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Abstract: We investigate a probabilistic model for routeing of messages in relay-
augmented multihop ad-hoc networks, where each transmitter sends one message to
the origin. Given the (random) transmitter locations, we weight the family of ran-
dom, uniformly distributed message trajectories by an exponential probability weight,
favouring trajectories with low interference (measured in terms of signal-to-interference
ratio) and trajectory families with little congestion (measured in terms of the number
of pairs of hops using the same relay). Under the resulting Gibbs measure, the sys-
tem targets the best compromise between entropy, interference and congestion for a
common welfare, instead of an optimization of the individual trajectories.

In the limit of high spatial density of users, we describe the totality of all the message
trajectories in terms of empirical measures. Employing large deviations arguments, we
derive a characteristic variational formula for the limiting free energy and analyse the
minimizer(s) of the formula, which describe the most likely shapes of the trajectory
flow. The empirical measures of the message trajectories well describe the interference,
but not the congestion; the latter requires introducing an additional empirical measure.
Our results remain valid under replacing the two penalization terms by more general
functionals of these two empirical measures.

MSC 2010. 60F10, 60G55, 60K30; 82B21; 90B15

Keywords and phrases. Gibbs distribution of trajectories, high-density limit, large deviations, em-
pirical measure, number of incoming hops, weak topology, variational formula, minimizer, multihop
ad-hoc network, message trajectories, signal-to-interference ratio, congestion

1. Introduction and main results

1.1. Background and main goals. In random networks, one of the prominent problems is the
question how to conduct a message through the system in an optimal way. Optimality is often
measured in terms of determining the shortest path from the transmitter to the recipient, or, if
interference is considered, determining the path that yields the least interference. If many messages
are considered at the same time, an additional aspect of optimality may be to achieve a minimal
amount of congestion.

Many investigations concern the question just for one single transmitter/recipient pair, which is a
question that every single participant faces. However, a strategy found in such a setting may lead to
a selfish routeing, and it is quite likely that the totality of all these routeings for all the individuals is
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by far not optimal for the community of all the users [CCS16, Section 1]. Instead, the entire system
may work even better if an optimal compromise is realized, by which we mean a joint strategy that
leads to an optimum for the entire system, though possibly not for every participant.

In this paper, we present a probabilistic ansatz for describing a jointly optimal routeing for an
unbounded number of transmitter/recipient pairs, which takes into account the following three crucial
properties of the family of message trajectories: entropy (i.e., counting complexity of the number of
trajectory families satisfying certain properties), interference and congestion. That is, we consider a
situation in which all the messages are directed through the system in a random way, such that each
hop prefers a low interference, and such that the total amount of congestion is preferred to be low.
Parameters control the strengths of influence of the three effects.

Let us describe our model in words. Let the users be located randomly as the sites of a Poisson
point process, which we fix. Each user sends out precisely one message, which arrives at the (unique)
base station, which is located at the origin. We consider the entire collection of possible trajectories of
the messages through the system. We employ an ad-hoc relaying system with multiple hops, such that
all the users act as relays for the handoffs of the messages. The maximal number of hops is kmax ∈ N
for each message. Each k-hop message trajectory (with k ∈ {1, . . . , kmax} itself random) is random
and a priori uniformly distributed. The family of all trajectories is a priori independent.

Now, the probability distribution of this family is given in terms of a Gibbs ansatz by introducing
two exponential weight terms. (That is, we define a quenched measure on trajectories given the
locations of the users.) The first one weights the total amount of interference, measured in terms
of the signal-to-interference ratio for each hop. The second one weights the total congestion, i.e.,
the number of times that any two trajectories use the same relay. Under the arising measure, there
is a competition between all the three decisive effects of the trajectory family: entropy, interference
and congestion. Furthermore, the users form a random environment for the family, which not only
determines the starting sites of all the trajectories, but also has a decisive effect on interference and
congestion. While the latter has a smoothing effect on the fine details of the spatial distribution of all
the trajectories, the effect of the former is not so clear to predict, as the superposition of signals have
a very non-local influence.

Our main interest is in understanding the spatial distribution of the totality of all the message
trajectories under the Gibbs distribution. The measure under consideration is a highly complex object,
as it depends on all the user locations and on many detailed properties and quantities. However, we
make a substantial step towards a thorough understanding by deriving an asymptotic formula for the
logarithmic behaviour of the normalization constant in the limit of a high spatial density of the users.
The limiting situation is then described in terms of a large deviations rate function and a variational
formula, whose minimizers describe the optimal joint choices of the trajectories. This formula is
deterministic and depends only on general spatial considerations, not on the individual users. These
are our main results in this paper.

The main objects in terms of which we achieve this description are the empirical measures of the
trajectories of the messages sent out by the users, disintegrated with respect to the lengths and
rescaled to finite asymptotic size. These measures turn out to converge in the weak topology in the
high-density limit that we consider in this paper. The counting complexity of the statistics of the
message trajectories can be written in terms of multinomial expressions and afterwards, in the limit
of finer and finer decompositions of the space, approximated in terms of relative entropies, using
Stirling’s formula. The interference term can also be handled in a standard way [HJKP18], since it is
a continuous function of the collection of empirical measures of message trajectories.

However, a key finding of our work is that the congestion term is a highly discontinuous function
of these empirical measures. Indeed, one cannot express its limiting behaviour in terms of these
measures. Instead, one needs to substantially enlarge the probability space of trajectories and to



A GIBBSIAN MODEL FOR MESSAGE ROUTEING 3

introduce another collection of empirical measures, the ones of the locations of users (relays) who
receive given numbers of incoming messages (counted with multiplicity if a message trajectory hits
the same relay multiple times). The congestion expression then turns out to be a lower semicontinuous
function of these empirical measures, and hence the limiting congestion term is still expressible in terms
of the weak limits of these measures. Again, using explicit combinatorics and Stirling’s formula, we
arrive at explicit entropic terms describing the statistics of these measures. These two families of
empirical measures together enable us to describe all the properties of the message trajectories that
we are interested in. We establish a full large deviation principle for the tuple of all these measures
with an explicit rate function and obtain in particular their convergence towards the minimizer(s) of
a characteristic variational formula. We also derive their positivity properties and characterize them
in terms of Euler-Lagrange equations. Unfortunately, due to the complexity of the congestion term,
we are not able to decide about the uniqueness of the minimizer.

Nevertheless, in the special case when congestion is not penalized, the minimizer turns out to be
unique, and we obtain an explicit expression that is amenable to further investigation. In certain
limiting regimes, we can derive a good understanding of decisive quantities of the system, like the
typical number of hops, the typical length of a hop and the typical shape of a trajectory as a function
of the distance between the transmission site and the origin. We expect that such properties of the
system are similar if congestion is also penalized, as the effect of congestion is a priori not spatial,
but combinatorial. We decided to analyse such questions in a separate work [KT18], as they have a
strongly analytic, rather than probabilistic, nature. The present paper includes a short summary of
the results of [KT18].

The main purpose of the present paper is to provide the mathematical framework of large deviations
for the quenched trajectory distribution, given the user locations, in the high-density limit. We also
provide a discussion of the relevance of the model for telecommunication theory. A connection of our
work to traffic theory is outlined in [KT18], which paper also includes numerical examples for the
case when congestion is not penalized. Hence, in the present paper, we will formulate the model in a
more general, slightly abstract, way in order to bring its mathematical essence to the surface. That
is, we consider a random complete geometric graph in a compact subset of Rd (where the vertices are
the users and the edges are the straight line segments between any two users), and a distribution of
trajectories that has an interaction (the interference) with all the locations of the nodes and suppresses
local clumping (the congestion).

1.1.1. The high-density limit for multihop networks. The quality of service in large multihop ad-hoc
networks has received particular interest in the last years. In order to be able to derive a clear picture,
one has to make a certain approximation in limiting settings. Two mathematical settings are frequently
used: the high-density limit (sometimes called also a hydrodynamic limit or a mean-field limit), where
the number of users in a compact fixed area diverges, and the thermodynamic limit, where the area
diverges as well, such that the number of users per space unit remains fixed. The former models
a situation like at concerts, demonstrations or sports events, while the latter one models large-area
networks with moderate user density.

A number of papers on this subject use large deviations methods. This has several advantages.
Indeed, the corresponding large deviation principles often come with a law of large numbers for
certain empirical measures, and with exponential bounds on the probabilities of deviations from the
limit. This suggests that the qualitative behaviour of the network is close to the limit already for
relatively moderate values of the diverging parameter. These methods lead in the high-density setting
to much more handy formulas (see e.g. [HJKP18, HJP16, HJ17]) than in the thermodynamic limit (see
e.g. [HJKP16]). This is why we decided to analyse our Gibbsian model in the high-density setting.
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1.1.2. Related literature. Apart from the potential value for understanding a new type of message
routeing models in telecommunication, the present paper provides also some interesting mathematical
research on topological fine properties of random paths in random a environment in a high-density
setting, a subject that received a lot of interest for various types of such processes over the last decades.
We remind the reader on a number of investigations of the intersection properties of random walks
and Brownian motions (both self-intersections and mutual intersections) in highly dense settings, see
the monograph [Ch09] and some particular investigations in [KM02, KM13]; in all these works, one
is interested in large deviations properties of suitable empirical measures, and the lack of continuity
of the path properties is the main difficulty. Let us mention that the main aspect of the approach
in [KM02] is the same as in the present paper: an approximation of combinatorics in finer and finer
decompositions of the space by entropic terms. Another line of research in which similar questions
arise is a mean-field variant of a spatial version of Bose-Einstein statistics, like in [AK08], where the
statistics of the empirical measures of a diverging number of Brownian bridges with symmetrized
initial-terminal condition is analysed in terms of a large deviation principle in the weak topology.
While [AK08] works with the same method as we in the present paper (spatial discretization with
limiting fineness), [T08] showed that a method based entirely on the notion of entropy is able to derive
such results in a more general framework.

1.1.3. Organization of the remainder of this paper. We introduce the model and necessary notation in
Section 1.2, present our main results in Sections 1.3 (the limiting free energy of the model), 1.4 (the
description of the minimizer(s)), 1.5 (the large deviation principle and the convergence of the empirical
measures), and 1.6 (results in case congestion is not penalized), we interpret the minimizer(s) and
summarize the results of [KT18] about their qualitative properties in Section 1.7, and we discuss and
comment our findings in Section 1.8. The remaining sections are devoted to the proofs: in Section 2 we
prepare for the proofs by introducing our methods and deriving formulas for the probability terms, in
Section 3 we put all this together to a proof of the limiting free energy, the large deviation principle and
the convergence of the empirical measures, in Section 4 we analyse the minimizer(s) of the characteristic
variational formula, and in Section 5 we extend the proofs to the case when congestion is not penalized.

1.2. The Gibbsian model. We introduce now the mathematical setting. For any topological space
V , let M(V ) denote the set of all finite nonnegative Borel measures on V , which we equip with the
weak topology. We are working in Rd with some fixed d ∈ N. Our model is defined as follows. Let
W ⊂ Rd be compact, the territory of our telecommunication system, containing the origin o of Rd.

1.2.1. Users. Let µ ∈ M(W ) be an absolutely continuous measure on W with µ(W ) > 0. Note that
we do not require that supp(µ) = W . For λ > 0, we denote by Xλ a Poisson point process in W
with intensity measure λµ. The points Xi ∈ Xλ are interpreted as the locations of the users in the
system, while the origin o of Rd is the single base station. We assume that Xλ = {Xi : i ∈ Iλ} with
Iλ = {1, . . . , N(λ)} and (N(λ))λ>0 a homogeneous Poisson process on N0 with intensity E[N(1)] =
µ(W ), and (Xi)i∈N is an i.i.d. sequence of W -distributed random variables with distribution µ(·)/µ(W )
defined on one probability space (Ω,F ,P). Since µ has a density, all points Xi are mutually different
with probability one. Further, Xλ is increasing in λ, and its empirical measure, normalized by 1/λ,

Lλ =
1

λ

∑
i∈Iλ

δXi , (1.1)

converges towards µ almost surely as λ→∞.

These assumptions on the users can be relaxed, see Section 1.8.4.



A GIBBSIAN MODEL FOR MESSAGE ROUTEING 5

1.2.2. Message trajectories. We now introduce the collection of trajectories sent out from the users to
o, i.e., for uplink communication. For any i ∈ Iλ, we call a vector of the form

Si = (Si−1 = Ki, S
i
0 = Xi, S

i
1 ∈ Xλ, . . . , SiKi−1 ∈ Xλ, SiKi = o) ∈

⋃
k∈N

(
{k}×{Xi}×W k−1×{o}

)
, (1.2)

a message trajectory from Xi to o with Ki hops. That is, Si starts from Xi and ends in o after Ki

hops from user to user in Xλ. Hence, each user sends exactly one message to o, and each user has
the function of a relay. We fix a number kmax ∈ N and write Sikmax

(Xλ) for the set of all possible

realizations of the random variable Si with Ki ≤ kmax, i.e., with no more than kmax hops. Hence,
elements si = (si−1, s

i
0, s

i
1, . . . , s

i
si−1−1

, si
si−1

) of Sikmax
(Xλ) satisfy si−1 ∈ {1, . . . , kmax}, si0 = Xi and

si
si−1

= o. We write Skmax(Xλ) =
Ś

i∈Iλ Sikmax
(Xλ) for the set of all possible realizations of the families

S = (Si)i∈Iλ . We use the notation [k] = {1, . . . , k} for k ∈ N. The assumption that we choose a finite
upper bound kmax on the number of hops will be discussed in Section 1.8.7.

Given i ∈ Iλ, we consider each trajectory Si in (1.2) as an Sikmax
(Xλ)-valued random variable. Its

a priori measure is defined by the formula

si 7→ 1

N(λ)s
i
−1−1

, si ∈ Sikmax
(Xλ). (1.3)

That is, its restriction to {si ∈ Sikmax
(Xλ) : si−1 = k} is the uniform distribution on the set of all k-hop

trajectories from Xi to o for any k ∈ [kmax], and its total mass is equal to kmax. Recall that it fixes
the starting point Xi and the terminal point o.

Under our joint a priori measure, all the trajectories are independent; indeed, it gives the value

s = (si)i∈Iλ 7→
∏
i∈Iλ

1

N(λ)s
i
−1−1

(1.4)

to the configuration s ∈ Skmax(Xλ). Thus, it gives a total mass of k
N(λ)
max to Skmax(Xλ).

1.2.3. Gibbsian trajectory distribution. In this section, we define the central object of this study: a
Gibbs distribution on the set Skmax(Xλ) of collections of trajectories. After providing the abstract
definitions, in Section 1.2.4 we sketch the key example that is relevant for application in telecom-
munication. The general conditions on the ingredients of the Gibbs distribution in this section arise
naturally from the properties of this example.

We introduce the following notation. For k ∈ N, elements of the product space W k = W {0,1,...,k−1}

are denoted as (x0, . . . , xk−1). For l = 0, . . . , k − 1, the l-th marginal of a measure νk ∈ M(W k) is

denoted by πlνk ∈M(W ), i.e., πlνk(A) = νk(W
{0,...,l−1}×A×W {l+1,...,k−1}) for any Borel set A ⊆W .

For fixed k ∈ [kmax] and for a collection of trajectories s ∈ Skmax(Xλ), we define

Rλ,k(s) =
1

λ

∑
i∈Iλ : si−1=k

δ(si0,...,s
i
k−1), (1.5)

the empirical measures of all the k-hop trajectories, which is an element ofM(W k). By the assumption
that each user sends out exactly one message, we have

kmax∑
k=1

π0Rλ,k(s) = Lλ. (1.6)
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For k ∈ [kmax], we choose a continuous function fk : M(W ) ×W k → R that is bounded from below.
Using (1.6), we put

S(s) = λ

kmax∑
k=1

〈
Rλ,k(s)(·), fk(Lλ, ·)

〉
=

kmax∑
k=1

∑
i∈Iλ : si−1=k

fk(Lλ, s
i
0, . . . , s

i
k−1), (1.7)

where we write 〈ν, f〉 for the integral of the function f against the measure ν. Moreover, we define

mi(s) =
∑
j∈Iλ

sj−1−1∑
l=1

1{sjl = si0}, i ∈ Iλ, (1.8)

as the number of incoming hops into the user (relay) si0 = Xi of any of the trajectories.

We pick a function η : N0 → R, bounded from below such that limm→∞ η(m)/m =∞. Then we put

M(s) =
∑
i∈Iλ

η(mi(s)). (1.9)

Now, we define

Pγ,β
λ,Xλ(s) :=

1

Zγ,βλ (Xλ)

( ∏
i∈Iλ

1

N(λ)s
i
−1−1

)
exp

{
− γS(s)− βM(s)

}
, (1.10)

where γ > 0 and β > 0 are parameters. This is the Gibbs distribution with independent reference
measure given in (1.4), subject to two exponential weights with the terms (1.7) and (1.9). Here

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

( ∏
i∈Iλ

1

N(λ)r
i
−1−1

)
exp

{
− γS(r)− βM(r)

}
(1.11)

is the normalizing constant, which we will refer to as partition function. Note that Pγ,β
λ,Xλ(·) is random

conditional on Xλ, and it is a probability measure on Skmax(Xλ). In the jargon of statistical mechanics,
it is a quenched measure, which we will consider almost surely with respect to the process (Xλ)λ>0.
In the annealed setting, one would average out over (Xλ)λ>0, see Section 1.8.5.

1.2.4. The key example: penalization of interference and congestion. In this section, we sketch the
most important example for the exponents S and M in (1.10), where S registers interference and
M expresses congestion in a telecommunication network. Analysing the qualitative properties of the
network with these choices of M and S is the main topic of our accompanying paper [KT18], see
Section 1.7.2.

Now we introduce interference. We choose a path-loss function, which describes the propagation of
signal strength over distance. This is a monotone decreasing, continuous function ` : [0,∞)→ (0,∞).
An example used in practice is `(r) = min{1, r−α}, for some α > 0, see e.g. [GT08, Section II.], for
further examples see [BB09, Section 2.3.1]. The signal-to-interference ratio (SIR) of a transmission
from Xi ∈ Xλ to x ∈W in the presence of the users in Xλ is given as

SIR(Xi, x, Lλ) =
`(|Xi − x|)

1
λ

∑
j∈Iλ `(|Xj − x|)

. (1.12)

We call the denominator of the r.h.s of (1.12) the interference at x. The definition (1.12) comes from
[HJKP18]. It is adapted to the high-density setting, and it differs from the usual definition [GK00] of
SIR in the following way. The sum in the interference in (1.12) is multiplied by 1/λ, and it contains
also the term `(|Xi − x|). For a justification of these differences, see [KT18, Section 6.1.1].
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Now, given a trajectory configuration s = (si)i∈Iλ ∈ Skmax(Xλ), we put

S(s) =
∑
i∈Iλ

si−1∑
l=1

SIR(sil−1, s
i
l, Lλ)−1 = λ

kmax∑
k=1

∫
Wk

Rλ,k(s)(dx0, . . . ,dxk−1)

k∑
l=1

∫
W `(|y − xl|)Lλ(dy)

`(|xl−1 − xl|)
,

(1.13)
where for k ∈ [kmax], we write xk = o. Then (1.13) is a special case of (1.7) with

fk(ν, x0, . . . , xk−1) =
k∑
l=1

∫
W `(|y − xl|)ν(dy)

`(|xl−1 − xl|)
, xk = o, k ∈ [kmax]. (1.14)

Next, we introduce congestion. We define η(m) = m(m− 1), and, as in (1.9), we put

M(s) =
∑
i∈Iλ

η(mi(s)) =
∑
i∈Iλ

mi(s)(mi(s)− 1), s ∈ Skmax(Xλ). (1.15)

Note that η(mi(s)) = mi(s)(mi(s) − 1) is the number of ordered pairs of hops arriving at the relay
Xi = si0. We will explain and motivate these choices in Section 1.8.1.

In the downlink scenario, instead of users sending messages to the base station, the base station
sends exactly one message to each of the users, using the same relaying rules. One can define a
Gibbsian model analogously, now for trajectories from o to Xi instead of the other way around. For
this, the interference term and the congestion term have to be redefined in an obvious way. We are
certain that analogues of all our results are true and can be proved in the same way, hence we abstained
from spelling them out.

For possible extensions of this model involving time dependence or users transmitting multiple
messages, see Section 1.8.6.

1.3. The limiting free energy. The main goal of this paper is the description of this model in the
limit λ → ∞ in the quenched setting. Our first result describes the limiting free energy, i.e., the

exponential behaviour of the partition function Zγ,βλ (Xλ). One expects that this is entirely governed
by the large deviations behaviour of the empirical measures ((Rλ,k)(S)k∈[kmax])λ>0. This expectation

is supported by the fact that, for i ∈ Iλ and s ∈ Skmax(Xλ), we can express mi(s) defined in (1.8) in
terms of (Rλ,k(s))k∈[kmax] as follows

mi(s) = λ

kmax∑
k=1

kmax∑
l=1

πlRλ,k(s)({si0}). (1.16)

Surprisingly, it turns out that the limiting free energy cannot be described entirely in terms of these
measures. The reason is that the function in (1.16) that maps them onto mi(s) is highly discontinuous
in the limit λ→∞; even a proper formulation of such continuity would be awkward since both i and
s depend on λ.

One therefore needs to substantially extend the probability space and to choose an additional family
of empirical measures such that the congestion term M(s) can be written as a (lower semi-)continuous
function of these measures in the limit λ → ∞. A natural choice of such a family is the one of the
measures

Pλ,m(s) =
1

λ

∑
i∈Iλ : mi(s)=m

δsi0
, m ∈ N0. (1.17)
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Then for m ∈ N0, Pλ,m(s) ∈M(W ) is the empirical measure of the users si0 whose number of incoming

hops equals m. For any s ∈ Skmax(Xλ) the following hold

(i)

kmax∑
k=1

π0Rλ,k(s) = Lλ, (ii)

∞∑
m=0

Pλ,m(s) = Lλ, (iii)

∞∑
m=0

mPλ,m(s) =

kmax∑
k=1

k−1∑
l=1

πlRλ,k(s).

(1.18)
Condition (i) expresses our assumption that each user transmits precisely one message, (ii) says that
each user serves as a relay for precisely m message trajectories for precisely one m ∈ N0, and (iii)
says that the relays can be calculated in two ways: according to the number of incoming hops and
according to the index of the hop of a trajectory that uses it. Moreover, we can write (1.9) in terms
of (Pλ,m(s))m∈N0 as follows

M(s) =
∑
i∈Iλ

η(mi(s)) = λ

∞∑
m=0

η(m)Pλ,m(s)(W ).

We note that the functionM(W )N0 → R∪{∞}, (ξm)m∈N0 7→
∑∞

m=0 η(m)ξm(W ) is lower semicontin-
uous, and even continuous on {(ξm)m∈N0 :

∑∞
m=0 η(m)ξm(W ) ≤ α} for any α ∈ R.

The limiting free energy will be described in terms of the following kind of families of measures,
and it will turn out that all subsequential limits of the families ((Rλ,k(S))kmax

k=1 , (Pλ,m(S))∞m=0) in the
quenched limit λ→∞ are of this kind.

Definition 1.1. An admissible trajectory setting is a collection of measures Ψ = ((νk)
kmax
k=1 , (µm)∞m=0)

with νk ∈M(W k) for all k and µm ∈M(W ) for all m, satisfying the following properties.

(i)

kmax∑
k=1

π0νk = µ, (ii)
∞∑
m=0

µm = µ, (iii) M :=
∞∑
m=0

mµm =

kmax∑
k=1

k−1∑
l=1

πlνk. (1.19)

The measure νk is the measure of the k-hop trajectories and µm the measure of the users that receive
precisely m incoming hops; note that there is no reason that they be normalized (like for µ). Observe
that in (1.18), Lλ, Rλ,k(s) and Pλ,m(s) play the role of µ, νk and µm, respectively. In particular, after
replacing µ by Lλ, ((Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0) satisfies the definition of an admissible trajectory
setting. See Section 1.8 for more explanations and interpretations, moreover for a modified version of
our model where the assumption (i) is relaxed. By

HV (ν | ν̃) =

{∫
V dν log dν

dν̃ − ν(V ) + ν̃(V ), if the density dν
dν̃ exists,

+∞ otherwise,
(1.20)

we denote the relative entropy [GZ93, Section 2.3] of a Borel measure ν with respect to another Borel
measure ν̃ on a measurable subset V of Rn, n ∈ N.

For an admissible trajectory setting Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) we define

S(Ψ) =

kmax∑
k=1

∫
Wk

dνk f̃k, where f̃k(x0, . . . , xk−1) = fk(µ, x0, . . . , xk−1), (1.21)

and

M(Ψ) =
∞∑
m=0

η(m)µm(W ) (1.22)

and

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+
∞∑
m=0

HW (µm | µcm) + µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e
, (1.23)
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where we recall M =
∑

m∈N0
mµm from Definition 1.1(iii), η defined before (1.9), and

cm = exp(−1/(eµ(W ))(eµ(W ))−m/m! are the weights of the Poisson distribution with parameter
1/(eµ(W )). In Section 1.8.2, we argue that I(Ψ) is well-defined as an element of (−∞,∞] and
Ψ 7→ I(Ψ) is a lower semicontinuous function that is bounded from below, and we provide an in-
terpretation for I(·). A tedious but elementary calculation shows that I is convex. In Section 1.5, I
will turn out to govern the large deviations of the trajectory configuration. The terms S(·) and M(·)
are analogues of the penalty terms S(·) and M(·) in the high-density setting, respectively.

We fix all the parameters W,µ, kmax, fk, η, γ and β of the model. Our first main result is the
following.

Theorem 1.2 (Quenched exponential rate of the partition function). For P-almost all ω ∈ Ω,

lim
λ→∞

1

λ
logZγ,βλ (Xλ(ω)) = − inf

Ψ admissible trajectory setting

(
I(Ψ) + γS(Ψ) + βM(Ψ)

)
. (1.24)

See Section 1.8 for a discussion and Section 3.4 for the proof.

1.4. Description of the minimizers. From the variational formula in (1.24), descriptive information
about the typical behaviour of the network can be deduced, especially in the case of the specific choice
of M and S from Section 1.2.4, see Sections 1.5, 1.7 and 1.8. Hence, it is important to derive the
Euler-Lagrange equations and to characterize the minimizers in most explicit terms. Our main results
in this respect are the following. Note that the case kmax = 1 is trivial.

Proposition 1.3 (Characterization of the minimizer(s)). Let kmax > 1. The infimum in the varia-

tional formula in (1.24) is attained, and every minimizer Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) has the following

form.

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)
k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), k ∈ [kmax], (1.25)

µm(dx) = µ(dx)B(x)
(C(x)µ(W ))−m

m!
e−βη(m), m ∈ N0, (1.26)

where A,B,C : W → [0,∞) are functions such that the conditions in (1.19) are satisfied.

The proof of Proposition 1.3 is in Section 4.

While explicit formulas for the functions A and B can, given the function C, easily be derived
from (i) and (ii) in (1.19) (see (4.11)), the condition for C coming from (iii) is deeply involved and
cannot be easily solved intrinsically; see (4.13) – (4.15). We have no argument for its existence to offer
other than via proving the existence of a minimizer Ψ and deriving the Euler-Lagrange equations. By
convexity of I, S and M, every solution Ψ to these equations is a minimizer. Even the uniqueness
of C is unknown to us. We will interpret the equations (4.9)–(4.10) in Section 1.7.1. The equations
(1.25)–(1.26) become more explicit in case β = 0, and in this case, uniqueness of the minimizer holds,
see Section 1.6.

In case kmax = 1, the only admissible trajectory setting is Ψ = (ν1, (µm)m∈N0) with µ0 = ν1 = µ
and µm = 0 otherwise, therefore this Ψ minimizes (1.24).

1.5. Large deviations for the empirical trajectory measure. Actually, the minimizers of the
variational formula in (1.24) receive a rigorous interpretation in terms of important objects that
describe the network. As we have already mentioned, the family of empirical measures

Ψλ(s) =
(
(Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

)
(1.27)
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satisfies the definition of an admissible trajectory setting, apart from the fact that in Definition
1.1, µ has to replaced by Lλ everywhere, where we recall that Lλ converges to µ almost surely as
λ → ∞. According to our remarks after Definition 1.1, Rλ,k(s) and Pλ,m(s) play the roles of νk
and µm, respectively, in an admissible trajectory setting, which explains this term. Furthermore, for
s ∈ Skmax(Xλ), we can express the term M as

M(s) = λM(Ψλ(s)).

Moreover, for the continuous penalization term we have

S(s) ≈ λS(Ψλ(s)), (1.28)

where we typically do not have an identity, because S(s) = λ
∑kmax

k=1

∫
Wk dRλ,k(s)fk(Lλ, ·), which

is usually not equal to λS(Ψλ(s)) = λ
∑kmax

k=1

∫
Wk dRλ,k(s)fk(µ, ·). However, since Lλ =⇒ µ almost

surely, this difference vanishes in the limit, see Proposition 3.2.

We consider now the distribution of Ψλ(S) with S distributed under the product reference measure

introduced in (1.4), normalized to a probability measure, P0,0
λ,Xλ ; note that the normalization Z0,0

λ (Xλ)

is equal to k
N(λ)
max . Our next main result, Theorem 1.4, is a large deviation principle (LDP; see (1.30)–

(1.31)) and the convergence towards the minimizers of the variational formula.

Theorem 1.4 (LDP and convergence for the empirical measures). The following statements hold
almost surely with respect to (Xλ)λ>0.

(i) The distribution of Ψλ(S) under P0,0
λ,Xλ satisfies an LDP as λ→∞ with scale λ on the set

A =
( kmax∏
k=1

M(W k)
)
×M(W )N0 (1.29)

with rate function given by A 3 Ψ 7→ I(Ψ) + µ(W ) log kmax, which we define as ∞ if Ψ is not
an admissible trajectory setting.

(ii) For any γ, β ∈ (0,∞), the distribution of Ψλ(S) under Pγ,β
λ,Xλ converges towards the set of

minimizers of the variational formula in (1.24).

For the reader’s convenience, we recall that the LDP states that the rate function I +µ(W ) log kmax

is lower semicontinuous and

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ F ) ≤ − inf
F

(
I + µ(W ) log kmax

)
, (1.30)

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ G) ≥ − inf
G

(
I + µ(W ) log kmax

)
, (1.31)

for any closed set F and any open set G in A. See [DZ98] for more on large deviations theory. On
A, we consider the product topology that is induced by weak convergence in each factor; this is equal
to coordinatewise weak convergence, see Section 3.3 for more details. Convergence of a distribution
towards a set is defined by requiring that for any neighbourhood of the set, the probability of not
being in the neighbourhood vanishes.

The proof of Theorem 1.4(i) is carried out in Section 3.5, using Lemma 4.1. Assertion (ii) is a
simple consequence of (i), since the functionals S and M are bounded and continuous on the set
BC = {Ψ ∈ A : M(Ψ) ≤ C} for any C, and BC is compact in A (see Lemma 4.1). Denoting the level
sets of the rate function I + µ log kmax by Φα = {Ψ ∈ A : I(Ψ) + µ(W ) log kmax ≤ α} for α ∈ R, we see
that Φα∩BC is compact for any α and C. Thus, Varadhan’s lemma can be applied to prove Assertion
(ii).
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1.6. Dropping the congestion term. Proposition 1.3 yields a rather implicit description of the
minimizers of (1.24) in the case β, γ > 0. The cardinality of the set of minimizers is also unclear.
However, in the special case β = 0, where the congestion functional M (1.9) is absent, the situation
is much better. Indeed, it turns out that the minimizer is unique and is explicitly given in terms of
the parameters of the model. Especially for the specific choice of Section 1.2.4 where S penalizes
interference (1.13), on base of this knowledge, we are able in [KT18] to derive a number of relevant
qualitative properties of the trajectories, see Section 1.7.2 for a summary.

In what follows, we call Σ = (νk)k∈[kmax] with νk ∈M(W k) for all k ∈ [kmax] an asymptotic routeing

strategy if we have
∑kmax

k=1 π0νk = µ. In (1.19) we see that the first coordinate, Σ, of an admissible
trajectory setting Ψ is an asymptotic routeing strategy, and in (1.21) we see that S(Ψ) depends only

on Σ. We will therefore write S(Σ) for S(Ψ). Further, we write M =
∑kmax

k=1

∑k−1
l=1 πlνk, in accordance

with (1.19) but with no regard to the measures (µm)m∈N0 . We define an entropic term J for asymptotic
routeing strategies as follows.

J(Σ) =

kmax∑
k=1

HWk(νk | µ⊗k)−
kmax∑
k=2

µ(W )k +M(W ) logµ(W ). (1.32)

Similarly to I in (1.23), J describes counting complexity in the high-density limit, but without reference
to the measures (µm)m.

The following proposition summarizes the analogues of Theorem 1.2, Proposition 1.3 and Theo-
rem 1.4 in case β = 0, after dropping all the measures µm.

Proposition 1.5. The following statements hold almost surely with respect to (Xλ)λ>0.

(1) The distribution of

Σλ(S) = (Rλ,k(S))k∈[kmax] (1.33)

under P0,0
λ,Xλ satisfies an LDP as λ → ∞ with scale λ on the set A0 =

∏kmax
k=1 M(W k) with

rate function given by A0 3 Ψ 7→ J(Σ) + µ(W ) log kmax, which we define as ∞ if Σ is not an
asymptotic routeing strategy. Further, the rate function has compact level sets.

(2) For any γ ∈ (0,∞),

lim
λ→∞

1

λ
logZγ,0λ (Xλ) = − inf

Σ asymptotic routeing strategy

(
J(Σ) + γS(Σ)

)
(1.34)

(3) Let γ > 0 and kmax > 1. The variational formula on the r.h.s. of (1.34) exhibits a unique
minimizer Σ = (νk)k∈[kmax] given as

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)
k−1∏
l=1

µ(dxl)

µ(W )
e−γf̃k(x0,...,xk−1), k ∈ [kmax], (1.35)

where

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e−γf̃k(x0,...,xk−1), x0 ∈W. (1.36)

(4) For any γ ∈ (0,∞), the distribution of Σλ(S) under Pγ,0
λ,Xλ converges to the minimizer of the

variational formula in (1.34).

Proposition 1.5 is proved in Section 5. An interpretation of the equations (1.35)–(1.36) can be found
in Section 1.7.1.

Let us explain in what way Proposition 1.5 is the special case of the aforementioned results for
β = 0 and in what way it differs. It is true that the LDP in Assertion (1) directly follows from the
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LDP in Theorem 1.4(i) via the contraction principle [DZ98, Theorem 4.2.1] for the projection map
(Σ, (µm)m) 7→ Σ, however, with rate function given by

J(Σ) = inf
(µm)m∈N0 : Ψ=(Σ,(µm)m∈N0 ) admissible trajectory setting

I(Ψ). (1.37)

It is an elementary but tedious task to identify this as in (1.32) by identifying

µm(dx) = µ(dx)

(
M(dx)
µ(dx)

)m
m!

e−M(dx)/µ(dx), m ∈ N0, (1.38)

as the unique minimizer on the right-hand side of (1.37), given M =
∑kmax

k=1

∑k−1
l=1 πlνk. However, we

chose an alternative route for proving the LDP with explicit identification of J, which is a variant of
the proof of Theorem 1.4(i). From (1.37) it is clear that the variational formula in (1.34) is indeed the
special case of (1.24) for β = 0, i.e.,

inf
Σ asymptotic routeing strategy

(
J(Σ) + γS(Σ)

)
= inf

Ψ admissible trajectory setting

(
I(Ψ) + γS(Ψ)

)
. (1.39)

Note also that the minimizer Ψ is unique. This raises the additional question whether or not the mea-
sures (Pλ,m(S))m∈N0 converge to the minimizer (µm)m∈N0 in (1.38) under Pγ,0

λ,Xλ for M corresponding

to the minimal νk’s of (1.35). Since the congestion term, which gave rise to a strong compactness ar-
gument, is now absent, this question cannot immediately be decided using large deviations arguments,
but we nevertheless believe it is true. Moreover, this compactness property was also used in the proof
of Theorem 1.2, which is another reason that we had to redo the proofs of Proposition 1.5(2) and (3),
given our proof of Assertion (1).

1.7. Interpretation and qualitative properties of the minimizer(s).

1.7.1. Interpretation of the minimizer(s). In case β, γ > 0, Proposition 1.3 tells us quite some infor-
mation about the limiting trajectory distribution and the limiting spatial distribution of users with

a given number of incoming hops under the measure Pγ,β
λ,Xλ . Indeed, both have densities that are

µ⊗k-almost everywhere positive. It is remarkable that the k-hop trajectories follow a distribution
that comes from choosing independently all the k sites with measures that do not depend on k (the
starting point according to A(x)µ(dx) and all the other k − 1 sites each according to C(x)M(dx)),

exponentially weighted with the term γf̃k. Furthermore, all the measures of the users receiving m
incoming hops superpose each other on the full set supp(µ), and at each space point x, this number m
is distributed according to some Poisson distribution, exponentially weighted with the term βη(m).

As for the case β = 0, γ > 0, we have a unique minimizer, which exhibits all the properties
enumerated for β, γ > 0. In the k-hop trajectories, the starting point is chosen according to A(x)µ(dx)

and all the other k− 1 sites according to the measure µ(dx)/µ(W ), weighted with γf̃k. Moreover, the
number of incoming hops at a given relay at the site x ∈ W is Poisson distributed with parameter
equal to M(dx)/µ(dx).

1.7.2. Qualitative properties of the minimizer. In our accompanying paper [KT18], we analyse the
joint routeing behaviour of our Gibbsian system in the high-density limit. We investigate qualitative
properties of the minimizer of the variational formula in (1.24), such as the typical number of hops,
the typical length of a hop and the typical shape of a trajectory, in case γ > β = 0 and the interference
term is chosen as in Section 1.2.4. In this case, the minimizer is unique and has the form (cf. (1.35))

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)
k−1∏
l=1

µ(dxl)

µ(W )
e
−γ

∑k
l=1

∫
W `(|y−xl|)µ(dy)
`(|xl−1−xl|) , k ∈ [kmax], (1.40)
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where

1

A(x0)
=

kmax∑
k=1

∫
Wk−1

k−1∏
l=1

µ(dxl)

µ(W )
e
−γ

∑k
l=1

∫
W `(|y−xl|)µ(dy)
`(|xl−1−xl|) , x0 ∈W. (1.41)

Further, the empirical measures of trajectories Σλ(S) = (Rλ,k(S))k∈[kmax] converge to this minimizer

under the Gibbs distribution Pγ,0
λ,Xλ , almost surely as λ → ∞. Thus, qualitative information about

Σ = (νk)k∈[kmax] yields information about these empirical measures for large λ.

In order to obtain clear pictures and neat results, one needs to analyse the minimizer in extreme
regimes. That is, one has to carry out another limit after the high-density limit has been taken. We
consider the following regimes: (1) large communication areas, coupled with large transmitter–receiver
distances and large numbers of hops, (2) strong penalization of interference, (3) high local density of
the intensity measure on a subset of W . In these regimes, the probability of deviating from the typical
behaviour decays exponentially fast. This indicates that the behaviour of the minimizers is close to the
limiting one already for moderate values of the diverging parameter(s). In regime (2), this indication
is supported by numerical examples [KT18, Section 8]. We now survey the main results of [KT18]
about regimes (1), (2), (3) in words; for further details, see [KT18, Sections 3, 4, 5], respectively.

In regimes (1) and (2), the typical trajectory quickly approaches the straight line between trans-
mitter and receiver, and the probability of macroscopic deviations from this straight line decays
exponentially fast. Interestingly, in regime (1), the typical number of hops tends to infinity in a sub-
linear way, thus the typical length of a hop tends to infinity. In regime (3), we analyse the global and
local repulsive effect of a particularly highly populated subset of W . Here, we replace the intensity
measure µ by µa = µ + aLeb|∆ for some ∆ ⊆ W with Leb(∆) > 0, and we let a → ∞. The global
effect is that if ` is close to constant on W , then Ma(W ) tends to zero exponentially fast as a→∞.
Here, Ma is the measure M of all relaying hops (cf. (1.19)) corresponding to the minimizer (1.40), in
case µ is replaced by µa. As for local effects, we discuss under what conditions it becomes unlikely
for small ∆ for a user to choose a relay inside a small neighbourhood of ∆ than one outside a larger
neighbourhood of ∆.

1.8. Discussion.

1.8.1. The interference term and the congestion term. The interference term S(s) in (1.13) quantifies
the joint quality of the transmissions of the messages in terms of a sum of an individual interference
term over all the N(λ) trajectories and over all of their hops. The reason why we choose the reciprocals
of the SIRs is that the bandwidth used for a transmission is defined [SPW07] as

%

log2(1 + SIR(·))
, (1.42)

where % is the data transmission rate, and SIR is defined as in (1.12) but without the factor of 1/λ
in the denominator. This quantity is of order 1/λ for λ large, under the assumption that Lλ =⇒ µ.
Thus, in the high-density setting λ → ∞, (1.42) can be approached well by (a constant times) the
reciprocals of the SIR, since log(1 + x) ∼ x as x→ 0.

The reason that we took the sum over all the hops of a trajectory is that [SPW07, Section 3] suggests
that in case of multihop communication, the used bandwidth equals the sum of the used bandwidth
values corresponding to the individual hops. See [BC12] for another (single hop) setting where the
sum of inverse values of SIRs appears as a cost function to be minimized.

The congestion term M(s) in (1.15) counts the number of ordered pairs of incoming hops arriving at
the relays in the system. This is certainly an important characteristics of the quality of service, as too
high an accumulation of many messages at relays results in a delay. Hence, it is natural to suppress
the occurrence of such events, in order to increase the value of the model for realistic modeling.
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An important property of this term is that it introduces dependence between the trajectories of
different messages, unlike the interference term. Indeed, while S(s) can be decomposed into a sum
of terms depending on the respective trajectories, each summand in M(s) involves many different
trajectories. This is not only true in the special case of penalizing interference and congestion, but in
general in our setting introduced in Section 1.2.3.

1.8.2. The entropy term. Let us now explain some important properties of the entropy term

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm) + µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e
(1.43)

defined in (1.23).

According to (i) and (iii) in (1.19), we have that M(W ) ≤ (kmax − 1)µ(W ), further, the first term
on the right-hand side of (1.23) is bounded from below. Moreover, since by (ii) in (1.19), we have∑

m∈N0

cm =
∑
m∈N0

µm(W )

µ(W )
= 1, (1.44)

it follows that
∑∞

m=0HW (µm | µcm) is nonnegative. These together with elementary properties of
the relative entropy [DZ98, Section 6.2] imply that I(Ψ) is well-defined as an element of (−∞,∞]
and Ψ 7→ I(Ψ) is a lower semicontinuous function that is bounded from below. More precisely, the
LDP in Theorem 1.4 implies that the infimum of I(Ψ) over admissible trajectory settings equals

−µ(W ) log kmax, which equals the almost sure limit of 1/λ times the logarithm of the total mass k
N(λ)
max

of the joint a priori measure (1.4).

Let us now provide an interpretation of I(·). Let λ > 0 and s ∈ Skmax(Xλ). Recall the empirical mea-
sure family Ψλ(s) =

(
(Rλ,k(s))k∈[kmax], (Pλ,m(s))m∈N0

)
from (1.27) and the constraints (1.18), which

are similar to the ones (1.19) but with µ replaced by the rescaled empirical measure Lλ everywhere.

Informally speaking, for λ > 0 large, I(Ψ) asymptotically describes the following crucial counting
term:

I(Ψ) ≈ − 1

λ
log

#
{
s ∈ Skmax(Xλ) : Rλ,k(s) ≈ νk, ∀k ∈ [kmax] and Pλ,m(s) ≈ µm, ∀m ∈ N0

}
N(λ)

∑
i∈Iλ (s̃i−1−1)

, (1.45)

where s̃ in the denominator is an arbitrarily chosen element of the set in the numerator. In this way,
it fully describes the distribution of Ψλ(s) on an exponential level.

A major part of the proof of Theorem 1.2 consists in making (1.45) rigorous and verifying the corre-
sponding formal statement. In the beginning of Section 2, we will argue why taking “=” signs instead
of “≈” in the numerator of the right-hand side of (1.45) is not applicable. Instead, first, in Section 2.1,
we will introduce a spatial discretization procedure and formulate a rigorous discrete version of these
“≈” relations for fixed λ and fixed fineness parameter of the discretization. In Section 2.2, we will
derive explicit combinatorial formulas for the cardinality of the trajectories in this setting. Next, in
Section 3.1, we will conclude that 1/λ times the logarithm of the quotient of the obtained counting

complexity and the term N(λ)
∑
i∈Iλ (s̃i−1−1) tends to I(Ψ) in the limit λ→∞ followed by the fineness

parameter of the discretization tending to zero.

The characterization of I(Ψ) that arises directly from this argument is not exactly (1.43) but another,
however identical expression (3.3). The reason why we chose (1.43) as the definition of I(Ψ) is that
it is given in terms of objects that are commonly used in large deviations theory: relative entropies,
multiples of total masses of the corresponding measures plus an additive constant. In particular, we
find it natural in (1.43) that each µm is compared to the intensity measure µ multiplied by the weight
of a Poisson distribution at m. Indeed, in case β = 0, for the minimizer Ψ of the variational formula
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(1.35), (dµm
dµ (x))m∈N0 is the Poisson distribution with parameter dM

dµ (x) for each x ∈ W . Roughly

speaking, the relative entropies plus the linear term µ(W )(1−
∑kmax

k=1 M(W )k−1) arise from 1/λ times
the logarithmic rates of certain multinomial expressions in the above mentioned discretized counting
procedure, after carrying out the limit λ→∞ followed by the fineness parameter tending to zero.

1.8.3. Rotation symmetry. Let us assume that β = 0 (cf. Section 1.6), and let us consider the special

setting of Section 1.2.4 where S penalizes interference. If W = Br(o) ⊂ Rd is a closed ball and
µ is invariant under rotations, then the measures (νk)k in (1.35) are also invariant under rotations
of the entire trajectory, i.e., for any orthogonal d × d-matrix O, we have that νk(dx0, . . . ,dxk−1) =
νOk (dx0, . . . ,dxk−1) ≡ νk(d(Ox0), . . . ,d(Oxk−1)) for any k ∈ [kmax]. This is easily seen by an inspection
of the formulas for the entropy term J in (1.32) and for the interference term S in (1.21), as the function
(x, y) 7→

∫
W `(|z − y|)µ(dz)/`(|x − y|) is invariant under multiplication of both arguments with the

same orthogonal matrix.

1.8.4. Non-Poissonian users. In fact, the main results of this paper hold for any collection of (random

or non-random) point processes ((Xi)i=1,...,N(λ))λ>0 on W for which Lλ = 1
λ

∑N(λ)
i=1 δXi converges

weakly (almost surely, if random) to µ as λ → ∞. Neither the independence or monotonicity in λ,
nor the Poissonity of (N(λ))λ>0 is used for the proofs. For example, our results remain also true for
the deterministic set Xλ = W ∩ ( 1

λZ
d) and µ the Lebesgue measure on W .

1.8.5. The annealed setting. Of mathematical interest might also be the annealed setting, where we
average also over the locations of the users. In order to get an interesting result, we have to assume
that Lλ satisfies a large deviation principle on the set M(W ) with some good rate function H. (In
the case of a Poisson point process with intensity measure λµ, H would be [HJP16, Proposition 3.6]
the relative entropy with respect to µ, see (1.20).) Then the large-λ exponential rate of the annealed
free energy should be equal to the negative infimum over µ0 ∈M(W ) of H(µ0) plus the quenched rate
function terms from the right-hand side of (1.24) with µ replaced by µ0 everywhere. Also our other
results on the LDP and the form of the minimizer(s) should have some analogue, which we do not
spell out.

1.8.6. Extensions of the model of Section 1.2.4. The main goal of this paper is to set up a model
where message routeing happens probabilistically, with a uniform a priori distribution weighted by
two penalization terms of different nature. Our results demonstrate how the interplay between entropy
and energy leads to an orderly behaviour of the system in the high-density limit on its own.

Section 1.2.4 provides an example of the two penalization terms that can be interpreted in terms
of well-known objects in telecommunication. In Section 1.7.2, we summarized qualitative properties
of the minimizer of the variational formula in this special setting for β = 0. This special case can be
viewed as a snap-shot type model, where there is no time-dependence but all hops of all transmissions
happen simultaneously at the same time. Further, we assume that each user submits exactly one
message. However, one can relax these assumptions and make the model more realistic in various
ways.

First, one easily sees from the proofs in Sections 2–(5) that Theorems 1.2 and 1.4 as well as Proposi-
tion 1.5 can be extended to cases where users send out no message or multiple messages. This models
the standard situation in which large messages are cut into many smaller ones, who independently find
their ways through the system. For this, the trajectory probability space has to be enlarged: to each
user Xi ∈ Xλ, we attach the number Pi ∈ N0 of transmitted messages, and for each j ∈ {1, . . . , Pi},
there is an independent trajectory Xi → o. The empirical trajectory measure Rλ,k(·) must be aug-

mented by these trajectories. The main additional assumption then is that
∑kmax

k=1 π0Rλ,k(S) converges
to some measure µ0 ∈ M(W ) with 0 6= µ0 � µ. (Also the case that µ0 is not absolutely continuous
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with respect to µ is interesting, but will need additional work.) The interference term S(·) introduced
in (1.13) also has to be changed. According to [BB09, Sections 2.3.1, 5.1], the SIR of the transmission
of one of the Pi messages from Xi to x ∈W should be defined as

`(|Xi − x|)
1
λ

∑
j∈Iλ `(|Xj − x|)Pj

.

One could also incorporate (possibly random) sizes of the messages, which would require an additional
enlargement of the trajectory space.

Second, the model of Section 1.2.4 can be made time-dependent. If one, e.g., introduces kmax discrete
time slots indexed by [kmax], and assumes the lth hop of any message trajectory to happen at time l
for any l ∈ [kmax], then the interference of a transmission at time l is obtained from the starting points
of all hops that happen at the same time, see [GK00, Section I.A]. The SIR is defined analogously to
(1.12) but with this notion of interference, which depends on the entire message trajectories rather
than only on the users. Further, the congestion term can also be adapted to the time-dependent
situation via counting numbers of incoming hops at each time step separately. This variant of the
model is indeed mathematically not far from the model treated in the present paper; for example the
entropy term does not change.

More realistic and mathematically much more demanding time-dependent versions of our model can
be set up in various ways; for example, one could allow for a much longer time horizon (for example,
of order λ, and then dropping the factor of λ in the interference term), which must come with the
possibility of messages standing still for many separate time units. Furthermore, one could allow
users to transmit multiple messages over time. One could also introduce mobility of users similarly to
[HJKP18]. The new notion of SIR comes with significant changes in the behaviour of the system in
the high-density limit, and we decided to defer such investigations to a later work.

1.8.7. Allowing an unbounded number of hops. If the upper bound kmax for the length of the trajec-
tories is dropped, then the a priori measure defined in (1.4) has infinite total mass, and therefore the
entropy function I is not bounded from below. However, since the function fk in (1.7) is bounded
from below, for any γ > 0, β ≥ 0, the total probability mass of all the k-hop trajectories under the
Gibbs distribution is upper bounded by some geometrically decaying term in k. Hence, the definition
of the model is no problem for kmax =∞ and γ > 0, β ≥ 0. We believe that all our results of Section 1
about its limiting behaviour as λ→∞ remain essentially true (apart from the LDP under the a priori
measure). However, proofs will require an additional cutting argument, which might become rather
nasty. Our belief that the results remain unchanged is supported by the fact that also the minimizing
objects Ψ = ((νk)

kmax
k=1 , (µm)∞m=0) defined in Proposition 1.3 enjoy a geometric upper bound for νk(W

k)
in k. Thus, these measures are also well-defined and form the set of minimizers of the variational
formula (1.24) in case kmax =∞. The assertions of [KT18] corresponding to the large-distance limit,
which we explained in Section 1.7.2, are proved also for kmax =∞, see [KT18, Section 3.3.3].

1.8.8. Relation to an optimization problem via Monte Carlo Markov chains. In the light of the Sec-
tion 1.8.1, it is certainly interesting to minimize the cost function s 7→ γS(s) + βM(s) for fixed
γ, β ∈ (0,∞). (For game-theoretic properties of this optimization problem, we refer the reader to
[KT18, Section 7].) Computationally, this is in general a hard problem for high densities λ because
the cardinality of Skmax(Xλ) increases super-exponentially in N(λ) � λ. Thus, computing all values
of s 7→ γS(s) + βM(s) and then extracting the maximum is only feasible for small λ.

Now, our Gibbs distribution opens the possibility to optimize this cost function via the well-known
approach of simulated annealing. Furthermore, for λ large, it is substantially less complex to realize the
Gibbs distribution using Monte Carlo Markov chains than to directly minimize the cost function. Thus,
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our Gibbsian ansatz provides an easier implementable joint strategy for the routeing of all messages,
preferring trajectory collections having low cost function values, already for moderate values of γ, β.

Indeed, the recent master’s thesis of Morgenstern [M18] investigates the computational complexity

of realizing the Gibbs distribution Pγ,β
λ,Xλ numerically using Monte Carlo Markov chains, for λ, β, γ > 0.

The author finds irreducible and aperiodic Markov chains on the state space Skmax(Xλ), both of Gibbs
sampler and Metropolis types, having the Gibbs distribution as their stationary distribution. These

chains converge towards Pγ,β
λ,Xλ as the number of Markovian steps tends to infinity. Using these chains,

the number of operations needed in order to simulate the Gibbs distribution up to a given error ε > 0
in total variation distance is at most exponential in λ. This is much more efficient than evaluating all
the trajectory collections. In a variant of the Gibbsian model where each user can receive at most a
given number mmax ∈ N0 incoming hops, the number of necessary operations is even polynomial in λ.

These Monte Carlo Markov chains can also be used in order to find the optimum of the cost function
s 7→ γS(s) + βM(s) for a fixed λ and a fixed realization of Xλ, using simulated annealing. Here, one
lets the transition probability of the t-th step of the chain depend on t via replacing (γ, β) by (γt, βt)
such that γt, βt → ∞ sufficiently slowly as t → ∞. [M18, Theorem 7.1] shows that if one chooses

βt = β
γ γt ≤ c0 log t for a suitably chosen c0 = c0(λ) � λ/N(λ)2, then the Markov chain converges to

the uniform distribution on the set of minimizers of the cost function.

2. The distribution of the empirical measures

Having seen in Section 1.5 that the Gibbsian model can be entirely described in terms of the
trajectory setting Ψλ(s), i.e., of the crucial empirical measures Rλ,k(s) and Pλ,m(s) defined in (1.5)–
(1.17), we now consider the question how to describe their distributions. We have to quantify the
number of message trajectory families s that give the same family of empirical measures. The plain
and short (but wrong) answer is ∑

s∈Skmax (Xλ) : Rλ,k(s)=νk ∀k, Pλ,m(s)=µm ∀m

∏
i∈Iλ

1

N(λ)s
i
−1−1

≈ e−λI(Ψ), (2.1)

where we recall I(Ψ) from (1.23) and recall that Ψ = ((νk)k∈[kmax], (µm)m∈N0). From such an assertion,
it is indeed not far to conclude Theorem 1.2, but the problem is that this statement is not true like
this. Actually, there are very many Ψ’s such that the left-hand side is equal to zero, for example if
any of the νk’s or µm’s has values outside 1

λN0. However, if we do not consider single Ψ’s, but open
sets of Ψ’s, then the idea behind (2.1) is sustainable. Therefore, we proceed in a standard way by
decomposing the area W into finitely many subsets and count the message trajectories only according
to the discretization sets that they visit. In Section 2.1 we introduce necessary notation for carrying out
this strategy, and we comment on the relevance of the discretization procedure. Next, in Section 2.2,
we derive explicit formulas for the distribution of the empirical measures in this discretization.

For the purpose of the present paper, where we consider the high-density limit λ → ∞, we later
need to take this limit and afterwards the limit as the fineness parameter δ of the decomposition of
W goes to zero. The outcome of these parts of the procedure is formulated in Proposition 3.1. In
Proposition 3.2 the consequences for the interference term and for the congestion term are formulated.

2.1. Our discretization procedure. Let us now head towards the formulation of the discretization
procedure. We proceed by triadic spatial discretization of the Poisson point process (Xλ)λ>0, similarly
to the approach of [HJKP18]. To be more precise, we perform the following discretization argument.
Note that we may assume that our communication area W is taken as W = [−r, r]d, by accordingly
extending µ trivially. We write B = {3−n|n ∈ N0}. For δ ∈ B, we define the set

Wδ = {[x− rδ, x+ rδ]d : x ∈ (2rδZ)d ∩W}
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of congruent sub-cubes of W of side length 2rδ and centres in (2rδZ)d. Note that Wδ is a finite
set, o is a centre of an element of Wδ and any intersection of two distinct elements of Wδ has zero
Lebesgue measure. Elements of Wδ will be called δ-subcubes. We will assume that for all δ ∈ B,
the δ-subcubes are canonically numbered as W δ

1 , . . . ,W
δ
δ−d

, which can be done e.g. according to the
increasing lexicographic order of the midpoints of the subcubes. Now, for Lebesgue-almost every
x ∈W , for all δ ∈ B there exists a unique W δ

j that contains x; let us denote this W δ
j by W x

δ , and the
set of all x ∈W for which W x

δ is well-defined by WB.

Now, if ν ∈ M(W ), then for any δ ∈ B, we define νδ(·) = ν(· | Fδ) ∈ M(W ) as the conditional
version of ν given Fδ = σ(Wδ), that is, the measure on W that has in each box W δ

i a constant
Lebesgue density and mass equal to ν(W δ

i ). Since Fδ ⊂ Fδ′ for δ, δ′ ∈ B with δ′ < δ, we see that

(νδ)δ
′

= (νδ
′
)δ = νδ by the tower property. We also write Lδλ := (Lλ)δ for λ > 0 and δ ∈ B, where the

empirical measure Lλ was defined in (1.1). We proceed analogously for W k, k ∈ [kmax] instead of W .
Note that νδ =⇒ ν as δ ↓ 0, which can be shown by a martingale convergence argument, since the
union of all the Fδ generate the Borel-σ-field on W .

Now we are able to define what a standard setting is, the interpretation of which will be given right
after the definition. Roughly speaking, the measures νk and µm appearing in its definition will later
play the role of the measures appearing in (2.1), their δ-approximations are defined as above, and
their (δ, λ)-versions approach them in the limit λ→∞, followed by δ ↓ 0. The latter ones satisfy the

constraints of (1.18) restricted to F⊗kδ respectively Fδ, hence, the νk and µm will later turn out to be
eligible for the variational problem in (1.24) (under some mild additional assumption, see Lemma 2.5).

Definition 2.1. A standard setting is a collection of measures

Ψ =
(

(νk)
kmax
k=1 , ((ν

δ
k)kmax
k=1 )δ∈B, ((ν

δ,λ
k )kmax

k=1 )δ∈B,λ>0,

(µm)∞m=0, ((µ
δ
m)∞m=0)δ∈B, ((µ

δ,λ
m )∞m=0)δ∈B,λ>0, (µ

δ,λ)δ∈B,λ>0

) (2.2)

with the following properties: for any δ, δ′ ∈ B, λ > 0, k ∈ [kmax], m ∈ N0 and i, i0, . . . , ik−1 =
1, . . . , δ−d, respectively, νk ∈M(W k) and µm ∈M(W ), and

(1) µδ,λ = Lδλ.

(2) νδ,λk ∈M(W k). Further,
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ, moreover λνδ,λk (W δ

i0
× . . .×W δ

ik−1
) ∈ N0.

(3) If δ′ ≤ δ, then νδ
′,λ
k (· | F⊗kδ ) = νδ,λk (·).

(4) νδ,λk
λ→∞
=⇒ νδk.

(5) µδ,λm ∈M(W ) with the property that
∑∞

m=0 µ
δ,λ
m = µδ,λ, moreover λµδ,λm (W δ

i ) ∈ N0.

(6)
∑∞

m=0mµ
δ,λ
m =

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k .

(7) If δ′ ≤ δ, then µδ
′,λ
m (· | Fδ) = µδ,λm (·).

(8) µδ,λm
λ→∞
=⇒ µδm.

Remark 2.2. Immediate properties of a standard setting Ψ are the following.

(A) If δ′ ≤ δ, then µδ
′,λ(· | Fδ) = µδ,λ(·).

(B) µδ,λ
λ→∞
=⇒ µδ since Lλ =⇒ µ as λ→∞.

(C) µδ(·) = µ(· | Fδ). In particular, µδ
δ↓0
=⇒ µ.

(D) νδk(·) = νk(· | F⊗kδ ). In particular, νδk
δ↓0
=⇒ νk.

(E) µδm(·) = µm(· | Fδ). In particular, µδm
δ↓0
=⇒ µm.

Remark 2.3 (Standard settings and message trajectories). The properties of Remark 2.2 explain
the meaning of the δ-indexed coordinates of a standard setting. Let us now interpret how one can
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obtain the (δ, λ)-dependent coordinates of a standard setting starting from a fixed trajectory collection
s ∈ Skmax(Xλ). Let

Pλ(s) =
1

λ

∑
i∈Iλ

δsi0
(2.3)

denote the empirical measure of the starting sites of the trajectories, then Pλ(s) = Lλ, by our as-
sumption that each user is picked precisely once in such a configuration. Hence, its δ-discretized

version P δλ(s) equals µδ,λ. Let us now choose νδ,λk = Rδλ,k(s) (recall (1.5)). Then the requirement∑kmax
k=1 π0ν

δ,λ
k = µδ,λ = Lδλ in (2) holds by (1.18). Further, let us choose µδ,λm = Pλ,m(s) (recall (1.17)).

Then the constraints
∑∞

m=0 µ
δ,λ
m = µδ,λ in (5) and

∑∞
m=0mµ

δ,λ
m =

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k in (6) also hold

by (1.18). Note that all the other requirements of Definition 2.1 are satisfied because of the tower
property respectively of the convergence of Lλ towards µ.

In the proof of Theorem 1.2, it will be essential to verify that, for certain standard settings,∑∞
m=0mµ

δ
m(W ) converges to

∑∞
m=0mµm(W ) as δ ↓ 0, which is not implied by Definition 2.1. How-

ever, similarly to the de la Vallée Poussin theorem about uniform integrability, the super-linear increase
of m 7→ η(m) yields the following handy criterion.

Definition 2.4. A controlled standard setting is a standard setting Ψ as in (2.2) with the following
extra property:

lim
λ→∞

∞∑
m=0

η(m)µδ,λm (W ) =
∞∑
m=0

η(m)µδm(W ) <∞, for all δ ∈ B. (2.4)

Note that by part (D) of Remark 2.2, we have
∑kmax

k=1 kνδk(W k) =
∑kmax

k=1 kνk(W
k) for any standard

setting. Using this, we verify the following lemma.

Lemma 2.5. Let Ψ be a controlled standard setting as in (2.2). Then Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) is an

admissible trajectory setting.

Proof. Part (2) of Definition 2.1 claims that for all δ ∈ B and λ > 0 we have
∑kmax

k=1 π0ν
δ,λ
k = µδ,λ. By

parts (B) and (C) of Remark 2.2, we have limδ↓0 limλ→∞ ν
δ,λ
k = νk in the weak topology of M(W k),

for any fixed k ∈ [kmax]. Similarly, by part (4) of Definition 2.1 and part (D) of Remark 2.2, we
have limδ↓0 limλ→∞ µ

δ,λ = µ in the weak topology of M(W ). Moreover, since taking marginals is a

continuous operation, also limδ↓0 limλ→∞ π0ν
δ,λ
k = π0νk for all k in the weak topology ofM(W ). Thus,

we have (i) in (1.19) for (νk)
kmax
k=1 . In order to see that (ii) holds for (µm)∞m=0, one can additionally

use part (5) of Definition 2.1, together with (2.4) and dominated convergence. Finally, by part (6) of
Definition 2.1, (2.4) in Definition 2.4, the fact that limm→∞ η(m)/m =∞ and dominated convergence,
we see that for any controlled setting Ψ, we also have

∞∑
m=0

mµm = lim
δ↓0

∞∑
m=0

mµδm = lim
δ↓0

lim
λ→∞

∞∑
m=0

mµδ,λm = lim
δ↓0

lim
λ→∞

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k =

kmax∑
k=1

k−1∑
l=1

πlνk (2.5)

in the weak topology ofM(W ). This implies (iii) in (1.19) for Ψ. Hence, Ψ is an admissible trajectory
setting. �

A converse of Lemma 2.5 also holds, in the following sense: for any admissible trajectory setting
Ψ = ((νk)

kmax
k=1 , (µm)∞m=0), there exists a standard setting containing it, which can be chosen controlled

if
∑

m∈N0
η(m)µm(W ) < ∞. This will be the content of Proposition 3.3, a preliminary result for

Theorems 1.2 and 1.4(i).
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2.2. The distribution of the empirical measures. In this section, we describe the combinatorics
of the system. For a standard setting Ψ as in Definition 2.1, let us introduce the configuration set

Jδ,λ(Ψ) =
{
s ∈ Skmax(Xλ)

∣∣∣ Rδλ,k(s) = νδ,λk ∀k, P δλ,m(s) = µδ,λm ∀m
}

(2.6)

for fixed δ ∈ B and λ > 0. In words, Jδ,λ(Ψ) is the set of families of trajectories such that the
δ-coarsenings of the empirical measures of the trajectories and the hop numbers are given by the
respective measures in the setting Ψ. Note that Jδ,λ(Ψ) depends only on the δ-λ depending measures
in the collection Ψ.

In case µδ,λ(W ) > 0, we will refer to the entity si0, i = 1, . . . , λµδ,λ(W ), as the ith user or ith
transmitter, the entity si, i = 1, . . . , λµδ,λ(W ), as the trajectory of the ith user, si−1 as the length

(number of hops) of si, sil as the l-th relay of si (for l = 1, . . . , si−1 − 1), finally mi(s) as the number

of incoming hops at the relay si0.

The combinatorics of computing #Jδ,λ(Ψ) is given as follows.

Lemma 2.6 (Cardinality of Jδ,λ(Ψ)). For any δ, λ > 0, and for any standard setting Ψ,

#Jδ,λ(Ψ) = N1
δ,λ(Ψ)×N2

δ,λ(Ψ)×N3
δ,λ(Ψ), (2.7)

where

N1
δ,λ(Ψ) =

δ−d∏
i=1

(
λµδ,λ(W δ

i )

((λνδ,λk (W δ
i ×W δ

i1
× . . .×W δ

ik−1
))δ
−d
i1,...,ik−1=1)kmax

k=1

)
, (2.8)

N2
δ,λ(Ψ) =

δ−d∏
i=1

(
λµδ,λ(W δ

i )

(λµδ,λm (W δ
i ))m∈N0

)
, (2.9)

N3
δ,λ(Ψ) =

δ−d∏
i=1

(
λ
∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i )
)

!∏∞
m=0m!λµ

δ,λ
m (W δ

i )
=

δ−d∏
i=1

(
λ
∑∞

m=0mµ
δ,λ
m (W δ

i )
)

!∏∞
m=0m!λµ

δ,λ
m (W δ

i )
. (2.10)

Proof. We proceed in three steps by counting first the trajectories, registering only the partition sets
W δ
i that they travel through, second, for each m ∈ N0, the sets of relays in each partition set that

receive precisely m ingoing hops and finally the choices of the relays for each hop in each partition set.
Since every choice in the three steps can be freely combined with the other ones, the product of the
three cardinalities is equal to the number of all trajectory configurations with the requested coarsened
empirical measures.

(A) Number of the transmitters of trajectories passing through given sequences of δ-subcubes. For
each configuration s ∈ Jδ,λ(Ψ) defined in (2.6), in each δ-subcube W δ

i , i = 1, . . . , δ−d, there

are λµδ,λ(W δ
i ) users. Out of them exactly λνδ,λk (W δ

i × W δ
i1
× . . .W δ

ik−1
) take exactly k hops,

having their first relay in W δ
i1

, their second in W δ
i2

etc. and their (k− 1)st relay in W δ
ik−1

, for any

k ∈ [kmax] and i1, . . . , ik−1 = 1, . . . , δ−d. Such choices in different sub-cubes W δ
i corresponding

to the transmitters are independent. Thus, the total number of such choices equals the number
N1
δ,λ(Ψ) defined in (2.8). Note that for i = 1, . . . , δ−d,

kmax∑
k=1

δ−d∑
i1,...,ik−1=1

νδ,λk (W δ
i ×W δ

i1 × . . .×W
δ
ik−1

) =

kmax∑
k=1

π0ν
δ,λ
k (W δ

i ) = µδ,λ(W δ
i ),

where we used part (2) of Definition 2.1; hence the multinomial expressions in (2.8) are well-
defined.
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(B) Number of incoming hops. In this step, for any δ-subcube W δ
i , we count all the possible ways

to distribute the incoming hops among the relays (= users) Xj ∈ W δ
i , under the two constraints

that in W δ
i there are λµδ,λ(W δ

i ) potential relays, and for any m ∈ N0, exactly λµδ,λm (W δ
i ) receive

precisely m incoming hops. Such choices are clearly independent of each other for different δ-
subcubes. Hence, the total number of such choices equals the number N2

δ,λ(Ψ) defined in (2.9).

Again, the constraint (5) from Definition 2.1 implies that the multinomial expression (2.9) is
well-defined. Clearly, all choices in this part are independent of the choices in part (A).

(C) Number of assignments of the hops to the relays. Assume that we have chosen one possible choice
in part (A) and one possible choice in part (B). We now derive the number of possible ways of
distributing, for any i, all the incoming hops in W δ

i among the relays in W δ
i . Let us call this

number Mi, then we know from part (A) that Mi = λ
∑kmax

k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i ), since each such

hop is the l-th of some of the trajectories for some l. The cardinality of the set of relays in W δ
i

is equal to λµδ,λ(W δ
i ) = λ

∑∞
m=0 µ

δ,λ
m (W δ

i ), and in part (B) we decomposed it into sets, indexed
by m, in which each relay receives precisely m ingoing hops. Let us call such a relay an m-relay.
Think of each such relay as being replaced by precisely m copies (in particular those with m = 0

are discarded), then we have λ
∑∞

m=0mµ
δ,λ
m (W δ

i ) virtual relays in W δ
i . (Note that this is equal

to Mi by (6).) Now, if all these m copies of the m-relays were distinguishable, then the number
of ways to distribute the Mi ingoing hops to the relays would be simply equal to Mi!. However,
since these m copies are identical, we overcount by a factor of m! for any m-relay. This means

that the number of hops into W δ
i is equal to Mi!/

∏∞
m=0(m!)λµ

δ,λ
m (W δ

i ). Since all these cardinalities
can freely be combined with each other, we have deduced that the number of possible choices is
equal to the number N3

δ,λ(Ψ) defined in (2.10).

We also see that all the choices in the three parts are independent of each other, i.e., can be freely
combined with each other and yield different combinations. Hence, we arrived at the assertion. �

3. The limiting free energy and the LDP: proof of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4(i), that is, we derive the variational formula in (1.24)
for the high-density (i.e., λ → ∞) exponential rate of the partition function, and we verify the LDP
for the empirical measures. Our first step is to derive the large-λ exponential rate of the combinatorial
formulas for the empirical measures of Lemma 2.6 in Section 3.1. Furthermore, in Section 3.2 we
formulate and prove how the interference term and the congestion term behave in the limits λ→∞,
followed by δ ↓ 0. In Section 3.3, given an admissible trajectory setting, we construct a standard
setting containing it. Using all these, in Section 3.4 we prove Theorem 1.2, and in Section 3.5, we
complete the proof of Theorem 1.4(i).

For the rest of this section, we fix the set Ω1 ⊂ Ω of full P-measure on which we do our quenched
investigations:

Ω1 =
{
ω ∈ Ω: Xi(ω) ∈WB ∀i ∈ N,

lim
λ→∞

#{i ∈ Iλ(ω) : Xi(ω) ∈W δ
j }

λ
= µ(W δ

j ), ∀j = 1, . . . , δ−d, ∀δ ∈ B
}
.

(3.1)

That P(Ω1) = 1 holds follows immediately from the Restriction Theorem [K93, Section 2.2] combined
with the Poisson Law of Large Numbers [K93, Section 4.2] and the fact that µ is absolutely continuous.
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3.1. The asymptotics of the combinatorics. Let us fix a controlled standard setting Ψ as in (2.2).
Fix any ω ∈ Ω1, and let the quantities Iλ and Xλ refer to this ω. Denote

N0
δ,λ(Ψ) =

δ−d∏
i=1

kmax∏
k=1

k−1∏
l=1

N(λ)λπlν
δ,λ
k (W δ

i ). (3.2)

For a measurable subset V of Rd and ν, ν̃ ∈M(V ), let us write HV (ν|ν̃) =
∫
V dν log dν

dν̃ if the density dν
dν̃

exists and HV (ν|ν̃) =∞ otherwise. (The difference between HV (ν|ν̃) and the relative entropyHV (ν|ν̃)

defined in (1.20) is the additive term ν̃(V )−ν(V ).) Let us recall M =
∑kmax

k=1

∑k−1
l=1 πlνk =

∑∞
m=0mµm

from (1.19) and cm = exp(−1/(eµ(W ))(eµ(W ))−m/m! from (1.23). Note that the rate function I
defined in (1.23) has also the representation

I(Ψ) =

kmax∑
k=1

HWk(νk | µ⊗k)−HW (M |µ) +
∞∑
m=0

HW (µm | µcm)− 1

e
, (3.3)

which we are going to use here. The equivalence between (3.3) and (1.23) will be verified in Section A
of the Appendix. Recall (1.44), which implies that the third term in (3.3) is invariant under replacing
H by H. We now identify the large-λ exponential rate of the cardinality of Jδ,λ(Ψ) both on the scale
λ log λ and λ:

Proposition 3.1 (Exponential rates of counting terms). Let Ψ be a controlled standard setting. Let

us write Ψ = ((νk)
kmax
k=1 , (µm)∞m=0). We have

lim
δ↓0

lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= −I(Ψ),

as an identity in [0,∞]. Moreover if I(Ψ) <∞, then

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Jδ,λ(Ψ) = M(W ) <∞,

almost surely.

Proof. Recall that Ψ is an admissible trajectory setting, according to Lemma 2.5. In particular,
I(Ψ) ∈ (−∞,∞] is well-defined.

We use Stirling’s formula λ! = (λ/e)λeo(λ) in the limit N 3 λ→∞, which leads to

lim
λ→∞

1

λ
log

(
a(λ)

a(λ)

1 , . . . , a(λ)
n

)
= −

n∑
i=1

ai log
ai
a
, (3.4)

for any integers a(λ)

1 , . . . , a(λ)
n that sum up to a(λ) and satisfy 1

λa
(λ)

i
λ→∞→ ai for i = 1, . . . , n with positive

numbers a1, . . . , an satisfying
∑n

i=1 ai = a.

From (2.8) we obtain that

I1
δ (Ψ) = − lim

λ→∞

1

λ
logN1

δ,λ(Ψ)

=
δ−d∑
i=1

kmax∑
k=1

δ−d∑
i1,...,ik−1=1

νδk(W δ
i ×W δ

i1 × . . .×W
δ
ik−1

) log
νδk(W δ

i ×W δ
i1
× . . .×W δ

ik−1
)

µδ(W δ
i )

,

where we also used that all the measures νδ,λk and µδ,λ converge as λ→∞ to νδk and µδ, respectively.

Now we add the term
∏k−1
l=1 µ

δ(W δ
il

) both in the numerator and the denominator under the log-

arithm and separate these two terms. In the former, we write its logarithm as
∑k−1

l=1 logµδ(W δ
il

),
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interchange this sum on l with all the other sums on the i0, . . . , ik−1 and write the sums over
i0, . . . , il−1, il+1, . . . , ik−1 in terms of the l-th marginal measure of νδk. This gives

I1
δ (Ψ) =

δ−d∑
i=1

kmax∑
k=1

δ−d∑
i1,...,ik−1=1

νδk(W δ
i ×W δ

i1 × . . .×W
δ
ik−1

) log
νδk(W δ

i ×W δ
i1
× . . .×W δ

ik−1
)

µδ(W δ
i )
∏k−1
l=1 µ

δ(W δ
il

)

+

δ−d∑
i=1

kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i ) logµδ(W δ
i ). (3.5)

In the same way as for Iδ1 , we obtain

I2
δ (Ψ) = − lim

λ→∞

1

λ
logN2

δ,λ(Ψ) =
δ−d∑
i=1

∞∑
m=0

µδm(W δ
i ) log

µδm(W δ
i )

µδ(W δ
i )
. (3.6)

Using (3.1), on Ω1 we have that the asymptotic behaviour of (3.2) is the following

N0
δ,λ(Ψ) = N(λ)λ

∑δ−d
i=1

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i ) = (λµ(W ))λ(1+o(1))
∑δ−d
i=1

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i ).

On the other hand, also by Stirling’s formula, we can identify the large-λ rate of the quotient of the
counting terms in (2.10) and (3.2) as follows:

I3,0
δ (Ψ) = − lim

λ→∞

1

λ
log

N3
δ,λ(Ψ)

N0
δ,λ(Ψ)

= − lim
λ→∞

1

λ
log

δ−d∏
i=1

(
1

eµ(W )

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

i )
)λ∑kmax

k′=1

∑k′−1
l′=1

πl′ν
δ,λ

k′ (W δ
i )∏∞

m=0m!λµm(W δ
i )

= −
δ−d∑
i=1

kmax∑
k′=1

k′−1∑
l′=1

πl′ν
δ
k′(W

δ
i )

(
log

kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i )− (1 + log µ(W ))

)

+
δ−d∑
i=1

∞∑
m=0

µδm(W δ
i ) log(m!),

(3.7)

where for the last term we used the fact that Ψ is controlled (see also Lemma 2.5), together with
dominated convergence. We can summarize the sum of the terms in (3.5), (3.6) and (3.7) as

− lim
λ→∞

1

λ
log

#Jδ,λ(Ψ)

N0
δ,λ(Ψ)

= I1
δ (Ψ) + I2

δ (Ψ) + I3,0
δ (Ψ)

=

kmax∑
k=1

δ−d∑
i0,...,ik−1=1

νδk(W δ
i0 × . . .×W

δ
ik−1

) log
νδk(W δ

i0
× . . .×W δ

ik−1
)∏k−1

l=0 µ
δ(W δ

il
)

+

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i )
(

log
µδm(W δ

i )

µδ(W δ
i )

+m(1 + log µ(W )) + log(m!)
)

−
δ−d∑
i=1

(
kmax∑
k=1

k−1∑
l=1

πlν
δ
k(W δ

i )

)
log

∑kmax
k=1

∑k−1
l=1 πlν

δ
k(W δ

i )

µδ(W δ
i )

,

(3.8)

where in the first line on the right-hand side we changed the summing index i into i0. Since we have

∞∑
m=0

µδm(W ) =

∞∑
m=0

µm(W ) = µ(W ),
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and thus

δ−d∑
i=1

∞∑
m=0

µδm(W δ
i )
(

log
µδm(W δ

i )

µδ(W δ
i )

+m(1 + log µ(W )) + log(m!)
)

=
∞∑
m=0

µδm(W δ
i ) log

µδm(W δ
i )

cmµδ(W δ
i )
− 1

e
,

we obviously arrived at the discrete version of the entropy terms in (3.3), more precisely, the entropy

of the measures in (3.3) with respect to the σ-field Fδ, respectively F⊗kδ . Now, according to [G11,
Proposition (15.6)], the limit of these entropies as δ ↓ 0 is equal to their corresponding continuous
version, i.e., the right-hand side of (3.8) converges to I(Ψ). The first part of Proposition 3.1 follows.

Moreover, if I(Ψ) <∞, then we have by continuity

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Jδ,λ(Ψ) = lim

δ↓0
lim
λ→∞

1

λ log λ
logN0

δ.λ(Ψ)

= lim
δ↓0

lim
λ→∞

kmax∑
k=1

k−1∑
l=1

δ−d∑
i=1

πlν
δ,λ
k (W δ

i ) =

kmax∑
k=1

k−1∑
l=1

πlνk(W ) =

kmax∑
k=1

(k − 1)νk(W
k) ∈ [0,∞),

where in the last identity we used that by Fubini’s theorem, π0νk(W ) = νk(W
k) holds for all k. Hence,

using that Ψ is an admissible trajectory setting, we conclude the second part of Proposition 3.1. �

3.2. Approximations for the penalization terms. The limiting relations between the penalization
terms depending on the numbers of incoming hops in (1.9) and (1.22), and between the continuous
penalization terms in (1.7) and (1.21) are given as follows.

Proposition 3.2. Let Ψ be a controlled standard setting. Let us write Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) for

the admissible trajectory setting contained in Ψ. Then, almost surely,

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣ 1
λ
M(s)−M(Ψ)

∣∣∣ = 0, (3.9)

and

lim
δ↓0

lim
λ→∞

sup
s∈Jδ,λ(Ψ)

∣∣∣ 1
λ
S(s)− S(Ψ)

∣∣∣ = 0. (3.10)

Proof. Throughout the proof, we perform our analysis on Ω1. First, we show (3.9). Consider some
s ∈ Jδ,λ(Ψ) for λ > 0 and δ ∈ B. Additionally assume that sil ∈ WB for all i ∈ Iλ and l = 0, . . . , k
(which is always the case for s = S = (Si)i∈Iλ on Ω1).

Then P δλ(s) = µδ,λ and P δλ,m(s) = µδ,λm for all m ∈ N0, see the definition (2.6) of Jδ,λ(Ψ), (2.2) and

(2.3). Recall that mi(s) is the number of ingoing messages at relay Xi for the trajectory configuration
s. Hence we have

M(s) =
∑
i∈Iλ

η(mi(s)) =
∞∑
m=0

η(m)#{i ∈ Iλ : mi(s) = m} =
∞∑
m=0

η(m)Pλ,m(s)(W )

=

∞∑
m=0

η(m)P δλ,m(s)(W ) = λ

∞∑
m=0

η(m)µδ,λm (W ),

for all such s. Note that by part (8) of Definition 2.1 and part (E) of Remark 2.2, we obtain that µδ,λm
tends to µm as λ→∞ followed by δ ↓ 0. Now, (2.4) in Definition 2.4, together with the fact that the
total mass of µδm equals the one of µm for any m, implies the assertion in (3.9).

We continue with verifying (3.10). Let us fix an arbitrary controlled standard setting Ψ. Our
goal is to prove that (3.10) holds for this Ψ. Using that, for an admissible trajectory setting Ψ =
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((νk)
kmax
k=1 , (µm)∞m=0), S(Ψ) depends only on (νk)

kmax
k=1 , we have for any λ > 0, δ ∈ B, s ∈ Jδ,λ(Ψ) and

k ∈ [kmax]

1

λ
S(s)− S(Ψ) = 〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νk, fk(µ, ·)〉.

In the rest of Section 3, we will often have to verify convergence of certain (sequences of) measures
in the (coordinatewise) weak topology. In order to keep our arguments clear and short, for k ∈ N,
we fix a metric dk(·, ·) on M(W k) that generates the weak topology on this space. It turns out to be
convenient to choose dk to be the Lipschitz bounded metric [DZ98, Section D.2] on M(W k), that is,

dk(ν
1
k , ν

2
k) = sup{|〈ν1

k , f〉 − 〈ν2
k , f〉| : f ∈ Lip1(W k)} (3.11)

for all k, where Lip1(W k) is the set of Lipschitz continuous functions taking W k to R with Lipschitz
parameter less than or equal to 1 and with uniform bound 1. We have for k ∈ [kmax]∣∣∣ 1

λ
S(s)− S(Ψ)

∣∣∣ =
∣∣∣〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νk, fk(µ, ·)〉∣∣∣

≤
∣∣∣〈Rλ,k(s), fk(Lλ, ·)〉 − 〈νδ,λk , fk(Lλ, ·)〉

∣∣∣+
∣∣∣〈νδ,λk , fk(Lλ, ·)〉 − 〈νδ,λk , fk(L

δ
λ, ·)〉

∣∣∣
+
∣∣∣〈νδ,λk , fk(L

δ
λ, ·)〉 − 〈ν

δ,λ
k , fk(µ, ·)〉

∣∣∣+
∣∣∣〈νδ,λk , fk(µ, ·)〉 − 〈νk, fk(µ, ·)〉

∣∣∣. (3.12)

Now, we claim that all the four terms on the right-hand side tend to 0 in the limit λ → ∞ followed
by δ ↓ 0. Indeed, for the first term, let g ∈ Lip1(W k). Then we have∣∣∣〈Rλ,k(s),g〉 − 〈νδ,λk , g〉 =

∣∣∣ ∫
Wk

g(y)Rλ,k(s)(dy)−
∫
Wk

g(y)Rδλ,k(s)(dy)
∣∣∣

≤
δ−d∑

i0,...,ik−1=1

sup
y,z∈W δ

i0
×...×W δ

ik−1

|g(y)− g(z)|Rλ,k(s)(W δ
i0 × . . .×W

δ
ik−1

)

≤ δ
√
dkRλ,k(s)(W ) ≤ δ

√
dkLλ(W ),

which tends to 0 as λ → ∞ followed by δ ↓ 0. It follows that Rλ,k(s) − νδ,λk tends weakly to 0 as

λ → ∞ followed by δ ↓ 0. We note that for any α > 0, the restriction of fk to M≤α(W ) × W k

is bounded, where we wrote M≤α(V ) for the set of measures on the space V with total mass ≤ α.
Indeed, since W is compact,M≤α(W ) with the weak topology is also a compact, metrizable space by
Prohorov’s theorem. Thus, the continuous function fk : M≤α(W )×W k → R is uniformly continuous,
and therefore it is bounded. Now, since eventually Lλ ∈M≤2µ(W )(W ), the first term on the right-hand
side of (3.12) tends to 0.

As for the second term, note that for any δ ∈ B, Lλ − Lδλ tends to µ − µδ as λ → ∞, which tends

to 0 as δ ↓ 0. Thus, by the fact that fk is continuous and bounded on M≤2µ(W )(W ) × W k and

eventually Lλ, L
δ
λ, ν

δ,λ
k ∈ M≤2µ(W )(W ) for all δ ∈ B, the second term also tends to 0 as first λ → ∞

and afterwards δ ↓ 0. An analogous argument applies for the third term, using that Lδλ converges

to µ as first λ → ∞ and then δ ↓ 0 by part (B) of Remark 2.2 and the definition of µδ, δ ∈ B.
The fourth term tends to zero since it easily follows from part (4) of Definition 2.1 and part (D) of

Remark 2.2 that νδ,λk converges weakly to νk, and fk is continuous as bounded onM≤2µ(W )(W )×W k.
We conclude (3.10) and Proposition 3.2. �

3.3. Existence of standard settings. Recall that we equip A defined in (1.29) with the product
topology of the weak topologies of the factors M(W k), M(W ), and that this is the topology of
coordinatewise weak convergence. For k ∈ N, let dk(·, ·) be the Lipschitz bounded metric (3.11) on
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M(W k), which generates the weak topology on this space. Then,

d0(Ψ1,Ψ2) =

kmax∑
k=1

dk(ν
1
k , ν

2
k) +

∞∑
m=0

2−md1(µ1
m, µ

2
m), Ψ1,Ψ2 ∈ A, (3.13)

is a metric on A that generates the product topology. For % > 0 and Ψ ∈ A, let us write B%(Ψ) =
{Ψ′ ∈ A : d0(Ψ′,Ψ) < %} for the open %-ball around Ψ. We have the following.

Proposition 3.3. On Ω1, for any admissible trajectory setting (see Definition 1.1), Ψ =
((νk)k, (µm)m), there exists a standard setting Ψ containing it. If

∑
m η(m)µm(W ) < ∞, then Ψ

can be chosen to be a controlled standard setting.

Proof. We fix an admissible trajectory setting Ψ and construct Ψ as follows. As is required in Definition
2.1, the measures νδk for k ∈ [kmax] and µδm for m ∈ N0 are the δ-coarsenings of the measures νk and

µm, respectively, and µδ,λ = Lδλ. Now for δ ∈ B and λ > 0, pick some measures νδ,λk and µδ,λm with

values in 1
λN0 such that the requirements (2)

∑kmax
k=1 π0ν

δ,λ
k = µδ,λ, (5)

∑∞
m=0 µ

δ,λ
m = µδ,λ and (6)∑∞

m=0mµ
δ,λ
m =

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k of Definition 2.1 are met, such that νδ,λk =⇒ νδk and µδ,λm =⇒ µδm as

λ→∞ and such that the collection Ψ of all these measures is a standard setting containing Ψ, which
is controlled if

∑
m η(m)µm(W ) <∞.

We claim that this can be done by taking suitable up- and downroundings of the numbers

ν ′δ,λk (W δ
i0 × . . .×W

δ
ik−1

) = νδk(W δ
i0 × . . .×W

δ
ik−1

)
Lδλ(W δ

i0
)

µδ(W δ
i0

)
1{µδ(W δ

i0) > 0}, k ∈ [kmax], (3.14)

for all i0, . . . , ik−1 = 1, . . . , δ−d, and dividing by λ, analogously for the µm’s. Now, using the d-metric
defined in (3.13), we prove that the convergences required in Definition 2.1 hold for such Ψ.

First, we prove the convergence of the δ-coarsenings Ψδ = ((νδk)k, (µ
δ
m)m) to Ψ in the d0-metric. We

claim that for any % > 0, there exists δ0 ∈ B such that Ψδ ∈ B%(Ψ) for all B 3 δ ≤ δ0. Indeed, for

k ∈ [kmax], νk ∈ M(W k) and δ ∈ B we see that the distance between νk and its δ-coarsening is of
order δ with respect to the Lipschitz bounded metric:

dk(νk, ν
δ
k) = sup

f∈Lip1(Wk)

∣∣∣ δ−d∑
i0,...,ik−1=1

(∫
W δ
i0
×...×W δ

ik−1

f(x)νk(dx)−
∫
W δ
i0
×...×W δ

ik−1

f(x)νδk(dx)
)∣∣∣

≤ sup
f∈Lip1(Wk)

δ−d∑
i0,...,ik−1=1

sup
x,y∈W δ

i0
×...×W δ

ik−1

|f(x)− f(y)|νk(W δ
i0 × . . .×W

δ
ik−1

) ≤ δνk(W k)
√
kd,

where we wrote x = (x0, . . . , xk−1); and analogously for µm. Thus, we have

d0(Ψ,Ψδ) ≤ δ
√
d
[ kmax∑
k=1

νk(W
k)
√
k +

∞∑
m=0

µm(W )2−m
]
.

Since
∑∞

m=0 µm(W ) <∞ by (ii) in (1.19), there exists a constant C, only depending on Ψ, such that

Ψδ ∈ B%(Ψ) for any δ ≤ C%.

Second, we ignore the up- or downroundings in the construction of Ψ and prove the following. For
δ ∈ B and λ > 0, let Ψ′δ,λ be the collection of the measures introduced in (3.14). We claim that on
Ω1, we have

lim sup
λ→∞

d0(Ψδ,Ψ′δ,λ) = 0.
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Indeed, for any k ∈ [kmax] and i0, . . . , ik−1 = 1, . . . , δ−d, dk(ν
δ
k, ν
′δ,λ
k ) is bounded from above by

sup
f∈Lip1(Wk)

δ−d∑
i0,...,ik−1=1

νδk(W δ
i0 × . . .×W

δ
ik−1

)
∣∣∣Lδλ(W δ

i0
)

µδ(W δ
i0

)
− 1
∣∣∣‖f‖∞ ≤ νδk(W k)

δ−d
max
i0=1

∣∣∣Lδλ(W δ
i0

)

µδ(W δ
i0

)
− 1
∣∣∣. (3.15)

Similarly, for any δ ∈ B and m ∈ N0, d1(µδm, µ
′δ,λ
m ) vanishes in the limit λ→∞. Thus,

d0(Ψδ,Ψ′δ,λ) ≤
( kmax∑
k=1

νδk(W k) +
∞∑
m=0

2−mµδm(W )
)

δ−d
max
i0=1

∣∣∣Lδλ(W δ
i0

)

µδ(W δ
i0

)
− 1
∣∣∣,

which tends to 0 on Ω1 as λ→∞, according to (3.1).

Now, if we add the suitable up- and downroundings, we only change distances in the d-metric by
an error term of order 1/λ, which vanishes as λ → ∞. This implies that Ψ is a standard setting. It
also follows easily that if

∑
m η(m)µm(W ) <∞, then Ψ is controlled. �

3.4. Proof of Theorem 1.2. Abbreviate

Y(r) =
( ∏
i∈Iλ

N(λ)−(ri−1−1)
)

exp
{
− γS(r)− βM(r)

}
, λ > 0, r ∈ Skmax(Xλ),

and note that the partition function is given as

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ)

Y(r). (3.16)

Then Theorem 1.2 says that its large-λ negative exponential rate is given as the infimum of I(Ψ) +
γS(Ψ) + βM(Ψ), taken over all admissible trajectory settings Ψ. Throughout the proof, we assume
that the configuration Xλ = Xλ(ω) comes from some ω ∈ Ω1 defined in (3.1).

Having proved Propositions 3.1, 3.2 and 3.3, our strategy to prove Theorem 1.2 is the following.
First, Proposition 3.3 gives a standard way of constructing from an admissible trajectory setting Ψ
satisfying I(Ψ) + γS(Ψ) + βM(Ψ) < ∞ a controlled standard setting Ψ that contains Ψ. Then the
lower bound for the partition function is easily given in terms of the objects that are contained in any
such Ψ and using the logarithmic asymptotics for their combinatorics from Propositions 3.1 and 3.2
and finally taking the infimum over all such Ψ, respectively Ψ. The upper bound needs more care,
since the entire sum over r has to be handled. First of all, we show that the sum can be restricted
for all λ > 0, modulo some error term that is negligible on the exponential scale, to the sum of those
configurations whose congestion exponent is at most Cλ for some appropriate large constant C > 0.
This sum can be decomposed, for any δ ∈ B, to sums on configurations coming from a particular choice
of empirical measures on the δ-partitions of W . The number of these empirical measures and the sum
on the partitions is negligible in the limit λ → ∞, and the asymptotics of the sums on r in these
partitions can be evaluated with the help of our spatial discretization procedure, using arguments of
the proofs of Propositions 3.1 and 3.2 in the limit λ → ∞, followed by δ ↓ 0. Using these, we arrive
at the formula (1.24).

Let us give the details. We start with the proof of the lower bound. For any admissible trajectory
setting Ψ such that I(Ψ) + γS(Ψ) + βM(Ψ) < ∞, we pick a controlled standard setting Ψ as in
Proposition 3.3 and recall the configuration class Jδ,λ(Ψ) from (2.6). Then, for any λ > 0 and δ ∈ B,

Zγ,βλ (Xλ) ≥
∑

r∈Jδ,λ(Ψ)

Y(r) ≥ #Jδ,λ(Ψ)

supr∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

exp
{
− sup
r∈Jδ,λ(Ψ)

(
γS(r) + βM(r)

)}
.

(3.17)
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Hence,

lim inf
λ→∞

1

λ
logZγ,βλ (Xλ) ≥ lim inf

δ↓0
lim inf
λ→∞

1

λ
log

#Jδ,λ(Ψ)

supr∈Jδ,λ(Ψ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim sup
δ↓0

lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
S(r)− β lim sup

δ↓0
lim sup
λ→∞

sup
r∈Jδ,λ(Ψ)

1

λ
M(r)

= −I(Ψ)− γS(Ψ)− βM(Ψ).

(3.18)
In the last step we also used Propositions 3.1 and 3.2 together with the fact that Ψ is controlled. Now
take the supremum over all such Ψ on the r.h.s. of (3.18) to conclude that the lower bound in (1.24)
holds.

The upper bound of Theorem 1.2 requires some additional work. We start from (3.16). For C > 0
we have

Zγ,βλ (Xλ) =
∑

r∈Skmax (Xλ) : M(r)≤λC

Y(r) +
∑

r∈Skmax (Xλ) : M(r)>λC

Y(r). (3.19)

Since the total mass of our a priori measure has a bounded large-λ exponential rate (see Section 1.2.2)
and S, M are bounded from below, we see that

lim sup
C→∞

lim sup
λ→∞

1

λ
log

∑
r∈Skmax (Xλ) : M(r)>λC

Y(r) = −∞.

Thus, for C sufficiently large, the exponential rate of Zγ,βλ (Xλ) is equal to the one of the first term on
the right-hand side of (3.19). We additionally require C so large that

inf
Ψ adm. traj. setting, M(Ψ)≤C

(I(Ψ) + γS(Ψ) +βM(Ψ)) = inf
Ψ adm. traj. setting

(I(Ψ) + γS(Ψ) +βM(Ψ)). (3.20)

Let us write Skmax,C(Xλ) = {r ∈ Skmax(Xλ) : M(r) ≤ λC} and Zγ,β,Cλ (Xλ) =
∑

r∈Skmax,C(Xλ) Y(r).

The upper bound of Theorem 1.2 follows as soon as we show that

lim sup
λ→∞

1

λ
logZγ,β,Cλ (Xλ) ≤ − inf

Ψ admissible trajectory setting, M(Ψ)≤C
(I(Ψ) + γS(Ψ) + βM(Ψ)). (3.21)

For fixed λ > 0 and δ ∈ B, let us say that a collection of measures Ψδ,λ = ((νδ,λk )kmax
k=1 , (µ

δ,λ
m )∞m=0)

lies in G(δ, λ) = G(δ, λ)(Xλ) if all these measures take values in 1
λN0 only and satisfy the con-

straints
∑kmax

k=1 π0ν
δ,λ
k = Lδλ,

∑∞
m=0 µ

δ,λ
m = Lδλ and

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k =

∑∞
m=0mµ

δ,λ
m . We will write

Jδ,λ(Ψδ,λ) for the set Jδ,λ(Ψ) defined in (2.6). Then the union of Jδ,λ(Ψδ,λ) over all Ψδ,λ with∑∞
m=0 η(m)µδ,λm (W ) ≤ C is equal to{

(Rδλ,k(r))k∈[kmax], (P
δ
λ,m(r))m∈N0) : r ∈ Skmax,C(Xλ)

}
,

since these three equations characterize the tuple of the measures (Rδλ,k(S))kmax
k=1 and (P δλ,m(S))∞m=0 if

(Si)i∈Iλ ∈ Skmax,C(Xλ).

Using this, we can estimate, for any δ ∈ B,

Zγ,β,Cλ (Xλ) =
∑

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑
r∈Jδ,λ(Ψδ,λ)

Y(r) ≤ #G(δ, λ) sup
Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

∑
r∈Jδ,λ(Ψδ,λ)

Y(r).

(3.22)
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Hence,

lim sup
λ→∞

1

λ
logZγ,β,Cλ (Xλ)

≤ lim sup
δ↓0

lim sup
λ→∞

1

λ
log #G(δ, λ)

+ lim sup
δ↓0

lim sup
λ→∞

1

λ
log sup

Ψδ,λ∈G(δ,λ) : M(Ψδ,λ)≤C

[ #Jδ,λ(Ψδ,λ)

infr∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)−(ri−1−1)

− γ lim inf
δ↓0

lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
S(r)− β lim inf

δ↓0
lim inf
λ→∞

inf
r∈Jδ,λ(Ψδ,λ)

1

λ
M(r)

]
.

(3.23)

According to Lemma 3.4 below, the first term on the right-hand side is equal to zero. Now pick
a sequence (δn)n and for each n a sequence (λn,j)j along which the superior limits as n → ∞,

respectively j → ∞, are realized. Now pick, for any n and j, a maximizer Ψ̃δn,λn,j . Pick λ0 so large
that N(λ) ≤ 2µ(W )λ for all λ ≥ λ0. Hence,

⋃
λ>λ0,δ∈B

G(δ, λ) ⊆
( kmax∏
k=1

M≤2µ(W )(W
k)
)
×M≤2µ(W )(W )N0 , (3.24)

where we recall that M≤α(V ) is the set of measures on a space V with total mass ≤ α. Note that
M≤2µ(W )(W

k) is compact in the weak topology ofM(W k) for any k, according to Prohorov’s theorem.

Without loss of generality (using two diagonal sequence arguments), we can assume that for all n ∈
N, Ψ̃δn,λn,j converges coordinatewise weakly to a collection of measures Ψ̃δn = ((ν̃δnk )kmax

k=1 , (µ̃
δn
m )∞m=0)

as j →∞, and Ψ̃δn converges coordinatewise weakly to a collection of measures Ψ̃ as n→∞. Then,

it is clear that Ψ̃ satisfies (i) from (1.19), and also that

lim
n→∞

lim
j→∞

kmax∑
k=1

k−1∑
l=1

πlν̃
δn,λn,j
k =

kmax∑
k=1

k−1∑
l=1

πlν̃k.

In order to see that (iii) holds for Ψ̃, it remains to show that limn→∞ limj→∞
∑∞

m=0mµ̃
δn,λn,j
m =∑∞

m=0mµ̃m. For N ∈ N and for any continuous function f : W → R, we estimate∣∣∣∣∣
〈 ∞∑
m=0

m(µ̃
δn,λn,j
m − µ̃m), f

〉∣∣∣∣∣ ≤
N∑
m=0

m
∣∣∣〈µ̃δn,λn,jm − µ̃m, f〉

∣∣∣+
∞∑

m=N+1

‖f‖∞m
∣∣∣µ̃δn,λn,jm (W )− µ̃m(W )

∣∣∣ .
The first term on the r.h.s. clearly tends to 0 as j → ∞, followed by n → ∞, for any fixed N . The
second term can further be estimated from above as follows

‖f‖∞
∑
m>N

η(m)
(

sup
m̃>N

m̃

η̃(m)

)
(µ̃
δn,λn,j
m (W ) + µ̃m(W )) ≤ 2‖f‖∞

(
sup
m̃>N

m̃

η̃(m)

)
C.

By the assumption that (η(N)/N) → ∞ as N → ∞, the right-hand side tends to 0. One can

analogously show that
∑∞

m=0 µ̃
δn,λn,j
m tends to

∑∞
m=0 µ̃m as j → ∞ followed by n → ∞, and hence

condition (ii) from (1.19) holds. Also we have
∑∞

m=0 η(m)µ̃m(W ) ≤ C. Altogether, Ψ̃ is an admissible
trajectory setting.

Now, using the arguments of the proofs of Propositions 3.1 and 3.2 (which also involve the coarsened

limits Ψ̃δn for fixed n ∈ N) for the subsequential limits j →∞ followed by n→∞, we conclude that

lim
n→∞

lim
j→∞

#Jδn,λn,j (Ψ̃δn,λn,j )

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

∏
i∈Iλn,j N(λn,j)

−(ri−1−1)
= I(Ψ̃)
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and, using the boundedness and continuity of each fk on M≤2µ(W )(W )×W k,

lim
n→∞

lim
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
S(r) = S(Ψ̃).

Furthermore, the lower semicontinuity of M(W )N0 → (−∞,∞], (νm)m∈N0 7→
∑

m∈N0
η(m)νm(W ),

together with Fatou’s lemma implies that

−β lim inf
n→∞

lim inf
j→∞

inf
r∈Jδn,λn,j (Ψ̃δn,λn,j )

1

λn,j
M(r) ≤ −βM(Ψ̃). (3.25)

Thus, we conclude that (3.21) (and therefore the upper bound in Theorem 1.2) holds, as soon as
Lemma 3.4 is formulated and verified. This we do now. Recall that we are working with fixed ω ∈ Ω1,
and that the notion of G(δ, λ) depends on ω via G(δ, λ) = G(δ, λ)(Xλ(ω)).

Lemma 3.4. For any δ ∈ B and ω ∈ Ω1, we have

lim sup
λ→∞

1

λ
log #G(δ, λ) = 0.

Proof. For λ > 0, let G1(δ, λ) denote the set of (νδ,λk )kmax
k=1 satisfying part (2) from Definition 2.1. It

is easily seen that its cardinality increases only polynomially in λ. Now, given (νδ,λk )kmax
k=1 ∈ G1(δ, λ),

we will give an upper bound for the number of (µδ,λm )∞m=0) such that the pair of these tuples is in
G(δ, λ). This is much more demanding, since there is a priori no upper bound for m. We will provide
a λ-dependent one.

For any λ > 0, Ψδ,λ ∈ G(δ, λ) and j = 1, . . . , δ−d we have that

λ
∞∑
m=0

mµδ,λm (W δ
j ) = λ

kmax∑
k=1

k−1∑
l=1

πlν
δ,λ
k (W δ

j ) ≤ (kmax − 1)N(λ),

and the numbers µδ,λ0 (W δ
j ), . . . , µδ,λ(kmax−1)N(λ)(W

δ
j ), are 1

λ times nonnegative integers. In particular,

µδ,λm (W δ
j ) = 0 for m > (kmax − 1)N(λ).

Let ε > 0 be fixed. We claim that for all sufficiently large λ > 0, there are not more than
εN(λ) ∼ ελµ(W ) nonzero ones out of these quantities. Indeed, if there were at least dεN(λ)e nonzero

ones, denoted µδ,λm0(W δ
j ), . . . , µδ,λmdεN(λ)e−1

(W δ
j ) with 0 ≤ m0 < m1 < . . . < mdεN(λ)e−1 ≤ (kmax−1)N(λ),

then we could estimate

(kmax − 1)N(λ) ≥
(kmax−1)N(λ)∑

m=0

λmµδ,λm (W δ
j ) ≥

dεN(λ)e−1∑
i=0

λmiµ
δ,λ
mi(W

δ
j )1l
{
µδ,λmi(W

δ
j ) > 0

}
=

dεN(λ)e−1∑
i=0

λmiµ
δ,λ
mi(W

δ
j )1l
{
µδ,λmi(W

δ
j ) ≥ 1

λ

}
≥
dεN(λ)e−1∑

i=0

mi ≥
dεN(λ)e−1∑

m=0

m ∼ 1

2
(εN(λ))(εN(λ)− 1),

which is a contradiction for all λ > 0 sufficiently large.

Now, #G(δ, λ) can be estimated as follows. Let us first fix (νδ,λk )kmax
k=1 ∈ G1(δ, λ), i.e.,

satisfying part (2) from Definition 2.1, and let us count the number of (µδ,λm )
(kmax−1)N(λ)
m=0

such that ((νδ,λk )kmax
k=1 , (µ

δ,λ
m )

(kmax−1)N(λ)
m=0 )) lies in G(δ, λ). Out of the kmaxδ

−dN(λ) quantities

µδ,λ0 (W δ
j ), . . . , µδ,λ(kmax−1)N(λ)(W

δ
j ), j = 1, . . . , δ−d, at most dεN(λ)eδ−d are nonzero. The number of

ways to choose them equals
(kmaxN(λ)δ−d

dεN(λ)eδ−d
)
. Having chosen dεN(λ)eδ−d potentially nonzero ones so

that the remaining kmaxδ
−dN(λ) − dεN(λ)eδ−d ones are equal to zero, according to part (5) of Def-

inition 2.1 we note that the potentially nonzero ones sum up to N(λ), and each one has a value in
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1
λN0. For this, there are at most

(N(λ)+dεN(λ)eδ−d−1
dεN(λ)eδ−d−1

)
combinations, for any choice of the set of the

potentially nonzero ones. Since ω ∈ Ω1, we have N(λ) = N(λ)(ω) = λ(µ(W )+o(1)) as λ→∞ (where
the o(1) term depends on ω). Therefore, using Stirling’s formula as in (3.4), we have the following
estimate in the limit λ→∞

#G(δ, λ) ≤ #G1(δ, λ)

(
kmaxN(λ)δ−d

dεN(λ)eδ−d

)(
N(λ) + dεN(λ)eδ−d − 1

dεN(λ)eδ−d − 1

)
= eo(λ) exp

(
− λµ(W )

(
(kmax − ε)δ−d log

(kmax − ε)δ−d

kmaxδ−d
+ εδ−d log

εδ−d

kmaxδ−d

))
× exp

(
− λµ(W )

(
εδ−d log

εδ−d

1 + εδ−d
+ log

1

1 + εδ−d

))
Letting ε ↓ 0, we conclude that lim supλ→∞

1
λ log #G(δ, λ) = 0. �

3.5. The large deviation principle: proof of Theorem 1.4(i). In this section, we prove Theorem
1.4(i). The combinatorial essence of this theorem has already been proved in Proposition 3.1, including
the relations with δ-coarsenings. What remains to be done is to relate this to the coordinatewise weak
convergence on A. We will be able to use some of the arguments of Section 3.4.

The lower semicontinuity of I+µ(W ) log kmax was already discussed in Section 1.3, the nonnegativity
in Section 1.5. These together mean that I + µ(W ) log kmax is a rate function.

We proceed with the proof of the lower bound. Let G ⊆ A be open. If infG I = ∞, then there
is nothing to show, therefore let us assume that there exists Ψ ∈ G with I(Ψ) < ∞. According to
Proposition 3.3, there is a standard setting Ψ containing Ψ. Since G is open, there exists % > 0 such
that B%(Ψ) ⊆ G. Let us choose δ0 ∈ B and, for any B 3 δ ≤ δ0, some λ0 = λ0(δ) > 0 such that

Ψδ,Ψδ,λ ∈ B%(Ψ) for any λ > λ0. Now we can estimate, for these δ and λ,

P0,0
λ,Xλ(Ψλ(S) ∈ G) ≥ P0,0

λ,Xλ(Ψλ(S) ∈ B%(Ψ)) ≥ P0,0
λ,Xλ

(
(Ψλ(S))δ = Ψδ,λ

)
=

1

Z0,0
λ (Xλ)

∑
r∈Jδ,λ(Ψδ,λ)

1∏
i∈Iλ N(λ)r

i
−1−1

≥ #Jδ,λ(Ψδ,λ)

k
N(λ)
max supr∈Jδ,λ(Ψδ,λ)

∏
i∈Iλ N(λ)r

i
−1−1

.

Now, using Proposition 3.1 and the fact that N(λ)/λ→ µ(W ), we obtain

lim inf
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ G) ≥ −µ(W ) log kmax − I(Ψ).

Note that Ψ is not necessarily controlled because M(Ψ) <∞ is not guaranteed. However, since for all

δ ∈ B, s = 1, . . . , δ−d, λ > 0, µδ,λm (W δ
s )/µδm(W δ

s ) does not depend on m, we easily see that Proposition
3.1 holds for this Ψ as well. Now, take the supremum over Ψ ∈ G ∩ {I < ∞} to conclude that the
lower bound holds.

We continue with the upper bound. Let F ⊆ A be closed. Let us choose an increasing sequence
(λn)n∈N of positive numbers along which the limit superior in (1.30) is realized. For λ > 0, let us put

O(λ) =
{

Ψ ∈ A : P0,0
λ,Xλ(Ψλ(S) = Ψ) > 0

}
.

If for all but finitely many n ∈ N we have F ∩O(λn) = ∅, then

lim sup
λ→∞

1

λ
log P0,0

λ,Xλ(Ψλ(S) ∈ F ) = −∞. (3.26)

Therefore, without loss of generality, we can assume that O(λn) ∩ F is non-empty for all n ∈ N. For
δ ∈ B and A ⊂ A, let us write Aδ = {Ψδ : Ψ ∈ A}, where Ψδ is the coordinatewise δ-coarsened version
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of Ψ. Then we have

P0,0
λn,Xλn

(
Ψλn(S) ∈ F ) = P0,0

λn,Xλn

(
Ψλn(S) ∈ F ∩O(λn)

)
= P0,0

λn,Xλn

(
(Ψλn(S))δ ∈ (F ∩O(λn))δ)

≤ #(F ∩O(λn))δ sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

k
N(λn)
max infr∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)r

i
−1−1

.

(3.27)
It is clear that (F ∩ O(λn))δ ⊆ G(δ, λn) = (O(λn))δ for all n ∈ N and δ ∈ B, where G(δ, λn) was
defined in Section 3.4. Hence, by Lemma 3.4,

lim sup
δ↓0

lim sup
n→∞

1

λn
log #(F ∩O(λn))δ = 0.

It remains to show that

lim sup
δ↓0

lim sup
n→∞

1

λn
log
[

sup
Ψ∈F∩O(λn)

#Jδ,λn(Ψδ)

infr∈Jδ,λn (Ψδ)

∏
i∈Iλn N(λn)r

i
−1−1

]
≤ − inf

Ψ∈F
I(Ψ). (3.28)

One can do this analogously to the proof of the upper bound of Theorem 1.2 starting from (3.23).
Indeed, using Prohorov’s theorem together with a diagonal sequence argument, we find Ψ∗ ∈ A that
the maximizer in (3.27) converges to along a subsequence of δ’s and λn’s. The limit lies in F because
F is closed. Using the lower semicontinuity of I together with Fatou’s lemma, we conclude that the
left-hand side of (3.28) is not larger than −I(Ψ∗), which itself is not larger than − infF I. This finishes
the proof of the upper bound in Theorem 1.4(i).

4. Analysis of the minimizers

This section is devoted to the proof of Proposition 1.3. In particular, in Section 4.1, we show that
the infimum in (1.24) is attained and, for any minimizer Ψ = ((νk)

kmax
k=1 , (µm)∞m=0), for any k ∈ [kmax],

µ⊗k is absolutely continuous with respect to νk and µ is absolutely continuous with respect to each
µm. Further, for all k ∈ [kmax] and m ∈ N0, there exist constants ck > 0, k ∈ [kmax], and c′m > 0,
m ∈ N0 such that νk(A) ≥ ckµ⊗k(A) for all A ⊆W k measurable and µm(A′) ≥ c′m(A′) for all A′ ⊆W
measurable. This is a prerequisite for perturbing the minimizer in many admissible directions. In
Section 4.2 we finish the proof of Proposition 1.3 by deriving the Euler–Lagrange equations. For
the rest of the section, we fix all parameters W,µ, γ, β and kmax. Moreover, we use the following
representation of I from (1.23).

I(Ψ) =

kmax∑
k=1

HWk(µ⊗M⊗(k−1)) +

∞∑
m=0

HW (µm | µ)− µm(W ) log
(eµ(W ))−m

m!
. (4.1)

4.1. Existence and positivity of the minimizers. We start with the following lemma, which
follows almost immediately from the arguments of the proof of the upper bound of Theorem 1.2 in
Section 3.4.

Lemma 4.1. The set of minimizers of the variational formula in (1.24) is non-empty, compact and
convex.

Proof. Recall that the three functionals I, S, M are lower semicontinuous and convex. Furthermore,
it is clear that we can restrict the infimum in (1.24) to those Ψ that satisfy also M(Ψ) ≤ C for any
sufficiently large C. But, as we have seen in Section 3.4, this set of Ψ’s is compact. From this, all our
assertions easily follow. �
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Now we prove that, for each minimizer Ψ, µ⊗k is absolutely continuous with respect to νk and µ
is absolutely continuous with respect to each µm, and the corresponding Radon–Nikodym derivatives
are even bounded away from 0. (Note that the opposite absolute continuities are true by finiteness
of the relative entropies in (1.23).) We need to show this only for kmax > 1, as we explained after
Proposition 1.3. Let us start with verifying the absolute continuities.

Lemma 4.2. If kmax > 1 and Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) is a minimizer of (1.24), then µ⊗k � νk for

any k ∈ [kmax], and µ� µm for any m ∈ N0.

Proof. The essence of the proof is the following. The functionals M(·) and S(·) are linear in each µm
respectively νk, as well as the third term in I(·) in (1.23) in each µm. On the other hand, the function
x 7→ x log x has the slope −∞ at x ↓ 0. We show the following assertions about the minimizer Ψ step by

step as follows. Recall that M =
∑

m∈N0
mµm =

∑
k∈[kmax]

∑k−1
l=1 πlνk. We write≥ and >, respectively,

between measures in M(W k) if their difference lies in M(W k), respectively in M(W k) \ {0}.
Fix a measurable set A ⊂W such that µ(A) > 0. Then we have:

(1) M(A) > 0.
(2) for any m1 < m0 < m2 such that µm1(A) > 0 and µm2(A) > 0, also µm0(A) > 0.
(3) µ0(A) > 0.
(4) µm(A) > 0 for any m ≥ kmax.
(5) νk(A

k) > 0 for any k ∈ [kmax].

Indeed, these steps are verified respectively as follows. In each of the steps, for ε ∈ (0, 1), we

construct an admissible trajectory setting Ψε = ((νεk)
kmax
k=1 , (µ

ε
m)∞m=0) such that I(Ψε) + γS(Ψε) +

βM(Ψε) < I(Ψ) + γS(Ψ) + βM(Ψ) for sufficiently small ε > 0, and therefore Ψ is not a minimizer of
(1.24).

(1) If M(A) = 0, then in particular µ0(A) = ν1(A) = µ(A) and µm(A) = 0 for all m > 0. Also,
π1ν2(A) = ν2(W ×A) = 0, according to the definition of M .

Let us define Ψε as follows: νε2 = (1 − ε)ν2 + ε(µ⊗2)/µ(W ), νεk = (1 − ε)νk for k 6= 2,
µε1 = (1− ε)µ1 + εµ and µεm = (1− ε)µm for m 6= 1. Then we compute and estimate the three
terms of the entropy I(Ψ) as follows.

kmax∑
k=1

HWk

(
νεk | µ⊗ (M ε)⊗(k−1)

)
≤

kmax∑
k=1

HW×(W\A)k−1((1− ε)νk | µ⊗ (M ε)⊗(k−1)) +HW×A

( εµ⊗2

µ(W )
| εµ⊗2

)
+O(ε)

≤
kmax∑
k=1

HWk(µ⊗M⊗(k−1)) +O(ε),

furthermore
∞∑
m=0

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

≤ HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+ µ(A)ε log ε+O(ε).

(4.2)

For the second term we used the convexity of the relative entropy in the form

HW ((1− ε)µ1 + εµ | µ) ≤ (1− ε)HW (µ1 | µ) ≤ HW (µ1 | µ) +O(ε). (4.3)
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This in turn follows from [HJKP18, Lemmas 3.10, 3.11], which implies that, for any k ∈ N,
ξ, η ∈M(W k) with η 6= 0 and ξ � η,∣∣∣HWk(ξ | η)−HWk((1− ε)ξ | η)

∣∣∣ �
ε↓0

ε.

It follows that, as ε ↓ 0,

I(Ψε) + γS(Ψε) + βM(Ψε)−
[
I(Ψ) + γS(Ψ) + βM(Ψ)

]
≤ O(ε) + µ(A)ε log ε, (4.4)

which is negative for all sufficiently small ε > 0. Thus, Ψ is not a minimizer.
(2) If M(A) > 0 but µm1(A) > 0, µm2(A) > 0 and µm0(A) = 0 for some m1 < m0 < m2, then let

νεk = νk for all k ∈ [kmax] and let µεm0
= (1− ε)µm0 + ε(α1µm1 +α2µm2), µεm1

= (1−α1ε)µm1 ,
µεm2

= (1− εα2)µm2 , where α1, α2 ∈ (0, 1) are such that α1 +α2 = 1 and m1α1 +m2α2 = m0.
Then, Ψε is an admissible trajectory setting with M ε = M . It follows similarly to the previous
computation that I(Ψε) + γS(Ψε) + βM(Ψε) < I(Ψ) + γS(Ψ) + βM(Ψ) for all sufficiently small
ε > 0. However, instead of (4.2), we have

∞∑
m=0

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

≤
∞∑
m=0

HW (µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+ (α1µm1(A) + α2µm2(A))ε log ε+O(ε),

as ε ↓ 0.
(3) If M(A) > 0 but µ0(A) = 0, let νεk = (1 − ε)νk for all 1 < k ≤ kmax, µεm = (1 − ε)µm for all

m > 0, µε0 = εµ + (1 − ε)µ0 and νε1 = (1 − ε)ν1 + εµ. It is again sufficient to consider the
entropy terms in I. The summands on k > 1 can be estimated as follows.

kmax∑
k=2

HWk(νεk | µ⊗ (M ε)(k−1)) =

kmax∑
k=2

HWk((1− ε)νk | (1− ε)k−1µ⊗Mk−1)

≤
kmax∑
k=2

HWk(νk | µ⊗M (k−1)) +O(ε).

The summand for k = 1 can be estimated with the help of (4.3). For the summand for m = 0,
we have

HW (µε0 | µ) = HW\A((1− ε)µ0 + εµ | µ) + µ(A)ε log ε

≤ HW\A((1− ε)µ0 | µ) + µ(A)ε log ε+O(ε) = HW (µ0 | µ) + µ(A)ε log ε+O(ε).

while the remaining sum is handled as follows.

∞∑
m=1

HW (µεm | µ)− µεm(W ) log
(eµ(W ))−m

m!

=

∞∑
m=1

HW ((1− ε)µm | µ)− µm(W ) log
(eµ(W ))−m

m!
+O(ε).

Thus, (4.4) holds also here, which implies the claim.
(4) If M(A) > 0 but µm0(A) = 0 for some m0 ≥ kmax, let µεm0

= (1 − ε)µm0 + εM/m0, µεm =
(1− ε)µm for m /∈ {0,m0}, and νεk = νk for all k ∈ [kmax]. Then,

∞∑
m=1

mµεm = (1− ε)
∞∑
m=1

mµm +
εm0

m0

kmax∑
k=1

k−1∑
l=1

πlνk =

kmax∑
k=1

k−1∑
l=1

πlνk.
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On the other hand, we have

µ−
∞∑
m=1

µεm ≥ µ− (1− ε)
∞∑
m=1

µm −
ε(kmax − 1)

m0
µ ≥ (1− ε)µ− (1− ε)

∞∑
m=1

µm = (1− ε)µ0.

Therefore, if we put µε0 = µ −
∑∞

m=1 µ
ε
m, then µε0 ≥ (1 − ε)µ0 ≥ 0, in particular Ψε is

an admissible trajectory setting. Now we can proceed analogously to (3) to conclude that
I(Ψε) + γS(Ψε) + βM(Ψε) < I(Ψ) + γS(Ψ) + βM(Ψ) for sufficiently small ε > 0.

The proof of (5) is very similar to the ones of (2), (3) and (4), thus we leave it to the reader. �

The proof of the following lemma is similar to the one of Lemma 4.2, therefore we omit its proof.

Lemma 4.3. If kmax > 1 and Ψ = ((νk)
kmax
k=1 , (µm)∞m=0) is a minimizer of (1.24), then for each k ∈

[kmax], there exists ck > 0 such that for all A ⊆ W k measurable, νk(A) ≥ ckµ
⊗k(A) holds. Similarly,

for each m ∈ N0, there exists c′m > 0 such that for all A′ ⊆W measurable, µm(A′) ≥ c′mµ(A′) holds.

4.2. Deriving the Euler–Lagrange equations. In this section, we finish the proof of Proposition
1.3. According to the results of Section 4.1, now we see that (1.24) exhibits at least one minimizer,
and all minimizers have almost everywhere positive Lebesgue density on the corresponding powers
of supp µ. Knowing this, we now carry out the perturbation analysis for the minimizer(s) of the
optimization problem in (1.24) and derive the shape of the minimizers in most explicit terms.

We use the method of Lagrange multipliers in the framework of a perturbation argument. Let Ψ =
((νk)

kmax
k=1 , (µm)∞m=0) minimize (1.24). Fix any collection of signed measures Φ = ((τk)

kmax
k=1 , (σm)∞m=0)

such that only finitely many σm’s are different from zero, the Radon–Nikodym derivative dτk
dµ⊗k

is a

simple function for each k, also dσm
dµ is a simple function for each m, further they satisfy the following

constraints:

(i)

kmax∑
k=1

π0τk = 0, (ii)
∞∑
m=0

σm = 0, (iii) MΦ :=
∞∑
m=0

mσm =

kmax∑
k=1

k−1∑
l=1

πlτk. (4.5)

Then it follows from Lemma 4.3 that, for any ε ∈ R with sufficiently small |ε|, Ψ + εΦ = ((νk +

ετk)
kmax
k=1 , (µm+εσm)∞m=0) is a collection of (non-negative!) measures that satisfies (1.19) and is therefore

admissible in the variational formula in (1.24). That (1.19) is satisfied follows easily from (4.5).
Furthermore, using the notation of Section 4.1, the non-negativity follows from the fact that each τk
respectively each σm is a finite linear combination of measures of the form 1lA dµ⊗k with A ⊂ W k

respectively of the form 1lB dµ with B ⊂ W , and we have 1lA dµ⊗k ≤ c−1
k 1lA νk respectively 1lB dµ ≤

c′−1
m 1lB dµm. Since only finitely many such summands are involved, there is a constant C > 0 such that
|τk| ≤ Cνk and |σm| ≤ Cµm for any k ∈ [kmax] and m ∈ N0, and hence it suffices to take |ε| < 1/C.

From minimality, we deduce that

0 =
∂

∂ε

∣∣∣
ε=0

(
I(Ψ + εΦ) + γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
. (4.6)

We calculate the latter two terms as
∂

∂ε

∣∣∣
ε=0

(
γS(Ψ + εΦ) + βM(Ψ + εΦ)

)
= γ

∑
k∈[kmax]

〈τk, f̃k〉+ β
∑
m∈N0

η(m)σm(W ),

where, as before, we used the notation 〈ν, f〉 for the integral of a function f with respect to a measure

ν. Abbreviating M =
∑

k∈[kmax]

∑k−1
l=1 πlνk and using the representation (3.3) of I(·), we see that

∂

∂ε

∣∣∣
ε=0

I(Ψ + εΦ) =
∑

k∈[kmax]

〈
τk, 1 + log

dνk
dµ⊗k

〉
−
〈
MΦ, 1 + log

dM

dµ

〉
+
∑
m∈N0

〈
σm, 1 + log

dµm
d(cmµ)

〉
,

(4.7)
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where we recall that cm = e−1/(eµ(W ))(eµ(W ))−m/m!. Summarizing, we obtain from (4.6) that

0 =
〈

Φ,
(
(hk)k∈[kmax], (gm)m∈N0

)〉
, (4.8)

where

hk = γf̃k + 2− k + log
dνk

d(µ⊗M⊗(k−1))
and gm = βη(m) + 1 + log

dµm
dµ
− log

(eµ(W ))−m

m!
.

We conceive Φ as an element of the vector space

A± =
∏

k∈[kmax]

M±(W k)×M±(W )N0

whereM± is the set of signed measures equipped with the weak topology, and ((hk)k∈[kmax], (gm)m∈N0)

as a function on
∏
k∈[kmax]W

k ×WN0 . The condition in (4.5) means that Φ is perpendicular to any

function in

F =
{

((ϕk)k∈[kmax], (ψm)m∈N0) : ϕk : W k → R, ψm : W → R bounded and measurable for any k,m,

∃Ã, B̃, C̃ : W → R : ϕk(x0, . . . , xk−1) = Ã(x0) +
k−1∑
l=1

C̃(xl),

and ψm(x) = B̃(x)−mC̃(x) for x, x0, . . . , xk−1 ∈W
}
.

We have shown that, if Φ is perpendicular to any simple function in F , then it is also perpendicular
to ((hk)k∈[kmax], (gm)m∈N0). Since F is a closed linear subspace of A±, it follows that it contains this

element. That is, there are three functions Ã, B̃, C̃ on W such that, for any k respectively m,

hk(x0, . . . , xk−1) = Ã(x0) +
k−1∑
l=1

C̃(xl) and gm(x) = B̃(x)−mC̃(x), x, x0, . . . , xk−1 ∈W.

Using an obvious substitution, this is equivalent to the existence of three positive functions A,B,C
such that

νk(dx0, . . . ,dxk−1) = µ(dx0)A(x0)

k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), k ∈ [kmax], (4.9)

µm(dx) = µ(dx)B(x)
(C(x)µ(W ))−m

m!
e−βη(m), m ∈ N0. (4.10)

From (i) and (ii) in (1.19), we can identify A and B as

1

A(x0)
=

∑
k∈[kmax]

∫
Wk−1

k−1∏
l=1

(
C(xl)M(dxl)

)
e−γf̃k(x0,...,xk−1), (4.11)

1

B(x)
=

∑
m∈N0

(C(x)µ(W ))−m

m!
e−βη(m). (4.12)

Furthermore, condition (iii) says that

1

C(x)
=

1

C(x)

µ(dx)

M(dx)
ϕ
( 1

C(x)µ(W )

)
= Γ(C dM,x), x ∈W, (4.13)

where ϕ(α) =
∑

m∈N0
mαm

m! e−βη(m)/
∑

m∈N0

αm

m! e−βη(m) for α ∈ [0,∞) and

Γ(dM̃, x) =

∫
W
µ(dx0)

∑
k∈[kmax]

∫
Wk−2

∏k−2
l=1 M̃(dxl)Fk(x0, x1, . . . , xk−2, x)∑

k∈[kmax]

∫
Wk−1

∏k−1
l=1 M̃(dxl) e−γf̃k(x0,...,xk−1)

, (4.14)
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where

Fk(x0, x1, . . . , xk−2, x) =
k−1∑
l=1

e−γf̃k(x0,yl), (4.15)

yl is the vector of length k − 1, consisting of x1, . . . , xk−2; augmented by x at the l-th place, and

M̃(dx) = C(x)M(dx). This ends our derivation of the Euler–Lagrange equations for any minimizer
Ψ of (1.24).

This description of C and M is rather implicit and involved, therefore we cannot offer any simple
criterion for the uniqueness of the minimizers of (1.24). Also, the question of continuity of the tilting
functions A, B and C is open.

Since I+γS+βM is convex, it follows that any admissible trajectory setting Ψ satisfying (4.9)–(4.15)
is a minimizer of (1.24).

5. Proof of Proposition 1.5

We proceed analogously to Sections 2 and 3, and thus we start with part (2), i.e., with verifying
(1.34). We use the discretization argument from Section 2.1 again. We now provide the definition of
a transmission setting, the analogue of Definition 2.1 of a standard setting with no reference to users
receiving given numbers of incoming hops.

Definition 5.1. A transmission setting is a collection of measures

Σ =
(

Σ = (νk)
kmax
k=1 , ((ν

δ
k)kmax
k=1 )δ∈B, ((ν

δ,λ
k )kmax

k=1 )δ∈B,λ>0, (µ
δ,λ)δ∈B,λ>0

)
(5.1)

such that for any δ, δ′ ∈ B, λ > 0, k ∈ [kmax] and s, s0, . . . , sk−1 = 1, . . . , δ−d, respectively, νk ∈
M(W k), and parts (1), (2), (3) and (4) of Definition 2.1 hold.

Recall that Definition 5.1 implies parts (A), (B), (C) and (D) of Remark 2.2. Further, it is easy to
see that for any transmission setting Σ, Σ is an asymptotic routing strategy.

The following lemma describes the combinatorics of the choices of message trajectories in the system.
We recall the empirical measures (Rλ,k(s))k∈[kmax] from (1.5).

Lemma 5.2. Let Σ be a transmission setting. For δ ∈ B and λ > 0 let

Kδ,λ(Σ) =
{
s ∈ Skmax(Xλ) : Rδλ,k(s) = νδ,λk ∀k = 1, . . . , kmax

}
.

Then we have #Kδ,λ(Σ) = N1
δ,λ(Σ) × N4

δ,λ(Σ), where N1
δ,λ(Σ) equals N1

δ,λ(Ψ) from (2.8) for any
standard setting Ψ containing Σ, and

N4
δ,λ(Σ) =

δ−d∏
j=1

(λµδ,λ(W δ
j ))λ

∑kmax
k=1

∑k−1
l=1 πlν

δ,λ
k (W δ

j ).

Proof. We proceed in two steps by counting first the trajectories, registering only the partition sets
W δ
i that they travel through, second, the choices of the relays for each hop in each partition set.

Since every choice in the two steps can be freely combined with the other one, the product of the
two cardinalities is equal to the number of all trajectory configurations with the prescribed coarsened
empirical measures.

(A) Number of the transmitters of trajectories passing through given sequences of δ-subcubes. This is
equal to the corresponding quantity in the proof of Lemma 2.6, hence it equals N1

δ,λ(Σ).
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(B) Number of assignments of the hops to the relays. For each i = 1, . . . , δ−d, there are

λ
∑kmax

k=1

∑k−1
l=1 πlνk(W

δ
i ) incoming hops arriving to the relays in W δ

i in total. Each incoming

hop arriving at W δ
i can choose any of the λµδ,λ(W δ

i ) users as the corresponding relay. Such
choices between different hops in W δ

i are independent, moreover all the choices in W δ
i are inde-

pendent from all the choices in W δ
j for j 6= i. It follows that the number of assignments equals

N4
δ,λ(Σ).

We also see that all the choices in the two parts are independent of each other, i.e., they can be freely
combined with each other and yield different combinations. Hence, we arrived at the assertion. �

Using the arguments of the proof of Proposition 3.1, the next lemma immediately follows.

Lemma 5.3. Let Σ be a transmission setting. Then

lim
δ↓0

lim
λ→∞

1

λ
log

#Kδ,λ(Σ)

N0
δ,λ(Σ)

= −J(Σ) ∈ (−∞,∞], (5.2)

where N0
δ,λ(Σ) equals N0

δ,λ(Ψ) from (3.2) for any standard setting Ψ containing Σ. Moreover, if the

r.h.s. of (5.2) is finite, then

lim
δ↓0

lim
λ→∞

1

λ log λ
log #Kδ,λ(Σ) = M(W ) =

kmax∑
k=1

(k − 1)νk(W ).

Now, the identity in (1.34) follows from the proof of Theorem 1.2, using transmission settings instead
of standard settings and replacing Proposition 3.1 by our Lemma 5.3. There is one more major change
in the proof. Indeed, instead of the compactness of {Ψ: Ψ adm. trajectory setting, M(Ψ) ≤ y} for
all y ≥ 0 in Section 3.4 and the fact that any level set of I + γS + βM is contained in a larger level
set of M, one shall use the following argument. Using that S is continuous on the set of asymptotic
routeing strategies, and that J is lower semicontinuous, bounded from below and it has compact level
sets [DZ98, Section 6.2], it follows that each level set of J + γS is included in a larger level set of
S. Now, for all y ∈ R, the set {Σ: Σ asymptotic routeing strategy, S(Σ) ≤ y} is compact, because it

is closed and contained in the set {Σ: Σ asymptotic routeing strategy,
∑kmax

k=1 kνk(W
k) ≤ y′} for all

sufficiently large y′ ∈ R, and such sets are compact by Prohorov’s theorem. These together allow us
to conclude (1.34).

From this, parts (1) and (4) of Proposition 1.5 can be derived analogously to how Theorem 1.4 was
derived from Theorem 1.2 in Section 3.5. The additional fact that the rate function J +µ(W ) log kmax

has compact level sets holds because relative entropies with respect to fixed reference measures have
compact level sets [DZ98, Section 6.2].

Lastly, we verify (3), i.e., we prove that (1.35) is the unique minimizer of (1.34). The fact that the
set of minimizers of the variational formula on the right-hand side of (1.34) is non-empty, compact
and convex follows similarly to Lemma 4.1, again by Prohorov’s theorem and the compactness of
the sets {Σ: Σ asymptotic routeing strategy, S(Ψ) ≤ y}, y > 0. Further, an argument analogous to
Lemmas 4.2 and 4.3 shows that for all minimizers Σ = (νk)k∈[kmax], we have that νk � µ⊗k � νk and
dνk

dµ⊗k
is bounded away from zero, for all k ∈ [kmax]. Deriving the Euler–Lagrange equations similarly

to Section 4.2, it follows that (1.35)–(1.36) hold for any minimizer Σ = (νk)k∈[kmax] of (1.34). This
also implies that the minimizer Σ is unique. Thus, we conclude Proposition 1.5. �

Appendix A. Representations of the entropy term

We defined the entropy term Ψ 7→ I(Ψ) via the formula (1.23), which we interpreted in Section 1.8.2.
It is easy to see that (1.23) is equivalent to the representation in (4.1), which we used for analytical
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investigations. Now we show that (1.23) is equivalent to (3.3), which arises from the combinatorics in
Section 3.1.

Recall that for k ∈ N and ξ, η ∈ M(W k), we have HWk(ξ|η) = HWk(ξ|η) − ξ(W k) + η(W k).
Further, for an admissible trajectory setting Ψ = ((νk)k∈[kmax], (µm)m∈N0), recall the measure M =∑kmax

k=1

∑k−1
l=1 πlνk =

∑∞
m=0mµm. Starting from the definition of I(·), in (1.23), we compute

I(Ψ) =

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm) + µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e

=

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
−
kmax∑
k=1

νk(W
k) + µ(W )

kmax∑
k=1

M(W )k−1 +
∞∑
m=0

HW (µm | µcm)

+ µ(W )
(

1−
kmax∑
k=1

M(W )k−1
)
− 1

e

=

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
+

∞∑
m=0

HW (µm | µcm)− 1

e
,

where we used (1.44), and the fact that
∑kmax

k=1 νk(W
k) = µ(W ) by (i) in (1.19). By the definition of

the measure M , it suffices to show that

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
=

kmax∑
k=1

HWk(νk|µ⊗k)−HW (M |µ). (A.1)

Clearly, if any of the sides of (A.1) is infinite, then so is the other side. Else, we verify (A.1) as follows

kmax∑
k=1

HWk

(
νk | µ⊗M⊗(k−1)

)
=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1)
[

log
dνk

dµ⊗k
(x0, . . . , xk−1)− log

d(µ⊗M⊗(k−1))

dµ⊗k
(x0, . . . , xk−1)

]

=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1)
[

log
dνk

dµ⊗k
(x0, . . . , xk−1)− log

( k−1∏
l=1

dM

dµ
(xl)

)]

=

kmax∑
k=1

∫
Wk

dνk(x0, . . . , xk−1) log
dνk

dµ⊗k
(x0, . . . , xk−1)−

kmax∑
k=1

k−1∑
l=1

∫
W
πlνk(dxl) log

dM

dµ
(xl)

=

kmax∑
k=1

HWk(νk|µ⊗k)−HW (M |µ).
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