
LARGE DEVIATIONS FOR THE LOCAL TIMESOF A RANDOM WALK AMONG RANDOM CONDUCTANCESBy Wolfgang König1,2, Mihele Salvi1 and Tilman Wolff2Weierstrass Institute Berlin and TU BerlinApril 6, 2011Abstrat: We derive an annealed large deviation priniple for the normalised loal times ofa ontinuous-time random walk among random ondutanes in a �nite domain in Z
d in thespirit of Donsker-Varadhan [DV75-83℄. We work in the interesting ase that the ondutanesmay assume arbitrarily small values. Thus, the underlying piture of the priniple is a jointstrategy of small values of the ondutanes and large holding times of the walk. The speedand the rate funtion of our priniple are expliit in terms of the lower tails of the ondutanedistribution. As an appliation, we identify the logarithmi asymptotis of the lower tails ofthe prinipal eigenvalue of the randomly perturbed negative Laplae operator in the domain.1. IntrodutionWe introdue the main objet of our study in Setion 1.1, present our main results in Setion 1.2 andgive a heuristi explanation in Setion 1.3. The proof of the main theorem is arried out in Setions 2.1and 2.2.1.1 Continuous-time random walk among random ondutanesConsider the lattie Z

d with E = {{x, y} : x, y ∈ Z
d, x ∼ y} the set of nearest-neighbour bonds. Assignto any edge {x, y} ∈ E a random weight ω{x,y} ∈ [0,∞). We will use the notation ω{x,y} = ωxy = ωyxfor onveniene. Assume that ω = (ωxy){x,y}∈E is a family of nonnegative i.i.d. random variables. Werefer to them as random ondutanes. One of the main objets of the present paper is the randomlyperturbed Laplaian ∆ω de�ned by

∆ωf(x) :=
∑

y∈Zd : y∼x

ωxy(f(y) − f(x)), f : Z
d → R, x ∈ Z

d. (1.1)This operator is symmetri and generates the ontinuous-time random walk (Xt)t∈[0,∞) in Z
d, therandom walk among random ondutanes (RWRC) or, as many authors all it, random ondutanemodel (RCM). This proess starts at x ∈ Z

d under P
ω
x and evolves as follows. When loated at y, itwaits an exponential random time with parameter ∑

z∼y ωyz (i.e., with expetation 1/
∑

z∼y ωyz) andthen jumps to a neighbouring site z′ with probability ωyz′/∑

z∼y ωyz. We write Pr for the probabilityand 〈·〉 for the expetation with respet to ω.1Institute for Mathematis, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany, koenig�math.tu-berlin.deand salvi�math.tu-berlin.de2Weierstrass Institute Berlin, Mohrenstr. 39, 10117 Berlin, koenig�wias-berlin.de and wolff�wias-berlin.deAMS Subjet Classi�ation: 60J65, 60J55, 60F10.Keywords: ontinuous-time random walk, random ondutanes, randomly perturbed Laplae operator, large devia-tions, Donsker-Varadhan rate funtion.



2 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFIn some reent publiations (see, e.g., [BD10℄), the above walk is alled variable-speed random walk(VSRW) in ontrast to the onstant-speed random walk (CSRW), where the holding times have pa-rameter one, and to the disrete-time version of the RWRC, where the jumps our at integer times.Substantial di�erenes between these two variants appear, for example, in slow-down phenomena.These are typially due to extremely large holding times in the former ase, but to so-alled traps(regions of transition probabilities in whih the path loses muh time) in the two latter ases. Afurther aspet is that ontinuous-time random walks may reah any point in �nite time with positiveprobability, in ontrast to disrete-time walks. All these proesses are versions of RWRC.Let us mention some earlier work on RWRC. For the disrete-time setting, a quenhed funtional CLTis derived in [BP07℄, assuming that the ondutanes take values in [0, 1]. In [BBHK08℄ and [FM06℄,the authors examine the probability for the random walk to return to the origin in the quenhedand annealed ase, respetively. Here, the lower tails of the distribution of the ondutanes havepolynomial deay. The quenhed funtional CLT has been addressed for the CSRW in [M08℄ andfor both the CSRW and VSRW in [BD10℄, the former onsidering ondutanes in [0, 1], the latterrequiring the ondutanes to be bounded away from zero. Weak onvergene to some Lévy proessafter proper resaling is established in [B�10℄ for ondutanes bounded away from zero.The main purpose of this paper is the desription of the long-time behaviour of the walk in a given�nite onneted set B ⊂ Z
d ontaining the starting point. More preisely, we derive a large deviationpriniple (LDP) for the loal times of the walk, whih are de�ned by

ℓt(z) =

∫ t

0
δXs(z) ds, z ∈ Z

d, t > 0. (1.2)In words, ℓt(z) is the amount of time that the walker spends in z by time t. The speed and the ratefuntion of this LDP are expliit.One appliation is a haraterization of the logarithmi asymptotis of the non-exit probability from B.As this is standard and well-known under the quenhed law P
ω
0 , we will work under the annealed law

〈Pω0 (·)〉 instead. One of our motivations are the seminal works [DV75-83℄ and [G77℄ on large deviationsfor the oupation time measures of various types of Markov proesses. Another one is the question ofthe extremal behaviour of the prinipal eigenvalue of the random operator ∆ω in B.We onentrate on the interesting ase where the ondutanes are positive, but an assume arbitrarilysmall values. Here the annealed behaviour omes from a ombined strategy of the ondutanes andthe walk, and the desription of their interplay is the fous of our study. Losely speaking, the optimaljoint strategy of the ondutanes and the walk to meet the non-exit ondition X[0,t] ⊂ B for large tis that the ondutanes assume extremely small t-dependent values and the walker realizes very large
t-dependent holding times and/or trajetories that do not leave B. We will informally desribe thispiture in greater detail.1.2 Main resultOur main assumption on the i.i.d. �eld ω of ondutanes is that, for any {x, y} ∈ E,

ωxy ∈ (0,∞) and essinf (ωxy) = 0. (1.3)More spei�ally, we require some regularity of the lower tails, namely the existene of two parameters
η,D ∈ (0,∞) suh that

log Pr(ωxy ≤ ε) ∼ −Dε−η, ε ↓ 0. (1.4)That is, the edge weights an attain arbitrarily small values with presribed probabilities.



LARGE DEVIATIONS FOR RWRC 3Our main theorem is the following large deviation priniple for the normalised loal times before exiting
B. That is, we restrit to the event {X[0,t] ⊂ B} = {supp(ℓt) ⊂ B}. By

EB := {{x, y} : x ∈ B, y ∈ Z
d, y ∼ x} (1.5)we denote the set of edges onneting the sites of B with their neighbours both in B and outside.Theorem 1.1 (Annealed LDP for 1

t ℓt). Assume that ω satis�es (1.3) and (1.4). Fix a �nite onnetedset B ⊂ Z
d ontaining the origin. Then the proess of normalized loal times, (1

t ℓt)t>0, under theannealed sub-probability law 〈Pω0 ( · ∩{X[0,t] ⊂ B})〉 satis�es an LDP on M1(B), the spae of probabilitymeasures on B, with speed t η
η+1 and rate funtion J given by

J(g2) := Kη,D

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 , g ∈ ℓ2(Zd), supp(g) ⊂ B, ‖g‖2 = 1, (1.6)where Kη,D =
(

1 + 1
η

)

(Dη)
1

η+1 .The proof of Theorem 1.1 is given in Setion 2. More expliitly, it says
lim inf
t→∞

t
− η

η+1 log
〈

P
ω
0

(

1
t ℓt ∈ O,X[0,t] ⊂ B

)〉

≥ − inf
g2∈O

J(g2) for O ⊂ M1(B) open, (1.7)
lim sup
t→∞

t
− η

η+1 log
〈

P
ω
0

(

1
t ℓt ∈ C,X[0,t] ⊂ B

)〉

≤ − inf
g2∈C

J(g2) for C ⊂ M1(B) losed, (1.8)and that the rate funtion J has ompat level sets. Our onvention is to extend any probabilitymeasure on B trivially to a probability measure on Z
d; note the zero boundary ondition in B that isindued in this way.A heuristi explanation of the speed and rate funtion is given in Setion 1.3. It turns out there thatthe ondutanes that give the most ontribution to the LDP are of order t−1/(1+η) and assume aertain deterministi shape.With the speial hoie O = C = M1(B), we obtain the following orollary.Corollary 1.2 (Non-exit probability from B). Under the assumptions of Theorem 1.1,

lim
t→∞

t−
η

η+1 log
〈

P
ω
0

(

X[0,t] ⊂ B
)

〉

= −Kη,DLη(B), (1.9)where
Lη(B) = inf

g2∈M1(B)

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 . (1.10)From Theorem 1.1, we also derive the preise logarithmi lower tails of the prinipal (i.e., smallest)eigenvalue λω(B) of −∆ω in B with zero boundary ondition.Corollary 1.3 (Lower tails for the bottom of the spetrum of ∆ω). Under the assumptions of Theo-rem 1.1,
lim
ε↓0

εη log Pr(λω(B) ≤ ε) = −DLη(B)η+1.Proof. A Fourier expansion shows that, Pr -almost surely,
P
ω
0 (X[0,t] ⊂ B) =

|B|
∑

i=1

e−tλ
ω
i vωi (0)(vωi , 1l) ≤

|B|
∑

i=1

e−tλ
ω
i |B| ≤ |B|2e−tλω(B),



4 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhere 0 < λω(B) = λω1 ≤ · · · ≤ λω|B| are the eigenvalues of ∆ω with zero boundary ondition in B and
(vωi )i=1,...,|B| a orresponding orthonormal base of eigenvetors. We also have, Pr -almost surely,

e−tλ
ω(B) ≤

|B|
∑

i=1

e−tλ
ω
i (vωi , 1l)

2 ≤
∑

z∈B

P
ω
z (X[0,t] ⊂ B).Applying Theorem 1.1 to B− z and using the shift-invariane of ω, we see that the expetation of theright-hand side has the same logarithmi asymptotis as 〈Pω0 (X[0,t] ⊂ B)〉. Therefore, the two aboveinequalities show that

log
〈

e−tλ
ω(B)

〉

∼ log
〈

P
ω
0 (X[0,t] ⊂ B)

〉

, t→ ∞. (1.11)Now de Bruijn's exponential Tauberian theorem [BGT89, Theorem 4.12.9℄, together with (1.9) yieldsthe desired asymptotis. �Theorem 1.1 holds literally true if Z
d is replaed by an (in�nite or �nite) graph and B by some �nitesubgraph. In future work we will be interested in extensions of Theorem 1.1 to B ⊂ Z

d a t-dependententred box and ∆ω replaed by ∆ω + ξ with ξ = (ξ(z))z∈Zd an i.i.d. random potential, independentof ω.1.3 Heuristi derivationWe now give a formal derivation of the LDP in Theorem 1.1. Given a �xed realisation ϕ =
{ϕxy : {x, y} ∈ EB} ∈ (0,∞)EB of the ondutanes, the probability that the normalised loal timeresembles some realisation g2 ∈ M1(B) is roughly

P
ϕ
0

(

1
t ℓt ≈ g2

)

≈ exp
{

− tIϕ(g2)
}

, (1.12)where the orresponding Donsker-Varadhan rate funtion is given by
Iϕ(g2) =

(

− ∆ϕg, g
)

=
∑

{x,y}∈EB

ϕxy|g(x) − g(y)|2. (1.13)This is a formal appliation of the LDP for the normalized oupation times of a Markov proess withsymmetri generator ∆ϕ as in [DV75-83℄ and [G77℄; by (·, ·) we denote the standard inner produt on
ℓ2(Zd). Note that the event {X[0,t] ⊂ B} is ontained in {1

t ℓt ≈ g2}, therefore we drop it from thenotation.Taking random ondutanes into aount, we expet an LDP on a slower sale than t, as small t-dependent values of the ondutanes lead to a slower deay of the annealed probability of the event
{1
t ℓt ≈ g2}. Therefore, we resale ω by a fator tr with some r > 0 to be determined later, andapproximate

Pr
(

trω ≈ ϕ
)

= Pr
(

∀{x, y} ∈ EB : ωxy ≈ t−rϕxy
)

=
∏

{x,y}∈EB

Pr
(

ωxy ≈ t−rϕxy
)

≈ exp
{

− trηH(ϕ)
}

, (1.14)where the rate funtion for the ondutanes is given by
H(ϕ) := D

∑

{x,y}∈EB

ϕ−η
xy . (1.15)



LARGE DEVIATIONS FOR RWRC 5Here we made use of the tail assumptions in (1.4). Hene, ombining (1.12) and (1.14),
〈

P
ω
0

(

1
t ℓt ≈ g2

)

1l{trω≈ϕ}

〉

≈ P
t−rϕ
0

(

1
t ℓt ≈ g2

)

Pr
(

ω ≈ t−rϕ
)

≈ exp
{

− tIt−rϕ(g2) − trηH(ϕ)
}

≈ exp
{

−
∑

{x,y}∈EB

(

t1−rϕxy
(

g(x) − g(y)
)2

+ trηDϕ−η
xy

)}

. (1.16)We obtain the slowest deay by hoosing r suh that t1−r = trη, whih means r = (1 + η)−1. Then theright-hand side has sale t η
η+1 , whih is the sale of the desired LDP. In order to �nd the rate funtion,we optimize over ϕ and obtain that the hoie ϕ = ϕ(g) with
ϕ(g)
xy = (Dη)

1
η+1 |g(y) − g(x)|−

2
η+1 , {x, y} ∈ EB , (1.17)ontributes most to the joint probability. Therefore, we have the result

〈

P
ω
0

(

1
t ℓt ≈ g2

)

〉

≈ exp
{

− t
η

η+1J(g2)
}

,where the rate funtion is identi�ed as
J(g2) = inf

ϕ

[

Iϕ(g2) +H(ϕ)
]

= Iϕ(g)(g2) +H(ϕ(g)) = Kη,D

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 . (1.18)The tail assumptions we have made on the environment distribution lead to a fairly remarkable inter-ation between the random in�uenes of the environment on the one hand and the random walk onthe other. Under more general assumptions, e.g.,
log Pr(ωxy ≤ ε) ∼ −α(ε), ε→ 0for some su�iently regular noninreasing funtion α : R+ → R+, we would expet an analogous resultto hold. However, if α(ε) is not a polynomial in ε, the sale and rate funtion of a orresponding LDPertainly would not have suh an expliit form.2. Proof of Theorem 1.1In this setion, we prove Theorem 1.1. This amounts to showing the two inequalities in (1.7) and (1.8),sine the ompatness of the level sets follows immediately from the ontinuity of J and ompatnessof the spae M1(B). The two inequalities are proven in the next two setions.2.1 Proof of the lower boundIn order to prove (1.7), we need to ontrol the transition from one realization of the environment toanother. To this end, we �rst identify the density of this transition on proess level. We feel that thisshould be generally known, but ould not �nd a suitable referene. For ϕ : E → (0,∞) we abbreviate

ϕ̄(x) :=
∑

y∼x ϕ(x, y). We also write ϕxy instead of ϕ(x, y).Lemma 2.1. Assume that ϕ,ψ : E → (0,∞) are bounded both from above and away from zero. Denoteby S(t) the number of jumps the proess X = (Xs)s∈[0,t] makes up to time t and by 0 < τ1 < . . . < τS(t)the orresponding jump times. Fix some starting point x ∈ Z
d and put τ0 = 0. Then, for all t ∈ [0,∞),

Φt(X) :=

S(t)
∏

i=1

(

ϕ(Xτi−1 ,Xτi)

ψ(Xτi−1 ,Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )]

)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)]is the Radon-Nikodym density of P
ϕ
x with respet to P

ψ
x with time horizon t.



6 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFProof. We will write Φt instead of Φt(X). Obviously, Φt > 0 almost surely. We start showing that,for all t ≥ 0, the expetation of Φt under P
ψ
x is one. Then, we use Kolmogorov's extension theorem toshow the existene of a measure Px suh that Px(A) = E

ψ
x (Φt1lA) for all A ∈ Ft, where (Ft)t∈[0,∞) isthe natural �ltration generated by X. It remains to show that the proess X under Px is a Markovproess and that it is generated by ∆ϕ, whih implies Px = P

ϕ
x .Let us start by showing that the expetation of Φt under P

ψ
x is one. Consider the disrete-time proess

Zn :=
n

∏

i=1

(

ϕ(Xτi−1 ,Xτi)

ψ(Xτi−1 ,Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1

)−ψ̄(Xτi−1
)]
)

.We have, for x ∈ Z
d,

E
ψ
x [Z1] =

∑

y∼x

ψxy
ψ̄(x)

ϕxy
ψxy

∫ ∞

0
ψ̄(x)e−ψ̄(x)s−(ϕ̄(x)−ψ̄(x))s ds =

∑

y∼x

ϕxy
ϕ̄(x)

= 1.Combining this equation with the strong Markov property, we see that (Zn)n is a martingale withrespet to the �ltration (Fτn)n∈N generated by the jumping times and that
E
ψ
x

[

ϕ(Xt,XτS(t)+1
)

ψ(Xt,XτS(t)+1
)
e−(τS(t)+1−t)[ϕ̄(Xt)−ψ̄(Xt)]

∣

∣

∣
Ft

]

= E
ψ
Xt

[Z1] = 1 (2.1)
P
ψ
x -almost surely for all x ∈ Z

d. Then, we obtain
E
ψ
x [Φt] = E

ψ
x [ZS(t)+1], x ∈ Z

d,by inserting the �rst term of (2.1) under the expetation and using that Φt is Ft-measurable. Con-sequently, it remains to show that E
ψ
x [ZS(t)+1] = 1. As S(t) + 1 is an unbounded, but almost surely�nite stopping time with respet to the �ltration (Fτn)n∈N, the optional sampling theorem yields that

E
ψ
x [ZS(t)+1] ≤ 1. On the other hand, for all integers k > 0,

E
ψ
x [ZS(t)+1] ≥ E

ψ
x [ZS(t)+11lS(t)+1≤k] = E

ψ
x [ZS(t)+1∧k] − E

ψ
x [Zk1lS(t)≥k] = 1 − E

ψ
x [Zk1lS(t)≥k]. (2.2)To show that the last term is arbitrarily lose to one for large k, we reall that on {S(t) ≥ k}

Zk ≤
(

maxx∈Zd, y∼x ϕxy

minx∈Zd, y∼x ψxy

)k

etmax{|ϕxy−ψxy| : {x,y}∈E} =: αk,so E
ψ
x [Zk1lS(t)≥k] is bounded from above by αkPψx (S(t) ≥ k). As all jumping times are exponentiallydistributed with a parameter smaller than γ := maxx∈Zd ψ̄(x), we may estimate

P
ψ
x (S(t) ≥ k) ≤ eγt

∞
∑

n=k

(γt)n

n!
.The tail of an exponential series is super-exponentially small, whih means αkPψx (S(t) ≥ k) → 0 for

k → ∞. Sine (2.2) was true for all k, we see that E
ψ
x [ZS(t)+1] = 1.For arbitrary k ∈ N and t1, . . . , tk ≥ 0 de�ne t̂ = maxi∈{1,...,k} ti and a measure Qt1,...,tk on (Zd)

k by
Qt1,...,tk(x1, . . . , xk) = E

ψ
x [Φt̂1l{Xt1=x1,...,Xtk

=xk}], x1, . . . , xk ∈ Z
d.We verify without muh e�ort that E

ψ
x [Φt+s1lA] = E

ψ
x [Φt1lA] for all A ∈ Ft and t, s > 0, whih impliesonsisteny of the family of measures above. Thus, by Kolmogorov's extension theorem, there exists



LARGE DEVIATIONS FOR RWRC 7a measure Px with �nite-dimensional distributions as above, and we have Px(A) = E
ψ
x [Φt1lA] for all

t > 0 and A ∈ Ft. We show that the proess X under Px satis�es the Markov property, i.e.,
Ex[1l{Xt+s=y}|Ft] = PXt(Xs = y) Px-a.s. for all y ∈ Z

d, s, t > 0 (2.3)where Ex denotes expetation with regard to Px. Note that PXt is de�ned as we have onsidered anarbitrary starting point x in what we have shown so far. Indeed, for all A ∈ Ft
Ex

[

Ex[1l{Xt+s=y}|Ft]1lA
]

= Ex[1l{Xt+s=y}1lA] = E
ψ
x [Φt+s1l{Xt+s=y}1lA]

= E
ψ
x

[

E
ψ
x [Φt+s1l{Xt+s=y}|Ft]1lA

]

(∗)
= E

ψ
x

[

ΦtE
ψ
Xt

[Φs1l{Xs=y}]1lA
]

= Ex

[

EXt [1l{Xs=y}]1lA
]

,where equation (∗) is due to the fat that X satis�es the Markov property under P
ψ
x and

Φt+sΦ
−1
t 1l{Xt+s=y} depends only on X[t,t+s]. Consequently, we have shown (2.3) and X is a Markovproess under Px with a unique in�nitesimal generator. Elementary alulations show that

1

t

(

E
ψ
x [f(Xt)Φt] − f(x)

)

t→0−−→ ∆ϕf(x)for arbitrary x ∈ Z
d and f : Z

d → R. This implies Px = P
ϕ
x and the proof is omplete. �Now we use Lemma 2.1 to ompare probabilities for two environments that are lose to eah other.Corollary 2.2. Let ϕ,ψ : E → (0,∞) with 0 < ψxy − ε ≤ ϕxy ≤ ψxy + ε for some ε > 0 and all

{x, y} ∈ E. Moreover, let F be some event that depends on the proess (Xs)s∈[0,t] up to time t only.Then
P
ϕ
0

(

F
)

≥ e−4dεt
P
ψ−ε
0

(

F
)

.Proof. Let Φt denote the Radon-Nikodym density of P
ϕ
0 with respet to P

ψ−ε
0 up to time t. Employingthe representation given in Lemma 2.1, we have

Φt ≥
S(t)
∏

i=1

(

e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )+2dε]
)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)+2dε]

≥
S(t)
∏

i=1

(

e−(τi−τi−1)4dε
)

e−(t−τS(t))4dε ≥ e−4dεt.The desired inequality follows immediately. �Remark 2.3. If the event A is ontained in {supp(ℓt) ⊂ B}, it su�es to require 0 < ψxy−ε ≤ ϕxy ≤
ψxy + ε for some ε > 0 and all {x, y} ∈ EB.Let us now show (1.7). Fix an open set O ⊂ M1(B). As the event {X[0,t] ⊂ B} is ontained in
{1
t ℓt ∈ O}, we omit it in the notation. Observe that the distributions of 1

t ℓt under P
ω
0 and 1

t1−r ℓt1−runder P
trω
0 oinide for all 0 < r < 1. Hene

lim inf
t→∞

1

t
η

η+1

log
〈

P
ω
0

(

1
t ℓt ∈ O

)〉

= lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

,



8 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhih will simplify the appliation of a lassial Donsker-Varadhan LDP for random walks in �xedenvironment later. Choose an element g2 ∈ O arbitrarily. For M > 0 de�ne ϕ(g)

M : EB → (0,∞) by
ϕ(g)

M (x, y) =

{

(Dη)
1

η+1 |g(y) − g(x)|−
2

η+1 if |g(y) − g(x)| > 0,

M otherwise.Next, we introdue the set
A =

{

ϕ : EB → (0,∞)
∣

∣ϕ(g)

M − ε ≤ ϕ ≤ ϕ(g)

M

}

, (2.4)where ε > 0 is piked smaller than 1
2 minEB

ϕ(g)

M . By dint of Corollary 2.2,
〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥
〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)

1l{
t
1
η ω∈A

}

〉

≥ inf
ϕ∈A

P
ϕ
0

(

1
t ℓt ∈ O

)

Pr
(

t
1
ηω ∈ A)

≥ e−4dεt
P
ϕ

(g)
M −ε

0

(

1
t ℓt ∈ O

)

Pr
(

t
1
ηω ∈ A). (2.5)Using the tail assumption in (1.4), we see that

lim
t→∞

1

t
log Pr

(

t
1
ηω ∈ A) = −H(ϕ(g)

M ),where H is given in (1.15). Furthermore, we apply the lower bound of the lassial Donsker-VaradhanLDP (see [DV75-83℄ or [G77℄) to get
lim inf
t→∞

1

t
log P

ϕ
(g)
M −ε

0

(

1
t ℓt ∈ O

)

≥ − inf
O
I
ϕ

(g)
M −ε

,where Iϕ is given in (1.13). Hene, from (2.5) we obtain
lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥ −4dε− inf
O
I
ϕ

(g)
M −ε

−H(ϕ(g)

M )

≥ −4dε− inf
O
I
ϕ

(g)
M

−H(ϕ(g)

M )

≥ −4dε− I
ϕ

(g)
M

(g2) −H(ϕ(g)

M ),sine I
ϕ

(g)
M −ε

≤ I
ϕ

(g)
M

and g2 ∈ O. Now we send ε to zero and M to ∞, to obtain
lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥ −Iϕ(g)(g2) −H(ϕ(g)) = −J(g2),where ϕ(g) = limM→∞ ϕ(g)

M is given in (1.17), and we used (1.18). The desired lower bound follows bypassing to the in�mum over all g2 ∈ O.2.2 Proof of the upper boundIn this setion we prove (1.8). Let us �rst �x some on�guration ϕ ∈ (0,∞)E and start with an estimatefor the probability P
ϕ
0 (1

t ℓt ∈ ·). This approah has atually been used by other authors before, but weprovide an independent proof for the sake of ompleteness.Lemma 2.4. Fix an arbitrary set A ⊂ M1(B). Then
P
ϕ
0

(

1
t ℓt ∈ A

)

≤ f(0)

minB f
exp

{

t sup
h2∈A

∑

x∈B

∆ϕf(x)

f(x)
h2(x)

} (2.6)for arbitrary f : Z
d → [0,∞) with supp(f) = B and t > 0.



LARGE DEVIATIONS FOR RWRC 9Proof. We onsider the Cauhy problem
{

∂tu(x, t) = ∆ϕu(x, t) + V (x)u(x, t), x ∈ Z
d, t > 0,

u(x, 0) = f(x), x ∈ Z
d,

(2.7)with
V = −∆ϕf

f
1lB.Obviously, u(·, t) ≡ f(·) solves (2.7). On the other hand, by the Feynman-Ka formula, any nonnegativesolution u satis�es

u(x, t) = E
ϕ
x

[

e
R t
0
V (Xs)dsu(Xt, t)

]

, x ∈ Z
d, t ≥ 0. (2.8)Therefore, we may estimate

f(0) = E
ϕ
0

[

e
−

R t
0

∆ϕf(Xs)
f(Xs)

ds
f(Xt)

]

≥ E
ϕ
0

[

e
−

P

x∈B
∆ϕf(x)

f(x)
ℓt(x)f(Xt)1l{ 1

t
ℓt∈A}

]

≥ min
B

f exp
{

− t sup
h2∈A

∑

x∈B

∆ϕf(x)

f(x)
h2(x)

}

P
ϕ
0

(

1
t ℓt ∈ A

)

,whih is a rearrangement of the assertion. �Now �x some losed set C ⊂ M1(B). As a losed subset of a �nite-dimensional spae, C is ompatwith respet to the Eulidean topology. We are going to apply a standard ompatness argument,whih is in the spirit of the proof of the upper bound in Varadhan's lemma [DZ98, Thm. 4.3.1℄. Theidea is to over C with ertain open balls, where `open' refers to the Eulidean topology.Fix δ > 0. For g2 ∈ C de�ne
dg = min

{

|g(y) − g(x)| : {x, y} ∈ E, g(x) 6= g(y)
}

∈ (0,∞),where we reall that g2 is de�ned on the entire Z
d and is zero outside B. Consider the open ball in

M1(B) of radius δg := min{d4
g, δ} entered at g2. Fixing a on�guration ϕ ∈ (0,∞)E , we an applyLemma 2.4 with f(·) := g(·) +
√

δg1lB and obtain
P
ϕ
0

(

1
t ℓt ∈ Bδg(g

2)
)

≤ 1 +
√

δg
√

δg
exp

{

t sup
h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
h2(x)

}

. (2.9)In what follows, we show
sup

h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x) ≤ −Iϕ(g2)(1 − 7δ
1
4 ), (2.10)



10 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhere we reall from (1.13) that Iϕ(g2) =
∑

{x,y}∈E ϕxy|g(x) − g(y)|2 = −(∆ϕg, g). To that end, wereplae h2 by (g +
√

δg1lB)2 and ontrol the error terms.
sup

h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
h2(x)

=
∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(g(x) +

√

δg)
2

+ sup
h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg

[

(h2(x) − g2(x)) − 2
√

δgg(x) − δg
]

. (2.11)The �rst sum is easily estimated against the standard Donsker-Varadan rate funtion:
∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(g(x) +

√

δg)
2 =

(

∆ϕ(g +
√

δg1lB), g +
√

δg1lB
)

≤
(

∆ϕg, g
)

= −Iϕ(g2),where we have used the symmetry of the operator ∆ϕ and that g = 0 outside B. In order to estimate thelast term in (2.11), we treat the ontribution of every summand within the square brakets separately.We begin with the �rst part and observe that |h2(x) − g2(x)| = |h(x) − g(x)| |h(x) + g(x)| ≤ 2δg forall h2 ∈ Bδg(g
2) and x ∈ B. Thus

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(h2(x) − g2(x))

=
∑

{x,y}∈E :
x,y∈B

ϕxy
g(y) − g(x)

g(x) +
√

δg
(h2(x) − g2(x)) −

∑

{x,y}∈E:
x∈B,y 6∈B

ϕxy(h
2(x) − g2(x))

≤
∑

{x,y}∈E
x,y∈B

ϕxy
|g(x) − g(y)|

√

δg
2δg +

∑

{x,y}∈E:
x∈B,y 6∈B

ϕxy2δg

≤ 4δ
1
4 Iϕ(g2).The last step is due to the fat that δ 1

4
g ≤ g(x) − g(y) whenever g(x) − g(y) > 0. Seondly,

∑

x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√

δg
(−2

√

δgg(x))

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|
∣

∣

∣

2
√

δgg(x)

g(x) +
√

δg
− 2

√

δgg(y)

g(y) +
√

δg

∣

∣

∣
+

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√

δgg(x)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|2 2δg
√

δgdg
+

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√

δg|g(x) − g(y)|

≤ 2δ
1
4 Iϕ(g2).



LARGE DEVIATIONS FOR RWRC 11Here, we have used δ 1
4
g ≤ dg. The only part left is

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(−δg)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|
∣

∣

∣

1

g(x) +
√

δg
− 1

g(y) +
√

δg

∣

∣

∣
δg +

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|2 1
√

δgdg
δg +

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤ δ
1
4 Iϕ(g2).Combining (2.11) with the last three estimates, we obtain (2.10) and in partiular

P
ϕ
0

(

1
t ℓt ∈ Bδ(g

2)
)

≤ 1 +
√

δg
√

δg

∏

{x,y}∈E

exp
{

− t ϕxy|g(x) − g(y)|2(1 − 7δ
1
4 )

}

. (2.12)The balls Bδg(g2) with g2 ∈ C over C and sine this set is ompat, we may extrat a �nite suboveringof C. Denote by (g2
i )i=1,...,N the enters of the balls in this subovering. Then, applying (2.12) for

ϕ = t
1
ηω, we obtain

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ C

)〉

≤ max
i=1,...,N

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ Bδgi

(g2
i )

)〉

≤ max
i=1,...,N

∑

{x,y}∈EB

lim sup
t→∞

1

t
log

〈

exp
{

− t
1+η

η ωxy|gi(y) − gi(x)|2(1 − 7δ
1
4 )

}

〉

.Aording to de Bruijn's exponential Tauberian theorem [BGT89, Theorem 4.12.9℄, the tail assumption(1.4) is equivalent to the ondition that, for any M > 0 and {x, y} ∈ E,
lim
t→∞

1

t
log

〈

exp
{

− t
1+η

η ωxyM
}

〉

= −Kη,DM
η

1+η , (2.13)where we reall Kη,D =
(

1 + 1
η

)

(Dη)
1

η+1 from Theorem 1.1. Thus, with δ so small that 1 − 7δ
1
4 > 0,we obtain

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

(

1
t ℓt ∈ C

)〉

≤ max
i=1,...,N

∑

{x,y}∈EB

−Kη,D|gi(y) − gi(x)|
2η

1+η (1 − 7δ
1
4 )

η
1+η

≤ −(1 − 7δ
1
4 )

η
1+η inf

g2∈C
J(g2)with J as in (1.18). Sine we may hoose δ arbitrarily small, the proof of (1.8) is omplete.Referenes[BBHK08℄ N. Berger, M. Biskup, C.E. Hoffman and G. Kozma, Anomalous heat-kernel deayfor random walk among bounded random ondutanes, Ann. Inst. Henri Poinaré Probab.Stat. 44, 374�392 (2008).
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