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ABSTRACT. We consider the random Schrödinger operator −ε−2∆(d) + ξ (ε)(x), with ∆(d) the
discrete Laplacian on Z

d and ξ (ε)(x) are bounded and independent random variables, on sets of
the form Dε := {x ∈Z

d : xε ∈ D} for D bounded, open and with a smooth boundary, and study the
statistics of the Dirichlet eigenvalues in the limit ε ↓ 0. Assuming Eξ (ε)(x) =U(xε) holds for some
bounded and continuous function U : D → R, the k-th eigenvalue converges to the k-th Dirichlet
eigenvalue of the homogenized operator −∆ +U(x), where ∆ is the continuum Laplacian on D.
Moreover, assuming that Var(ξ (ε)(x)) = V (xε) for some positive and continuous V : D → R, we
establish a multivariate central limit theorem for simple eigenvalues centered by their expectation
and scaled by ε−d/2. The limiting covariance is expressed as integral of V against the product of
squares of two eigenfunctions of −∆+U(x).

1. INTRODUCTION AND RESULTS

Random Schrödinger operators naturally arise in theories of disordered materials in solid state
physics. Among the most well-studied examples is the Anderson Hamiltonian obtained by adding
a random on-site potential to a homogenous kinetic term. From the perspective of conductivity
theory, a question of prime interest for such operators concerns the existence of localized states,
i.e., effects where the lattice structure remains relevant at all scales. On the other hand, in homog-
enization theory, one is more focused on the situations where lattice effects become integrated
into “material constants” and a continuum limit is possible.

In the present paper we study the statistics of the eigenvalues of Anderson Hamiltonians in
the “homogenization” regime, i.e., under the conditions when a non-trivial continuum limit can
be taken. We will address the convergence to a continuum limit as well as the fluctuation of the
eigenvalues around their mean. Our setting is as follows: Let D be a bounded open subset of R

d

whose boundary is C1,α for some α > 0. Given an ε > 0, we define its discretized version as

Dε :=
{

x ∈ Z
d : dist∞(xε ,Dc) > ε

}
(1.1)

where dist∞(x,y) is the `∞-distance in R
d. For any numbers {ξ (ε)(x) : x ∈ Dε}, define an operator

(a matrix) HDε ,ξ acting on the linear space of functions f : Dε → R that vanish outside Dε via

(HDε ,ξ f )(x) := −ε−2(∆(d) f )(x)+ ξ (ε)(x) f (x), (1.2)
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where ∆(d) is the standard lattice Laplacian

(∆(d) f )(x) := ∑
y : |y−x|=1

[
f (y)− f (x)

]
. (1.3)

We will take the potential ξ (ε) random subject to the following requirements:

Assumption 1.1 There are numbers a,b ∈ R with a < b and bounded continuous functions

U : D → R and V : D → [0,∞) such that for each ε > 0, the following holds:

(1) the random variables ξ (ε)(x), x ∈ Dε , are independent with

supp ξ (ε)(x) ⊂ [a,b], x ∈ Dε , (1.4)

(2) for any x ∈ Dε ,

Eξ (ε)(x) = U(xε) and Var
(
ξ (ε)(x)

)
= V (xε). (1.5)

We will write Pε to denote the law of ξ (ε) but will not mark the ε-dependence explicitly on
expectation. To ease our notations, we will also often omit marking the ε-dependence of ξ .

Our task is to relate the spectrum of HDε ,ξ to that of a suitable (homogenized) continuum
operator. In the leading order, this is the content of:

Theorem 1.2 Let λ (k)

Dε ,ξ
denote the k-th smallest eigenvalue of HDε ,ξ . Under Assumption 1.1, for

each k ≥ 1,

λ (k)

Dε ,ξ

P−→
ε↓0

λ (k)

D , (1.6)

where λ (k)

D is the k-th smallest eigenvalue of the operator −∆ +U(x) on H1
0(D), with ∆ denoting

the continuum Laplacian.

Here, as usual, H1
0(D) denotes the closure of the set of infinitely often differentiable and com-

pactly supported functions in D with respect to the norm ‖ f‖H1(D) := (‖ f‖2
L2(D)

+‖∇ f‖2
L2(D)

)1/2.

Thanks to our conditions on D and U , the spectrum of −∆ +U(x) is discrete with no eigenvalue
more than finitely degenerate. Moreover, any orthonormal basis of eigenfunctions ϕ (k)

D consists of
functions that are continuously differentiable on D. See Lemma 3.1 for details.

The formula (1.6) gives the leading-order deterministic behavior of the spectrum of HDε ,ξ .
Naturally, one is interested in the subleading terms or even a full asymptotic expansion in powers
of ε . Here we take up only the modest goal of analyzing the leading order random term; i.e., the
fluctuations of the eigenvalues around their mean. First we state a concentration estimate:

Theorem 1.3 Under Assumption 1.1, for each k ≥ 1, there is c > 0 such that for all t > 0 and

all ε ∈ (0,1),

Pε

(∣∣λ (k)

Dε ,ξ
−Eλ (k)

Dε ,ξ

∣∣> t
)
≤ 4e−ct2ε−d

. (1.7)

Note that, by (1.7), for every k ≥ 1, the random variable

λ (k)

Dε ,ξ
−Eλ (k)

Dε ,ξ

εd/2
(1.8)

has Gaussian tails. Our main result is then the derivation of a Gaussian asymptotic limit law. We
will do this jointly for the collection of all simple eigenvalues:
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Theorem 1.4 Suppose Assumption 1.1 holds, fix n ∈ N and let k1, . . . ,kn ∈ N be distinct indices

such that the Dirichlet eigenvalues λ
(k1)

D , . . . ,λ (kn)

D of −∆+U(x) on D are simple. Then, in the limit

as ε ↓ 0, the law of the random vector
(

λ
(k1)

Dε ,ξ
−Eλ

(k1)

Dε ,ξ

εd/2
, . . . ,

λ (kn)

Dε ,ξ
−Eλ (kn)

Dε ,ξ

εd/2

)
(1.9)

tends weakly to a multivariate normal with mean zero and covariance matrix σ 2
D = {σ 2

i j}n
i, j=1

given by

σ 2
i j :=

∫

D

∣∣ϕ (ki)

D (x)
∣∣2∣∣ϕ (k j)

D (x)
∣∣2V (x)dx, (1.10)

where ϕ (i)

D denotes the i-th normalized eigenfunction of −∆ +U(x) and V (x) is the function from

(1.5) characterizing the variances of ξ (ε)(x).

>From the perspective of the theory of random Schrödinger operators it is interesting to pon-
der about where the principal contribution to the fluctuations of the eigenvalues comes from.
Our method of proof indicates this quite clearly. Let g

(k)

Dε ,ξ
henceforth denote any eigenfunction

of HDε ,ξ for the eigenvalue λ (k)

Dε ,ξ
normalized so that

∑
x∈Dε

∣∣g(k)

Dε ,ξ
(x)
∣∣2 = 1. (1.11)

Let C
(k)
ε denote the event that λ (k)

Dε ,ξ
is non-degenerate and note that, by (1.6), Pε(C

(k)
ε )→ 1 as ε ↓ 0

for any k such that the Dirichlet eigenvalue λ (k)

D of −∆ +U(x) is non-degenerate, i.e., simple.
On C

(k)
ε , write

T
(k)

Dε ,ξ
:= ∑

x∈Zd

ε−2
∣∣∇(d)g

(k)

Dε ,ξ
(x)
∣∣2, (1.12)

to denote the kinetic energy associated with the k-th eigenspace of HDε ,ξ , where ∇(d) f (x) is the

vector whose i-th component is f (x + êi)− f (x), for êi denoting the i-th unit vector in R
d. We

regard g
(k)

Dε ,ξ as extended by zero to all of Z
d . We then have:

Theorem 1.5 Suppose Assumption 1.1 holds and that λ (k)

D is simple. Then,

ε−dVar
(

T
(k)

Dε ,ξ

∣∣C(k)
ε

)
−→
ε↓0

0 (1.13)

and

ε−d ∑
x∈Dε

Var
(

g
(k)

Dε ,ξ (x)2
∣∣C(k)

ε

)
−→
ε↓0

0. (1.14)

The punchline of these observations is that the main fluctuation of

λ (k)

Dε ,ξ
= T

(k)

Dε ,ξ
+ ∑

x∈Dε

ξ (x)g(k)

Dε ,ξ (x)2 (1.15)

comes from the potential energy part. Based on (1.13), the exact form of the covariance is easy
to explain as well: just replace g

(k)

Dε ,ξ
(x) by the eigenfunction ϕ (k)

D of the limiting operator −∆+U

and note that the potential energy thus becomes a weighted sum of i.i.d. random variables, for
which the central limit theorem with covariance (1.10) is well-known.
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It turns out that an a priori knowledge of (1.13–1.14) is nearly enough to justify the central
limit theorem in Theorem 1.4. Indeed, let E

(k) denote the conditional expectation given C
(k)
ε and

let us, for ease of notation, drop the subindices on λ (k)

Dε ,ξ
, T

(k)

Dε ,ξ
and g

(k)

Dε ,ξ
. On C

(k)
ε we have

λ (k) −E
(k)λ (k) = T (k) −E

(k)T (k) + ∑
x∈Dε

(
ξ (x)g(k)(x)2 −E

(k)
(
ξ (x)g(k)(x)2

))
. (1.16)

The sum on the right can be recast as

∑
x∈Dε

[
ξ (x)−E

(k)ξ (x)
]
E

(k)
(
g(k)(x)2

)
+ ∑

x∈Dε

ξ (x)
[
g(k)(x)2 −E

(k)(g(k)(x)2)
]

+ ∑
x∈Dε

E
(k)

((
ξ (x)−E

(k)ξ (x)
)(

g(k)(x)2 −E
(k)(g(k)(x)2)

))
. (1.17)

A routine use of the Cauchy-Schwarz inequality shows that the second moment of the latter two
sums is dominated by (powers of) the sum in (1.14). Using also (1.13) we get

λ (k) −E
(k)λ (k) = o(εd/2)+ ∑

x∈Dε

[
ξ (x)−E

(k)ξ (x)
]
E

(k)
(
g(k)(x)2

)
, (1.18)

where o(εd/2) represents a random variable whose variance is o(εd). Under the assumption that
the k-th eigenvalue of −∆ +U(x) is non-degenerate, the complement of C

(k)
ε can be covered by

events from (1.7) for indices k−1, k and k + 1. This permits us to replace the conditional expec-
tations of λ (k) and ξ (x) by unconditional ones. To get the multivariate CLT stated in Theorem 1.4,
it then suffices to show

ε−d
E

(k)
(
g(k)(b·/εc)2

)
−→
ε↓0

∣∣ϕ (k)

D (·)
∣∣2 (1.19)

in L2(D,dx), for any k of interest. As we will see, our proof of Theorems 1.4 and 1.5 is indeed
strongly based on controlling the convergence of the discrete eigenfunctions to the continuous
ones in proper Lp-norms.

2. CONNECTIONS, REMARKS AND OUTLINE

Before we delve into the proofs, let us make some connections to the existing literature. These
have insofar been suppressed in order to keep the presentation focused. We then make a few
remarks and give an outline of the rest of this work.

2.1 Crushed-ice problem.

Our interest in fluctuations of Dirichlet eigenvalues arose from the contemplation of the so called
crushed ice problem. This is a problem in the continuum where one considers a bounded open
set D ⊂ R

d with m balls B(x1,ε), . . . ,B(xm,ε) of radii ε removed from its interior. The posi-
tions x1, . . . ,xm of the centers of these balls are drawn independently from a common distribution
ρ(x)dx on D. The principal question is how the eigenvalues of the Laplacian in

Dε := D r (B(x1,ε)∪ ·· ·∪B(xm,ε)) (2.1)

behave in the limit as ε ↓ 0 and m = m(ε) → ∞. (The most natural boundary conditions are
Neumann on ∂D and Dirichlet on ∂B(xi,ε) but all mixtures of these can be considered.)
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Since its introduction by Kac in 1974, much effort went into analyzing the crushed ice prob-
lem in various regimes of dependence of m on ε . The main references include Kac [16], Hu-
ruslov and Marchenko [14], Rauch and Taylor [22]; see also the monographs by Simon [24]
and Sznitman [25]. More recently, extensions to non-homogeneous kinetic terms have also been
considered, e.g., by Douanla [9] and Ben-Ari [5]. The most interesting limit is obtained when

m(ε)Cap
(
B(0,ε)

)
−→
ε↓0

µ ∈ (0,∞), (2.2)

where Cap(A) denotes the Newtonian capacity of A when d ≥ 3 and the capacity corresponding
to −∆ + 1 when d = 2. The k-th Dirichlet eigenvalue of −∆ in Dε then tends to that of the
operator −∆ + µρ(x) on D.

The problem of fluctuations was in this context taken up by Figari, Orlandi and Teta [10] and
later by Ozawa [21]. Both of these studies infer a (single-variate) Central Limit Theorem assum-
ing simplicity of the limiting eigenvalue but they are confined to the case of d = 3. Unfortunately,
the proofs are very functional-analytic and (at least as claimed by Ozawa) they do not readily
generalize to other dimensions. Ozawa himself calls for a probabilistic version of his result.

We believe that our approach to eigenvalue fluctuations is exactly the kind called for by Ozawa.
In particular, we expect that several key steps underlying our proof of Theorem 1.4 extend to the
crushed-ice problem in all dimensions. Notwithstanding, as the situation of independent and
bounded potentials on a lattice is considerably simpler, we decided to start with that case first.
Moreover, lattice Anderson Hamiltonians are well studied objects and so results for them are of
interest in their own right. (See Subsection 2.3 for some more comments.)

2.2 Random elliptic operators.

In homogenization theory, the leading order of the eigenvalues of various random elliptic op-
erators, whether in divergence form or not, has been studied quite thoroughly; see the book of
Jikov, Kozlov and Oleinik [15]. An example of such operator (in divergence form) is the (scaled)
random Laplacian,

L(ε) f (x) :=
1

2
ε−2 ∑

x,y : |x−y|=1

cxy

[
f (y)− f (x)

]
(2.3)

where the cxy’s are non-negative random variables. Let λ (k)

Dε
denote the k-th eigenvalue of L(ε) on

the linear space of functions that vanish outside the set Dε defined in (1.1). Under the assumption
that (cxy) is ergodic with respect to spatial shift and uniformly elliptic in the sense that

∃a,b ∈ (0,∞), a < b : cxy ∈ [a,b] almost surely, (2.4)

the eigenvalue λ (k)

Dε
converges (in probability) to the k-th smallest eigenvalue of an elliptic operator

Q f (x) :=
d

∑
i, j=1

qi j

∂ 2 f

∂xi∂x j

(x) (2.5)

with Dirichlet boundary conditions on ∂D, where q := (qi j) is a positive definite, symmetric
matrix independent of x. While, to our knowledge, the corresponding fluctuations of the eigen-
values have not been studied, the analysis of a related effective conductance problem (Nolen [20],
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Rossignol [23], Biskup, Salvi and Wolff [7]) indicates that ε−d/2[λ (k)

Dε
−Eλ (k)

Dε
] should be asymp-

totically normal with mean zero and variance that is a biquadratic expression in ∇ϕ (k)

D integrated
over D, where ϕ (k)

D denotes a k-th eigenfunction of the operator Q.

2.3 Anderson localization.

Our discussion of the background would not be complete without making at least some connec-
tion to the problem of Anderson localization. We focus only on spectral statistics.

When the Laplacian term in HDε ,ξ is not magnified by the factor ε−2, the random field ξ (ε)

is dominant and the low-lying part of the spectrum comes from eigenfunctions that are localized
at small regions independent of ε . In this case, the statistics of the spectrum in Dε is expected
to be governed by a Poisson point process. This has so far been proved in the “bulk” of the
spectrum (Molchanov [19] in d = 1 and Minami [18] for general d ≥ 1). At spectral edges there
seem to be only partial results for bounded potentials at this time (Germinet and Klopp [11, 12])
although a somewhat more complete theory has been developed for some unbounded potentials
(Astrauskas [1, 2], Biskup and König [6]).

In the delocalization regime, whose existence is yet to be proved, the statistics is expected to
be that seen in random matrix ensembles.

2.4 Remarks.

Our first remark concerns the restriction of Theorem 1.4 to simple eigenvalues. It is clear that
some restriction is needed whenever the means of two eigenvalues fall within o(εd/2) of each
other. Although, by Theorem 1.3, the fluctuations of individual eigenvalues perhaps remain CLT-
like, under degeneracy they decide the order and hence no Gaussian limit is possible. The precise
ordering also depends on their expectations and so further control of subleading terms in (1.6)
would be required in order to make a meaningful conclusion in the end. (Of course, some for-
mulation may be possible — e.g., in terms of the Green operator or spectral density — but our
present proofs would not apply anyway.)

As our second remark we note that an important input into the proof of Theorem 1.4 is a good
approximation of discrete eigenvalues by continuous ones in Lp-norm on D. The reader may then
find it perplexing to find that changes in the value of ξ (x) have negligible effect on the discrete
eigenfunction at x. (In particular, no “corrector” needs to be invoked to compensate for rapid
oscillations of the ξ -term.) This can be proved by invoking rank-one perturbation and (1.6); see
Proposition 5.2 and Lemma 5.3. For a heuristic explanation, we define Ψ(k) by the equation

ε−d/2g
(k)

Dε ,ξ (x) = ϕ (k)

D (xε)+ ε2Ψ(k)(x). (2.6)

Invoking the eigenvalue equations, we then have

∆(d)Ψ(k)(x) = ε−2−d/2∆(d)g
(k)

Dε ,ξ
(x)− ε−2∆(d)ϕ (k)

D (·ε)(x)

≈
(
λ (k)

Dε ,ξ
−ξ (x)

)
ε−d/2g

(k)

Dε ,ξ (x)−
(
λ (k)

D −U(xε)
)
ϕ (k)

D (xε),
(2.7)

where we approximated the discrete Laplacian by its continuous counterpart. Assuming that
ε−d/2g

(k)

Dε ,ξ
(x) is in fact pointwise close to ϕ (k)

D (xε), we get

−∆(d)Ψ(k)(x) =
(
ξ (x)−U(xε)+ o(1)

)
ϕ (k)

D (xε), (2.8)
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i.e., Ψ(k) solves a corrector-like Poisson equation. In particular, since the Dirichlet Laplacian
on Dε is invertible, Ψ(k) can in principle be computed and studied.

2.5 Outline.

The remainder of this paper is organized as follows: In the next section we establish Theorem 1.2
along with some useful regularity estimates on discrete and continuous eigenfunctions. In Sec-
tion 4 we prove Theorem 1.3 dealing with concentration of the law of discrete eigenvalues. Then,
in Section 5, we proceed to prove our main result (Theorem 1.4). Theorem 1.5 is then derived
readily as well.

3. CONVERGENCE TO CONTINUUM MODEL

We are now in a position to start the expositions of the proofs. Our first task will be to prove
Theorem 1.2 dealing with the leading-order convergence of the random eigenvalues to those of
the continuum problem. Let us begin by fixing some notation.

3.1 Notations.

We will henceforth assume that D is a bounded open set in R
d with C1,α -boundary for some

α > 0 and that Assumption 1.1 holds. We write

Ωa,b := [a,b]Z
d

, (3.1)

for a set that supports Pε for every ε > 0. Recalling the notation g
(k)

Dε ,ξ
for the k-th eigenvector

of HDε ,ξ normalized as in (1.11), we similarly write ϕ (k)

D for an eigenfunction of −∆ +U(x)

corresponding to λ (k)

D normalized so that
∫

D |ϕ (k)

D (x)|2dx = 1. These eigenfunctions are unique up
to a sign as soon as the corresponding eigenvalue is non-degenerate.

We will write ‖ f‖p for the canonical `p-norm of R- or R
d-valued functions f on Z

d . When p =

2, we use 〈 f ,h〉 to denote the associated inner product in `2(Zd). All functions defined a priori

only on Dε will be regarded as extended by zero to Z
d
r Dε . In order to control convergence to

the continuum problem, it will sometimes be convenient to work with the scaled `p-norm,

‖ f‖ε ,p :=

(
εd ∑

x∈Zd

| f (x)|p
)1/p

. (3.2)

This implies, e.g., that

‖ε−d/2g
(k)

Dε ,ξ‖ε ,2 = 1. (3.3)

We will sometimes use 〈 f ,g〉ε ,2 to denote the inner product associated with ‖ · ‖ε ,2. For func-
tions f ,g of a continuum variable, we write the norms as ‖ f‖Lp(Rd) and the inner product in L2(Rd)

as 〈 f ,g〉L2(Rd).

3.2 Regularity bounds.

Our starting point are some regularity estimates on both the continuum and discrete eigenvalues
and eigenfunctions. Note that, in our earlier convention, λ (k)

Dε ,0
corresponds to the k-th eigenvalue
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of −ε−2∆(d) with Dirichlet boundary conditions on Dc
ε . Recall that C1,α(A) denotes the set of

functions that are continuously differentiable on the interior of A with a uniform estimate on α-
Hölder norm of the gradient.

Lemma 3.1 For all k ≥ 1

sup
0<ε<1

sup
ξ∈Ωa,b

∣∣λ (k)

Dε ,ξ
−λ (k)

Dε ,0

∣∣≤ max{|b|, |a|}. (3.4)

Similarly, both −∆ and −∆ +U(x) have compact resolvent on H1
0(D) and their spectrum thus

consists of isolated, finitely degenerate eigenvalues. Moreover, if λ (k)

D,0 denotes the k-th eigenvalue

of −∆ on H1
0(D), then ∣∣λ (k)

D −λ (k)

D,0

∣∣≤ ‖U‖∞. (3.5)

In addition, any eigenfunction ϕ (k)

D of −∆ +U(x) obeys

ϕ (k)

D ∈C1,α(D). (3.6)

Proof. The estimates (3.4–3.5) are consequences of the Minimax Theorem. The regularity of
the eigenfunction follows from the regularity of the boundary of D via, e.g., Corollary 8.36 of
Gilbarg and Trudinger [13]. �

The following estimate will be quite convenient for the derivations in the rest of the paper:

Lemma 3.2 For k ≥ 1, there is a constant c = c(k,a,b,D), such that

sup
ξ∈Ωa,b

‖g
(k)

Dε ,ξ
‖∞ ≤ cεd/2. (3.7)

Proof. Let g be an eigenfunction of HDε ,ξ for an eigenvalue λ normalized so that ‖g‖2 = 1.

The key observation is that the inner product 〈δx,et∆(d)
δy〉, with ∆(d) taken with respect to the

Dirichlet boundary condition, coincides with the transition probability pt(x,y) of a continuous-
time (constant-speed) simple random walk on Z

d killed upon exit from Dε . The eigenvalue
equation and the Feynman-Kac formula imply

g(x) = eλt
(
etε−2(∆(d)−ε2ξ )g

)
(x)

= eλt Ex

(
exp
{∫ ε−2t

0
ε2ξ (Xs)ds

}
g(Xtε−2)

)
,

(3.8)

where the expectation is over random walks (Xs) started at x. Taking absolute values, bounding
|ξ (xi)| by ‖ξ‖∞ and writing the result using the semigroup, we get

∣∣g(x)
∣∣ ≤ e(λ+‖ξ‖∞)t ∑

y∈Dε

pε−2t(x,y)
∣∣g(y)

∣∣. (3.9)

Applying the Cauchy-Schwarz inequality and using that g is normalized yields

g(x)2 ≤ e2(λ+‖ξ‖∞)t ∑
y∈Dε

pε−2t(x,y)
2 ≤ e2(λ+‖ξ‖∞)t p2ε−2t(x,x), (3.10)

where the second inequality follows by the fact that pt is reversible with respect to the counting
measure. But pt(x,x) is non-decreasing in Dε and so it is bounded by the corresponding quantity



EIGENVALUE FLUCTUATIONS 9

on Z
d. The local central limit theorem (or other methods to control heat kernels) then yield

pt(x,x) ≤Ct−d/2 for all t ≥ 1. Setting t := 1 in (3.10), the claim follows. �

Note that Lemma 3.2 and the fact that |Dε | = O(ε−d) imply

sup
p∈[1,∞]

sup
0<ε<1

sup
ξ∈Ωa,b

‖ε−d/2g
(k)

Dε ,ξ
‖ε ,p < ∞ (3.11)

for all k ≥ 1.

3.3 Continuum interpolation.

Having dispensed with regularity issues, we now proceed to develop tools that will help us ap-
proximate discrete eigenfunctions by continuous ones. The piece-wise constant approximation is
a natural first candidate: For any function f : Z

d → R, set

f̄ (x) := ε−d/2 f
(
bx/εc

)
, x ∈ R

d . (3.12)

The scaling ensures that, automatically, 〈 f ,h〉 = 〈 f̄ ,h〉L2(Rd). Unfortunately, our need to control
the kinetic energy makes this approximation less attractive in detailed estimates. Instead, we will
use an approximation by piece-wise linear interpolations over lattice cells. The following lemma
can be extracted from the proof of Lemma 2.1 in Becker and König [4]:

Lemma 3.3 There is a constant C = C(d) for which the following holds: For any function

f : Z
d → R and any ε ∈ (0,1), there is a function f̃ : R

d → R such that

(1) the map f 7→ f̃ is linear,

(2) f̃ is continuous on R
d and f̃ (xε) = f (x) for all x ∈ Z

d,

(3) for any x ∈ Z
d and any y ∈ εx+[0,ε)d we have

∣∣ f̃ (y)
∣∣≤ max

z∈x+{0,1}d

∣∣ f (z)
∣∣, (3.13)

and ∣∣ f̃ (y)− f (x)
∣∣≤ d max

z∈x+{0,1}d

∣∣∇(d) f (z)
∣∣, (3.14)

(4) for all p ∈ [1,∞] we have

‖ f̃ ‖Lp(Rd) ≤C(d)‖ f‖ε ,p, (3.15)

and ∣∣∣‖ f̃ ‖L2(Rd)−‖ f‖ε ,2

∣∣∣≤C(d)‖∇(d) f‖ε ,2, (3.16)

(5) f̃ is piece-wise linear and thus a.e. differentiable with

‖∇ f̃ ‖L2(Rd) = ε−1‖∇(d) f‖ε ,2. (3.17)

Proof. Although most of these are already contained in the proof of [4, Lemma 2.1], we provide
an independent proof as the desired statements are hard to glean from the notations used there. A
key point is that for any y = (y1, . . . ,yd) ∈ [0,1)d there is a permutation σ of {1, . . . ,d} such that
yσ(1) ≥ ·· · ≥ yσ(d). Moreover, when all components of y are distinct, such a σ is unique.
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Given y ∈ xε +[0,ε)d let thus σ be a permutation that puts the components of y− xε in non-
increasing ordering. Writing the reordered components of y/ε − x as 1 ≥ α1 ≥ ·· · ≥ αd ≥ 0, we
have

y = xε + ε
d

∑
i=1

αi êσ(i). (3.18)

We then define

f̃ (y) := f (x)+
d

∑
i=1

αi

(
∇

(d)
σ(i) f

)
(x+ êσ(1) + · · ·+ êσ(i−1)), (3.19)

where, we recall, (∇
(d)
i f )(x) := f (x+ êi)− f (x).

Our first task is to check that f̃ is well defined. Obviously, the α j’s are determined by y

so we only have to check that the definition does not depend on σ , if there is more than one
for the same y. That happens only when αi = αi+1 for some i = 0, . . . ,d − 1 (where α0 := 1 by
convention). Then (3.18) holds also for σ replaced by permutation σ ′ which agrees with σ except
at indices i, i + 1 where σ ′(i) := σ(i + 1) and σ ′(i + 1) := σ(i). Abbreviating z := x + êσ(1) +

· · ·+ êσ(i−1), the two possible expressions for f̃ (y) will agree if and only if

(∇σ(i) f )(z)+ (∇σ(i+1) f )(z+ êσ(i)) = (∇σ(i+1) f )(z)+ (∇σ(i) f )(z+ êσ(i+1))... (3.20)

As is readily verified, both of these are equal to f (z+ êσ(i) + êσ(i+1))− f (z). Hence, f̃ is consis-

tent. The map f 7→ f̃ is obviously linear, thus proving (1).
We now move to checking continuity of f̃ . First note that (3.19) extends to all points in the

closed “cube” C(x) := xε + [0,ε ]d . In light of uniform continuity of f̃ on the open “cube,” the
extension is continuous, and thus independent of σ (if more than one σ corresponds to the same

boundary point). Now pick y ∈ C(x)∩C(x + êi). As f (x)+ ∇
(d)
i f (x) = f (x + êi), taking (3.19)

on C(x) with σ(1) := i and α1 := 1 has the same value as (3.19) on C(x + êi) with σ(d) := i

and αd := 0. Hence, the expressions for f̃ on C(x) and C(x+ êi) agree on on the common “side”
C(x)∩C(x+ êi) and f̃ is thus continuous on R

d. Conclusion (2) is readily checked.
It remains to prove the stated bounds. For that we first note that (3.19) can be recast as

f̃ (y) =
d

∑
i=0

(αi −αi+1) f
(
x+ êσ(1) + · · ·+ êσ(i)

)
(3.21)

where α0 := 1. Using that αi −αi+1 are non-negative and sum up to one, we get (3.13). This
immediately yields (3.15). Similarly, (3.19) and the fact that |αi| ≤ 1 directly show (3.14). To get
(3.16) from this, abbreviate h(y) := f̃ (y)− f (by/εc). Squaring (3.14), bounding the maximum
(of squares) by a sum and integrating over y ∈ R

d yields

‖h‖L2(Rd) ≤C(d)‖∇(d) f‖ε ,2. (3.22)

But the L2-norm of y 7→ f (by/εc) is ‖ f‖ε ,2 and so we get (3.16) by the triangle inequality.

Concerning (3.17), define Wσ :=
⋃

x∈Zd{εx+z : z ∈ [0,ε)d , zσ(1) > · · ·> zσ(d)} and note that f̃

is piece-wise linear on Wσ with

∇σ(i) f̃ (y) = ε−1(∇
(d)
σ(i) f )

(
by/εc+ êσ(1) + · · ·+ êσ(i−1)

)
, y ∈Wσ . (3.23)



EIGENVALUE FLUCTUATIONS 11

This implies
∫

Wσ

∣∣∇ f (y)
∣∣2dy = ε−2

d

∑
i=1

∑
x∈Zd

∣∣(∇(d)
σ(i) f )(x)

∣∣2
∫

1{1≥α1>···>αd≥0}dα1 . . .dαd . (3.24)

The integral on the right equals (d!)−1 so we get (3.17) by summing over all admissible σ and
using that Wσ ’s cover R

d up to a set of zero Lebesgue measure. �

Our next item of concern is an approximation of functions on the lattice by piecewise constant
modifications. For each L ≥ 1 and any f : Z

d → R, denote

fL(x) := f
(
Lbx/Lc

)
. (3.25)

Then we have:

Lemma 3.4 There exists a constant C(d) < ∞ such that, for any L ≥ 1 and any f : Z
d → R,

‖ f − fL‖1 < C(d)L‖∇(d) f‖1. (3.26)

Proof. Consider the box Bk := x0 +{0, . . . ,k−1}d . The triangle inequality shows

∑
x∈BkrBk−1

∣∣ f (x)− f (x0)
∣∣≤ ∑

x∈Bk−1rBk−2

(∣∣ f (x)− f (x0)
∣∣+ ∑

z∈{0,1}d

d

∑
i=1

∣∣(∇(d)
i f )(x+ z)

∣∣
)

. (3.27)

This implies

∑
x∈BL

∣∣ f (x)− f (x0)
∣∣≤ 2d

√
d L ∑

x∈BL

∣∣(∇(d) f )(x)
∣∣. (3.28)

The claim follows by summing over x0 ∈ (LZ)d . �

3.4 Convergence of eigenfunctions/eigenvalues.

Having dispensed with regularity issues, we now proceed to tackle convergence statements. We
will employ a standard trick: Instead of individual eigenvalues, we will work with their sums

Λε
k(ξ ) :=

k

∑
i=1

λ (i)

Dε ,ξ
and Λk :=

k

∑
i=1

λ (i)

D . (3.29)

These quantities are better suited for dealing with degeneracy because they are concave in ξ and,
in fact, admit a variational characterization (sometimes dubbed the Ky Fan Maximum Princi-
ple [17]) of the form

Λε
k(ξ ) = inf

h1,...,hk
ONS

k

∑
i=1

(
ε−2‖∇(d)hi‖2

2 + 〈ξ ,h2
i 〉
)

(3.30)

and

Λk = inf
ψ1,...,ψk

ONS

k

∑
i=1

(
‖∇ψi‖2

L2(Rd) + 〈U,ψ2
i 〉L2(Rd)

)
. (3.31)

Here the acronym “ONS” indicates that the k-tuple of functions form an orthonormal system in
the subspace corresponding to Dirichlet boundary conditions (and, in the latter case, also tacitly
assumes that the functions are in the domain of the gradient). Substituting actual eigenfunctions
shows that the sums of eigenvalues are no smaller than the infima but the complementary bound
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requires a bit of work. The argument actually yields a quantitative form of the Ky Fan Maximum
Principle which will be quite suitable for our later needs:

Lemma 3.5 Consider a separable Hilbert space H and a self-adjoint linear operator Ĥ on H

which is bounded from below and has compact resolvent. Let {ϕi : i ≥ 1} be an orthonormal

basis of eigenfunctions of Ĥ corresponding to eigenvalues λi that we assume obey λi+1 ≥ λi

for all i ≥ 1. Let Π̂k denote the orthogonal projection onto {ϕ1, . . . ,ϕk}⊥. Then for any ONS

ψ1, . . . ,ψk that lies in the domain of Ĥ,

k

∑
i=1

〈ψi,Ĥψi〉− (λ1 + · · ·+ λk) ≥ (λk+1 −λk)
k

∑
i=1

‖Π̂kψi‖2. (3.32)

Proof. We provide a proof as it is very short. The argument parallels the derivation of Lemma 3.2
in Barekat [3]. Since ψ1, . . . ,ψk is an ONS and H is separable, we may extend it into an orthonor-
mal (countable) basis {ψi : i ≥ 1}. Denoting ai j := 〈ψi,ϕ j〉, the Parseval identity yields

b j :=
k

∑
i=1

|ai j|2 ≤ ∑
i≥1

|ai j|2 = 〈ϕ j,ϕ j〉 = 1. (3.33)

Since ∑ j≥1 b j = k, we have ∑ j>k b j = ∑k
j=1(1−b j) and it thus follows that

k

∑
i=1

〈ψi,Ĥψi〉 =
k

∑
i=1

∑
j≥1

λ j|ai j|2 = ∑
j≥1

b jλ j

≥
k

∑
j=1

λ jb j + λk+1 ∑
j>k

b j

= λ1 + · · ·+ λk +
k

∑
j=1

(λk+1 −λ j)(1−b j)

≥ λ1 + · · ·+ λk +(λk+1 −λk)
k

∑
j=1

(1−b j).

(3.34)

Writing the last sum as ∑ j>k b j we easily see that it equals ∑k
i=1 ‖Π̂kψi‖2. �

Our next goal, formulated in Propositions 3.6 and 3.7 below, is to establish convergence
Λε

k(ξ ) → Λk in probability. Throughout we assume the setting in Assumption 1.1.

Proposition 3.6 For any δ > 0,

lim
ε↓0

Pε

(
Λε

k(ξ ) ≥ Λk + δ
)

= 0. (3.35)

Proof. Consider (a choice of) an ONS of the first k eigenfunctions ϕ (1)

D , . . . ,ϕ (k)

D of −∆ +U . By
Lemma 3.1 all of these are C1,α . Now define

fi(x) :=

{
ϕ (i)

D (xε), if x ∈ Dε ,

0, otherwise.
(3.36)
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Thanks to uniform continuity of the eigenfunctions, we then have

〈 fi, f j〉ε ,2 −→
ε↓0

〈ϕ (i)

D ,ϕ ( j)

D 〉L2(D) = δi j (3.37)

and so for ε small the functions f1, . . . , fk are nearly mutually orthogonal. Applying the Gram-
Schmidt orthogonalization procedure, we see that there are functions {hε

i }k
i=1 and coefficients

{ai j(ε)}1≤i, j≤k such that

hε
i =

k

∑
j=1

(δi j + ai j(ε)) f j, i = 1, . . . ,k, (3.38)

with

〈hε
i ,h

ε
j〉ε ,2 = δi j and max

i, j
|ai j(ε)| −→

ε↓0
0. (3.39)

Moreover, the definition of fi and the C1,α -regularity of the eigenfunctions imply

sup
y∈D

dist∞(y,Dc)>2ε

∣∣∣∇ϕ (i)

D (y)− ε−1(∇(d) fi)(by/εc)
∣∣∣ −→

ε↓0
0 (3.40)

and same continues to hold for hε
i instead of fi as well. Hereby we get

ε−1‖∇(d)hε
i ‖ε ,2 −→

ε↓0
‖∇ϕ (i)

D ‖L2(Rd) (3.41)

and, by continuity of U , also
〈
U(ε ·),(hε

i )
2
〉

ε ,2
−→
ε↓0

〈U,ϕ (i)

D 〉L2(Rd). (3.42)

Once the two sides in each of these limit statements (for all i = 1, . . . ,k) are within some δ ∈ (0,1)
of each other, the variational characterization (3.30) yields

Λε
k(ξ ) ≤ Λk + 2kδ +

k

∑
i=1

〈
ξ −U(ε ·),(hε

i )
2
〉

ε ,2
. (3.43)

Invoking a union bound we obtain

Pε

(
Λε

k(ξ ) ≥ Λk + 3kδ
)
≤

k

∑
i=1

Pε

(〈
ξ −U(ε ·),(hε

i )
2
〉

ε ,2
≥ δ

)
. (3.44)

The Chebyshev inequality now shows

Pε

(〈
ξ −U(ε ·),(hε

i )
2
〉

ε ,2
≥ δ

)
≤ C

δ 2 ∑
x∈Dε

ε2dhε
i (x)

4, (3.45)

where C is a uniform bound on Var(ξ (x)). But the hε
i ’s are bounded and since ‖hε

i ‖ε ,2 = 1, the
right-hand side is proportional to εd. As δ was arbitrary, the claim follows. �

Proposition 3.7 For any δ > 0,

lim
ε↓0

Pε

(
Λε

k(ξ ) ≤ Λk −δ
)

= 0. (3.46)
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Proof. Let g
(1)

Dε ,ξ , . . . ,g(k)

Dε ,ξ
be (a choice of) an ONS of the first k eigenfunctions of HDε ,ξ and let

g̃ε
1,ξ , . . . , g̃ε

k,ξ denote the continuum interpolations of ε−d/2g
(1)

Dε ,ξ
, . . . ,ε−d/2g

(k)

Dε ,ξ
, respectively, as

described in Lemma 3.3. The uniform bound (3.4) on the eigenvalues ensures

sup
ξ∈Ωa,b

sup
0<ε<1

ε−1‖∇(d)g
(i)

Dε ,ξ
‖2 < ∞ (3.47)

and so, in light of Lemma 3.3(4),

sup
ξ∈Ωa,b

∣∣∣〈g̃ε
i,ξ , g̃ε

j,ξ 〉L2(Rd)−δi j

∣∣∣ −→
ε↓0

0. (3.48)

Invoking again the Gram-Schmidt orthogonalization, we can thus find functions h̃ε
1,ξ , . . . , h̃ε

k,ξ and

coefficients ai j(ξ ,ε) such that

h̃ε
i,ξ =

k

∑
j=1

(
δi j + ai j(ξ ,ε)

)
g̃ε

i,ξ , i = 1, . . . ,k, (3.49)

for which 〈
h̃ε

i,ξ , h̃ε
j,ξ

〉
L2(Rd)

= δi j and max
i j

sup
ξ∈Ωa,b

∣∣ai j(ξ ,ε)
∣∣ −→

ε↓0
0. (3.50)

Thanks to the definition of Dε , both the g̃ε
i,ξ ’s and h̃ε

i,ξ ’s are supported in D.
Lemma 3.3(5), (3.47) and (3.49–3.50) guarantee

sup
ξ∈Ωa,b

∣∣∣‖∇h̃ε
i,ξ ‖2

L2(Rd)− ε−2‖∇(d)g
(i)

Dε ,ξ‖
2
2

∣∣∣ −→
ε↓0

0 (3.51)

while (3.14) ensures

sup
ξ∈Ωa,b

∣∣∣
〈
U,(h̃ε

i,ξ )2
〉

L2(Rd)
−
〈
U(ε ·),(g(i)

Dε ,ξ
)2
〉∣∣∣ −→

ε↓0
0. (3.52)

Once both suprema on the left are less than some δ > 0, using the h̃ε
i,ξ as the ψi’s in (3.31) and

noting that the g
(i)

Dε ,ξ
’s achieve the infimum in (3.30), yields

Λk ≤ Λε
k(ξ )+ 2kδ +

k

∑
i=1

〈
U(ε ·)−ξ ,(g(i)

Dε ,ξ
)2
〉
. (3.53)

Now consider the piece-wise constant approximation fL(x) = f (Lbx/Lc) to the function f (x) :=
(g(i)

Dε ,ξ
(x))2. Since ‖∇(d)(g2)‖1 ≤ C(d)‖g‖2‖∇(d)g‖2, Lemma 3.4, (3.47) and the boundedness

of U −ξ give 〈
U(ε ·)−ξ ,(g(i)

Dε ,ξ
)2
〉
≤
〈
U(ε ·)−ξ ,((g(i)

Dε ,ξ
)2)L

〉
+CLε (3.54)

for some C independent of ξ . Setting BL(x) := Lx+{0, . . . ,L−1}d , on the event

FL,ε :=
⋂

x∈(LZ)d

BL(x)∩Dε 6= /0

{
ξ :
∣∣∣ ∑

z∈BL(x)

U(zε)−ξ (z)
∣∣∣< δLd

}
(3.55)

we in turn have 〈
U(ε ·)−ξ ,((g(i)

Dε ,ξ
)2)L

〉
≤ δ (1+CLε), (3.56)
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again by Lemma 3.4. Assuming that CLε ≤ δ , we thus get

P
(
Λk ≥ Λε

k(ξ )+ 5kδ
)
≤ Pε(F

c
L,ε). (3.57)

A standard large-deviation estimate bounds Pε(F
c
L,ε) ≤ c(εL)−de−cLd

. Choosing, e.g., L = cδ/ε
for some c sufficiently small, the claim follows. �

We are now ready to conclude:

Proof of Theorem 1.2. By Propositions 3.6 and 3.7 we have

Λε
k(ξ )

P−→
ε↓0

Λk, k ≥ 1. (3.58)

Then

λ (k)

Dε ,ξ
= Λε

k(ξ )−Λε
k−1(ξ )

P−→
ε↓0

Λk −Λk−1 = λ (k)

D (3.59)

for all k ≥ 1 as well. �

The proof of Proposition 3.7 gives us the following additional fact:

Corollary 3.8 Given any choice of ξ 7→ g
(1)

Dε ,ξ
, . . . ,g(k)

Dε ,ξ
, let g̃ε

1,ξ , . . . , g̃ε
k,ξ denote the continuum

interpolations of ε−d/2g
(1)

Dε ,ξ
, . . . ,ε−d/2g

(k)

Dε ,ξ
as constructed in Lemma 3.3. Assume λ (k+1)

D > λ (k)

D

and let Π̂k denote the orthogonal projection on {ϕ (1)

D , . . . ,ϕ (k)

D }⊥. Then, for any δ ′ > 0, there is an

event Ek,ε ,δ ′ such that

{
ξ :

k

∑
i=1

‖Π̂kg̃ε
i,ξ‖L2(Rd) > δ ′

}
⊆ Ek,ε ,δ ′ and lim

ε↓0
Pε(Ek,ε ,δ ′) = 0. (3.60)

Proof. An inspection of the proof of Proposition 3.7 reveals that
{

ξ :
k

∑
i=1

(
‖∇h̃ε

i,ξ ‖2
L2(Rd) +

〈
U,(h̃ε

i,ξ )2
〉

L2(Rd)

)
≥ Λk −δ ′

}
(3.61)

is a subset of the event Ek,ε ,δ ′ := Fc
L,ε , where FL,ε is the event in (3.55) with proper choices of δ

and L. Thanks to Lemma 3.5, the inclusion in (3.60) thus holds for h̃ε
i,ξ instead of g̃ε

i,ξ . Adjusting δ

slightly, the identities (3.49–3.50) then yield the same for the g̃ε
i,ξ ’s. �

Remark 3.9 Note that under the assumption λ (k+1)

D > λ (k)

D the space {ϕ (1)

D , . . . ,ϕ (k)

D }⊥, and thus
also the projection Π̂k, is independent of the choice of the eigenfunction basis. The formulation
(3.60) avoids having to deal with questions about the measurability of eigenfunctions and/or the
Hilbert-space projections.

4. CONCENTRATION ESTIMATE

We now move to the proof of a concentration estimate for eigenfunctions around their mean.
The proof actually boils down to a well-known concentration inequality due to Talagrand that we
recast into a form adapted to our needs:
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Theorem 4.1 (Theorem 6.6 of [26]) Let N ∈ N and let | · |2 denote the Euclidean norm on R
N .

Let f : [−1,1]N → R be concave and Lipschitz continuous with

L := sup
ξ ,η∈[−1,1]N

| f (ξ )− f (η)|
|ξ −η |2

< ∞. (4.1)

Then for any product probability measure P on [−1,1]N and any t > 0,

P
(
| f −med( f )| > t

)
≤ 4exp

{
− t2

16L2

}
, (4.2)

where med( f ) denotes the median of f .

Proof of Theorem 1.3. We will first prove concentration for the quantity Λε
k(ξ ) and then extract

the desired statement from it. In light of Theorem 4.1, it suffices to derive a good bound on the
Lipschitz constant for f (ξ ) := Λε

k(ξ ). Fix ξ and let {g
(i)

Dε ,ξ
: i = 1, . . . ,k} be a set of eigenfunctions

satisfying (1.11) that achieve the corresponding eigenvalues {λ (i)

Dε ,ξ
: i = 1, . . . ,k}, respectively.

For any η , the variational characterization (3.30) of Λε
k(ξ ) yields

Λε
k(ξ )−Λε

k(η) ≤ ∑
x∈Dε

(
ξ (x)−η(x)

) k

∑
j=1

∣∣g( j)

Dε ,η
(x)
∣∣2. (4.3)

Peeling off the sum over j and applying the Cauchy-Schwarz inequality, we obtain

Λε
k(ξ )−Λε

k(η) ≤ |ξ −η |2
k

∑
j=1

(
∑

x∈Dε

∣∣g( j)

Dε ,η(x)
∣∣4
)1/2

. (4.4)

But Lemma 3.2 ensures that |g( j)

Dε ,η(x)| ≤ cεd/2, and the normalization convention (1.11) then
gives

Λε
k(ξ )−Λε

k(η) ≤ kcεd/2 |ξ −η |2. (4.5)

Since this is valid for all η ,ξ , the same estimate applies to |Λε
k(ξ )−Λε

k(η)| as well.
Now fix t > 0. Talagrand’s inequality readily yields

Pε

(
|Λε

k −med(Λε
k)| > t

)
≤ 4exp

{
−ct2ε−d

}
. (4.6)

But that implies the same bound also for med(Λε
k) replaced by EΛε

k . Since Λε
k(ξ ) is the sum of

the first k eigenvalues, the desired inequality for a single eigenvalue follows by considering the
differences Λε

k(ξ )−Λε
k−1(ξ ). �

Remark 4.2 We note that, thanks to pointwise boundedness of the support of ξ and the Lipschitz
property of the eigenfunction, the proof could equally well be based on Azuma’s inequality.

For later purposes we restate the concentration bound in a slightly different form:

Lemma 4.3 Let k ≥ 1. There is a constant c > 0 such that for any t > 0,

max
x∈Dε

Pε

(
sup

ξ (x)∈[a,b]

∣∣λ (k)

Dε ,ξ
−λ (k)

D

∣∣> t

)
≤ 4exp

{
−ct2ε−d

}
(4.7)

holds for all sufficiently small ε .
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Proof. Let t > 0 be fixed. From Theorem 1.3 we know that λ (k)

Dε ,ξ
→ λ (k)

D in probability. Since the
eigenvalues are uniformly bounded, this implies

∣∣Eλ (k)

Dε ,ξ
−λ (k)

D

∣∣< 2

3
t (4.8)

for ε > 0 sufficiently small. Moreover, (4.5) gives

sup
ξ (y)=η(y)

∀y6=x

∣∣λ (k)

Dε ,ξ
−λ (k)

Dε ,η

∣∣≤ cεd/2 <
1

3
t, (4.9)

once ε is sufficiently small. Hence, the probability in (4.7) is bounded by the probability that λ (k)

Dε ,ξ

deviates from its mean by more than t/3. This is estimated using Theorem 1.3. �

5. GAUSSIAN LIMIT LAW

We are now finally ready to address the main aspect of this work, which is the limit theorem for
fluctuations of asymptotically non-degenerate eigenvalues. The main idea is quite simple and is
inspired by the recent work on fluctuations of effective conductivity in the random conductance
model (Biskup, Salvi and Wolff [7]). Consider an ordering of the vertices in Dε into a sequence
x1, . . . ,x|Dε | and let Fm := σ(ξ (x1), . . . ,ξ (xm)). Then

λ (k)

Dε ,ξ
−Eλ (k)

Dε ,ξ
=

|Dε |

∑
m=1

(
E
(
λ (k)

Dε ,ξ

∣∣Fm

)
−E

(
λ (k)

Dε ,ξ

∣∣Fm−1

))
(5.1)

represents the fluctuation of the k-th eigenvalue as a martingale. We may then apply the Martin-
gale Central Limit Theorem due to Brown [8] which asserts that a family

{
(Mε

m,Fm) : m = 0, . . . ,n(ε)
}

(5.2)

of square-integrable R
ν -valued martingales such that

(0) Mε
0 = 0 and n(ε) → ∞ as ε ↓ 0,

(1) there is a finite ν-dimensional square matrix σ 2 = {σ 2
i j} for which

ε−d
n(ε)

∑
m=1

E
(
(Mε

m −Mε
m−1)(M

ε
m −Mε

m−1)
T
∣∣Fm−1

) P−→
ε↓0

σ 2, (5.3)

(2) for each δ > 0,

ε−d
n(ε)

∑
m=1

E
(
|Mε

m −Mε
m−1|2 1{|Mε

m−Mε
m−1|>δεd/2}

∣∣Fm−1

) P−→
ε↓0

0, (5.4)

satisfies
ε−d/2Mε

n(ε)
law−→
ε↓0

N(0,σ 2). (5.5)

The proof of Theorem 1.4 thus reduces to verification of the premises (0-2) of this result for

Mε
n :=

n

∑
m=1

(
E
(
λ (k)

Dε ,ξ

∣∣Fm

)
−E

(
λ (k)

Dε ,ξ

∣∣Fm−1

))
(5.6)

and nε := |Dε |.
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The condition (0) is checked immediately, but the control of the limits in (1) and (2) will require
a more explicit expression for the martingale differences. Here we note that, for any function
f = f (ξ1, . . . ,ξn) on R

n that is absolutely continuous in each variable and for any collection
ξ1, . . . ,ξn of bounded independent random variables we have, for Fm := σ(ξ1, . . . ,ξm),

E( f |Fm)−E( f |Fm−1) = Ê

∫ ξm

ξ̂m

∂ f

∂ξm

(ξ1, . . . ,ξm−1, ξ̃ , ξ̂m+1, . . . , ξ̂n)dξ̃ , (5.7)

where the expectation is over the collection of random variables ξ̂ , which are copies of ξ inde-
pendent of ξ . The integral is in the sense of Riemann, and we use the corresponding notation to
explicate the sign change upon exchanging the limits of integration. To validate the condition of
absolute continuity (and justify the use of the Fundamental Theorem of Calculus), we prove:

Lemma 5.1 The function ξ 7→ λ (k)

Dε ,ξ
is everywhere right and left differentiable with respect to

each ξ (x). The set of points where the two derivatives disagree is at most countably infinite; else

the derivative exists and is continuous in ξ (x). The partial derivatives ∂
∂ξ (x)± λ (k)

Dε ,ξ
are bounded

and, except at countably many values of ξ (x),

∂

∂ξ (x)
λ (k)

Dε ,ξ
=
∣∣g(k)

Dε ,ξ
(x)
∣∣2 (5.8)

for any possible choice of g
(k)

Dε ,ξ
. (I.e., all choices give the same result.)

Proof. Note that λ (k)

Dε ,ξ
= Λε

k(ξ )−Λε
k−1(ξ ). Since ξ 7→ Λε

k(ξ ) is concave — being the infimum

of a family of linear functions — it is right and left differentiable in ξ (x) at all values. The
derivatives are non-increasing and ordered so there are at most countably many points where they
disagree. Moreover, at differentiability points of Λε

k , (4.3) yields

∂

∂ξ (x)
Λε

k(ξ ) =
k

∑
j=1

∣∣g( j)

Dε ,ξ
(x)
∣∣2 (5.9)

for any choice of eigenfunctions g
(1)

Dε ,ξ
, . . . ,g(k)

Dε ,ξ . At common differentiability points of both Λε
k(ξ )

and Λε
k−1(ξ ), we then get (5.8). �

The upshot of Lemma 5.1 is that we are permitted to use (5.8) in (5.7) with no provisos on
eigenvalue degeneracy. Our goal is to replace the modulus-squared of g

(k)

Dε ,ξ
by that pertaining

to the corresponding eigenfunction in the continuum problem. However, there is a subtle issue
arising from the integration with respect to the dummy variable ξ̃ in (5.7). Indeed, with this
variable in place of ξ (x), the configuration ξ may not even be in the support of Pε . We handle
this with the help of:

Lemma 5.2 Given k ≥ 1 and a configuration ξ , suppose that λ (k)

Dε ,ξ
remains simple as ξ (x)

varies through an interval [a,b]. Then for any ξ ′ satisfying ξ (y) = ξ ′(y) for y 6= x and for any

ξ (x),ξ ′(x) ∈ [a,b],

∣∣g(k)

Dε ,ξ ′(x)
∣∣ =
∣∣g(k)

Dε ,ξ
(x)
∣∣exp

{∫ ξ ′(x)

ξ (x)
G

(k)

Dε
(x,x; ξ̃ )dξ̃ (x)

}
, (5.10)
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where ξ̃ is the configuration that agrees with ξ (and ξ ′) outside x where it equals ξ̃ (x) and

G
(k)

Dε
(x,y;ξ ) :=

〈
δx,(HDε ,ξ −λ (k)

Dε ,ξ
)−1(1− P̂k)δy

〉
`2(Zd)

(5.11)

with P̂k denoting the orthogonal projection on Ker(λ (k)

Dε ,ξ
−HDε ,ξ ).

Proof. To make notations brief, let us write λ , resp., g for the relevant eigenvalue, resp., eigen-
function. Since the eigenvalue is simple, Rayleigh’s perturbation theory ensures that the eigen-
function is unique up to normalization and overall sign. In particular, (5.8) holds. Moreover, also
the eigenfunction g — with the sign fixed at x, for instance — is differentiable in ξ (x). Taking
the derivative of the eigenvalue equation, we get

(λ −HDε ,ξ )
∂g

∂ξ (x)
= g(x)1{x} −|g(x)|2 g. (5.12)

Interpreting the right-hand side as (1− P̂k)(g(x)1{x}), we can now invert λ −HDε ,ξ to obtain

∂

∂ξ (x)
g(y) = G

(k)

Dε
(y,x;ξ )g(x). (5.13)

Evaluating at x, we get an autonomous ODE for g(x). Solving yields (5.10). �

Our next aim will be to show that, whenever λ (k)

D is simple, the term in the exponent of (5.10)
actually tends to zero as ε ↓ 0.

Lemma 5.3 For k ≥ 1 let δ be such that 0 < δ < 1
3 min{λ (k)

D −λ (k−1)

D ,λ (k+1)

D −λ (k)

D } and set

Ak,ε :=
⋂

x∈Dε

{
ξ : sup

ξx∈[a,b]

|λ (i)

Dε ,ξ
−λ (i)

D | < δ , i = k−1,k,k + 1
}

. (5.14)

Then

max
x∈Dε

sup
ξ ′

x∈[a,b]

sup
ξ∈Ak,ε

∣∣∣
∫ ξ ′

x

ξx

G
(k)

Dε
(x,x; ξ̃ )dξ̃x

∣∣∣ −→
ε↓0

0. (5.15)

Proof. Take k such that λ (k)

D is simple and note that, for ξ ∈ Ak,ε , the eigenvalue λ (k)

Dε ,ξ
remains

simple for all values of ξ (x). Then

G
(k)

Dε
(x,x;ξ ) = ∑

i≥1
i6=k

1

λ (i)

Dε ,ξ
−λ (k)

Dε ,ξ

∣∣g(i)

Dε ,ξ
(x)
∣∣2. (5.16)

Thanks to (3.4) and the fact that the eigenvalues of −ε−2∆(d) are close to those of the continuum
problem, for each R > 0 there is K > k such that, for any sufficiently small ε > 0,

i ≥ K ⇒ λ (i)

Dε ,ξ
≥ λ (k)

Dε ,ξ
+ R (5.17)

uniformly in ξ ∈ Ωa,b. The corresponding part of the above sum is then bounded by

0 ≤ ∑
i≥K

1

λ (i)

Dε ,ξ
−λ (k)

Dε ,ξ

∣∣g(i)

Dε ,ξ
(x)
∣∣2 ≤ 1

R
∑
i≥K

∣∣g(i)

Dε ,ξ
(x)
∣∣2 ≤ 1

R
, (5.18)

where we used the Plancherel formula to bound the second sum by 〈δx,δx〉2 = 1. This reduces an
estimate of G

(k)

Dε
(x,x;ξ ) to a finite number of terms.
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On Ak,ε (5.8) and Lemma 3.2 show, for all ε sufficiently small,

∀ξ ∈ Ak,ε : sup
ξ (x)∈[a,b]

∣∣λ (i)

Dε ,ξ
−λ (k)

Dε ,ξ

∣∣> δ

3
− cεd|b−a| > δ

4
, i = k−1,k + 1. (5.19)

The sum of first K terms in (5.16) can thus be bounded by cKδ−1εd , uniformly on Ak,ε . This
permits us to take R → ∞ simultaneously with ε ↓ 0 and conclude the claim. �

Given ε > 0, consider now an ordering x1, . . . ,x|Dε | of vertices of Dε and given ξ , ξ̂ ∈ Ωa,b,

denote by ξ̂ (m) the configuration

ξ̂ (m)(xi) :=

{
ξ (xi), if i ≤ m,

ξ̂ (xi), if i > m.
(5.20)

Hereafter, we regard ξ̂ as an independent copy of ξ and denote the corresponding expectation
by Ê. Let Fm := σ(ξ (x1), . . . ,ξ (xm)). The martingale difference can then be written with the
help of Lemma 5.1 as

Z(i)
m := E

(
λ (i)

Dε ,ξ

∣∣Fm

)
−E

(
λ (i)

Dε ,ξ

∣∣Fm−1

)

= Ê

(
λ (i)

Dε ,ξ̂ (m)
−λ (i)

Dε ,ξ̂ (m−1)

)

= Ê

(∫ ξ (xm)

ξ̂ (xm)

∣∣g(i)

Dε ,ξ̃ (m)
(xm)

∣∣2dξ̃

)
,

(5.21)

where ξ̃ (m) is the configuration that equals ξ on {x1, . . . ,xm−1}, takes value ξ̃ at xm, and coincides

with ξ̂ on {xm+1, . . . ,x|Dε |}. Notice that Lemma 3.2 immediately gives

|Z(i)
m | ≤ cεd (5.22)

for some constant c < ∞. In particular, condition (2) in the abovementioned Martingale Central
Limit Theorem holds trivially. For condition (1), we will proceed, as mentioned before, by re-
placing the square of the discrete eigenfunction by its corresponding continuum counterpart. The
key estimate is stated in:

Proposition 5.4 Suppose λ (i)

D and λ ( j)

D are simple. Abbreviate Bε(x) := εx+[0,ε)d .

E

∣∣∣∣∣

|Dε |

∑
m=1

(
E
(
(ε−dZ(i)

m )(ε−dZ( j)
m )
∣∣Fm−1

)
−
∫

Bε (xm)
dy V (y)

∣∣ϕ (i)

D (y)
∣∣2∣∣ϕ ( j)

D (y)
∣∣2
)∣∣∣∣∣ −→ε↓0

0. (5.23)

The proof of this proposition will be done in several steps. Recall the definition of event Ak,ε

and note that, on Ak,ε the eigenfunction g
(k)

Dε ,ξ
is unique up to a sign and, in particular, there is a

unique measurable version of ξ 7→ |g(k)

Dε ,ξ
(x)|2 for each x. In light of the concentration bound in

Lemma 4.3 we have

λ (k)

D simple ⇒ Pε

(
Ak,ε

)
−→
ε↓0

1. (5.24)

Our first replacement step is the content of:
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Lemma 5.5 Suppose λ (k)

D is simple. Then

ε−d
|Dε |

∑
m=1

E

(∣∣∣∣Z
(k)
m −

(
ξ (xm)−U(εxm)

)
E

(∣∣g(k)

Dε ,ξ
(xm)

∣∣2 1Ak,ε

∣∣∣Fm

)∣∣∣∣
2
)

−→
ε↓0

0. (5.25)

Proof. Inserting the indicator of ξ̂ (m) ∈ Ak,ε and/or its complement into the third line of (5.21)
and applying the boundedness of the discrete eigenfunctions from Lemma 3.2 shows

∣∣∣∣∣Z
(k)
m − Ê

(
1{ξ̂ (m)∈Ak,ε}

∫ ξ (xm)

ξ̂ (xm)

∣∣g(k)

Dε ,ξ̃ (m)
(xm)

∣∣2dξ̃

)∣∣∣∣∣≤ cεd
E(1Ac

k,ε
|Fm), (5.26)

where, we recall, the expectation Ê affects only ξ̂ and so Ê(1{ξ̂ (m) 6∈Ak,ε}) = E(1Ac
k,ε
|Fm). Abbrevi-

ate temporarily

Fm(ξ̃ ) := exp

{
2
∫ ξ̃

ξ (xm)
G

(k)

Dε
(xm,xm; ξ̃ ′)dξ̃ ′

}
. (5.27)

On the event {ξ̂ (m) ∈ Ak,ε}, Lemmas 5.1 and 5.2 along with ξ̂ (m)(xm) = ξ (xm) yield
∫ ξ (xm)

ξ̂ (xm)

∣∣g(k)

Dε ,ξ̃ (m)
(xm)

∣∣2dξ̃ −
(
ξ (xm)− ξ̂ (xm)

)∣∣g(k)

Dε ,ξ̂ (m)
(xm)

∣∣2

=

∫ ξ (xm)

ξ̂ (xm)

(∣∣g(k)

Dε ,ξ̃ (m)
(xm)

∣∣2 −
∣∣g(k)

Dε ,ξ̂ (m)
(xm)

∣∣2
)

dξ̃

=
∣∣g(k)

Dε ,ξ̂ (m)
(xm)

∣∣2
∫ ξ (xm)

ξ̂ (xm)

(
Fm(ξ̃ )−1

)
dξ̃ .

(5.28)

Lemma 5.3 then bounds the difference Fm(ξ̃ )−1 uniformly by eδ (ε) −1 for some δ (ε) > 0 that
tends to zero as ε ↓ 0. Thanks to the uniform boundedness of the eigenfunctions, this and (5.26)
yield

∣∣∣∣∣Z
(k)
m − Ê

(
1{ξ̂ (m)∈Ak,ε}

(
ξ (xm)− ξ̂ (xm)

)∣∣g(k)

Dε ,ξ̂ (m)
(xm)

∣∣2
)∣∣∣∣∣

≤ cεd
E(1Ac

k,ε
|Fm)+ cεd

(
eδ (ε)−1

)
. (5.29)

The configuration ξ̂ (m) does not depend on ξ̂ (xm), and so we may take expectation with respect

to ξ̂ (xm) and effectively replace it by U(εx). Recasting Ê as conditional expectation given Fm

and using that ξ (xm) is Fm-measurable, we thus conclude
∣∣∣∣Z

(k)
m −

(
ξ (xm)−U(εxm)

)
E

(∣∣g(k)

Dε ,ξ
(xm)

∣∣2 1Ak,ε

∣∣∣Fm

)∣∣∣∣

≤ cεd
E(1Ac

k,ε
|Fm)+ cεd

(
eδ (ε)−1

)
. (5.30)

Squaring this and taking another expectation shows that the left-hand-side of (5.25) is bounded
by cεd|Dε | times Pε(A

c
k,ε )+ (eδ (ε)−1). By (5.24), this tends to zero as claimed. �

Next we note:
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Lemma 5.6 Suppose λ (k)

D is simple. Then

|Dε |

∑
m=1

∫

Bε (xm)
dy E

(∣∣∣
∣∣ϕ (k)

D (y)
∣∣2 − ε−d

∣∣g(k)

Dε ,ξ
(xm)

∣∣2 1Ak,ε

∣∣∣
)

−→
ε↓0

0 (5.31)

Proof. Recall the setting of Corollary 3.8 and, in particular, given the scaled discrete eigenfunc-
tions ε−d/2g

(1)

Dε ,ξ
, . . . ,ε−d/2g

(k)

Dε ,ξ
, let g̃ε

1,ξ , . . . , g̃ε
k,ξ denote their continuum interpolations. As λ (k)

D

is simple, Corollary 3.8 guarantees that these functions project almost entirely onto the closed
linear span of {ϕ (1)

D , . . . ,ϕ (`)

D } for both ` = k − 1 and ` = k. As these functions are also nearly
orthogonal, we get

Pε

(
Ak,ε &

∥∥ |g̃ε
k,ξ |− |ϕ (k)

D |
∥∥

L2(D)
> δ

)
−→
ε↓0

0 (5.32)

for any δ > 0. As both |g̃ε
k,ξ | and |ϕ (k)

D | are uniformly bounded, this implies

∫

Rd
dy E

(∣∣∣
∣∣ϕ (k)

D (y)
∣∣2 −

∣∣g̃ε
k,ξ (y)

∣∣2 1Ak,ε

∣∣∣
)

−→
ε↓0

0 (5.33)

with the help of (5.24). But (3.14) gives

|Dε |

∑
m=1

∫

Bε (xm)
dy E

(∣∣∣ g̃ε
k,ξ (y)− ε−d/2g

(k)

Dε ,ξ
(xm)

∣∣∣
2
1Ak,ε

)
≤C(d)E

(
‖∇(d)g

(k)

Dε ,ξ
‖2

2 1Ak,ε

)
, (5.34)

which tends to zero proportionally to ε2, due to boundedness of the kinetic energy. Combining
(5.33–5.34), we get the claim. �

Proof of Proposition 5.4. Combining Lemmas 5.5 and 5.6, and using that the conditional expec-
tation is a contraction in L2, we get

|Dε |

∑
m=1

∫

Bε(xm)
dy E

(∣∣∣ε−dZ(k)
m −

(
ξ (xm)−U(εxm)

)∣∣ϕ (k)

D (y)
∣∣2
∣∣∣
2
)

−→
ε↓0

0. (5.35)

for both k = i, j. The claim now reduces to

|Dε |

∑
m=1

∫

Bε (xm)
dy
∣∣V (y)−V (εxm)

∣∣ ∣∣ϕ (i)

D (y)
∣∣2∣∣ϕ ( j)

D (y)
∣∣2 −→

ε↓0
0, (5.36)

which follows by uniform continuity of y 7→V (y) and the boundedness of the eigenfunctions. �

Proof of Theorem 1.4. Thanks to Proposition 5.4 and the fact that |Bε(xm)| = εd,

ε−d
|Dε |

∑
m=1

E
(
Z(ki)

m Z
(k j )

m

∣∣Fm−1

)
−→
ε↓0

∫

D
V (y)

∣∣ϕ (ki)

D (y)
∣∣2∣∣ϕ (k j)

D (y)
∣∣2 dy (5.37)

in L1(Pε) and thus in probability. This verifies the (last yet unproved) condition (1) of the Mar-
tingale Central Limit Theorem and so the result follows. �
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Proof of Theorem 1.5. The relation (1.14) is a direct consequence of Lemma 5.6 and the bounded-
ness of eigenfunctions. For (1.13) we again drop the suffixes on all quantities and write, on Ak,ε ,

T (k) −E(T (k) 1Ak,ε
) = λ (k) −E(λ (k) 1Ak,ε

)− ∑
x∈Dε

(
ξ (x)−U(xε)

)∣∣g(k)(x)
∣∣2

+ ∑
x∈Dε

(
U(xε)

∣∣g(k)(x)
∣∣2 −E

(
ξ (x)

∣∣g(k)(x)
∣∣2 1Ak,ε

))
(5.38)

Lemma 5.6 and the boundedness of eigenfunctions now allows us to replace the square of the
discrete eigenfunction by εd|ϕ (k)

D (xε)|2 up to an error that is negligible at overall scale εd . Using
Zm := E(λ (k)|Fm)−E(λ (k)|Fm−1), we thus get

ε−d/2
(
T (k) −E(T (k) 1Ak,ε

)
)

= o(1)+
|Dε |

∑
m=1

(
ε−dZm −

(
ξ (xm)−U(εxm)

)∣∣ϕ (k)

D (εxm)
∣∣2
)
, (5.39)

where o(1) represents a random variable whose variance vanishes as ε goes to zero. The sum on
the right is a martingale and so its variance is estimated by sum of variances of individual terms.
Using a slight modification of (5.35), the result tends to zero as ε ↓ 0. �
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