence Φt(Z

(2)

t ) − Φt(z) ≥ Φt(Z
(2)

t ) − Φt(Z
(3)

t ) > atλt/2 for all z /∈ {Z (1)

t , Z(2)

t }.
Thus, to show (i)–(iii), it suffices to prove that there exists c ∈ (0, q) such that eventually

ξ(Z (i)

t ) − ξ(z) > tq−c

for each i ∈ {1, 2} and each z satisfying

Φt(Z
(i)

t ) − Φt(z) ≥ atλt/2 and |z − Z (i)

t | + min{|z|, |Z (i)

t |} < |Z (i)

t |(1 + 6t−δ/2). (5.1)
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Assume that the statement is false. Then given c < q there is an arbitrarily large t and
z ∈ Z

d satisfying (5.1) with ξ(Z (i)

t ) − ξ(z) ≤ tq−c. Then

Φt(Z
(i)

t ) − Φt(z) =
[
ξ(Z (i)

t ) − ξ(z)
]
+

|Z(i)

t |
t

log
ξ(z)

ξ(Z (i)

t )

+
|z| − |Z (i)

t |
t

log ξ(z) +
η(Z (1)

t ) − η(z)

t
.

(5.2)

We can bound the second summand by zero if ξ(z) ≤ ξ(Z (i)

t ). For ξ(z) > ξ(Z (i)

t ), we use the
inequality log x ≤ x− 1 for x > 0 to obtain, by Lemma 3.2 (ii), eventually

|Z(i)

t |
t

log
ξ(z)

ξ(Z (i)

t )
≤ |Z(i)

t |(ξ(z) − ξ(Z (i)

t ))

tξ(Z (i)

t )
< ξ(z) − ξ(Z (i)

t ).

In both cases we obtain the estimate for the first two terms

[
ξ(Z (i)

t ) − ξ(z)
]
+

|Z(i)

t |
t

log
ξ(z)

ξ(Z (i)

t )
≤ max{ξ(Z (i)

t ) − ξ(z), 0} ≤ tq−c = o(atλt).

We prove that the remaining two terms in (5.2) are of order o(atλt) as well. First, assume

that |z| < |Z (i)

t |. Then (5.1) implies

|Z(i)

t | ≤ |z − Z (i)

t | + |z| < |Z (i)

t |(1 + 6t−δ/2). (5.3)

Notice that η(Z (i)

t ) ≤ η(|z − Z (i)

t | + |Z (i)

t |, z) as to any path of length |Z (i)

t | passing through

Z(i)

t we can add a path of length |z − Z (i)

t | in such a way that it passes through z. Using
Lemma 2.1, Lemma 3.2 (iii) and (5.3) we obtain

η(Z (1)

t ) − η(z) ≤ η(|z − Z (i)

t | + |Z (i)

t |, z) − η(z)

≤
(
|z − Z (i)

t | + |Z (i)

t | − |z|
)
log

2de(|z−Z
(i)
t |+|Z

(i)
t |)

|z−Z
(i)
t |+|Z

(i)
t |−|z|

+K

≤
(
6t−δ/2|Z(i)

t | + 2(|Z (i)

t | − |z|)
)
log

2de((2+t−δ/2)|Z
(i)
t |−|z|)

|Z
(i)
t |−|z|

+K

≤ 2(|Z (i)

t | − |z|) log
5de|Z

(i)
t |

|Z
(i)
t |−|z|

+O(tq+1+ε−δ/4).

Substituting this as well as the estimate for the first two terms into (5.2) we obtain

Φt(Z
(i)

t ) − Φt(z) ≤ 2(|Z
(i)
t |−|z|)

t log
5de|Z

(i)
t |

(|Z
(i)
t |−|z|)

√
ξ(z)

+ o(atλt).

By Lemma 3.2 (i) we have ξ(Z (i)

t ) > tq−c/4 as t is large enough. By assumption we then have

ξ(z) ≥ ξ(Z (i)

t ) − tq−c > tq−c/2. Hence the expression under the logarithm is positive only if

|Z(i)

t | − |z| < 5de |Z (i)

t | t−q/2+c/4, which is smaller than tq/2+1+c/2 by Lemma 3.2 (iii). Since
c < q we obtain Φt(Z

(i)

t ) − Φt(z)≤o(atλt).

Finally, consider |z| ≥ |Z (i)

t |. For the third term in (5.2) we notice that (5.1) implies that

|z| ≤ |Z (i)

t |(1 + 6t−δ/2). Then we use Lemma 3.2 (iii) and [HMS08, Lemma 3.5], which gives

|z|−|Z
(i)
t |

t log ξ(z) ≤ 6t−δ/2−1|Z(i)

t | log
(
|Z(i)

t | d
α

+δ(1 + 6t−δ/2)
d
α

+δ
)
=o(atλt).

For the last term in (5.2) we obtain from (5.1) that η(Z (i)

t ) ≤ η(|Z (i)

t |(1 + 6t−δ/2), z). Hence,
by Lemma 2.1,

η(Z (1)

t ) − η(z) ≤ η(|Z (i)

t |(1 + 6t−δ/2), z) − η(z)

≤
(
|Z(i)

t |(1 + 6t−δ/2) − |z|
)
log

2de|Z
(i)
t |(1+6t−δ/2)

|Z
(i)
t |(1+6t−δ/2)−|z|

+K.
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Notice that, for a > 0, x 7→ x log a
x is an increasing function on (0, a/e). Since |z| ≥ |Z (i)

t | we

have |Z (i)

t |(1 + 6t−δ/2) − |z| ≤ 6t−δ/2|Z(i)

t |, which is smaller than 2d|Z (i)

t |(1 + 6t−δ/2). Hence
we obtain

η(Z (1)

t ) − η(z) ≤ 6t−δ/2|Z(i)

t | log de(1+6t−δ/2)

3t−δ/2 ≤ O(tq+1−δ/4).

This proves that the last term in (5.2) is also bounded by o(atλt). It remains to notice
that we have proved Φt(Z

(i)

t ) − Φt(z)≤o(atλt), which contradicts to our assumption that

Φt(Z
(i)

t ) − Φt(z) ≥ atλt/2. This proves (i)–(iii).

(iv) The first statement is trivial. To prove the second one, we pick z ∈ Γ(2)

t . For any

such z there exists a path of length less than |Z (2)

t |(1 + tδ/2) starting at the origin and going

through z and Z (2)

t . If |z| ≤ |Z (2)

t | we can choose the path in such a way that it ends at Z (2)

t . If

|z| > |Z (2)

t | then |z−Z (2)

t | < |Z (2)

t | tδ/2 and so there is a path of length less than |Z (2)

t |(1+2tδ/2)

starting at the origin, going through z and ending in Z (2)

t . In either of the cases, there is

then a path of length less than |Z (2)

t |(1 + 2tδ/2) + |Z (1)

t −Z(2)

t | starting in the origin, passing
through z, Z (2)

t and ending at Z (1)

t .

Observe that since Z (2)

t ∈ Γ(1)

t , there is a path of length less than |Z (1)

t |(1 + t−δ/2) going

through Z (1)

t and Z (2)

t , which in particular implies |Z (2)

t | < |Z (1)

t |(1 + t−δ/2). If |Z (2)

t | < |Z (1)

t |,
then Z (2)

t ∈ Γ(1)

t implies |Z (2)

t | + |Z (1)

t − Z(2)

t | < |Z (1)

t |(1 + t−δ/2) and so

|Z(2)

t |(1 + 2tδ/2) + |Z (1)

t − Z(2)

t | ≤ |Z (1)

t |(1 + 3t−δ/2) < |Z (1)

t |(1 + 5t−δ/2).

If |Z (2)

t | ≥ |Z (1)

t |, then Z (2)

t ∈ Γ(1)

t implies |Z (1)

t − Z(2)

t | < |Z (1)

t |t−δ/2 and so

|Z(2)

t |(1 + 2tδ/2) + |Z (1)

t − Z(2)

t | ≤ |Z (1)

t |(1 + t−δ/2)(1 + 2t−δ/2) + |Z (1)

t |t−δ/2

< |Z (1)

t |(1 + 5t−δ/2).

In each case we obtain that z ∈ Γt, which completes the proof. �

5.2 First event: Φt(Z
(1)

t
) is close to Φt(Z

(2)

t
), and Z

(1)

t
is close to Z

(2)

t
.

In this section we prove Proposition 5.1. Let us decompose u into u = u1 + u2 with

u1(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � {τ

{Z
(1)
t ,Z

(2)
t }

≤ t, τΓc
t
> t}

]
,

u2(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � {τ

{Z
(1)
t ,Z

(2)
t }

> t or τΓc
t
≤ t}

]
.

We show that u1 is localised in Z (1)

t and Z (2)

t (see Lemma 5.5) and that the contribution of
u2 is negligible (see Lemma 5.6).

Lemma 5.5. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t ,Z

(2)
t }

u1(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2, Z
(2)

t ∈ Γ(1)

t } = 0.

Proof. We further split u1 into three contributions u1 = u1,1 + u1,2 + u1,3 with

u1,j(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � C1j

]
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with

C1j =





{
τ
Z

(1)
t

≤ t, τΓc
t
> t

}
, j = 1,{

τ
Z

(1)
t
> t, τ

Z
(2)
t

≤ t, τ
[Γ

(2)
t ]c

> t
}
, j = 2,{

τ
Z

(1)
t
> t, τ

Z
(2)
t

≤ t, τ
[Γ

(2)
t ]c

≤ t, τΓc
t
> t

}
, j = 3.

Observe that the sets C11, C12, C13 are disjoint on the event {Z (2)

t ∈ Γ(1)

t } since Γ(2)

t ⊂ Γt by
Lemma 5.4 (iv). Furthermore, on this event, their union is equal to the event

{
τ
{Z

(1)
t ,Z

(2)
t }

≤ t, τΓc
t
> t

}

appearing in the definition of u1(t, z). Hence, we indeed have u1 = u1,1 + u1,2 + u1,3.

We now fix a sufficiently large t and argue on the event {Φt(Z
(1)

t )−Φt(Z
(2)

t ) < atλt/2, Z
(2)

t ∈
Γ(1)

t }. We also fix some c ∈ (0, q) and use this to distinguish between two cases.

(1) First, we assume ξ(Z (2)

t ) ≤ ξ(Z (1)

t ) − tq−c. We show that u1,1 and u1,2 are localised

around Z (1)

t and Z (2)

t , respectively, and that the contribution of u1,3 is negligible.

Let us fix t large enough and pick B = Γt, Ω = {Z (1)

t } to study u1,1 and B = Γ(2)

t \{Z (1)

t },
Ω = {Z (2)

t } to study u1,2. For the first choice we have

gΩ,B = ξ(Z (1)

t ) − max
Γt\{Z

(1)
t }

ξ(z) = min
{
ξ(Z (1)

t ) − max
Γt\{Z

(1)
t ,Z

(2)
t }

ξ(z), ξ(Z (1)

t ) − ξ(Z (2)

t )
}
≥ tq−c

by our assumption and Lemma 5.4 (i). For the second choice we get

gΩ,B = ξ(Z (2)

t ) − max
z∈Γ

(2)
t \{Z

(1)
t ,Z

(2)
t }

ξ(z) ≥ tq−c

by Lemma 5.4 (iii), using that Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2. Now we apply Lemma 2.4 and

use the monotonicity of ϕ to obtain
∑

z∈Γt\{Z
(1)
t }

u1,1(t, z)
∑

z∈Γt
u1,1(t, z)

≤ ϕ(tq−c) and

∑
z∈Γ

(2)
t \{Z

(1)
t ,Z

(2)
t }

u1,2(t, z)
∑

z∈Γ
(2)
t \{Z

(1)
t }

u1,2(t, z)
≤ ϕ(tq−c). (5.4)

Obviously, the estimate remains true if we increase the denominators and sum over all z the
larger function u(t, z), which will produce U(t). For the numerators, notice that u1,1(t, z) = 0

for all z /∈ Γt as the paths from C11 do not leave Γt, and u1,2(t, z) = 0 for all z /∈ Γ(2)

t \{Z (1)

t }
as the paths from C12 do not leave this set. Hence (5.4) implies

U(t)−1
∑

z∈Zd\{Z
(1)
t }

u1,1(t, z) ≤ ϕ(tq−c) = o(1) and U(t)−1
∑

z∈Zd\{Z
(2)
t }

u1,2(t, z) ≤ ϕ(tq−c) = o(1),

which proves the localisation of u1,1 and u1,2.

To prove that u1,3 is negligible, observe that the contributing paths do not visit Z (1)

t and

are longer than |Z (2)

t |(1 + t−δ/2) (the latter is true as they pass through Z (2)

t and leave Γ(2)

t ).

Thus, they do not belong to the set A1 (defined at the beginning of Section 4.3) and so,
using Lemma 4.3, we obtain

∑

z∈Zd

u1,3(t, z) ≤ U2(t) + U3(t) + U4(t) + U5(t) = U(t) o(1).
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(2) Now we consider the complementary case ξ(Z (2)

t ) > ξ(Z (1)

t ) − tq−c. Let us pick B = Γt

and Ω = {Z (1)

t , Z(2)

t }. We have

gΩ,B = min{ξ(Z (1)

t ), ξ(Z (2)

t )} − max
z∈Γt\{Z

(1)
t ,Z

(2)
t }

ξ(z)

> ξ(Z (1)

t ) − tq−c − max
z∈Γt\{Z

(1)
t ,Z

(2)
t }

ξ(z) > tq−c/2 − tq−c,

where we used our assumption on the difference between ξ(Z (1)

t ) and ξ(Z (2)

t ) and Lemma 5.4 (i)
with the constant c/2. By Lemma 2.4 we now obtain, as t→ ∞,

∑
z∈Γt\{Z

(1)
t ,Z

(2)
t }

u1(t, z)
∑

z∈Γt
u1(t, z)

≤ ϕ(tq−c/2 − tq−c) = o(1)

Again, the denominator will only increase if we replace it by U(t). For the numerator, we
observe that u1(t, z) = 0 for all z /∈ Γt as the paths corresponding to u1 do not leave Γt.

This completes the proof. �

Lemma 5.6. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd

u2(t, z)
]

� {Z(2)

t ∈ Γ(1)

t } = 0.

Proof. We further split u2 into the three contributions u2 = u2,1 + u2,2 + u2,3, where

u2,j(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � C2j

]

with

C2j =
{
τ
{Z

(1)
t ,Z

(2)
t }

> t or τΓc
t
≤ t

}
∩





(A1 ∪A2 ∪A3) ∩ {τΓc
t
≤ t}, j = 1,

(A1 ∪A2 ∪A3) ∩ {τΓc
t
> t}, j = 2,

(A4 ∪A5), j = 3,

where we recall the events A1, . . . , A5 defined at the beginning of Section 4.3. SinceA1, . . . , A5

are pairwise disjoint and (∪5
i=1Ai)

c = ∅, the sets C21, C22 and C23 are pairwise disjoint as
well, and their union is equal to the set

{
τ
{Z

(1)
t ,Z

(2)
t }

> t or τΓc
t
≤ t

}

appearing in the definition of u2(t, z). Hence, we indeed have u2 = u2,1 + u2,2 + u2,3.

We argue on the event {Z (2)

t ∈ Γ(1)

t }, but only for u2,1(t, z) this condition will be essential.

Each path contributing to u2,1 leaves Γt and so passes through some point z /∈ Γ(1)

t ∪ Γ(2)

t

according to Lemma 5.4 (iv). If the path also passes through Z (i)

t for i = 1 or i = 2 then its

length must not be less than |Z (i)

t |(1 + t−δ/2). Hence, by Lemma 4.3,
∑

z∈Zd

u2,1(t, z) ≤ U2(t) + U3(t) = U(t)o(1).

To bound u2,2 we observe that as τΓc
t
> t, the alternative τ

{Z
(1)
t ,Z

(2)
t }

> t must be satisfied.

Hence we can use Lemma 4.3 to get
∑

z∈Zd

u2,2(t, z) ≤ U3(t) = U(t)o(1).
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Finally, to bound u2,3 we simply use Lemma 4.3 and obtain
∑

z∈Zd

u2,3(t, z) ≤ U4(t) + U5(t) = U(t)o(1),

which completes the proof. �

5.3 Second event: Φt(Z
(1)

t
) is close to Φt(Z

(2)

t
), but Z

(1)

t
is far from Z

(2)

t
.

In this section we prove Proposition 5.2. Again, we decompose u = u1 + u2 such that u1

is localised in Z (1)

t and Z (2)

t , and that u2 is negligible. In order to show that we further
decompose u1 and u2 as

u1(t, z) =
2∑

j=1

u1,j(t, z) and u2(t, z) =
4∑

j=1

u2,j(t, z),

where the functions ui,j are defined by

ui,j(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � Cij

]

with

C1j =

{ {
τ
Z

(1)
t

≤ t, τ
[Γ

(1)
t ]c

> t
}
, j = 1,{

τ
Z

(1)
t
> t, τ

Z
(2)
t

≤ t, τ
[Γ

(2)
t ]c

> t
}
, j = 2,

and

C2j =





(A1 ∪A2 ∪A3) ∩
{
τ
Z

(1)
t

≤ t, τ
[Γ

(1)
t ]c

≤ t
}
, j = 1,

(A1 ∪A2 ∪A3) ∩
{
τ
Z

(1)
t
> t, τ

Z
(2)
t
> t

}
, j = 2,

(A1 ∪A2 ∪A3) ∩
{
τ
Z

(1)
t
> t, τ

Z
(2)
t

≤ t, τ
[Γ

(2)
t ]c

≤ t
}
, j = 3,

(A4 ∪A5) ∩ (C11 ∪ C12)
c, j = 4,

where we again recall the definition of the disjoint sets A1, . . . , A5 from Section 4.3. It is easy

to see that the six sets C11, C12, C21, C22, C23 and C24 are pairwise disjoint and exhaustive.

Lemma 5.7. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t ,Z

(2)
t }

u1(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) < atλt/2, Z
(2)

t /∈ Γ(1)

t } = 0.

Proof. We argue on the event {Φt(Z
(1)

t )−Φt(Z
(2)

t ) < atλt/2, Z
(2)

t /∈ Γ(1)

t }. We now fix t large

enough and pick B = Γ(1)

t , Ω = {Z (1)

t } to study u1,1 and B = Γ(2)

t \{Z (1)

t }, Ω = {Z (2)

t } to

study u1,2. Since Z (2)

t /∈ Γ(1)

t we have for the first choice

gΩ,B = ξ(Z (1)

t ) − max
z∈Γ

(1)
t \{Z

(1)
t }

ξ(z) ≥ tq−c,

using parts (i) and (iv) of Lemma 5.4. For the second choice, we also obtain

gΩ,B = ξ(Z (2)

t ) − max
z∈Γ

(2)
t \{Z

(1)
t ,Z

(2)
t }

ξ(z) ≥ tq−c,

by Lemma 5.4 (iii) since the condition Φt(Z
(1)

t )−Φt(Z
(2)

t ) < atλt/2 is satisfied. By Lemma 2.4

and using monotonicity of ϕ we now obtain
∑

z∈Γ
(1)
t \{Z

(1)
t }

u1,1(t, z)
∑

z∈Γ
(1)
t
u1,1(t, z)

≤ ϕ(tq−c) and

∑
z∈Γ

(2)
t \{Z

(1)
t ,Z

(2)
t }

u1,2(t, z)
∑

z∈Γ
(2)
t \{Z

(1)
t }

u1,2(t, z)
≤ ϕ(tq−c).
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Increasing the denominators to U(t) and taking into account the fact that u1,1(t, z) = 0 for

all z /∈ Γ(1)

t and u1,2(t, z) = 0 for all z /∈ Γ(2)

t \{Z (1)

t } completes the proof. �

Lemma 5.8. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd

u2(t, z)
]

= 0.

Proof. Observe that

A1 ∩
[{
τ
Z

(1)
t

≤ t, τ
[Γ

(1)
t ]c

≤ t
}
∪

{
τ
Z

(1)
t
> t, τ

Z
(2)
t
> t

}
∪

{
τ
Z

(1)
t
> t, τ

Z
(2)
t

≤ t, τ
[Γ

(2)
t ]c

≤ t
}]

= ∅

and therefore the union with A1 can be skipped in the definition of C21, C22 and C23. By
Lemma 4.3 we obtain, almost surely,

∑

z∈Zd

u2,j(t, z) ≤ U2(t) + U3(t) = U(t) o(1) for j = 1, 2, 3

Note that, obviously,
∑

z∈Zd u2,4(t, z) ≤ U4(t) + U5(t) = U(t) o(1) almost surely. �

5.4 Third event: The difference between Φt(Z
(1)

t
) and Φt(Z

(2)

t
) is large.

In this section we prove Proposition 5.3. Here we decompose u = u1 + u2 and further

u2 = u2,1 + u2,2 + u2,3 where

u1(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � {τ

Z
(1)
t

≤ t, τ
[Γ

(1)
t ]c

> t}
]

u2,j(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
� {Xt = z} � C2j

]

with

C2j =





(A1 ∪A2 ∪A3) ∩
{
τ
Z

(1)
t
> t

}
, j = 1,

(A1 ∪A2 ∪A3) ∩
{
τ
Z

(1)
t

≤ t, τ
[Γ

(1)
t ]c

≤ t
}
, j = 2,

(A4 ∪A5) ∩ Cc
1, j = 3.

Again, it is easy seen that u is equal to the sum of the functions u1 and u2,1, u2,2 and u2,3.

Lemma 5.9. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd\{Z
(1)
t }

u1(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2} = 0.

Proof. We fix t large enough and argue on the event {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2}. Pick

B = Γ(1)

t , Ω = {Z (1)

t }. We have

gΩ,B = ξ(Z (1)

t ) − max
Γ

(1)
t \{Z

(1)
t }

ξ(z) ≥ tq−c

by Lemma 5.4 (ii) since the condition Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2 is satisfied. Using

Lemma 2.4 we obtain ∑
z∈Γ

(1)
t \{Z

(1)
t }

u1(t, z)
∑

z∈Γ
(1)
t
u1(t, z)

≤ ϕ(tq−c) = o(1).

Increasing the denominators to U(t) and taking into account the fact that u1(t, z) = 0 for

all z /∈ Γ(1)

t completes the proof. �
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Lemma 5.10. Almost surely,

lim
t→∞

[
U(t)−1

∑

z∈Zd

u2(t, z)
]

� {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2} = 0.

Proof. We argue on the event {Φt(Z
(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2}. Denote ht(z) = 0 and Ht =
{Z(1)

t }. By Proposition 4.2 and by Lemma 4.1 (b) we have

1

t
log

[
U(t)−1

∑

z∈Zd

u2,1(t, z)
]
≤ 1

t
log

[
U(t)−1

∑

z∈Zd

uH,h(t, z)
]

≤ Φt(Z
(2)

t ) − Φt(Z
(1)

t ) +O(tq−δ) ≤ −atλt/2 +O(tq−δ) → −∞.

Further, since A1 ∩ {τ
Z

(1)
t

≤ t, τ
[Γ

(1)
t ]c

≤ t} = ∅ the union with A1 can be skipped in the

definition of C22. Then by Lemma 4.3 we obtain, almost surely,
∑

z∈Zd

u2,2(t, z) ≤ U2(t) + U3(t) = U(t)o(1)

Obviously, we also have
∑

z∈Zd u2,3(t, z) ≤ U4(t) + U5(t) = U(t)o(1) almost surely. �

6. One-point localisation in law and concentration sites

In this section we prove Theorems 1.2 and 1.3, the convergence assertions for u(t, Z (1)

t )/U(t) in
probability and for (Z (1)

t , Z(2)

t )/rt in distribution. This easily follows from our earlier almost-

sure results, using a point process convergence approach. Background on point processes
and similar arguments can be found in [HMS08].

Consider the Radon measure µ( dy) = α dy
yα+1 on (0,∞] and, for any r > 0, the point process

on R
d × (0,∞] given by

ζr =
∑

z∈Zd

ε(z/r,Xr,z), where Xr,z =
ξ(z)

rd/α
, (6.1)

where we write εx for the Dirac measure in x. Furthermore, for any t, consider the point
process on R

d × (0,∞] given by

Πt =
∑

z∈Zd : Φt(z)>0

ε(z/rt,Φt(z)/at).

Finally, define a locally compact Borel set

H =
{
(x, y) ∈ Ṙ

d × (0,∞] : y ≥ q|x|/2
}
,

where Ṙ
d is the one-point compactification of R

d.

Lemma 6.1. For each t, Πt is a point process on

Ĥ = Ṙ
d+1 \

((
R

d × (−∞, 0)
)
∪ {(0, 0)}

)
.

As t→ ∞, Πt converges in law to a Poisson process Π on Ĥ with intensity measure

ν( dx, dy) = dx⊗ α

(y + q|x|)α+1
� {y>0} dy.
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Proof. Our first goal is to write Πt as a suitable transformation of ζrt on Ĥ. Introduce

H ′ = Ṙ
d+1 \ {0} and a transformation Tt : H → H ′ given by

Tt(x, y) =

{ (
x, y − q|x| − δ(t, x, y)

)
if x 6= ∞ and y 6= ∞,

∞ otherwise,

Here δ is an error function satisfying δ(t, x, y) → 0 as t→ ∞ uniformly in (x, y) ∈ K c
n, where

Kn = {(x, y) ∈ H : |y| ≥ n}.

Recalling that rt
tat

= 1
log t , we see that

Φt(z)

at
=

[ξ(z)
at

− |z|
tat

log at −
|z|
tat

log
ξ(z)

at
+
η(z)

tat

]
�
{ξ(z)
at

≥ [log t]−1 |z|
rt

}

=
[ξ(z)
at

− (q + o(1))
∣∣∣ z
rt

∣∣∣ − 1

log t

∣∣∣ z
rt

∣∣∣ log ξ(z)
at

+
η(z)

tat

]
�
{ξ(z)
at

≥ [log t]−1 |z|
rt

}
.

The same fact also implies that η(z)
tat

≤ | z
rt
| log d
log t for all z ∈ Z

d and t > 0. Hence, we have

Πt =
(
ζrt |H ◦ T−1

t

)∣∣
bH

eventually for all t. (6.2)

To show the convergence, we define the transformation T : H → H ′ by T (x, y) = (x, y−q|x|)
if x 6= ∞ and y 6= ∞ and T (x, y) = ∞ otherwise. By [HMS08, Lemma 3.7] ζr|H is a point

process in H converging, as r → ∞, in law to a Poisson point process ζ|H with intensity
measure Lebd⊗µ|H , where Lebd denotes the Lebesgue measure on R

d. Using (6.2), it now
suffices to show that

ζrt|H ◦ T−1
t =⇒ ζ|H ◦ T−1,

as the Poisson process on the right has the required intensity by a straightforward change

of coordinates. This convergence follows from [HMS08, Lemma 2.5], provided that the
conditions (i)-(iii) stated there are satisfied, which we now check.

(i) T is obviously continuous.

(ii) For each compact set K ′ ⊂ H ′ there is an open neighbourhood V ′ of zero such that
K ′ ⊂ H ′ \ V ′. Since T (x, y) → (0, 0) as (x, y) → (0, 0) and since Tt → T uniformly on Kc

n,
there exists an open neighbourhood V ⊂ H of zero such that T (V ) ⊂ V ′ and Tt(V ) ⊂ V ′

for all t large enough. Hence, for K = H \ V , we obtain T −1(K ′) ⊂ T−1(H ′ \ V ′) ⊂ K and
similarly T−1

t (K ′) ⊂ K for all t.

(iii) Recall that δ(t, x, y) → 0 uniformly on K c
n, and observe that

(Lebd⊗µ)(Kn) =

∫

Rd

dx

∫ ∞

n∨(q|x|/2)

α dy

yα+1
= (2/q)α

∫

Rd

dx

((2n/q) ∨ |x|)α
→ 0

as n→ ∞ as |x|−α is integrable away from zero for α > d. �

Lemma 6.2. We have

(Z(1)

t

rt
,
Z(2)

t

rt
,
Φt(Z

(1)

t )

at
,
Φt(Z

(2)

t )

at

)
⇒

(
X(1), X(2), Y (1), Y (2)

)
,

where the limit random variable has the density

p(x1, x2, y1, y2) =
α2 exp{−θyd−α

2 }
(y1 + q|x1|)α+1(y2 + q|x2|)α+1

� {y1 ≥ y2}.
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Proof. It has been computed in the proof of [HMS08, Prop. 3.8] that ν(Rd× (y,∞)) = θyd−α

for y > 0. For any relative compact set A ⊂ Ĥ × Ĥ such that Leb2d+2(∂A) = 0, we obtain
by Lemma 6.1,

Prob
((Z

(1)
t
rt
,

Z
(2)
t
rt
,

Φt(Z
(1)
t )

at
,

Φt(Z
(2)
t )

at

)
∈ A

)

=

∫

A
Prob

(
Πt( dx1 × dy1) = Πt( dx2 × dy2) = 1,

Πt(R
d × (y1,∞)) = Πt(R

d × (y2, y1)) = 0
)

→
∫

A
Prob

(
Π(dx1 × dy1) = 1

)
Prob

(
Π(dx2 × dy2) = 1

)

Prob
(
Π(Rd × (y1,∞)) = 0

)
Prob

(
Π(Rd × (y2, y1)) = 0

)

=

∫

A
ν(Rd × (y2,∞)) ν( dx1, dy1)ν( dx2, dy2) =

∫

A
p(x1, x2, y1, y2) dx1 dx2 dy1 dy2.

It remains to notice that∫

Rd×Rd×{(y1>y2>0)}

p(x1, x2, y1, y2) dx1 dx2 dy1 dy2 = Prob
(
Π(Rd × (0,∞)) ≥ 2

)
= 1

since Π(Rd × (0,∞)) = ∞ with probability one. �

Proof of Theorem 1.2. We use the same decomposition u(t, z) = u1(t, z)+u2(t, z) as we used
to prove Proposition 5.3. By Lemmas 5.9 and 5.10 it suffices to show that

lim
t→∞

Prob
(
Φt(Z

(1)

t ) − Φt(Z
(2)

t ) ≥ atλt/2
)

= 1. (6.3)

Since, by Lemma 6.2, (Φt(Z
(1)

t )/at,Φt(Z
(2)

t )/at) converges weakly to a random variable
(Y (1), Y (2)) with density, we obtain (6.3) because λt → 0. �

Proof of Theorem 1.3. The result follows from Lemma 6.2 by integrating the density function
p(x1, x2, y1, y2) over all possible values of y1 and y2. We obtain

p(x1, x2) =

∫

{y1>y2>0}

α2 exp{−θyd−α
2 }dy1 dy2

(y1 + q|x1|)α+1(y2 + q|x2|)α+1
=

∫ ∞

0

α exp{−θyd−α}dy

(y + q|x1|)α(y + q|x2|)α+1
.

This completes the proof of Theorem 1.3. �
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