
LARGE DEVIATIONS FOR THE LOCAL TIMESOF A RANDOM WALK AMONG RANDOM CONDUCTANCESBy Wolfgang König1,2, Mi
hele Salvi1 and Tilman Wolff2Weierstrass Institute Berlin and TU BerlinApril 6, 2011Abstra
t: We derive an annealed large deviation prin
iple for the normalised lo
al times ofa 
ontinuous-time random walk among random 
ondu
tan
es in a �nite domain in Z
d in thespirit of Donsker-Varadhan [DV75-83℄. We work in the interesting 
ase that the 
ondu
tan
esmay assume arbitrarily small values. Thus, the underlying pi
ture of the prin
iple is a jointstrategy of small values of the 
ondu
tan
es and large holding times of the walk. The speedand the rate fun
tion of our prin
iple are expli
it in terms of the lower tails of the 
ondu
tan
edistribution. As an appli
ation, we identify the logarithmi
 asymptoti
s of the lower tails ofthe prin
ipal eigenvalue of the randomly perturbed negative Lapla
e operator in the domain.1. Introdu
tionWe introdu
e the main obje
t of our study in Se
tion 1.1, present our main results in Se
tion 1.2 andgive a heuristi
 explanation in Se
tion 1.3. The proof of the main theorem is 
arried out in Se
tions 2.1and 2.2.1.1 Continuous-time random walk among random 
ondu
tan
esConsider the latti
e Z

d with E = {{x, y} : x, y ∈ Z
d, x ∼ y} the set of nearest-neighbour bonds. Assignto any edge {x, y} ∈ E a random weight ω{x,y} ∈ [0,∞). We will use the notation ω{x,y} = ωxy = ωyxfor 
onvenien
e. Assume that ω = (ωxy){x,y}∈E is a family of nonnegative i.i.d. random variables. Werefer to them as random 
ondu
tan
es. One of the main obje
ts of the present paper is the randomlyperturbed Lapla
ian ∆ω de�ned by

∆ωf(x) :=
∑

y∈Zd : y∼x

ωxy(f(y) − f(x)), f : Z
d → R, x ∈ Z

d. (1.1)This operator is symmetri
 and generates the 
ontinuous-time random walk (Xt)t∈[0,∞) in Z
d, therandom walk among random 
ondu
tan
es (RWRC) or, as many authors 
all it, random 
ondu
tan
emodel (RCM). This pro
ess starts at x ∈ Z

d under P
ω
x and evolves as follows. When lo
ated at y, itwaits an exponential random time with parameter ∑

z∼y ωyz (i.e., with expe
tation 1/
∑

z∼y ωyz) andthen jumps to a neighbouring site z′ with probability ωyz′/∑

z∼y ωyz. We write Pr for the probabilityand 〈·〉 for the expe
tation with respe
t to ω.1Institute for Mathemati
s, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany, koenig�math.tu-berlin.deand salvi�math.tu-berlin.de2Weierstrass Institute Berlin, Mohrenstr. 39, 10117 Berlin, koenig�wias-berlin.de and wolff�wias-berlin.deAMS Subje
t Classi�
ation: 60J65, 60J55, 60F10.Keywords: 
ontinuous-time random walk, random 
ondu
tan
es, randomly perturbed Lapla
e operator, large devia-tions, Donsker-Varadhan rate fun
tion.



2 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFIn some re
ent publi
ations (see, e.g., [BD10℄), the above walk is 
alled variable-speed random walk(VSRW) in 
ontrast to the 
onstant-speed random walk (CSRW), where the holding times have pa-rameter one, and to the dis
rete-time version of the RWRC, where the jumps o

ur at integer times.Substantial di�eren
es between these two variants appear, for example, in slow-down phenomena.These are typi
ally due to extremely large holding times in the former 
ase, but to so-
alled traps(regions of transition probabilities in whi
h the path loses mu
h time) in the two latter 
ases. Afurther aspe
t is that 
ontinuous-time random walks may rea
h any point in �nite time with positiveprobability, in 
ontrast to dis
rete-time walks. All these pro
esses are versions of RWRC.Let us mention some earlier work on RWRC. For the dis
rete-time setting, a quen
hed fun
tional CLTis derived in [BP07℄, assuming that the 
ondu
tan
es take values in [0, 1]. In [BBHK08℄ and [FM06℄,the authors examine the probability for the random walk to return to the origin in the quen
hedand annealed 
ase, respe
tively. Here, the lower tails of the distribution of the 
ondu
tan
es havepolynomial de
ay. The quen
hed fun
tional CLT has been addressed for the CSRW in [M08℄ andfor both the CSRW and VSRW in [BD10℄, the former 
onsidering 
ondu
tan
es in [0, 1], the latterrequiring the 
ondu
tan
es to be bounded away from zero. Weak 
onvergen
e to some Lévy pro
essafter proper res
aling is established in [B�10℄ for 
ondu
tan
es bounded away from zero.The main purpose of this paper is the des
ription of the long-time behaviour of the walk in a given�nite 
onne
ted set B ⊂ Z
d 
ontaining the starting point. More pre
isely, we derive a large deviationprin
iple (LDP) for the lo
al times of the walk, whi
h are de�ned by

ℓt(z) =

∫ t

0
δXs(z) ds, z ∈ Z

d, t > 0. (1.2)In words, ℓt(z) is the amount of time that the walker spends in z by time t. The speed and the ratefun
tion of this LDP are expli
it.One appli
ation is a 
hara
terization of the logarithmi
 asymptoti
s of the non-exit probability from B.As this is standard and well-known under the quen
hed law P
ω
0 , we will work under the annealed law

〈Pω0 (·)〉 instead. One of our motivations are the seminal works [DV75-83℄ and [G77℄ on large deviationsfor the o

upation time measures of various types of Markov pro
esses. Another one is the question ofthe extremal behaviour of the prin
ipal eigenvalue of the random operator ∆ω in B.We 
on
entrate on the interesting 
ase where the 
ondu
tan
es are positive, but 
an assume arbitrarilysmall values. Here the annealed behaviour 
omes from a 
ombined strategy of the 
ondu
tan
es andthe walk, and the des
ription of their interplay is the fo
us of our study. Losely speaking, the optimaljoint strategy of the 
ondu
tan
es and the walk to meet the non-exit 
ondition X[0,t] ⊂ B for large tis that the 
ondu
tan
es assume extremely small t-dependent values and the walker realizes very large
t-dependent holding times and/or traje
tories that do not leave B. We will informally des
ribe thispi
ture in greater detail.1.2 Main resultOur main assumption on the i.i.d. �eld ω of 
ondu
tan
es is that, for any {x, y} ∈ E,

ωxy ∈ (0,∞) and essinf (ωxy) = 0. (1.3)More spe
i�
ally, we require some regularity of the lower tails, namely the existen
e of two parameters
η,D ∈ (0,∞) su
h that

log Pr(ωxy ≤ ε) ∼ −Dε−η, ε ↓ 0. (1.4)That is, the edge weights 
an attain arbitrarily small values with pres
ribed probabilities.



LARGE DEVIATIONS FOR RWRC 3Our main theorem is the following large deviation prin
iple for the normalised lo
al times before exiting
B. That is, we restri
t to the event {X[0,t] ⊂ B} = {supp(ℓt) ⊂ B}. By

EB := {{x, y} : x ∈ B, y ∈ Z
d, y ∼ x} (1.5)we denote the set of edges 
onne
ting the sites of B with their neighbours both in B and outside.Theorem 1.1 (Annealed LDP for 1

t ℓt). Assume that ω satis�es (1.3) and (1.4). Fix a �nite 
onne
tedset B ⊂ Z
d 
ontaining the origin. Then the pro
ess of normalized lo
al times, (1

t ℓt)t>0, under theannealed sub-probability law 〈Pω0 ( · ∩{X[0,t] ⊂ B})〉 satis�es an LDP on M1(B), the spa
e of probabilitymeasures on B, with speed t η
η+1 and rate fun
tion J given by

J(g2) := Kη,D

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 , g ∈ ℓ2(Zd), supp(g) ⊂ B, ‖g‖2 = 1, (1.6)where Kη,D =
(

1 + 1
η

)

(Dη)
1

η+1 .The proof of Theorem 1.1 is given in Se
tion 2. More expli
itly, it says
lim inf
t→∞

t
− η

η+1 log
〈

P
ω
0

(

1
t ℓt ∈ O,X[0,t] ⊂ B

)〉

≥ − inf
g2∈O

J(g2) for O ⊂ M1(B) open, (1.7)
lim sup
t→∞

t
− η

η+1 log
〈

P
ω
0

(

1
t ℓt ∈ C,X[0,t] ⊂ B

)〉

≤ − inf
g2∈C

J(g2) for C ⊂ M1(B) 
losed, (1.8)and that the rate fun
tion J has 
ompa
t level sets. Our 
onvention is to extend any probabilitymeasure on B trivially to a probability measure on Z
d; note the zero boundary 
ondition in B that isindu
ed in this way.A heuristi
 explanation of the speed and rate fun
tion is given in Se
tion 1.3. It turns out there thatthe 
ondu
tan
es that give the most 
ontribution to the LDP are of order t−1/(1+η) and assume a
ertain deterministi
 shape.With the spe
ial 
hoi
e O = C = M1(B), we obtain the following 
orollary.Corollary 1.2 (Non-exit probability from B). Under the assumptions of Theorem 1.1,

lim
t→∞

t−
η

η+1 log
〈

P
ω
0

(

X[0,t] ⊂ B
)

〉

= −Kη,DLη(B), (1.9)where
Lη(B) = inf

g2∈M1(B)

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 . (1.10)From Theorem 1.1, we also derive the pre
ise logarithmi
 lower tails of the prin
ipal (i.e., smallest)eigenvalue λω(B) of −∆ω in B with zero boundary 
ondition.Corollary 1.3 (Lower tails for the bottom of the spe
trum of ∆ω). Under the assumptions of Theo-rem 1.1,
lim
ε↓0

εη log Pr(λω(B) ≤ ε) = −DLη(B)η+1.Proof. A Fourier expansion shows that, Pr -almost surely,
P
ω
0 (X[0,t] ⊂ B) =

|B|
∑

i=1

e−tλ
ω
i vωi (0)(vωi , 1l) ≤

|B|
∑

i=1

e−tλ
ω
i |B| ≤ |B|2e−tλω(B),



4 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhere 0 < λω(B) = λω1 ≤ · · · ≤ λω|B| are the eigenvalues of ∆ω with zero boundary 
ondition in B and
(vωi )i=1,...,|B| a 
orresponding orthonormal base of eigenve
tors. We also have, Pr -almost surely,

e−tλ
ω(B) ≤

|B|
∑

i=1

e−tλ
ω
i (vωi , 1l)

2 ≤
∑

z∈B

P
ω
z (X[0,t] ⊂ B).Applying Theorem 1.1 to B− z and using the shift-invarian
e of ω, we see that the expe
tation of theright-hand side has the same logarithmi
 asymptoti
s as 〈Pω0 (X[0,t] ⊂ B)〉. Therefore, the two aboveinequalities show that

log
〈

e−tλ
ω(B)

〉

∼ log
〈

P
ω
0 (X[0,t] ⊂ B)

〉

, t→ ∞. (1.11)Now de Bruijn's exponential Tauberian theorem [BGT89, Theorem 4.12.9℄, together with (1.9) yieldsthe desired asymptoti
s. �Theorem 1.1 holds literally true if Z
d is repla
ed by an (in�nite or �nite) graph and B by some �nitesubgraph. In future work we will be interested in extensions of Theorem 1.1 to B ⊂ Z

d a t-dependent
entred box and ∆ω repla
ed by ∆ω + ξ with ξ = (ξ(z))z∈Zd an i.i.d. random potential, independentof ω.1.3 Heuristi
 derivationWe now give a formal derivation of the LDP in Theorem 1.1. Given a �xed realisation ϕ =
{ϕxy : {x, y} ∈ EB} ∈ (0,∞)EB of the 
ondu
tan
es, the probability that the normalised lo
al timeresembles some realisation g2 ∈ M1(B) is roughly

P
ϕ
0

(

1
t ℓt ≈ g2

)

≈ exp
{

− tIϕ(g2)
}

, (1.12)where the 
orresponding Donsker-Varadhan rate fun
tion is given by
Iϕ(g2) =

(

− ∆ϕg, g
)

=
∑

{x,y}∈EB

ϕxy|g(x) − g(y)|2. (1.13)This is a formal appli
ation of the LDP for the normalized o

upation times of a Markov pro
ess withsymmetri
 generator ∆ϕ as in [DV75-83℄ and [G77℄; by (·, ·) we denote the standard inner produ
t on
ℓ2(Zd). Note that the event {X[0,t] ⊂ B} is 
ontained in {1

t ℓt ≈ g2}, therefore we drop it from thenotation.Taking random 
ondu
tan
es into a

ount, we expe
t an LDP on a slower s
ale than t, as small t-dependent values of the 
ondu
tan
es lead to a slower de
ay of the annealed probability of the event
{1
t ℓt ≈ g2}. Therefore, we res
ale ω by a fa
tor tr with some r > 0 to be determined later, andapproximate

Pr
(

trω ≈ ϕ
)

= Pr
(

∀{x, y} ∈ EB : ωxy ≈ t−rϕxy
)

=
∏

{x,y}∈EB

Pr
(

ωxy ≈ t−rϕxy
)

≈ exp
{

− trηH(ϕ)
}

, (1.14)where the rate fun
tion for the 
ondu
tan
es is given by
H(ϕ) := D

∑

{x,y}∈EB

ϕ−η
xy . (1.15)



LARGE DEVIATIONS FOR RWRC 5Here we made use of the tail assumptions in (1.4). Hen
e, 
ombining (1.12) and (1.14),
〈

P
ω
0

(

1
t ℓt ≈ g2

)

1l{trω≈ϕ}

〉

≈ P
t−rϕ
0

(

1
t ℓt ≈ g2

)

Pr
(

ω ≈ t−rϕ
)

≈ exp
{

− tIt−rϕ(g2) − trηH(ϕ)
}

≈ exp
{

−
∑

{x,y}∈EB

(

t1−rϕxy
(

g(x) − g(y)
)2

+ trηDϕ−η
xy

)}

. (1.16)We obtain the slowest de
ay by 
hoosing r su
h that t1−r = trη, whi
h means r = (1 + η)−1. Then theright-hand side has s
ale t η
η+1 , whi
h is the s
ale of the desired LDP. In order to �nd the rate fun
tion,we optimize over ϕ and obtain that the 
hoi
e ϕ = ϕ(g) with
ϕ(g)
xy = (Dη)

1
η+1 |g(y) − g(x)|−

2
η+1 , {x, y} ∈ EB , (1.17)
ontributes most to the joint probability. Therefore, we have the result

〈

P
ω
0

(

1
t ℓt ≈ g2

)

〉

≈ exp
{

− t
η

η+1J(g2)
}

,where the rate fun
tion is identi�ed as
J(g2) = inf

ϕ

[

Iϕ(g2) +H(ϕ)
]

= Iϕ(g)(g2) +H(ϕ(g)) = Kη,D

∑

{x,y}∈EB

|g(y) − g(x)|
2η

η+1 . (1.18)The tail assumptions we have made on the environment distribution lead to a fairly remarkable inter-a
tion between the random in�uen
es of the environment on the one hand and the random walk onthe other. Under more general assumptions, e.g.,
log Pr(ωxy ≤ ε) ∼ −α(ε), ε→ 0for some su�
iently regular nonin
reasing fun
tion α : R+ → R+, we would expe
t an analogous resultto hold. However, if α(ε) is not a polynomial in ε, the s
ale and rate fun
tion of a 
orresponding LDP
ertainly would not have su
h an expli
it form.2. Proof of Theorem 1.1In this se
tion, we prove Theorem 1.1. This amounts to showing the two inequalities in (1.7) and (1.8),sin
e the 
ompa
tness of the level sets follows immediately from the 
ontinuity of J and 
ompa
tnessof the spa
e M1(B). The two inequalities are proven in the next two se
tions.2.1 Proof of the lower boundIn order to prove (1.7), we need to 
ontrol the transition from one realization of the environment toanother. To this end, we �rst identify the density of this transition on pro
ess level. We feel that thisshould be generally known, but 
ould not �nd a suitable referen
e. For ϕ : E → (0,∞) we abbreviate

ϕ̄(x) :=
∑

y∼x ϕ(x, y). We also write ϕxy instead of ϕ(x, y).Lemma 2.1. Assume that ϕ,ψ : E → (0,∞) are bounded both from above and away from zero. Denoteby S(t) the number of jumps the pro
ess X = (Xs)s∈[0,t] makes up to time t and by 0 < τ1 < . . . < τS(t)the 
orresponding jump times. Fix some starting point x ∈ Z
d and put τ0 = 0. Then, for all t ∈ [0,∞),

Φt(X) :=

S(t)
∏

i=1

(

ϕ(Xτi−1 ,Xτi)

ψ(Xτi−1 ,Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )]

)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)]is the Radon-Nikodym density of P
ϕ
x with respe
t to P

ψ
x with time horizon t.



6 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFProof. We will write Φt instead of Φt(X). Obviously, Φt > 0 almost surely. We start showing that,for all t ≥ 0, the expe
tation of Φt under P
ψ
x is one. Then, we use Kolmogorov's extension theorem toshow the existen
e of a measure Px su
h that Px(A) = E

ψ
x (Φt1lA) for all A ∈ Ft, where (Ft)t∈[0,∞) isthe natural �ltration generated by X. It remains to show that the pro
ess X under Px is a Markovpro
ess and that it is generated by ∆ϕ, whi
h implies Px = P

ϕ
x .Let us start by showing that the expe
tation of Φt under P

ψ
x is one. Consider the dis
rete-time pro
ess

Zn :=
n

∏

i=1

(

ϕ(Xτi−1 ,Xτi)

ψ(Xτi−1 ,Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1

)−ψ̄(Xτi−1
)]
)

.We have, for x ∈ Z
d,

E
ψ
x [Z1] =

∑

y∼x

ψxy
ψ̄(x)

ϕxy
ψxy

∫ ∞

0
ψ̄(x)e−ψ̄(x)s−(ϕ̄(x)−ψ̄(x))s ds =

∑

y∼x

ϕxy
ϕ̄(x)

= 1.Combining this equation with the strong Markov property, we see that (Zn)n is a martingale withrespe
t to the �ltration (Fτn)n∈N generated by the jumping times and that
E
ψ
x

[

ϕ(Xt,XτS(t)+1
)

ψ(Xt,XτS(t)+1
)
e−(τS(t)+1−t)[ϕ̄(Xt)−ψ̄(Xt)]

∣

∣

∣
Ft

]

= E
ψ
Xt

[Z1] = 1 (2.1)
P
ψ
x -almost surely for all x ∈ Z

d. Then, we obtain
E
ψ
x [Φt] = E

ψ
x [ZS(t)+1], x ∈ Z

d,by inserting the �rst term of (2.1) under the expe
tation and using that Φt is Ft-measurable. Con-sequently, it remains to show that E
ψ
x [ZS(t)+1] = 1. As S(t) + 1 is an unbounded, but almost surely�nite stopping time with respe
t to the �ltration (Fτn)n∈N, the optional sampling theorem yields that

E
ψ
x [ZS(t)+1] ≤ 1. On the other hand, for all integers k > 0,

E
ψ
x [ZS(t)+1] ≥ E

ψ
x [ZS(t)+11lS(t)+1≤k] = E

ψ
x [ZS(t)+1∧k] − E

ψ
x [Zk1lS(t)≥k] = 1 − E

ψ
x [Zk1lS(t)≥k]. (2.2)To show that the last term is arbitrarily 
lose to one for large k, we re
all that on {S(t) ≥ k}

Zk ≤
(

maxx∈Zd, y∼x ϕxy

minx∈Zd, y∼x ψxy

)k

etmax{|ϕxy−ψxy| : {x,y}∈E} =: αk,so E
ψ
x [Zk1lS(t)≥k] is bounded from above by αkPψx (S(t) ≥ k). As all jumping times are exponentiallydistributed with a parameter smaller than γ := maxx∈Zd ψ̄(x), we may estimate

P
ψ
x (S(t) ≥ k) ≤ eγt

∞
∑

n=k

(γt)n

n!
.The tail of an exponential series is super-exponentially small, whi
h means αkPψx (S(t) ≥ k) → 0 for

k → ∞. Sin
e (2.2) was true for all k, we see that E
ψ
x [ZS(t)+1] = 1.For arbitrary k ∈ N and t1, . . . , tk ≥ 0 de�ne t̂ = maxi∈{1,...,k} ti and a measure Qt1,...,tk on (Zd)

k by
Qt1,...,tk(x1, . . . , xk) = E

ψ
x [Φt̂1l{Xt1=x1,...,Xtk

=xk}], x1, . . . , xk ∈ Z
d.We verify without mu
h e�ort that E

ψ
x [Φt+s1lA] = E

ψ
x [Φt1lA] for all A ∈ Ft and t, s > 0, whi
h implies
onsisten
y of the family of measures above. Thus, by Kolmogorov's extension theorem, there exists



LARGE DEVIATIONS FOR RWRC 7a measure Px with �nite-dimensional distributions as above, and we have Px(A) = E
ψ
x [Φt1lA] for all

t > 0 and A ∈ Ft. We show that the pro
ess X under Px satis�es the Markov property, i.e.,
Ex[1l{Xt+s=y}|Ft] = PXt(Xs = y) Px-a.s. for all y ∈ Z

d, s, t > 0 (2.3)where Ex denotes expe
tation with regard to Px. Note that PXt is de�ned as we have 
onsidered anarbitrary starting point x in what we have shown so far. Indeed, for all A ∈ Ft
Ex

[

Ex[1l{Xt+s=y}|Ft]1lA
]

= Ex[1l{Xt+s=y}1lA] = E
ψ
x [Φt+s1l{Xt+s=y}1lA]

= E
ψ
x

[

E
ψ
x [Φt+s1l{Xt+s=y}|Ft]1lA

]

(∗)
= E

ψ
x

[

ΦtE
ψ
Xt

[Φs1l{Xs=y}]1lA
]

= Ex

[

EXt [1l{Xs=y}]1lA
]

,where equation (∗) is due to the fa
t that X satis�es the Markov property under P
ψ
x and

Φt+sΦ
−1
t 1l{Xt+s=y} depends only on X[t,t+s]. Consequently, we have shown (2.3) and X is a Markovpro
ess under Px with a unique in�nitesimal generator. Elementary 
al
ulations show that

1

t

(

E
ψ
x [f(Xt)Φt] − f(x)

)

t→0−−→ ∆ϕf(x)for arbitrary x ∈ Z
d and f : Z

d → R. This implies Px = P
ϕ
x and the proof is 
omplete. �Now we use Lemma 2.1 to 
ompare probabilities for two environments that are 
lose to ea
h other.Corollary 2.2. Let ϕ,ψ : E → (0,∞) with 0 < ψxy − ε ≤ ϕxy ≤ ψxy + ε for some ε > 0 and all

{x, y} ∈ E. Moreover, let F be some event that depends on the pro
ess (Xs)s∈[0,t] up to time t only.Then
P
ϕ
0

(

F
)

≥ e−4dεt
P
ψ−ε
0

(

F
)

.Proof. Let Φt denote the Radon-Nikodym density of P
ϕ
0 with respe
t to P

ψ−ε
0 up to time t. Employingthe representation given in Lemma 2.1, we have

Φt ≥
S(t)
∏

i=1

(

e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )+2dε]
)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)+2dε]

≥
S(t)
∏

i=1

(

e−(τi−τi−1)4dε
)

e−(t−τS(t))4dε ≥ e−4dεt.The desired inequality follows immediately. �Remark 2.3. If the event A is 
ontained in {supp(ℓt) ⊂ B}, it su�
es to require 0 < ψxy−ε ≤ ϕxy ≤
ψxy + ε for some ε > 0 and all {x, y} ∈ EB.Let us now show (1.7). Fix an open set O ⊂ M1(B). As the event {X[0,t] ⊂ B} is 
ontained in
{1
t ℓt ∈ O}, we omit it in the notation. Observe that the distributions of 1

t ℓt under P
ω
0 and 1

t1−r ℓt1−runder P
trω
0 
oin
ide for all 0 < r < 1. Hen
e

lim inf
t→∞

1

t
η

η+1

log
〈

P
ω
0

(

1
t ℓt ∈ O

)〉

= lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

,



8 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhi
h will simplify the appli
ation of a 
lassi
al Donsker-Varadhan LDP for random walks in �xedenvironment later. Choose an element g2 ∈ O arbitrarily. For M > 0 de�ne ϕ(g)

M : EB → (0,∞) by
ϕ(g)

M (x, y) =

{

(Dη)
1

η+1 |g(y) − g(x)|−
2

η+1 if |g(y) − g(x)| > 0,

M otherwise.Next, we introdu
e the set
A =

{

ϕ : EB → (0,∞)
∣

∣ϕ(g)

M − ε ≤ ϕ ≤ ϕ(g)

M

}

, (2.4)where ε > 0 is pi
ked smaller than 1
2 minEB

ϕ(g)

M . By dint of Corollary 2.2,
〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥
〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)

1l{
t
1
η ω∈A

}

〉

≥ inf
ϕ∈A

P
ϕ
0

(

1
t ℓt ∈ O

)

Pr
(

t
1
ηω ∈ A)

≥ e−4dεt
P
ϕ

(g)
M −ε

0

(

1
t ℓt ∈ O

)

Pr
(

t
1
ηω ∈ A). (2.5)Using the tail assumption in (1.4), we see that

lim
t→∞

1

t
log Pr

(

t
1
ηω ∈ A) = −H(ϕ(g)

M ),where H is given in (1.15). Furthermore, we apply the lower bound of the 
lassi
al Donsker-VaradhanLDP (see [DV75-83℄ or [G77℄) to get
lim inf
t→∞

1

t
log P

ϕ
(g)
M −ε

0

(

1
t ℓt ∈ O

)

≥ − inf
O
I
ϕ

(g)
M −ε

,where Iϕ is given in (1.13). Hen
e, from (2.5) we obtain
lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥ −4dε− inf
O
I
ϕ

(g)
M −ε

−H(ϕ(g)

M )

≥ −4dε− inf
O
I
ϕ

(g)
M

−H(ϕ(g)

M )

≥ −4dε− I
ϕ

(g)
M

(g2) −H(ϕ(g)

M ),sin
e I
ϕ

(g)
M −ε

≤ I
ϕ

(g)
M

and g2 ∈ O. Now we send ε to zero and M to ∞, to obtain
lim inf
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ O

)〉

≥ −Iϕ(g)(g2) −H(ϕ(g)) = −J(g2),where ϕ(g) = limM→∞ ϕ(g)

M is given in (1.17), and we used (1.18). The desired lower bound follows bypassing to the in�mum over all g2 ∈ O.2.2 Proof of the upper boundIn this se
tion we prove (1.8). Let us �rst �x some 
on�guration ϕ ∈ (0,∞)E and start with an estimatefor the probability P
ϕ
0 (1

t ℓt ∈ ·). This approa
h has a
tually been used by other authors before, but weprovide an independent proof for the sake of 
ompleteness.Lemma 2.4. Fix an arbitrary set A ⊂ M1(B). Then
P
ϕ
0

(

1
t ℓt ∈ A

)

≤ f(0)

minB f
exp

{

t sup
h2∈A

∑

x∈B

∆ϕf(x)

f(x)
h2(x)

} (2.6)for arbitrary f : Z
d → [0,∞) with supp(f) = B and t > 0.
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onsider the Cau
hy problem
{

∂tu(x, t) = ∆ϕu(x, t) + V (x)u(x, t), x ∈ Z
d, t > 0,

u(x, 0) = f(x), x ∈ Z
d,

(2.7)with
V = −∆ϕf

f
1lB.Obviously, u(·, t) ≡ f(·) solves (2.7). On the other hand, by the Feynman-Ka
 formula, any nonnegativesolution u satis�es

u(x, t) = E
ϕ
x

[

e
R t
0
V (Xs)dsu(Xt, t)

]

, x ∈ Z
d, t ≥ 0. (2.8)Therefore, we may estimate

f(0) = E
ϕ
0

[

e
−

R t
0

∆ϕf(Xs)
f(Xs)

ds
f(Xt)

]

≥ E
ϕ
0

[

e
−

P

x∈B
∆ϕf(x)

f(x)
ℓt(x)f(Xt)1l{ 1

t
ℓt∈A}

]

≥ min
B

f exp
{

− t sup
h2∈A

∑

x∈B

∆ϕf(x)

f(x)
h2(x)

}

P
ϕ
0

(

1
t ℓt ∈ A

)

,whi
h is a rearrangement of the assertion. �Now �x some 
losed set C ⊂ M1(B). As a 
losed subset of a �nite-dimensional spa
e, C is 
ompa
twith respe
t to the Eu
lidean topology. We are going to apply a standard 
ompa
tness argument,whi
h is in the spirit of the proof of the upper bound in Varadhan's lemma [DZ98, Thm. 4.3.1℄. Theidea is to 
over C with 
ertain open balls, where `open' refers to the Eu
lidean topology.Fix δ > 0. For g2 ∈ C de�ne
dg = min

{

|g(y) − g(x)| : {x, y} ∈ E, g(x) 6= g(y)
}

∈ (0,∞),where we re
all that g2 is de�ned on the entire Z
d and is zero outside B. Consider the open ball in

M1(B) of radius δg := min{d4
g, δ} 
entered at g2. Fixing a 
on�guration ϕ ∈ (0,∞)E , we 
an applyLemma 2.4 with f(·) := g(·) +
√

δg1lB and obtain
P
ϕ
0

(

1
t ℓt ∈ Bδg(g

2)
)

≤ 1 +
√

δg
√

δg
exp

{

t sup
h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
h2(x)

}

. (2.9)In what follows, we show
sup

h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x) ≤ −Iϕ(g2)(1 − 7δ
1
4 ), (2.10)



10 WOLFGANG KÖNIG, MICHELE SALVI AND TILMAN WOLFFwhere we re
all from (1.13) that Iϕ(g2) =
∑

{x,y}∈E ϕxy|g(x) − g(y)|2 = −(∆ϕg, g). To that end, werepla
e h2 by (g +
√

δg1lB)2 and 
ontrol the error terms.
sup

h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
h2(x)

=
∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(g(x) +

√

δg)
2

+ sup
h2∈Bδg (g2)

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg

[

(h2(x) − g2(x)) − 2
√

δgg(x) − δg
]

. (2.11)The �rst sum is easily estimated against the standard Donsker-Varadan rate fun
tion:
∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(g(x) +

√

δg)
2 =

(

∆ϕ(g +
√

δg1lB), g +
√

δg1lB
)

≤
(

∆ϕg, g
)

= −Iϕ(g2),where we have used the symmetry of the operator ∆ϕ and that g = 0 outside B. In order to estimate thelast term in (2.11), we treat the 
ontribution of every summand within the square bra
kets separately.We begin with the �rst part and observe that |h2(x) − g2(x)| = |h(x) − g(x)| |h(x) + g(x)| ≤ 2δg forall h2 ∈ Bδg(g
2) and x ∈ B. Thus

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(h2(x) − g2(x))

=
∑

{x,y}∈E :
x,y∈B

ϕxy
g(y) − g(x)

g(x) +
√

δg
(h2(x) − g2(x)) −

∑

{x,y}∈E:
x∈B,y 6∈B

ϕxy(h
2(x) − g2(x))

≤
∑

{x,y}∈E
x,y∈B

ϕxy
|g(x) − g(y)|

√

δg
2δg +

∑

{x,y}∈E:
x∈B,y 6∈B

ϕxy2δg

≤ 4δ
1
4 Iϕ(g2).The last step is due to the fa
t that δ 1

4
g ≤ g(x) − g(y) whenever g(x) − g(y) > 0. Se
ondly,

∑

x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√

δg
(−2

√

δgg(x))

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|
∣

∣

∣

2
√

δgg(x)

g(x) +
√

δg
− 2

√

δgg(y)

g(y) +
√

δg

∣

∣

∣
+

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√

δgg(x)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|2 2δg
√

δgdg
+

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√

δg|g(x) − g(y)|

≤ 2δ
1
4 Iϕ(g2).



LARGE DEVIATIONS FOR RWRC 11Here, we have used δ 1
4
g ≤ dg. The only part left is

∑

x∈B

∆ϕ(g +
√

δg1lB)(x)

g(x) +
√

δg
(−δg)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|
∣

∣

∣

1

g(x) +
√

δg
− 1

g(y) +
√

δg

∣

∣

∣
δg +

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x) − g(y)|2 1
√

δgdg
δg +

∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤ δ
1
4 Iϕ(g2).Combining (2.11) with the last three estimates, we obtain (2.10) and in parti
ular

P
ϕ
0

(

1
t ℓt ∈ Bδ(g

2)
)

≤ 1 +
√

δg
√

δg

∏

{x,y}∈E

exp
{

− t ϕxy|g(x) − g(y)|2(1 − 7δ
1
4 )

}

. (2.12)The balls Bδg(g2) with g2 ∈ C 
over C and sin
e this set is 
ompa
t, we may extra
t a �nite sub
overingof C. Denote by (g2
i )i=1,...,N the 
enters of the balls in this sub
overing. Then, applying (2.12) for

ϕ = t
1
ηω, we obtain

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ C

)〉

≤ max
i=1,...,N

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

0

(

1
t ℓt ∈ Bδgi

(g2
i )

)〉

≤ max
i=1,...,N

∑

{x,y}∈EB

lim sup
t→∞

1

t
log

〈

exp
{

− t
1+η

η ωxy|gi(y) − gi(x)|2(1 − 7δ
1
4 )

}

〉

.A

ording to de Bruijn's exponential Tauberian theorem [BGT89, Theorem 4.12.9℄, the tail assumption(1.4) is equivalent to the 
ondition that, for any M > 0 and {x, y} ∈ E,
lim
t→∞

1

t
log

〈

exp
{

− t
1+η

η ωxyM
}

〉

= −Kη,DM
η

1+η , (2.13)where we re
all Kη,D =
(

1 + 1
η

)

(Dη)
1

η+1 from Theorem 1.1. Thus, with δ so small that 1 − 7δ
1
4 > 0,we obtain

lim sup
t→∞

1

t
log

〈

P
t
1
η ω

(

1
t ℓt ∈ C

)〉

≤ max
i=1,...,N

∑

{x,y}∈EB

−Kη,D|gi(y) − gi(x)|
2η

1+η (1 − 7δ
1
4 )

η
1+η

≤ −(1 − 7δ
1
4 )

η
1+η inf

g2∈C
J(g2)with J as in (1.18). Sin
e we may 
hoose δ arbitrarily small, the proof of (1.8) is 
omplete.Referen
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