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ABSTRACT. We study the solutions u = u(x, t) to the Cauchy problem on Zd × (0, ∞)
for the parabolic equation ∂tu = ∆u + ξu with initial data u(x, 0) = 10(x). Here ∆ is
the discrete Laplacian on Zd and ξ = (ξ(z))z∈Zd is an i.i.d. random field with doubly-
exponential upper tails. We prove that, for large t and with large probability, a majority
of the total mass U(t) := ∑x u(x, t) of the solution resides in a bounded neighborhood
of a site Zt that achieves an optimal compromise between the local Dirichlet eigenvalue
of the Anderson Hamiltonian ∆ + ξ and the distance to the origin. The processes t 7→
Zt and t 7→ 1

t log U(t) are shown to converge in distribution under suitable scaling of
space and time. Aging results for Zt, as well as for the solution to the parabolic problem,
are also established. The proof uses the characterization of eigenvalue order statistics
for ∆ + ξ in large sets recently proved by the first two authors.

1. INTRODUCTION

Random Schrödinger operators — most notably, the Anderson Hamiltonian H = ∆ + ξ
— have been a subject of intense research over several decades. Most of the attention
has been paid to the character of the spectrum and the ensuing physical consequences
for the quantum evolution. However, the associated parabolic problem — characterized
by the PDE ∂tu = ∆u + ξu — is of as much interest both for theory and applications.
Here we study the latter facet of this problem for a specific class of random potentials.
Our main result is the proof of localization of the solution to the above PDE for large
time in a neighborhood of a process determined solely by the random potential.

A standard way to describe the parabolic Anderson model (PAM) is via a solution u : Zd×
[0, ∞)→ [0, ∞) of the Cauchy problem

∂tu(z, t) = ∆u(z, t) + ξ(z)u(z, t), z ∈ Zd, t ∈ (0, ∞), (1.1)

u(z, 0) = 10(z), z ∈ Zd. (1.2)

Here ∂t abbreviates the derivative with respect to t and ∆ is the discrete Laplacian acting
on f : Zd → R as

∆ f (z) := ∑
y : |y−z|=1

[
f (y)− f (z)

]
, (1.3)
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where | · | denotes the `1 norm on Zd, and ξ = (ξ(z) : z ∈ Zd) is an i.i.d. random
potential taking values in [−∞, ∞).

The interest in (1.1–1.2) for mathematics as well as applications comes from the com-
peting effect of the two terms on the right-hand side of (1.1). Indeed, the Laplacian tends
to make the solution smoother over time while the field makes it rougher. The prob-
lem (1.1) appears in the studies of chemical kinetics [GM90], hydrodynamics [CM94],
and magnetic phenomena [MR94]. We refer to the reviews [M94, CM94] for more back-
ground and [GM90] for fundamental mathematical properties of the model. A recent
comprehensive survey of mathematical results on the PAM and related models can be
found in [K16].

A positive solution to the Cauchy problem (1.1–1.2) exists and is unique as soon as the
upper tail of [ξ(0)/ log ξ(0)]d is integrable [GM90]. Under this condition, there is also a
representation in terms of the changed-path measure,

Q(ξ)

t (dX) :=
1

U(t)
exp

{∫ t

0
ξ(Xs)ds

}
P0(dX), (1.4)

on nearest-neighbour paths X = (Xs)s≥0 on Zd, where P0 stands for the law of a
continuous-time random walk on Zd (with generator ∆) started at zero. Indeed, the
Feynman-Kac formula shows

u(z, t) = U(t)Q(ξ)

t (Xt = z) = E0

[
e
∫ t

0 ξ(Xs)ds
1{Xt=z}

]
, (1.5)

whereby the normalization constant U(t) obtains the meaning

U(t) = ∑
x∈Zd

u(x, t) = E0

(
exp

{∫ t

0
ξ(Xs)ds

})
. (1.6)

The aforementioned competition is now obvious probabilistically: the walk would like
to maximize the “energy”

∫ t
0 ξ(Xs)ds, by spending its time at the places where ξ is large,

against the “entropy” of such trajectories under the path measure P0.
An alternative and equally useful way to view (1.1) is as the definition of a semigroup

t 7→ et(∆+ξ) on `2(Zd). The solution to (1.1–1.2) is then given by

u(x, t) =
〈
δx, et(∆+ξ)δ0

〉
`2(Zd)

, (1.7)

where δz is the vector in `2(Zd) that is one at z and zero otherwise. This opens up
the possibility to control the large-t behavior through spectral analysis of the Anderson
Hamiltonian. To this end, it is useful to restrict the problem to a sufficiently large (in
t-dependent fashion) finite volume Λ ⊂ Zd (with 0 ∈ Λ) as follows. Denote by HΛ
the Anderson Hamiltonian in Λ with Dirichlet boundary conditions, i.e., for φ ∈ RΛ,
HΛφ = Hφ̃ where H = ∆ + ξ and φ̃ is the extension of φ to RZd

that is equal to zero
on Λc. Let uΛ be the solution to (1.1–1.2) restricted to Λ and with the right-hand side
of (1.1) substituted by HΛu. Then the above interpretation yields

uΛ(x, t) =
|Λ|

∑
k=1

etλ(k)
Λ φ(k)

Λ (x)φ(k)
Λ (0), (1.8)
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where λ(k)
Λ are the eigenvalues and φ(k)

Λ the corresponding eigenvectors of HΛ which we
assume to be orthonormal in `2(Zd).

The competition we described in the context of the changed-path measure (1.4) now
reflects itself as follows. The term in the sum in (1.8) that grows the fastest in t is that with
the largest eigenvalue. However, there is no a priori reason for it to be the dominant term
at a fixed time. Indeed, an eigenvalue will only contribute to (1.8) when its eigenvector
puts non-trivial mass on both 0 and x. Since the leading eigenvectors decay exponen-
tially away from their localization centers (Anderson localization), |φ(k)

Λ (0)| will in fact

be typically extremely small. It is thus the combined effect of both etλ(k)
Λ and φ(k)

Λ (x)φ(k)
Λ (0)

that decides which index k will give the main contribution to the sum.
In the present paper, we analyze these competing effects for a class of random poten-

tials with upper tails close to the doubly-exponential distribution, characterized by

Prob
(
ξ(0) > r

)
= exp

{
−er/ρ

}
, r ∈ R, (1.9)

where ρ ∈ (0, ∞). (Precise definitions will appear in Section 2.) For these potentials we
show that, at all large t, a majority of the total mass U(t) of the solution resides in a
bounded neighborhood of a random point Zt defined entirely by ξ. This point marks a
local peak of ξ optimizing the strategy by which the random-walk in (1.4) traverses to Zt
in time o(t) and then “sticks around” Zt thereafter to enjoy the benefits of a “strong”
local Dirichlet eigenvalue. We also characterize the scaling limits of Zt and 1

t log U(t),
and obtain aging results for both Zt and u(x, t).

Our results build on a large body of literature on the PAM whose full account here
would detract from the main message of the paper. For now let us just say that we ex-
tend results from [MOS11, LM12, ST14, FM14], dealing with localization on one lattice
site, to a benchmark class of random potentials exemplified by (1.9), where the local-
ization takes place in large domains, albeit not growing with t. An important technical
input for us is the recent work [BK16] where eigenvalue order statistics for the Anderson
Hamiltonian H = ∆ + ξ was characterized for this class of ξ. Further connections will
be given in Section 3.1.

2. MAIN RESULTS

We now move to the statements of our main results. Throughout the paper, ln x denotes
the natural logarithm of x and ln2 x := ln ln x, ln3 x := ln ln ln x, etc denote its iterates.
We will use “Prob” to denote the probability law of the i.i.d. random field ξ.

2.1 Assumptions.

We begin by identifying the class of potentials to which our results apply. Besides some
regularity, the following ensures that the upper tails of ξ(0) are in the vicinity of the
doubly-exponential distribution (1.9).

Assumption 2.1 (Upper tails) Suppose that esssup ξ(0) = ∞ and let

F(r) := ln2
1

Prob(ξ(0) > r)
, r > essinf ξ(0). (2.1)



4 BISKUP, KÖNIG AND DOS SANTOS

We assume that F is differentiable on its domain and that

lim
r→∞

F′(r) =
1
ρ

for some ρ ∈ (0, ∞). (2.2)

The assumption above is exactly as Assumption 1.1 in [BK16], and implies Assump-
tion (F) of [GM98]. While the latter would be enough for most of our needs, the ex-
tra requirements of Assumption 2.1 are used in the crucial step, performed in [BK16],
of identifying the max-order class of the local principal eigenvalues of the Anderson
Hamiltonian. In order to avoid technical inconveniences, we will also assume the fol-
lowing condition on the lower tail of ξ.

Assumption 2.2 (Lower tails) Let ξ−(x) := max{0,−ξ(x)}. We assume that∫ ∞

0
Prob

(
ξ−(0) > es) 1

d ds < ∞. (2.3)

Assumption 2.2 is only used in the proof of Lemma 8.1, which is used in Proposi-
tion 4.4 to give a lower bound for the total mass U(t). Note that (2.3) holds whenever
ln(1 + ξ−(0)) has a (d + ε)-th finite moment (cf. [M02]). We believe that, with the use of
percolation arguments, this assumption can be relaxed to ξ(0) > −∞ almost surely in
d ≥ 2. In d = 1, (2.3) is equivalent to ln(1 + ξ−(0)) having the first moment, which is
known to be in fact necessary (cf. [BK01b]).

We will assume the validity of Assumptions 2.1–2.2 throughout the rest of the paper
without explicitly stating this in each instance.

2.2 Results: Mass concentration.

Recall that |x| denotes the `1-norm of x. Our first result concerns the concentration of
the total mass of the solution to the Cauchy problem (1.1–1.2):

Theorem 2.3 (Mass concentration) There is a Zd-valued càdlàg stochastic process (Zt)t>0
depending only on ξ such that t 7→ |Zt| is non-decreasing and such that the following holds: For
each δ > 0, there exists R ∈N such that, for any lt > 0 satisfying limt→∞

1
t lt = 0,

lim
t→∞

Prob

(
sup

s∈[t−lt,t+lt]
∑

x : |x−Zt|>R

u(x, s)
U(s)

> δ

)
= 0. (2.4)

In words, (2.4) means that the solution at time t is with large probability supported
around a single point Zt, and the control in fact extends to sublinearly-growing intervals
of time around t. This cannot be improved to intervals of size growing linearly with t
due to the jumps that occur in the process s 7→ Zs; see Theorem 2.7 below.

Remark 2.4 Note that the asymptotic concentration in one island at time t does not hold
almost surely. Indeed, around jump times of s 7→ Zs, the contributions of two islands
are equally dominant. Almost-sure concentration in at most two islands for all times,
dubbed as a “two-cities theorem”, was shown for the Pareto distribution in [KLMS09],
a case in which the islands reduce to single lattice vertices. In order to keep the present
paper to a manageable length, we decided not to include almost-sure versions here.
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In terms of the path measure Q(ξ)

t , Theorem 2.3 can be interpreted as concentration
for the law of the position of the path at time t. By letting the radius R grow slowly to
infinity, this can be improved to include a majority of the whole random-walk path:

Theorem 2.5 (Path concentration) For any εt ∈ (0, 1) satisfying limt→∞ εt ln3 t = ∞,

lim
t→∞

Q(ξ)

t

(
sup

s∈[εtt,t]
|Xs − Zt| > εt ln t

)
= 0 in probability, (2.5)

where (Zt)t>0 is the stochastic process in Theorem 2.3.

2.3 Results: Scaling limit.

Our next theorem identifies the large-t behavior of the pair of processes t 7→ Zt and
t 7→ 1

t ln U(t). While U(t) is continuous, Zt is only càdlàg and thus it is natural to use
the Skorohod topology to discuss distributional convergence. Two relevant scales are

dt :=
ρ

d ln t
and rt :=

t dt

ln3 t
=

ρ

d ln t
t

ln3 t
, (2.6)

marking, respectively, the size of fluctuations of 1
t ln U(t) and the typical size of Zt.

To describe the scaling limit, consider a sample {(λi, zi) : i ∈ N} from the Poisson
point process on R×Rd with intensity measure e−λdλ⊗ dz. For θ > 0 define

ψθ(λ, z) := λ− |z|
θ

. (2.7)

It can be checked that, for every θ > 0, the set {ψθ(λi, zi) : i ∈N} is bounded and locally
finite. Moreover, the maximizing point is unique at all but at most a countable set of θ’s
and we can thus define (Λθ , Zθ) to be the càdlàg maximizer of ψθ over the sample points
of the process. We set

Ψθ := ψθ(Λθ , Zθ). (2.8)

Then we have:

Theorem 2.6 (Scaling limit of the concentration loci and the total mass) There is a non-
decreasing scale function at > 0 obeying

lim
t→∞

at

ln2 t
= ρ (2.9)

such that the following holds: The stochastic process (Zt)t>0 in Theorems 2.3 and 2.5 can be
chosen such that, for all s ∈ (0, ∞) and relative to the Skorohod topology on D([s, ∞), R×Rd),(

1
θt ln U(θt)− art

dt
,

Zθt

rt

)
θ∈[s,∞)

law−→
t→∞

(
Ψθ , Zθ

)
θ∈[s,∞)

. (2.10)

In particular, for each θ > 0, the random variable ( 1
θt ln U(θt)− art)/dt converges in law to a

Gumbel random variable with scale 1 and location d ln(2θ), while Zθt/rt converges in law to a
random vector in Rd with i.i.d. coordinates, each having probability density (2θ)−1e−|x|/θ with
respect to the Lebesgue measure on R.
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The scaling function at characterizes the leading-order scale of the principal Dirichlet
eigenvalue of the Anderson Hamiltonian in a box of radius t, as identified in [BK16].
See (7.3) below for a precise definition.

2.4 Results: Aging.

The techniques used to prove the above theorems also permit us to address the phenom-
enon of aging in the problem under consideration. The term “aging” usually refers to the
fact that certain decisive changes in the system occur at time scales that increase propor-
tionally to the age of the system. Our next result addresses aging in the process (Zt)t>0:

Theorem 2.7 (Aging for the localization process) For each s > 0, and for (Zt)t>0 and
(Zt)t>0 as in Theorems 2.3, 2.5 and 2.6,

lim
t→∞

Prob
(
Zt+θt = Zt ∀θ ∈ [0, s]

)
= lim

t→∞
Prob

(
Zt+st = Zt

)
= Prob

(
Z1+θ = Z1 ∀θ ∈ [0, s]

)
= Prob (Θ > s) ,

(2.11)

where the random variable
Θ := inf{θ > 0 : Z1+θ 6= Z1} (2.12)

is positive and finite almost surely.

In light of Theorem 2.6, Theorem 2.7 can be seen as a reflection of the fact that the
functional convergence stated in Theorem 2.6 is not achieved through a large number of
microscopic jumps, but rather through sporadic macroscopic jumps.

Our second aging result deals with the jumps in the profile of the normalized solution
u(·, t)/U(t). It comes as a consequence of the mass concentration of the normalized
solution around Zt together with Theorem 2.7.

Theorem 2.8 (Aging for the solution) For any ε ∈ (0, 1), the random variable

1
t

inf

{
s > 0 : ∑

x∈Zd

∣∣∣∣u(x, t + s)
U(t + s)

− u(x, t)
U(t)

∣∣∣∣ > ε

}
(2.13)

converges in distribution as t→ ∞ to the random variable Θ defined in (2.12).

A key point to note about Theorem 2.8 is that the limiting random variable does not
depend on ε. The result thus implies that, in fact, the sum in (2.13) jumps from values
near 0 to values near 1 as s varies in a time interval of length o(t) centered at Θt.

2.5 Results: Limit profiles.

The localization stated in Theorem 2.3 can be given in a more precise form provided we
make an additional uniqueness assumption. To state this assumption, we need further
definitions. Given a potential V : Zd → R, let

L(V) := ∑
x∈Zd

e
V(x)

ρ . (2.14)
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The functional L plays the role of a large deviation rate function for random potentials ξ
with doubly-exponential tails. Whenever L(V) < ∞ (in fact, whenever V(x) → −∞
as |x| → ∞), ∆ + V has a compact resolvent as an operator on `2(Zd) and its largest
eigenvalue λ(1)(V) is well-defined and simple. The constant

χ = χ(ρ) := − sup{λ(1)(V) : V ∈ RZd
, L(V) ≤ 1} ∈ [0, 2d] (2.15)

is important in the description of the asymptotic growth of U(t). The set of centered
maximizers

M∗
ρ :=

{
V ∈ RZd

: 0 ∈ argmax(V),L(V) ≤ 1 and λ(1)(V) = −χ
}

(2.16)

is known to be non-empty. The assumption below deals with uniqueness:

Assumption 2.9 (Uniqueness of maximizer) We assume thatM∗
ρ = {Vρ}, i.e., the vari-

ational problem (2.15) admits a unique centered solution Vρ.

The uniqueness of the centered minimizer is conjectured to hold for all ρ > 0, but
has so far only been proved for ρ large enough; see [GH99]. In the latter paper it is also
shown that, for any V ∈ M∗

ρ, the non-negative principal eigenfunction of the operator
∆ + V is strictly positive and lies in `1(Zd). Under Assumption (2.9), we will denote
henceforth by vρ the principal eigenfunction of ∆ + Vρ, normalized so that

vρ > 0 and ‖vρ‖`1(Zd) = 1. (2.17)

Then we have:

Theorem 2.10 (Limiting profiles) Suppose that Assumption 2.9 holds and let (Zt)t>0 be the
process from Theorems 2.3, 2.5 and 2.6. There exist µt ∈ N and ât > 0 satisfying limt→∞ µt =
∞ and limt→∞ ât/(ρ ln2 t) = 1 such that, for all ε ∈ (0, 1),

sup
s∈[εt, ε−1t]

sup
x∈Zd : |x|≤µt

∣∣ξ(x + Zs)− ât −Vρ(x)
∣∣ −→

t→∞
0 in probability. (2.18)

Moreover, for any lt > 0 satisfying limt→∞
1
t lt = 0,

sup
s∈[t−lt,t+lt]

∑
x∈Zd

∣∣∣∣u(Zt + x, s)
U(s)

− vρ(x)
∣∣∣∣ −→t→∞

0 in probability. (2.19)

The scale ât in (2.18) coincides (up to terms that vanish as t → ∞) with the maxi-
mum of ξ inside a box of radius t (cf. Lemma 5.1). Moreover, the scales at and ât satisfy
limt→∞ ât − at = χ.

The rest of the paper is organized as follows. In Section 3 below we discuss con-
nections to the literature and provide some heuristics. Section 4 contains an extensive
overview of our proofs including the definition of the localization process Zt. The tech-
nical core of the paper is formed by Section 5 (properties of the potential and spectral
bounds), Section 6 (path expansions) and Section 7 (a point process approach). The bulk
of the proofs related to our main results is carried out in Sections 8–11, concerning re-
spectively negligible contributions to the Feynman-Kac formula, localization of relevant
eigenfunctions, path localization properties and the analysis of local profiles. The proofs
of some technical results are given in Appendices A–C.
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3. CONNECTIONS AND HEURISTICS

In this section we make the necessary connections to earlier work on this problem, and
also provide a short heuristic argument motivating the definition of the scales in (2.6).

3.1 Relations to earlier work.

Let us give a quick survey on earlier works on the particular question that we consider;
we refer to [K16] for a comprehensive account on the parabolic Anderson model and to
[M11] for a survey on certain aspects closely related to the present paper.

Much of the effort since 1990 went into developing a characterization of the logarith-
mic asymptotics of t 7→ U(t) and its moments, which are all finite if and only if all
the positive exponential moments of ξ(0) are finite. For this case, under a mild regu-
larity assumption, [HKM06] identified four universality classes of asymptotic behaviors:
the double-exponential tails of the form (1.9) [GM98, GH99, GKM07], the so-called “al-
most bounded” potentials (corresponding formally to ρ = 0) [HKM06], the bounded
potentials treated in [BK01a], and potentials with tails heavier than (1.9) (corresponding
formally to ρ = ∞) [HMS08, KLMS09, LM12, ST14, FM14].

In all of the classes mentioned above, the asymptotics of U(t) is expressed in terms
of a variational principle for the local time of the path in Q(ξ)

t and/or the “profile” of ξ
that maximizes a local eigenvalue. The picture that emerges is that a typical path sam-
pled from Q(ξ)

t for t large will spend an overwhelming majority of time in a relatively
small volume whose location is characterized by a favourable value of the local Dirich-
let eigenvalue. Proofs of such statements have first been available for a related ver-
sion of the model using the method of enlargement of obstacles [S98] and later also for
the double-exponential class by probabilistic path expansions [GKM07]. However, nei-
ther of these approaches was sharp enough to distinguish among the many “favourable
eigenvalues.” In fact, while the expectation was that only a finite number of such eigen-
values needs to be considered, the best available bound on their number was to(1).

For distributions with tails heavier than (1.9), progress on the path-localization ques-
tion has been made in [KLMS09] and more recently in [LM12, ST14, FM14]. The distribu-
tions considered in these references are, respectively, Pareto, exponential, Weibull with
parameter γ ∈ (0, 2) and general Weibull. In these papers it is proven that, with large
probability, the solution is asymptotically concentrated on a single lattice point, which
is an extremely strong localization property. In the doubly-exponential case considered
here, due to less-heavy tails, the localization phenomenon is not so strong; indeed, re-
stricting to any bounded region misses some fraction of the total mass of the solution.

The analysis leading to our result depends crucially on the characterization of the
order statistics of local principal eigenvalues for the Anderson Hamiltonian performed
in [BK16], which allows us to conveniently represent local eigenvalues through a point
process approach. In this aspect, our paper shares similarities with [FM14], which draws
heavily upon the analysis of the spectral order statistics in [Ast12, Ast13]. However, our
case also harbors many significant differences, caused mainly by the non-degenerate
structure of the dominant eigenfunctions.
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For the remaining two universality classes of ξ — namely, the bounded and “almost
bounded” fields — the path localization question is yet more difficult because the rel-
evant eigenvectors extend over spatial scales that diverge with time. Nevertheless, we
expect that our approach provides a correct strategy for tackling these cases as well.

3.2 Some heuristics.

We present next a heuristic calculation based on [BK16] to motivate the appearance of
the scale rt defined in (2.6). We will describe a strategy to obtain a lower bound for
the total mass U(t) defined in (1.6). Our actual proof of the corresponding result (cf.
Proposition 4.4 below) follows similar but somewhat different steps.

Write Bt ⊂ Zd for the `1-ball with radius t, and denote by λ(k)
Bt

, φ(k)
Bt

, 1 ≤ k ≤ |Bt|, the
eigenvalues (in decreasing order) and corresponding orthonormal eigenfunctions of the
Anderson Hamiltonian in Bt with zero Dirichlet boundary conditions. If Y(k)

Bt
∈ Bt are

points maximizing (φ(k)
Bt
)2, it can be shown via spectral methods that

E
Y(k)

Bt

[
e
∫ t

0 ξ(Xr)dr
1{Xr ∈ Bt ∀ r ∈ [0, t]}

]
& etλ(k)

Bt . (3.1)

Inserting in (1.6) the event where the random walk X reaches Y(k)
Bt

at a time s < t and
then remains in Bt until time t, using the Markov property we obtain

U(t) ≥ E0

[
e
∫ t

0 ξ(Xr)dr
1{Xs = Y(k)

Bt
, Xr ∈ Bt ∀r ∈ [s, t]}

]
& P0(Xs = Y(k)

Bt
) e(t−s)λ(k)

Bt

≈ e−|Y
(k)
Bt
| ln(|Y(k)

Bt
|/s) e(t−s)λ(k)

Bt , (3.2)

where we assumed |Y(k)
Bt
| � s to approximate the probability P0(Xs = Y(k)

Bt
). Optimizing

over s gives the candidate s = |Y(k)
Bt
|/λ(k)

Bt
, which we may plug in (3.2) provided that we

also assume |Y(k)
Bt
|/λ(k)

Bt
< t. With this choice, (3.2) becomes approximately

exp
{

tλ(k)
Bt
− |Y(k)

Bt
| ln λ(k)

Bt

}
= etat exp

{
tdt

λ(k)
Bt
− at

dt
− |Y(k)

Bt
| ln λ(k)

Bt

}
, (3.3)

where at ∼ ρ ln2 t is the leading order of the principal Dirichlet eigenvalue of H in a
box of radius t as identified in [BK16]. Therein it is shown that the collection of rescaled
points {(λ(k)

Bt
− at)/dt}1≤k≤|Bt| converges in distribution to (the support of) a Poisson

point process. Assuming thus that (λ(k)
Bt
− at)/dt is of finite order, an index k optimizing

(3.3) will balance out the two competing terms, implying |Y(k)
Bt
| ≈ rt.

4. MAIN RESULTS FROM KEY PROPOSITIONS

The goal of this section is to give an outline to the proof of Theorems 2.3, 2.5, 2.8 and 2.10.
We will achieve this by way of a sequence of propositions that encapsulate the key tech-
nical aspects of the whole argument. The proofs of these propositions and of Theo-
rems 2.6–2.7 constitute the remainder of this paper and are the subject of Sections 5–11
as well as the three appendices. Note that Theorem 2.7 will be assumed in Sections 4.5–
4.6 below.
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Throughout the rest of this work, we set N := {1, 2, . . .}, write N0 := N ∪ {0} and
denote by dist(·, ·) the metric derived from the `1-norm | · |. For a real-valued function f
and a positive function g, we write f (t) = O(g(t)) as t → ∞ to denote that there exists
C > 0 such that | f (t)| ≤ Cg(t) for all large enough t, and we write f (t) = o(g(t))
in place of limt→∞ | f (t)|/g(t) = 0. In the latter case, we may also alternatively write
| f (t)| � g(t) or g(t)� | f (t)|. By o(·) or O(·) we will always mean deterministic bounds,
i.e., independent of the realization of ξ.

4.1 Definition of the localization process.

In this subsection, we provide the definition of the localization process (Zt)t>0. We start
with some necessary notation.

For Λ ⊂ Zd finite, we denote by λ(1)
Λ the largest Dirichlet eigenvalue (i.e., with zero

boundary conditions) of ∆ + ξ in Λ. For L ∈N and x ∈ Zd, we let

BL(x) := x + [−L, L]d ∩Zd, (4.1)

and when x = 0 we write BL instead of BL(0).
Fix κ ∈ (0, 1/d). For each z ∈ Zd, we define a ξ-dependent radius

$z :=
⌊

exp
{

κ

ρ
ξ(z)

}⌋
(4.2)

and we let
C :=

{
z ∈ Zd : ξ(z) ≥ ξ(y) ∀ y ∈ B$z(z)

}
(4.3)

denote the set of local maxima of ξ in neighborhoods of radius $z, which we call capitals.
Since ξ(x) has a continuous law, we have B$z(z) ∩ C = {z} for all z ∈ C almost surely.

For z ∈ C , we abbreviate
λC (z) := λ(1)

B$z (z)
. (4.4)

For t > 0, we define a cost functional over the points z ∈ C by setting

Ψt(z) := λC (z)− ln+
3 |z|
t
|z|, where ln+

3 x := ln3(x ∨ ee). (4.5)

The functional Ψt measures the relevance at time t of a capital z ∈ C by weighting the
principal eigenvalue in B$z(z) against the `1-distance to the origin |z|. The next proposi-
tion shows that Ψt admits a maximizer:

Proposition 4.1 Almost surely, |C | = ∞ and, for all t > 0 and all η ∈ R,

|{z ∈ C : Ψt(z) > η}| < ∞. (4.6)

The proof of Proposition 4.1 will be given in Section 5. In order to define Zt as a càdlàg
maximizer of Ψt, we proceed as follows. Write (λ, z) � (λ′, z′) for the usual lexicograph-
ical order of R×Rd, i.e., (λ, z) � (λ′, z′) if either λ > λ′, or λ = λ′ and z � z′ according
to the usual (non-strict) lexicographical order of Rd. Now define, recursively for k ∈N,

Ψ(k)
t := sup

z∈C \{Z(1)
t ,...,Z(k−1)

t }
Ψt(z), (4.7)
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S(k)
t :=

{
z ∈ C \ {Z(1)

t , . . . , Z(k−1)
t } : Ψt(z) = Ψ(k)

t

}
, (4.8)

and

Z(k)
t ∈

{
z ∈ S(k)

t :
(
λC (z), z

)
�
(
λC (ẑ), ẑ

)
∀ ẑ ∈ S(k)

t

}
. (4.9)

Observe that (4.9) determines Z(k)
t uniquely. Then we set

Zt := Z(1)
t . (4.10)

The above definitions ensure that the maps t 7→ Ψ(k)
t are continuous while t 7→ Z(k)

t are
càdlàg, with t 7→ |Zt| non-decreasing (see Lemma 7.5 and (7.40) below).

4.2 Properties of the cost functional.

The technical statements start with a discussion of the properties of the above cost func-
tional Ψt and the process Zt. Recall the definitions of rt and dt from (2.6). The various
error estimates that are to follow will require a host of auxiliary scales. First we fix
εt ∈ (0, 1), εt � (ln3 t)−1 arbitrary as in the statement of Theorem 2.5. Then, similarly to
[MP14], we fix et, ft, gt, ht and bt such that

et, ft, ht, bt −→
t→∞

0 and gt −→
t→∞

∞ (4.11)

while also
gt

εt ln3 t
� bt � ftht and gtht � et. (4.12)

As an example of scales satisfying (4.11–4.12), one may take suitable powers of εt ln3 t.
We then have:

Proposition 4.2 For all 0 < a ≤ b < ∞ and all ε ∈ (0, 1),(
Ψ(1)

at −Ψ(2)
at

)
∧
(

Ψ(1)
bt −Ψ(2)

bt

)
> dtet, (4.13)

rt ft < inf
s∈[at,bt]

|Zs| ≤ sup
s∈[at,bt]

|Zs| < rtgt (4.14)

and
ρ(1− ε) ln2 t < inf

s∈[at,bt]
ξ(Zs) ≤ sup

s∈[at,bt]
ξ(Zs) < ρ(1 + ε) ln2 t (4.15)

hold with probability tending to one as t→ ∞.

Proposition 4.2 is proved in Section 7, together with Theorems 2.6–2.7. The proofs rely
strongly on the extreme order statistics of the principal Dirichlet eigenvalue in a box
identified in [BK16] and, similarly to the approach of [KLMS09, MOS11, LM12, ST14,
FM14, MP14], on a Poisson point process approximation. However, in order to deal
with the fact that the local eigenvalues do not depend on bounded regions in space, a
coarse-graining scheme taken from [BK16] is required. Our approach provides a quite
direct implication of functional convergence and aging for Zt from the convergence of
the underlying point process (in a suitable topology), see in particular Lemmas 7.4, 7.6
and 7.8 below. We believe that this approach could be useful to prove analogous results
in other contexts, e.g., the PAM with lighter potential tails.
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Notice that in (4.13) we only require a gap between Ψ(1)
s and Ψ(2)

s for s ∈ {at, bt}. This
is because, while the gap is greater than dtet with large probability at both at and bt,
there is by (2.11) a non-zero probability that s 7→ Zs jumps in the interval [at, bt], leading
to a zero gap at the jump time. Notwithstanding, if no such jump occurs, then the gap
remains uniformly positive throughout the interval. Indeed, define

Gt,s :=
{

Ψ(1)
s −Ψ(2)

s ≥ dtet
}

. (4.16)

Then we have:

Proposition 4.3 With probability one, for any 0 < a ≤ b < ∞ and any t > 0,

Gt,at ∩ Gt,bt ∩ {Zat = Zbt} =
⋂

s∈[at,bt]

(
Gt,s ∩ {Zs = Zat}

)
. (4.17)

The proof of Proposition 4.3 is related to that of Theorem 2.7, and so it is relegated to
Section 7 as well.

4.3 Mass decomposition and negligible contributions.

Having dealt with the cost functional and localization process, we proceed by giving
estimates on the solution to (1.1–1.2). As noted already earlier, this solution can be writ-
ten using the Feynman-Kac formula (1.5), which offers the strategy to control u(t, x) by
decomposing the expectation based on various restrictions on the underlying random
walk. A starting point is a good lower bound on the total mass U(t):

Proposition 4.4 For any 0 < a ≤ b < ∞,

inf
s∈[at,bt]

{
ln U(s)− sΨ(1)

s

}
≥ o(tdtbtεt) (4.18)

holds with probability tending to 1 as t→ ∞.

For Λ ⊂ Zd, let
τΛ := inf{s > 0 : Xs ∈ Λ} (4.19)

denote the first hitting time of Λ. Our decomposition of (1.5) begins by restricting the
expectation to paths that never leave a box of side-length

Lt := bt ln+
2 tc, where ln+

2 t := ln2(t ∨ e). (4.20)

This restriction comes at little loss since we have:

Proposition 4.5 For any 0 < a ≤ b < ∞, there is a t0 = t0(ξ) with t0 < ∞ a.s. such that

sup
s∈[at,bt]

ln E0

[
e
∫ s

0 ξ(Xu)du
1{τBc

Lt
≤ s}

]
≤ −1

8
t(ln2 t) ln3 t (4.21)

holds whenever t > t0.

Next we show that the bulk of the contribution to the Feynman-Kac formula comes
from the paths that do not even leave the random domain

D◦t,s :=
{

x ∈ Zd : |x| ≤ |Zs|(1 + ht)
}

. (4.22)

Indeed, the contribution of paths that leave this set is bounded via:
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Proposition 4.6 For any 0 < a ≤ b < ∞,

sup
s∈[at,bt]

{
ln E0

[
e
∫ s

0 ξ(Xu)du
1{τ(D◦t,s)c ≤ s < τBc

Lt
}
]

−max
{

sΨ(2)
s , sΨ(1)

s − ht|Zs| ln3 t
}}
≤ o(tdtbt) (4.23)

holds with probability tending to 1 as t→ ∞.

Finally, we show that the random walk X enters a fixed-size neighborhood of Zt by
time t with large probability:

Proposition 4.7 For all large enough ν ∈N and all 0 < a ≤ b < ∞,

sup
s∈[at,bt]

{
ln E0

[
e
∫ s

0 ξ(Xu)du
1{τBν(Zs) ∧ τBc

Lt
> s}

]
− sΨ(2)

s

}
≤ o(tdtbt) (4.24)

holds with probability tending to 1 as t→ ∞.

The above propositions will allow us to restrict the Feynman-Kac formula to the event

Rν
t,s :=

{
τ(D◦t,s)c > s ≥ τBν(Zs)

}
, (4.25)

and proceed to control the result using spectral techniques; see Section 4.4.
Our proofs of Propositions 4.4 and 4.5, given respectively in Sections 8.1 and 8.2, are

relatively simple and follow similar results in the literature. Propositions 4.6 and 4.7 are
proven in Section 8.3; their main technical point is a path expansion scheme developed
in Section 6, based on an approach from [MP14]. Additional difficulties arise in our
case due to smaller gaps in the potential, and to the fact that the effective support of the
relevant local eigenvalues is unbounded in the limit of large times. This is overcome
through a careful analysis of the connectivity properties of the level sets of the potential
and their implications for the bounds derived via path expansions.

It is important to note that λC (Zs) is the largest possible over all capitals inside D◦t,s
(cf. Lemma 9.1). This comes as a consequence of the choice of ht in (4.12), which is of
special relevance as it simultaneously allows the proofs of Proposition 4.6 above (for
which ht should be large enough) and Proposition 4.9 below (for which ht should be
small enough). We also note that a complementary bound to (4.18) holds as well (cf.
Lemma 8.6), which will be important for the proof of Theorem 2.6 in Section 8.4.

4.4 Localization.

Once the path has been shown to enter a neighborhood of Zt by time t with large prob-
ability, the next item of concern is to show that it will actually not be found far away
from Zt at time t. This will be done by bounding the end-point distribution using the
principal eigenfunction φ◦t,s corresponding to the largest Dirichlet eigenvalue of the An-
derson Hamiltonian in D◦t,s, which we assume to be normalised so that

φ◦t,s > 0 on D◦t,s, φ◦t,s = 0 on (D◦t,s)
c and ‖φ◦t,s‖`2(Zd) = 1. (4.26)

We have:
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Proposition 4.8 For any ν ∈ N and 0 < a ≤ b < ∞, the following holds with probability
tending to 1 as t→ ∞: For all s ∈ [at, bt] and all x ∈ D◦t,s,

E0

[
e
∫ s

0 ξ(Xu)du
1Rν

t,s∩{Xs=x}

]
≤ U(s) sup

y∈Bν(Zs)

φ◦t,s(y)
−3 φ◦t,s(x). (4.27)

In order to use the bound in (4.27), we will need an estimate on the decay of φ◦t,s away
from Zs. On the event Gt,s from (4.16), this is the subject of:

Proposition 4.9 There exist c1, c2 > 0 and, for all ν ∈ N, also εν > 0 such that, for all
0 < a ≤ b < ∞, the following holds on with probability tending to 1 as t → ∞: For all
s ∈ [at, bt], on Gt,s we have

(i) φ◦t,s(x) ≤ c1e−c2|x−Zs| ∀x ∈ Zd, (4.28)

(ii) φ◦t,s(y) ≥ εν ∀y ∈ Bν(Zs). (4.29)

Propositions 4.8–4.9 are proven in Section 9. Proposition 4.8 is similar to Proposi-
tion 3.11 in [MP14], and its proof is an adaptation of the proof of Theorem 4.1 of [GKM07].
The proof of Proposition 4.9(i) is an adaptation of the proof of Theorem 1.4 of [BK16],
while part (ii) relies on results from [GM98], [GH99] and [GKM07] regarding the optimal
shapes of the potential.

4.5 Proof of mass concentration results.

We have now amassed enough information for the proof of Theorem 2.3, assuming The-
orem 2.7 and the above propositions:

Proof of Theorem 2.3. Fix ν ∈ N large enough so that Proposition 4.7 is available. Fix
0 < a ≤ b < ∞. We will first show that, for all δ > 0, there exists an R ∈N such that

lim
t→∞

Prob
(
∃ s ∈ [at, bt] : Ψ(1)

s −Ψ(2)
s ≥ dtet, Q(ξ)

s (|Xs − Zs| > R) > δ
)
= 0, (4.30)

and derive the desired claim from this at the very end.
We begin by noting that Propositions 4.4–4.7 imply that, with probability tending to 1

as t→ ∞,

ln
(

1
U(s)

E0

[
e
∫ s

0 ξ(Xu)du
1(Rν

t,s)
c

])
≤ −s min

{
Ψ(1)

s −Ψ(2)
s , ht|Zs| ln3 t,

t ln2 t ln3 t
8s

}
+ o(tdtbt) (4.31)

holds true for all s ∈ [at, bt]. By Proposition 4.2, on Gt,s = {Ψ(1)
s − Ψ(2)

s ≥ dtet} we may
further bound (4.31) by

− at min
{

dtet, htrt ft ln3 t, 1
8b ln2 t ln3 t

}
+ o(tdtbt) (4.32)

which goes to −∞ as t → ∞ by (2.6) and (4.12) — indeed, (4.12) shows that et ln3 t → ∞
(in fact, et � gt/ ln3 t with gt → ∞) and so tdtet � ct/[(ln t) ln3 t) — implying that

lim
t→∞

sup
s∈[at,bt]

1Gt,s

U(s)
E0

[
e
∫ s

0 ξ(Xu)du
1(Rν

t,s)
c

]
= 0 in probability. (4.33)
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Fix now δ > 0 and let R ∈N be large enough such that

ε−3
ν c1 ∑

|x|>R
e−c2|x| <

δ

2
, (4.34)

where c1, c2 and εν are as in Proposition 4.9. By Propositions 4.8–4.9,

sup
s∈[at,bt]

1Gt,s

U(s) ∑
x : |x−Zs|>R

E0

[
e
∫ s

0 ξ(Xu)du
1Rν

t,s∩{Xs=x}

]
<

δ

2
(4.35)

with probability tending to 1 as t→ ∞, which together with (4.33) implies (4.30).
To conclude the desired statement from (4.30), fix lt > 0, lt = o(t) and note that, by

Theorem 2.7 and Propositions 4.2–4.3, with probability tending to 1 as t→ ∞,

Zs = Zt and Ψ(1)
s −Ψ(2)

s ≥ dtet ∀s ∈ [t− lt, t + lt]. (4.36)

This together with (4.30) (with a < 1 < b) implies (2.4). �

For the proof of Theorem 2.5, we need two more propositions, which are proved in
Section 10. The first one is an improvement of Proposition 4.7:

Proposition 4.10 For εt ∈ (0, 1) satisfying εt � (ln3 t)−1 (as in Theorem 2.5), as soon as
ν ∈N is sufficiently large

1
U(t)

E0

[
e
∫ t

0 ξ(Xs)ds
1{τ(D◦t,t)c > t ≥ τBν(Zt) > εtt}

]
−→
t→∞

0 (4.37)

in probability.

The second proposition bounds the contribution of paths starting at a point x ∈ Bν(Zt)
and reaching a distance greater than 1

2 εt ln t:

Proposition 4.11 For any ν ∈N, the following holds with probability tending to 1 as t→ ∞:
For all x ∈ Bν(Zt) and all 0 ≤ s ≤ t,

Ex

[
e
∫ s

0 ξ(Xu)du
1

{
τ(D◦t,t)c > s, sup

0≤u≤s
|Xu − x| > 1

2 εt ln t
}]
≤ t−1 Ex

[
e
∫ s

0 ξ(Xu)du
]

. (4.38)

Proof of Theorem 2.5. Fix ν ∈ N large enough so that the conclusion of Proposition 4.10
becomes available. Write τ̃ := τBν(Zt) and note that, when t is large,{

sup
s∈[εtt,t]

|Xs − Zt| > εt ln t

}
⊂ (Rν

t,t)
c ∪
{

τ(D◦t,t)c > t ≥ τ̃ > εtt
}
∪ At, (4.39)

where

At :=

{
τ(D◦t,t)c > t, τ̃ ≤ εtt, sup

s∈[τ̃,t]
|Xs − Xτ̃| > 1

2 εt ln t

}
. (4.40)

By (4.33), Proposition 4.2 and Proposition 4.10,

Q(ξ)

t
(
(Rν

t,t)
c) ∨ Q(ξ)

t

(
τ(D◦t,t)c > t ≥ τ̃ > εtt

)
−→
t→∞

0 in probability. (4.41)
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To control Q(ξ)

t (At), let

Ft(x, s) := Ex

[
e
∫ s

0 ξ(Xu)du
1
{

τ(D◦t,t)
c>s, sup0≤u≤s |Xu−x|> 1

2 εt ln t
}]

(4.42)

and use the strong Markov property and Proposition 4.11 to get

E0

[
e
∫ t

0 ξ(Xs)ds
1At

]
= ∑

x∈Bν(Zt)

E0

[
e
∫ τ̃

0 ξ(Xs)ds
1{τ(D◦t,t)c > τ̃ = τx ≤ εtt}Ft(x, t− τ̃)

]
≤ t−1U(t)

(4.43)

with probability tending to 1 as t→ ∞. The desired claim now readily follows from (4.39),
(4.41) and (4.43). �

4.6 Proof of aging and limit profiles.

The last set of propositions to be introduced here concern the proof of Theorems 2.8
and 2.10. We start with some supporting notation. Given a function t 7→ µt with µt ∈N,
let φ•t,s denote the eigenfunction corresponding to the largest Dirichlet eigenvalue of the
Anderson operator in Bµt(Zs), normalised so that

φ•t,s > 0 on Bµt(Zs), φ•t,s = 0 on Bc
µt
(Zs) and ‖φ•t,s‖`1(Zd) = 1. (4.44)

(Notice our use of the `1-norm here.) When s = t we omit one index from the notation.
Recall the choice of κ ∈ (0, 1/d) in (4.2). We then have:

Proposition 4.12 For any µt ∈N with 1� µt � (ln t)κ, and any 0 < a ≤ b < ∞,

lim
t→∞

sup
s∈[at,bt]

1Gt,s

∥∥∥∥u(·, s)
U(s)

− φ•t,s(·)
∥∥∥∥
`1(Zd)

= 0 in probability. (4.45)

We may thus obtain information about the profile of u(·, s) via that of φ•t,s. As shown
next, this can be achieved under Assumption 2.9, as it uniquely determines the limit
profile Vρ of ξ and the “shape” vρ of the principal eigenfunction:

Proposition 4.13 If Assumption 2.9 holds, then there exists µt ∈ N with 1 � µt � (ln t)κ

and a function ât satisfying limt→∞ ât/ ln2 t = ρ such that, for any 0 < a ≤ b < ∞, both

sup
s∈[at,bt]

sup
x∈Bµt

∣∣ξ(x + Zs)− ât −Vρ(x)
∣∣ (4.46)

and
sup

s∈[at,bt]

∥∥φ•t,s(Zs + ·)− vρ(·)
∥∥
`1(Zd)

(4.47)

converge to 0 in probability as t→ ∞.

The proofs of Propositions 4.12–4.13 are based on an approach from [GKM07] and
will be given in Section 11 below. Together with Theorem 2.7, they imply Theorem 2.10
as follows.

Proof of Theorem 2.10. Note that (2.18) follows directly from (4.46). For (2.19), use (4.45),
(4.47), the triangle inequality for the `1-norm and (4.36). �

Proposition 4.12 (and Theorem 2.7) will also allow us to prove Theorem 2.8.
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Proof of Theorem 2.8. We adapt the proof of Theorem 1.1 of [MOS11]. By Theorem 2.7, it
is enough to show that, for any ε ∈ (0, 1) and b > 1,

sup
s∈[t,bt]

∑
z∈Zd

∣∣∣∣u(z, s)
U(s)

− u(z, t)
U(t)

∣∣∣∣ < ε if and only if Zs = Zt ∀ s ∈ [t, bt] (4.48)

holds with probability tending to 1 as t→ ∞.
Assume first that Zs 6= Zt for some s ∈ (t, bt]. By Propositions 4.2 and 4.3, we may

assume that Zbt 6= Zt; moreover, |Zbt − Zt| > (ln t)κ/2 by (4.15), the definition of $z and
the fact that Zt, Zbt ∈ C . Fixing R so that (4.30) holds with δ < 1

2 (1− ε), we obtain

∑
z∈Zd

∣∣∣∣u(z, bt)
U(bt)

− u(z, t)
U(t)

∣∣∣∣ ≥ ∑
|z−Zbt|≤R

∣∣∣∣u(z, bt)
U(bt)

∣∣∣∣− ∑
|z−Zt|>R

∣∣∣∣u(z, t)
U(t)

∣∣∣∣ ≥ 1− 2δ > ε (4.49)

with probability tending to 1 as t→ ∞, proving the “only if” part of (4.48).
Assume now that Zs = Zt ∀ s ∈ [t, bt]. Then φ•t,s = φ•t for all s ∈ [t, bt], and the “if”

part of (4.48) follows by (4.45) with a = 1 < b together with Propositions 4.2–4.3. This
finishes the proof. �

5. PREPARATIONS

In this section we collect auxiliary results that will be used in the remainder of the paper.
We start with a few basic properties of the potential field and of the principal Dirichlet
eigenvalue of the Anderson Hamiltonian in subdomains of Zd, leading to the proof of
Proposition 4.1. The two subsequent subsections concern additional properties of the
potential field, and the last one contains spectral bounds for the Feynman-Kac formula.

5.1 Potentials and eigenvalues.

First we consider the maximum of the potential in a box. Let âL be the minimal number
satisfying

Prob (ξ(0) > âL) = L−d, (5.1)

which exists since, by Assumption 2.1, ξ(0) has a continuous distribution. Note that, in
the notation of [GM98], âL = ψ(d ln L). Then we have:

Lemma 5.1 (Maximum of the potential)

lim
L→∞

max
x∈BL

ξ(x)− âL = 0 a.s. (5.2)

Proof. See Corollary 2.7 of [GM98]. �

Let us mention here some properties of âL. By equation (2.1) of [GM98],

âkL = âL + o(1) as L→ ∞ whenever ln kL = ln L(1 + o(1)) (5.3)

and, by Remark 2.1 therein, it is straightforward to verify that âL = (ρ + o(1)) ln2 L.
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Next we recall the Rayleigh-Ritz formula for the largest eigenvalue of the Anderson
Hamiltonian. For Λ ⊂ Zd and V : Zd → [−∞, ∞), let λ(1)

Λ (V) denote the largest eigen-
value of the operator ∆+V in Λ with Dirichlet boundary conditions. Then the Rayleigh-
Ritz formula reads

λ(1)
Λ (V) = sup

{
〈(∆ + V)φ, φ〉`2(Zd) : φ ∈ RZd

, supp φ ⊂ Λ, ‖φ‖`2(Zd) = 1
}

. (5.4)

When V = ξ we sometimes write λ(1)
Λ instead of λ(1)

Λ (ξ). Here are some straightforward
consequences of the Rayleigh-Ritz formula:

(1) for any Γ ( Λ,

max
z∈Γ

V(z)− 2d ≤ λ(1)
Γ (V) ≤ λ(1)

Λ (V) ≤ max
z∈Λ

V(z); (5.5)

(2) the eigenfunction corresponding to λ(1)
Λ (V) can be taken non-negative;

(3) if V is real-valued and Λ is finite and connected (in the graph-theoretical sense ac-
cording to the usual nearest-neighbor structure of Zd), then the middle inequal-
ity in (5.5) is strict and, moreover, the non-negative eigenfunction corresponding
to λ(1)

Λ (V) is strictly positive;
(4) for Λ, Λ′ ⊂ Zd such that dist(Λ, Λ′) ≥ 2,

λ(1)
Λ∪Λ′(V) = max{λ(1)

Λ (V), λ(1)
Λ′(V)}. (5.6)

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1. Note that, for any R ∈N and z ∈ Zd,

{z ∈ C } ⊇
{

ξ(z) ≤ ρκ−1 ln R, ξ(z) = max
x∈BR(z)

ξ(x)
}

, (5.7)

and the probability of the event on the right-hand side does not depend on z and is
positive for some fixed large enough R. As the events on the right of (5.7) depend only
on a finite number of coordinates, the second Borel-Cantelli lemma shows |C | = ∞
almost surely. Now, by (5.5), λC (z) ≤ ξ(z) for any z ∈ C while, by Lemma 5.1, almost
surely ξ(z) ≤ 2ρ ln2 |z| for all |z| large enough. This implies that, almost surely,

lim sup
R→∞

sup
z∈C ,|z|=R

Ψt(z) ≤ lim
R→∞

(
2ρ ln2 R− R

ln3 R
t

)
= −∞ (5.8)

for each t > 0. This finishes the proof. �

Next we generalise (2.14–2.15) as follows. For Λ ⊂ Zd and V : Zd → [−∞, ∞), let

LΛ(V) := ∑
x∈Λ

e
V(x)

ρ (5.9)

with the interpretation e−∞ := 0. Then set

χΛ = χΛ(ρ) := − sup
{

λ(1)
Λ (V) : V ∈ [−∞, 0]Z

d
,LΛ(V) ≤ 1

}
. (5.10)

When Λ = Zd we write just χ. From the definition it follows that, if Γ ⊂ Λ, then
χΓ ≥ χΛ; in particular, 0 ≤ χ ≤ χΛ ≤ 2d since χ{x} = 2d for any x ∈ Zd.
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5.2 Islands.

Central to our analysis is a domain truncation method taken from [BK16], which we
describe next. Recall the choice of κ ∈ (0, 1/d) in (4.2) and fix an increasing sequence
RL ∈N such that

RL ≤ (ln L) ∨ 1 and RL � (ln L)β as L→ ∞ for some β ∈ (κ, 1/d). (5.11)

This sequence will control the spatial size of the regions in BL where the field is large,
and thus the (principal) local eigenvalue has a chance to be close to maximal. We will
often work with RL satisfying additionally

RL � (ln L)α as L→ ∞ for some α ∈ (β, 1/d), (5.12)

but for the proof of Proposition 4.11 in Section 10.2 we will need to consider RL growing
as ln L. Unless explicitly mentioned, only (5.11) is assumed in the following. Given
A > 0 and L ∈N, let

ΠL,A := {z ∈ BL : ξ(z) > âL − 2A} (5.13)

be the set of high exceedances of the field inside the box BL, and put

DL,A :=
⋃

z∈ΠL,A

BRL(z) ∩ BL. (5.14)

The parameter A, providing the cutoff between the “high” and “small” values of the
field, will be later fixed to a suitably large value that depends only on the dimension d
and the parameter ρ.

Let CL,A denote the set of all connected components of DL,A, to be called islands. For
C ∈ CL,A, let

zC := argmax{ξ(z) : z ∈ C} (5.15)

be the point of highest potential within C. Since ξ(0) has a continuous law, zC is a.s. well
defined for all C ∈ CL,A.

Next we gather useful properties of CL,A. The first result concerns a uniform bound on
the size of the islands. Hereafter we will say that an L-dependent event occurs “almost
surely eventually as L → ∞” if there exists a.s. a (random) L0 ∈ N such that the event
happens for all L ≥ L0. Similar language will be used for events depending on other
parameters (e.g. t).

Lemma 5.2 (Maximum size of the islands) For any A > 0, there exists nA ∈ N such that,
for any RL satisfying (5.11), a.s. eventually as L → ∞, all C ∈ CL,A satisfy |C ∩ΠL,A| ≤ nA
and diam(C) ≤ nARL.

Proof. See the proof of Lemma 6.6 in [BK16]. �

For δ > 0, A > 0 and L ∈N, let

Cδ
L,A := {C ∈ CL,A : λ(1)

C > âL − χ− δ} (5.16)

denote the set of islands with large principal eigenvalue. We call these relevant islands,
as their eigenvalue is close to the principal eigenvalue of BL (cf. Lemma 6.8 of [BK16]).
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The following lemma is crucial for the proof of Proposition 7.1 below, from which
Proposition 4.2 follows. It allows us to compare the eigenvalues of relevant islands to
those of disjoint boxes.

Lemma 5.3 (Coarse-graining for local principal eigenvalues) Assume RL satisfies (5.11)
and (5.12). Let NL ∈ N satisfy Lβ � NL � Lα as L → ∞ for some 0 < β < α < 1. For all
A > 0 sufficiently large and δ > 0 small enough, the following occurs with probability tending
to one as L→ ∞:

(i) Each C ∈ Cδ
L,A satisfies λ(1)

C − λ(2)
C ≥

1
2 ρ ln 2.

(ii) For each C ∈ Cδ
L,A, there exists z ∈ (2NL + 1)Zd such that C ⊂ BNL(z) ⊂ BL.

(iii) Every two distinct C, C ′ ∈ Cδ
L,A satisfy dist(C, C ′) > 4dNL.

(iv) Let ηA := {1 + A/(4d)}−1. For any z ∈ (2NL + 1)Zd such that BNL(z) ⊂ BL and
λ(1)

BNL (z)
> âL − χ− δ + (ηA)

RL , there exists a C ∈ Cδ
L,A satisfying C ⊂ BNL(z) and

λ(1)
C > λ(1)

BNL (z)
− (ηA)

RL . (5.17)

Proof. Let A, δ be as in the statement of Lemma 6.7 of [BK16]; we may assume that A >
χ + δ. Items (i)–(iii) follow from items (1)–(3) in this lemma (the scales there do not
match ours exactly, but the proof is the same). For (iv), assume that L is so large that
2d(ηA)

2RL−1 < (ηA)
RL , and note that λ(1)

BNL
(z)− A > âL − 2A. By Theorem 2.1 of [BK16]

applied to D = BNL(z) and (5.6), there exists C ∈ CL,A, C ∩ BNL(z) 6= ∅ such that (5.17)
holds. In particular, C ∈ Cδ

L,A so, by item (ii), C ⊂ BNL(z). �

Our next goal is to control the behavior of the potential inside relevant islands. This
will be important for the proofs of Propositions 4.7 and 4.9 as well as Lemma 5.8 below.
First we will need two lemmas concerning lower and upper bounds for L.

Lemma 5.4 For any Λ ⊂ Zd and any a ∈ R, if λ(1)
Λ ≥ a then LΛ(ξ − a− χΛ) ≥ 1.

Proof. This is a consequence of (5.9–5.10) and the fact that λ(1)
Λ (V + a) = λ(1)

Λ (V) + a. �

Lemma 5.5 Let RL satisfy (5.11–5.12). For any A > 0,

lim sup
L→∞

sup
C∈CL,A

LC(ξ − âL) ≤ 1 a.s. (5.18)

Proof. This is a consequence of Lemma 5.2 and a straightforward extension of Corollary
2.12 in [GM98] with R substituted by nARL. �

We will now combine the previous two lemmas with results from [BK16], [GH99]
and [GKM07] to obtain upper and lower bounds around âL for the potential in relevant
islands.

Lemma 5.6 (Upper bound for the potential inside relevant islands) Assume (5.11–5.12).
For all δ ∈ (0, 1) small enough, there exist A1 > 4d and ν1 ∈ N such that, for all A > 0, a.s.
eventually as L→ ∞,

sup
C∈Cδ

L,A

sup
z∈C\Bν1 (zC )

ξ(z) ≤ âL − 2A1. (5.19)
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Proof. We follow the proof of Lemma 4.8 of [BK16]. Fix δ ∈ (0, 1) small enough such that

A1 := − 1
2 ρ ln

(
e

2δ
ρ − e−

2δ
ρ

)
> 4d > χ + δ, (5.20)

and let r ∈N be such that 2dη2r−1
A1

< δ where ηA := (1 + A/4d)−1. For C ∈ Cδ
L,A, let

S := {x ∈ C : ξ(x) > âL − 2A1}. (5.21)

We claim that
diam S ≤ 2(r + 1)|S|. (5.22)

Indeed, suppose by contradiction that (5.22) does not hold. Then S = S1 ∪ S2 with
dist(S1, S2) ≥ 2(r + 1). Let Sr

i := {x ∈ C : dist(x, Si) ≤ r}, i = 1, 2. Then, by (5.6),

λ(1)
Sr

1
∨ λ(1)

Sr
2
= λ(1)

Sr
1∪Sr

2
> λ(1)

C − 2dη2r−1
A1

> âL − χ− 2δ (5.23)

where for the first inequality we use Theorem 2.1 of [BK16] applied to D := C (note that
λ(1)
C − A1 > âL − 2A1 since C is assumed to be in Cδ

L,A, i.e., such that λ(1)
C > âL − χ− δ,

and by (5.20)), and the last inequality follows by our choice of r. Supposing without loss
of generality that λ(1)

Sr
1
≥ λ(1)

Sr
2
, by Lemma 5.4 and (5.23) we have

LSr
1
(ξ − âL) ≥ e

χSr
1
−χ−2δ

ρ ≥ e−
2δ
ρ . (5.24)

On the other hand, by Lemma 5.5 we may suppose that LC(ξ − âL) ≤ e2δ/ρ. Then, for
any x ∈ S2,

LSr
1
(ξ − âL) ≤ LC (ξ − âL)− e

ξ(x)−âL
ρ ≤ e

2δ
ρ − e

ξ(x)−âL
ρ . (5.25)

Combining (5.24–5.25) we obtain

ξ(x)− âL ≤ ρ ln
(

e
2δ
ρ − e−

2δ
ρ

)
= −2A1, (5.26)

contradicting x ∈ S. Therefore, (5.22) holds.
To conclude, note that

e
2δ
ρ ≥ LC(ξ − âL) ≥ e−

2A1
ρ |S|. (5.27)

Since zC ∈ S by (5.5) and (5.20), the inequalities (5.22) and (5.27) now imply (5.19) with

ν1 := d2(r + 1)e
2(A1+δ)

ρ e. �

Lemma 5.7 (Lower bound for the potential in relevant islands) Suppose that RL is such
that (5.11–5.12) hold. For any ν ∈ N, there exist A∗, δ > 0 such that, for all A > 0, the
following is true a.s. eventually as L→ ∞:

inf
C∈Cδ

L,A

inf
z∈Bν(zC )

ξ(z) ≥ âL − 2A∗. (5.28)

Proof. Recall the definition ofM∗
ρ in (2.16). We note that Lemma 3.2(i) of [GKM07] holds

forM∗
ρ in place ofMρ, as can be inferred from the proof. In particular,M∗

ρ 6= ∅ and,
by Lemma 3.1 therein, all V ∈ M∗

ρ satisfy L(V) = 1. On the other hand, by (3.21) in
[GKM07] together with Theorem 2 and Proposition 3 of [GH99] (see also (5.44) therein),

A∗ := − inf
V∈M∗

ρ

inf
x∈Bν

V(x) < ∞. (5.29)
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Fix, by (3.6) in [GKM07], δ > 0 small enough such that
V ∈ [−∞, 0]Z

d
, 0 ∈ argmax(V), L(V) ≤ 1

and inf
V∈M∗

ρ

sup
x∈Bν

|V(x)−V(x)| > A∗

 ⇒ λ(1)(V) < −χ− 2δ. (5.30)

Fix C ∈ Cδ
L,A and define

V∗(x) :=
{

ξ(x + zC)− âL − δ if x + zC ∈ C,
−∞ otherwise. (5.31)

By Lemma 5.1, V∗ ∈ [−∞, 0)Zd
a.s. eventually as L → ∞, and 0 ∈ argmax(V∗) by the

definition of zC . Furthermore, L(V∗) = LC(ξ − âL − δ) which is a.s. smaller than 1 for
large L by Lemma 5.5. Now, since C ∈ Cδ

L,A, we have λ(1)(V∗) = λ(1)
C − âL− δ > −χ− 2δ,

and thus the conclusion follows from (5.29–5.30). �

We end this subsection with a comparison between the islands and capitals with large
local eigenvalues, which will be crucial in the proof of Proposition 7.1 below.

Lemma 5.8 Assume (5.11–5.12). There exists a constant c1 > 0 such that, for all A > 0 large
enough and δ > 0 small enough, the following occurs with probability tending to one as L→ ∞:

(i) If C ∈ Cδ
L,A, then zC ∈ C , (ln L)κ/2 < $zC < RL and

0 ≤ λ(1)
C − λC (zC) ≤ e−c1(ln L)κ/2

. (5.32)

(ii) For all z ∈ C such that B$z(z) ⊂ BL and λC (z) > âL − χ− δ, there exists C ∈ Cδ
L,A

such that z = zC and (5.32) holds.

Proof. Let A, δ > 0 satisfy the hypotheses of Lemmas 5.3 and 5.6, and let A1 > 0, ν1 ∈
N as in Lemma 5.6. We may assume that 2A > A1. For (i), note that, if C ∈ Cδ

L,A,
then (ln L)κ/2 + ν1 < $zC ≤ maxz∈BL $z < RL for all L large enough by (4.2), (5.2), (5.5)
and (5.11), and thus zC ∈ C . By Lemma 5.6, the set {x ∈ C : dist(x, ΠL,A1) ≤ (ln L)κ/2}
is contained in B$zC

(zC) and thus (5.32) follows by Theorem 2.1 of [BK16] with c1 :=
ln(1 + A1/(4d)). For (ii), note that, again by (5.5), ξ(z) > âL − A1 and thus z ∈ ΠL,A.
Letting C ∈ CL,A such that z ∈ C, note that B$z(z) ⊂ C since $z < RL, and thus C ∈ Cδ

L,A.
Since $z > ν1, z = zC by Lemma 5.6, and (5.32) follows by item (i). �

5.3 Connectivity properties of the potential field.

In this section, we provide bounds on the number of points in which the potential
achieves high values inside connected sets of the lattice. These will be important in the
proof of Proposition 6.1. We will use the following concentration inequality for Binomial
random variables.

Lemma 5.9 Let Bin(p, n) denote a Binomial random variable with parameters p and n. Then,
for all u > 0,

P
(
Bin(p, n) > u

)
≤ exp

{
−u
(

ln
u

np
− 1
)}

. (5.33)
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Proof. Since, for any α > 0,

E
[
eαBin(p, n)

]
= {1 + p(eα − 1)}n ≤ enpeα

, (5.34)

(5.33) follows by applying Markov’s inequality and maximizing over α > 0. �

Our first lemma reads as follows.

Lemma 5.10 (Number of intermediate peaks of the potential) For each β ∈ (0, 1) there is
ε ∈ (0, β/2) such that, a.s. eventually as L → ∞, for all finite connected subsets Λ ⊂ Zd with
Λ ∩ BL 6= ∅ and |Λ| ≥ (ln L)β,

NΛ := |{z ∈ Λ : ξ(z) > (1− ε)âL}| ≤
|Λ|

(ln L)ε
. (5.35)

Proof. Let ε ∈ (0, δ/2) be small enough so that, for all L large enough,

pL := Prob (ξ(0) > (1− ε)âL) ≤ exp
{
−(ln L)1− δ

2

}
. (5.36)

This is possible by e.g. Lemma 6.1 in [BK16]. Now fix a point x ∈ BL and n ∈ N.
The number of connected subsets Λ ⊂ Zd with |Λ| = n and x ∈ Λ is at most ec0n for
some c0 > 0 independent of x (see e.g. [G99], Section 4.2). For such a Λ, the random
variable NΛ has a Bin(pL, n)-distribution. Using (5.33) and a union bound, we obtain

Prob
(
∃ connected Λ 3 x, |Λ| = n and NΛ > n/(ln L)ε

)
≤ exp

{
−n
(
(ln L)1− δ

2−ε − c0 −
1 + ε ln2 L
(ln L)ε

)}
. (5.37)

When L is large enough, the expression in the parentheses above is at least 1
2 (ln L)1− δ

2−ε.
Summing over n ≥ (ln L)δ and x ∈ BL, we get

Prob

(
∃ connected Λ such that Λ ∩ BL 6= ∅,

|Λ| ≥ (ln L)ε and (5.35) does not hold

)
≤ c1Ld exp

{
−c2(ln L)1+ δ

2−ε

}
(5.38)

for some positive constants c1, c2. By our choice of ε, (5.38) is summable on L, so the
conclusion follows from the Borel-Cantelli lemma. �

A similar computation allows us to bound the number of high exceedances of the
potential.

Lemma 5.11 (Number of high exceedances of the potential) For each A > 0, there is a
constant C ≥ 1 such that, for all δ ∈ (0, 1), the following holds a.s. eventually as L → ∞: For
all finite connected subsets Λ ⊂ Zd with Λ ∩ BL 6= ∅ and |Λ| ≥ C(ln L)δ it holds that

|Λ ∩ΠL,A| ≤
|Λ|

(ln L)δ
. (5.39)

Proof. The proof proceeds exactly as for Lemma 5.10 by noting that, by Lemma 6.1
in [BK16],

pL := Prob (0 ∈ ΠL,A) ≤ L−ε (5.40)
for some ε ∈ (0, 1) and all large enough L, and then taking C > 2(d + 1)/ε. �
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5.4 Spectral bounds.

Here we state some spectral bounds for the Feynman-Kac formula. The results in this
section are deterministic, i.e., they hold for any fixed choice of potential ξ ∈ RZd

.
Fix a finite connected subset Λ ⊂ Zd, and let HΛ denote the restriction of the An-

derson Hamiltonian to Λ with Dirichlet boundary conditions. For z ∈ Λ, let uz
Λ be the

positive solution of
∂tu(x, t) = HΛu(x, t), x ∈ Λ, t > 0,

u(x, 0) = 1z(x), x ∈ Λ,
(5.41)

and set Uz
Λ(t) := ∑x∈Λ uz

Λ(x, t). The solution admits the Feynman-Kac representation

uz
Λ(x, t) = Ez

[
exp

{∫ t

0
ξ(Xs)ds

}
1{τΛc > t, Xt = x}

]
, (5.42)

where τΛc is as in (4.19). It also admits the spectral representation

uz
Λ(x, t) =

|Λ|

∑
k=1

etλ(k)
Λ φ(k)

Λ (z)φ(k)
Λ (x), (5.43)

where λ(1)
Λ > λ(2)

Λ ≥ · · · ≥ λ(|Λ|)
Λ and φ(1)

Λ , φ(2)
Λ , . . . , φ(|Λ|)

Λ are respectively the eigenvalues
and corresponding orthonormal eigenfunctions of HΛ. One may exploit these represen-
tations to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma 5.12 (Bounds on the solution) For any finite Λ ⊂ Zd, any z ∈ Λ and any t > 0,

etλ(1)
Λ φ(1)

Λ (z)2 ≤ Ez

[
e
∫ t

0 ξ(Xs)ds
1{τΛc>t,Xt=z}

]
≤ Ez

[
e
∫ t

0 ξ(Xs)ds
1{τΛc>t}

]
≤ etλ(1)

Λ |Λ|3/2. (5.44)

Proof. The first and last inequalities follow directly from (5.42–5.43); the middle inequal-
ity is elementary. �

The second lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 5.13 (Mass up to an exit time) For any z ∈ Λ and γ > λ(1)
Λ ,

Ez

[
exp

{∫ τΛc

0
(ξ(Xs)− γ)ds

}]
≤ 1 +

2d|Λ|
γ− λ(1)

Λ

. (5.45)

Proof. See Lemma 4.2 in [GKM07]. �

The next lemma is a well-known representation for the principal eigenfunction.

Lemma 5.14 For any x, y ∈ Λ,

φ(1)
Λ (x)

φ(1)
Λ (y)

= Ex

[
exp

{∫ τy

0

(
ξ(Xu)− λ(1)

Λ

)
du
}
1{τy < τΛc}

]
. (5.46)

Proof. See e.g. Proposition 3.3 in [MP14]. �

Our last lemma bounds the Feynman-Kac formula when the random walk is restricted
to hit a subset, and is the principal ingredient in the proof of Proposition 4.8.
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Lemma 5.15 (Bound by principal eigenfunction) For all t > 0, z, x ∈ Λ and Γ ⊂ Λ,

Ez

[
e
∫ t

0 ξ(Xs)ds
1{Xt = x, τΛc > t ≥ τΓ}

]
≤ Uz

Λ(t) φ(1)
Λ (x) sup

y∈Γ
|φ(1)

Λ (y)|−3. (5.47)

Proof. We adapt the proof of Theorem 4.1 of [GKM07]. Fix z ∈ Zd and, for x ∈ Zd and
t > 0, denote

w(x, t) := Ex

[
e
∫ t

0 ξ(Xs)ds
1{Xt = z, τΛc > t ≥ τΓ}

]
. (5.48)

Note that, by invariance under time reversal, (5.48) is equal to the left-hand side of (5.47).
It will suffice to show that, for any 0 < s ≤ t and y ∈ Γ,

Ey

[
e
∫ t−s

0 ξ(Xu)du
1{Xt−s=z,τΛc>t−s}

]
≤ e−sλ

(1)
Λ |φ(1)

Λ (y)|−2w(y, t). (5.49)

Indeed, by the strong Markov property, w(x, t) equals

∑
y∈Γ

Ex

[
e
∫ τy

0 ξ(Xu)du
1{τΛc>τy=τΓ≤t}

(
Ey

[
e
∫ t−s

0 ξ(Xu)du
1{Xt−s=z,τΛc>t−s}

])
s=τy

]
≤ ∑

y∈Γ
|φ(1)

Λ (y)|−2w(y, t)Ex

[
e
∫ τy

0

(
ξ(Xu)−λ

(1)
Λ

)
du
1{τΛc>τy}

]
= φ(1)

Λ (x) ∑
y∈Γ
|φ(1)

Λ (y)|−3w(y, t) ≤ φ(1)
Λ (x) sup

y∈Γ
|φ(1)

Λ (y)|−3Uz
Λ(t), (5.50)

where for the second line we used (5.49) and, for the last one, we invoked (5.46) and one
more time applied the invariance under time reversal.

In order to prove (5.49), we restrict to Xs = y inside the expectation defining w(y, t)
to obtain

w(y, t) ≥ Ey

[
e
∫ s

0 ξ(Xu)du
1{Xs=y,τΛc>s}

]
Ey

[
e
∫ t−s

0 ξ(Xu)du
1{Xt−s=z,τΛc>t−s}

]
. (5.51)

By Lemma 5.12,

Ey

[
e
∫ s

0 ξ(Xu)du
1{Xs=y,τΛc>s}

]
≥ esλ

(1)
Λ |φ(1)

Λ (y)|2, (5.52)

implying (5.49) as desired. �

6. PATH EXPANSIONS

In this section, we develop a setup to bound the contribution of certain specific classes
of random-walk paths to the Feynman-Kac formula. This leads to Propositions 6.1–6.2
below, which are the key to the proof of Propositions 4.6–4.7 in Section 8 and Proposi-
tions 4.10–4.11 in Section 10.

6.1 Key propositions.

To start, we define various sets of nearest-neighbour paths in Zd as follows. For ` ∈ N0
and subsets Λ, Λ′ ⊂ Zd, define

P`(Λ, Λ′) :=

{
(π0, . . . , π`) ∈ (Zd)`+1 :

π0 ∈ Λ, π` ∈ Λ′

|πi − πi−1| = 1 i = 1, . . . , `

}
(6.1)
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and set
P(Λ, Λ′) :=

⋃
`∈N0

P`(Λ, Λ′),

P` := P`(Z
d, Zd),

P := P(Zd, Zd) =
⋃

`∈N0

P`.

(6.2)

When Λ or Λ′ consists of a single point, we write x instead of {x}. If π ∈ P`, we set
|π| := `. We write supp(π) := {π0, . . . , π|π|} to denote the set of points visited by π.

Let X = (Xt)t≥0 be a continuous-time simple symmetric random walk with total
jump rate 2d; this is the process that “drives” the Feynman-Kac formula. We denote
by (Tn)n∈N0 the sequence of its jump times (with T0 := 0). For ` ∈ N0, let π(`)(X) :=
(X0, . . . , XT`

) be the path in P` consisting of the first ` steps of X and, for t ≥ 0, π(X0,t)
the path in P consisting of all the steps taken by X between the times 0 and t. Recall the
definition (4.19) of the hitting times τΛ.

For π ∈P , L ∈N and A > 0, we define

λL,A(π) := sup
{

λ(1)
C : C ∈ CL,A, supp(π) ∩ C ∩ΠL,A 6= ∅

}
, (6.3)

with the convention sup ∅ = −∞. This is the largest principal eigenvalue among the
components of CL,A encountered by the path.

The main results of this section are the following two propositions.

Proposition 6.1 Let RL satisfy (5.11–5.12). For any A > 0, there exists a constant cA > 0
such that the following holds a.s. eventually as L → ∞: For each x ∈ BL, each t > 0, each
N ⊂P(x, Zd) satisfying supp(π) ⊂ BL and max1≤`≤|π| |π`− x| ≥ ln L for all π ∈ N , and
each assignment π 7→ (γπ, zπ) ∈ R×Zd such that

γπ ≥ λL,A(π) ∨ (âL − A) + e−RL (6.4)

and
zπ ∈ supp(π) ∪

⋃
C∈CL,A :

supp(π)∩C∩ΠL,A 6=∅

C (6.5)

are true for all π ∈ N , we have

ln Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t) ∈ N}

]
≤ sup

π∈N

{
tγπ − (ln3(4dL)− cA) |zπ − x|

}
. (6.6)

While we assume (5.11–5.12) in most of the paper, the proof of Proposition 4.11 will
require us to work without (5.12). In this setting, we have the following:

Proposition 6.2 For A > 0, let nA ∈N as in Lemma 5.2. For any RL ∈N that obeys (5.11)
and any ϑL ∈ N satisfying ϑL � ln3 L as L → ∞, the following holds a.s. eventually as
L → ∞: For each x ∈ BL, each t > 0, each N ⊂ P(x, Zd) satisfying supp(π) ⊂ BL and
max1≤`≤|π| |π` − x| ≥ (nA + 1)RL for all π ∈ N , and each π 7→ γπ ∈ R that obeys

γπ ≥ λL,A(π) ∨ (âL − A) + e−ϑLRL , π ∈ N , (6.7)

ln Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t) ∈ N}

]
≤ t sup

π∈N
γπ − 1

2 RL ln3 L. (6.8)
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To prove Propositions 6.1–6.2, we will need a key lemma (Lemma 6.5 below), whose
proof in turn depends on intermediate results obtained in the following two subsections.
We emphasize that all of these results are deterministic, i.e., they hold for any fixed
potential ξ ∈ RZd

.

6.2 Mass of the solution along excursions.

In order to control the contribution to the mass given by a path, it will be important for
us to control the contribution of its excursions outside of ΠL,A (recall (5.13)). A useful
result is the following:

Lemma 6.3 (Path evaluation) For any ` ∈ N0, any path π ∈ P` and any γ such that
γ > maxi<|π| ξ(πi)− 2d,

Eπ0

[
exp

{∫ T`

0
(ξ(Xs)− γ)ds

} ∣∣∣∣π(`)(X) = π

]
=

`−1

∏
i=0

2d
2d + γ− ξ(πi)

. (6.9)

Proof. The left-hand side of (6.9) can be directly evaluated using the fact that T` is the
sum of ` i.i.d. Exp(2d) random variables that are independent of π(`)(X). The condition
on γ ensures that all integrals are finite. �

For a path π ∈P , any L ∈N and any ε ∈ (0, 1), we denote

ML,ε
π :=

∣∣{x ∈ supp(π) \ {π|π|} : ξ(x) ≤ (1− ε)âL
}∣∣. (6.10)

Then we have:

Lemma 6.4 (Mass of excursions) For any A, ε > 0, there exist c > 0 and L0 ∈N such that,
for all L ≥ L0, all γ > âL − A and all π ∈P satisfying πi /∈ ΠL,A for all i < ` := |π|,

Eπ0

[
exp

{∫ T`

0
(ξ(Xt)− γ)ds

} ∣∣∣∣π(`)(X) = π

]
≤ q`Ae(c−ln3 L)ML,ε

π , (6.11)

where qA := (1 + A/2d)−1.

Note that the statement of Lemma 6.4 allows for π` ∈ ΠL,A.

Proof. By our assumptions on π and γ, we can use Lemma 6.3. Splitting the product on
the right-hand side of (6.9) according to whether ξ(πi) is larger than (1− ε)âL or not,
and using that ξ(πi) ≤ âL − 2A for all i < |π|, we obtain that (6.11) is at most

q`A

[
qA

εâL − A
2d

]−|{i<` : ξ(πi)≤(1−ε)âL}|
. (6.12)

For large L, âL ≥ 1
2 ρ ln2 L and the number within square brackets in (6.12) exceeds

qAερ(ln2 L)/5d > 1. Since |{i < |π| : ξ(πi) ≤ (1 − ε)âL}| ≥ ML,ε
π , (6.11) holds with

c := ln(1∨ 5d(qAερ)−1). �
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6.3 Equivalence classes of paths.

Here we develop a setup similar to Section 6.2 of [MP14]. The idea is to categorize paths
π ∈ P according to their excursions between ΠL,A and Dc

L,A (cf. (5.13–5.14)) and then
apply the results from Sections 5.4 and 6.2. Note that dist(ΠL,A, Dc

L,A) ≥ RL.
First we discuss the concatenation of paths. If π and π′ are two paths in P such that

π|π| = π′0, we define their concatenation as

π ◦ π′ := (π0, . . . , π|π|, π′1, . . . , π′|π′|) ∈P . (6.13)

Note that |π ◦ π′| = |π|+ |π′|.
If a path π ∈P is contained in BL and intersects ΠL,A, then it can be decomposed into

an initial path, a sequence of excursions between ΠL,A and Dc
L,A, and a terminal path.

Explicitly, there exists mπ ∈N such that

π = π̌(1) ◦ π̂(1) ◦ · · · ◦ π̌(mπ ) ◦ π̂(mπ ) ◦ π̄, (6.14)

where the paths in (6.14) are contained in BL and satisfy

π̌(1) ∈P(Zd, ΠL,A) and π̌(1)
i /∈ ΠL,A, 0 ≤ i < |π̌(1)|,

π̌(k) ∈P(Dc
L,A, ΠL,A) and π̌(k)

i /∈ ΠL,A, 0 ≤ i < |π̌(k)|, 2 ≤ k ≤ mπ,

π̂(k) ∈P(ΠL,A, Dc
L,A) and π̂(k)

i ∈ DL,A, 0 ≤ i < |π̂(k)|, 1 ≤ k ≤ mπ − 1,

π̂(mπ ) ∈P(ΠL,A, Zd) and π̂(mπ )

i ∈ DL,A, 0 ≤ i < |π̂(mπ )|,
(6.15)

while
π̄ ∈P(Dc

L,A, Zd), π̄i /∈ ΠL,A ∀ i ≥ 0 if π̂(mπ ) ∈P(ΠL,A, Dc
L,A),

π̄0 ∈ DL,A, |π̄| = 0 otherwise.
(6.16)

Note that the decomposition (6.14–6.16) is unique, and that the paths π̌(1), π̂(mπ ) and π̄
can have zero length.

For L ∈N and ε > 0, whenever supp(π) ∩ΠL,A 6= ∅, we define

nπ :=
mπ

∑
i=1
|π̌(i)|+ |π̄| and kL,ε

π :=
mπ

∑
i=1

ML,ε
π̌(i) + ML,ε

π̄ (6.17)

to be respectively the total time spent in exterior excursions and the sum of the numbers
of moderately low points of the potential visited by exterior excursions (excluding their
last point). In the case when supp(π) ∩ ΠL,A = ∅, we set mπ := 0, nπ := |π| and
kL,ε

π := ML,ε
π . Recall from (6.3) that, in this case, λL,A(π) = −∞.

We say that π, π′ ∈ P are equivalent, written π′ ∼ π, if mπ = mπ′ , π̌′(i) = π̌(i) for all
i = 1, . . . , mπ and π̄′ = π̄ if π̄0 ∈ Dc

L,A. If π′ ∼ π, then nπ′ , kL,ε
π′ and λL,A(π

′) are all equal
to the counterparts for π.

To state our next lemma, we define, for m, n ∈N0,

P (m,n) = {π ∈P : mπ = m, nπ = n} , (6.18)

and we denote by
CL,A := max{|C| : C ∈ CL,A} (6.19)

the maximal size of the islands in CL,A.
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Lemma 6.5 For any A, ε > 0, there exist c > 0 and L0 ∈ N such that, for all L ≥ L0, all
m, n ∈N0, all π ∈P (m,n) with supp(π) ⊂ BL, all γ > λL,A(π) ∨ (âL − A) and all t ≥ 0,

Eπ0

[
e
∫ t

0 (ξ(Xs)−γ)ds
1{π(X0,t) ∼ π}

]
≤
(

C3/2
L,A

)
1{m>0}

(
1 +

2d CL,A

γ− λL,A(π)

)m (qA

2d

)n
e(c−ln3 L)kL,ε

π . (6.20)

Proof. Fix A, ε > 0 and let c > 0, L0 ∈ N be as given by Lemma 6.4. For 0 ≤ s ≤ t < ∞,
set It

s := e
∫ t

s (ξ(Xu)−γ)du. Our strategy is to prove the claim by induction on m.
Suppose first that m = 1, let ` := |π̌(1)| and set z := π̌(1)

` . There are two possibilities: ei-
ther π̄0 belongs to DL,A or not. Focussing first on the case π̄0 ∈ DL,A, which in particular
implies |π̄| = 0, the strong Markov property yields %

Eπ0

[
It
0 1{π(X0,t)∼π}

]
= Eπ0

[
IT`
0 It

T`
1{π(`)(X)=π̌(1)}1{T`<t} 1{Xs+T`∈DL,A ∀s∈[0,t−T`]}

]
= Eπ0

[
IT`
0 1{π(`)(X)=π̌(1)} 1{T`<t}

(
Ez

[
It−s
0 1{τDc

L,A
>t−s}

])
s=T`

]
. (6.21)

Since z ∈ ΠL,A, we may write Cz to denote the island in CL,A containing z. As τDc
L,A

= τCc
z

Pz-a.s., Lemma 5.12 and our hypothesis on γ bound the inner expectation in (6.21) by
|Cz|3/2. Applying Lemmas 5.2 and 6.4, we further bound (6.21) by

|Cz|3/2Eπ0

[
IT`
0 1{π(`)(X)=π̌(1)}

]
≤ C3/2

L,A

(qA

2d

)`
e(c−ln3 L)ML,ε

π̌(1) , (6.22)

thus proving (6.20) in the case m = 1, π̄0 ∈ DL,A.
Next let us assume x := π̄0 ∈ Dc

L,A. Abbreviating σ := inf{s > T` : Xs /∈ DL,A}, we
may write

Eπ0

[
It
0 1{π(X0,t)∼π}

]
≤ Eπ0

[
Iσ
0 1{π(`)(X)=π̌(1),σ<t}

(
Ex

[
It−s
0 1{π(X0,t−s)=π̄}

])
s=σ

]
. (6.23)

Let `∗ := |π̄| and note that, since π̄`∗ /∈ ΠL,A, by the hypothesis on γ we have

Ex

[
It−s
0 1{π(X0,t−s)=π̄}

]
≤ Ex

[
IT`∗
0 1{π(`∗)(X)=π̄}

]
≤
(qA

2d

)`∗
e(c−ln3 L)ML,ε

π̄ (6.24)

by Lemma 6.4. On the other hand, by Lemmas 5.13 and 6.4,

Eπ0

[
Iσ
0 1{π(`)(X)=π̌(1)}

]
= Eπ0

[
IT`
0 1{π(`)(X)=π̌(1)}

]
Ez

[
I

τCc
z

0

]
≤
(

1 +
2d CL,A

γ− λL,A(π)

)(qA

2d

)`
e(c−ln3 L)ML,ε

π̌(1) . (6.25)

Putting together (6.23)–(6.25), we finish the proof of the case m = 1.
By induction, assume now that the statement is proven for some fixed m ≥ 1, and

let π ∈ P (m+1,n). Define π′ := π̌(2) ◦ π̂(2) ◦ · · · ◦ π̌(m+1) ◦ π̂(m+1) ◦ π̄. Then π′ ∈ P (m,n′)

where n = |π̌(1)| + n′, and kL,ε
π = kL,ε

π′ + ML,ε
π̌(1) . Setting ` := |π̌(1)|, x := π̌(2)

0 and σ :=
inf{s > T` : Xs /∈ DL,A}, we get

Eπ0

[
It
0 1{π(X0,t)∼π}

]
≤ Eπ0

[
Iσ
0 1{π(`)(X)=π̌(1),σ<t}

(
Ex

[
It−s
0 1{π(X0,t−s∼π′)}

])
s=σ

]
, (6.26)
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from which (6.20) follows using the induction hypothesis and (6.25). The case m = 0
follows from equation (6.24) after substituting π̄ by π and t− s by t. �

6.4 Proof of Propositions 6.1–6.2.

We are now ready to present the proofs of the above key propositions.

Proof of Proposition 6.2. The proof is based on Lemma 6.5 and results from Sections 5.2–
5.3. Fix A > 0 and, for β as in (5.11), take ε ∈ (0, 1/2) as in Lemma 5.10. Let L0 ∈ N

be as given by Lemma 6.5 and take L ≥ L0 so large that the conclusions of Lemmas 5.10
and 5.2 hold. Fix x ∈ BL. Recall the definition of P (m,n). Noting that the relation ∼ is an
equivalence relation in P (m,n), define

P̃
(m,n)
x := {equivalence classes of the paths in P(x, Zd) ∩P (m,n)}. (6.27)

We first claim that, for a constant c1 ∈N, a.s. eventually as L→ ∞,

|P̃ (m,n)
x | ≤ (c1Rd

L)
m(2d)n ∀m, n ∈N0. (6.28)

Indeed, (6.28) is clear if m = 0. To prove it in the case m ≥ 1, write, for Λ ⊂ Zd,
∂Λ := {z /∈ Λ : dist(z, Λ) = 1}. By Lemma 5.2, there is a c0 ∈N such that

|∂C| ≤ 2d|C| ≤ c0Rd
L ∀ C ∈ CL,A a.s. eventually as L→ ∞. (6.29)

We then define a map Φ : P̃
(m,n)
x →Pn(x, Zd)×{1, . . . , c0Rd

L + 1}m as follows: For each
Λ ⊂ Zd with 1 ≤ |Λ| ≤ c0Rd

L, fix an injection fΛ : Λ → {1, . . . , c0Rd
L}. Given a path

π ∈ P (m,n) ∩P(x, Zd), decompose π as in (6.13) and, abusing notation slightly, write
π̌(m+1) for π̄. Now let π̃ be the path obtained from π̌(k), 1 ≤ k ≤ m + 1, by progressively
shifting, for 2 ≤ k ≤ m + 1, the starting point of each π̌(k) to the terminal point of π̌(k−1)

and concatenating these shifted paths together. Note that, for each 2 ≤ k ≤ m, the
starting point π̌(k)

0 lies in ∂Ck for some Ck ∈ CL,A, while π̌(m+1)
0 = π̄0 ∈ ∂C ∪ C for some

C ∈ CL,A. Thus we may set

Φ(π) :=
{ (

π̃, f∂C2(π̌
(2)
0 ), . . . , f∂Cm(π̌

(m)

0 ), c0Rd
L + 1

)
if π̄0 ∈ C ⊂ DL,A,(

π̃, f∂C2(π̌
(2)
0 ), . . . , f∂Cm(π̌

(m)

0 ), f∂C̄(π̄0)
)

if π̄0 ∈ ∂C ⊂ Dc
L,A.

(6.30)

As is readily checked, Φ(π) depends only on the equivalence class of π and, when re-
stricted to equivalence classes, Φ is injective. Thus (6.28) follows with e.g. c1 := 2c0.

Take now N ⊂P(x, Zd) as in the statement, and set

Ñ (m,n) := {equivalence classes of paths in N ∩P (m,n)} ⊂ P̃
(m,n)
x . (6.31)

(6.28) permits us to write

Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t)∈N}

]
= ∑

m,n∈N0

∑
π∈Ñ (m,n)

Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t)∼π}

]
≤ ∑

m,n∈N0

(c1Rd
L)

m(2d)n sup
π∈N (m,n)

Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t)∼π}

]
, (6.32)
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where we use the convention sup ∅ = 0. For fixed π ∈ N (m,n), by the hypothesis on γπ

we may apply (6.20), (6.4–6.5), Lemma 5.2 and (5.11) to obtain, for all L large enough,

(c1Rd
L)

m(2d)nEx

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t)∼π}

]
≤ etγπ

(
R4d

L eϑLRL
)m

qn
Ae(c−ln3 L)kL,ε

π (6.33)

for some constant c > 0. We now claim that, for large enough L,

kL,ε
π ≥ {(m− 1) ∨ 1} RL{1− 2(ln L)−ε}. (6.34)

Indeed, when m = 0, | supp(π)| ≥ (nA + 1)RL. When m ≥ 2, | supp(π̌(i))| ≥ RL for
all 2 ≤ i ≤ m. When m = 1, there are two cases: if supp(π̌(1)) ∩ Dc

L,A 6= ∅, then
| supp(π̌(1))| ≥ RL while, if supp(π̌(1)) ⊂ DL,A, then | supp(π̄)| ≥ RL by the assumption
max1≤`≤|π| |π`− x| > (nA + 1)RL together with (5.11) and Lemma 5.2. Thus (6.34) holds
by (6.17), (6.10), (5.11) and Lemma 5.10.

Using (6.34), ϑL � ln3 L and n ≥ kL,ε
π , for large L we may further bound (6.33) by[

R8d
L e2ϑLRL e−(2ϑL+

1
2 )RL

]m

qn
Aetγπ e(c+1+2ϑL−ln3 L)kL,ε

π

≤ qRL/3
A

[
R8d

L e−
RL
2

]m

qn/2
A etγπ e(c+1+2ϑL−ln3 L)kL,ε

π . (6.35)

Inserting this back into (6.32), we obtain

Ex

[
e
∫ t

0 ξ(Xs)ds
1{π(X0,t)∈N}

]
≤ sup

π∈N
exp

{
tγπ + (c + 1 + 2ϑL − ln3 L) kL,ε

π

}
. (6.36)

Now (6.8) follows from (6.36), (6.34) and ϑL � ln3 L. �

Proof of Proposition 6.1. Note that, for large L, the assumptions of Proposition 6.1 imply
those of Proposition 6.2 with ϑL ≡ 1, and thus we may use (6.36). We proceed to bound
kL,ε

π using assumption (5.12). For α ∈ (0, 1/d) as in (5.12), let C ≥ 1 be as in Lemma 5.11
with δ ∈ (αd, 1) and set ε′ := δ− αd > 0. Assume that L is so large that the conclusion
of Lemma 5.11 is in place.

Note that, by Lemma 5.2, there exists a constant c2 > 0 such that

kL,ε
π ≥ ML,ε

π − | supp(π) ∩ΠL,A|c2Rd
L. (6.37)

By (5.11) and our hypothesis on N , | supp(π)| ≥ ln L ≥ C(ln L)δ for large L. Hence, by
Lemma 5.11,

| supp(π) ∩ΠL,A| ≤
| supp(π)|
(ln L)δ

≤ | supp(π)|
Rd

L(ln L)ε′
(6.38)

by (5.12) and our choice of δ, ε′. By Lemma 5.10, ML,ε
π + 1 ≥ | supp(π)|{1− (ln L)−ε}.

Thus
kL,ε

π ≥ | supp(π)|
{

1− (ln L)−1 − (ln L)−ε − c2(ln L)−ε′
}

. (6.39)

Now, by Lemma 5.2 and (6.4–6.5), | supp(π)| ≥ |zπ| − nARL; this in conjunction with
| supp(π)| ≥ ln L implies

| supp(π)| ≥ |zπ − x|
(

1− nARL

ln L

)
. (6.40)
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From (6.39–6.40) and (5.11) we obtain (c + 3− ln3 L) kL,ε
π ≤ (c + 4− ln3(4dL)) |zπ − x|

for large enough L, which together with (6.36) implies (6.6). �

7. ANALYSIS OF THE COST FUNCTIONAL

In this section, we identify the order statistics of Ψt and give the proofs of Theorem 2.7
and Propositions 4.2–4.3. Motivated by Proposition 6.1 and Lemma 5.8, we define the
following generalization of the cost functional: For t > 0 and c ∈ R, let

Ψt,c(z) := λC (z)−
(
ln+

3 |z| − c
)+ |z|

t
, z ∈ C , (7.1)

where λC (z) is as in (4.4). Arguing as for (4.6), we can see that, almost surely,

|{z ∈ C : Ψt,c(z) > η}| < ∞ for all t > 0, η ∈ R, (7.2)

and thus we may define Ψ(k)
t,c and Z(k)

t,c analogously to the corresponding objects for Ψt.
Fix Nt ∈ N such that tβ � Nt � tα for some 0 < β < α < 1. Noting that rt is strictly

increasing for large enough t, we may take t 7→ L∗t ∈N such that L∗rt
= Lt. Set N̂t := NL∗t

and define at to be the smallest positive number such that

Prob
(

λ(1)
BN̂t

> at

)
=

(2N̂t)d

td . (7.3)

Such an at exists (for t large enough) since λ(1)
BN̂t

is continuously distributed. Note that

L∗t ∼
d
ρ

t(ln t)(ln2 t) ln3 t as t→ ∞, (7.4)

and thus also tβ � N̂t � tα′ for some 0 < β < α′ < 1. An important result of [BK16]
(Theorem 2.4 therein) is that, for any θ ∈ R,

lim
t→∞

td

(2N̂t)d
Prob

(
λ(1)

BN̂t
> at + θdt

)
= e−θ , (7.5)

where dt is as in (2.6). A strengthened version of this statement (see (7.19) below) will
allow us to identify the order statistics of Ψt,c. Together with Theorem 2.3 and Lemma 6.8
in [BK16], (7.5) implies that at = ât − χ + o(1). In particular, at = (ρ + o(1)) ln2 t.

For 0 < a ≤ b < ∞, c ∈ R and k ∈N, we define the events

E (k)
t,a,b,c :=

{
min

i=1,...,k

(
Ψ(i)

at,c −Ψ(i+1)
at,c

)
∧
(

Ψi
bt,c −Ψi+1

bt,c

)
> dtet

}
∩

⋂
s∈[at,bt]

{
art + dtgt > Ψ(1)

s,c ≥ Ψ(k)
s,c > art − dtgt

}
∩

⋂
s∈[at,bt]

{
rt ft < min

1≤i≤k
|Z(i)

s,c| ≤ max
1≤i≤k

|Z(i)
s,c| < rtgt

}
.

(7.6)

When c = 0 and/or k = 1, we omit them in the notation.
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For a ∈ (0, ∞), let C([a, ∞), Rn), resp. D([a, ∞), Rn), denote the set of continuous,
resp. càdlàg, functions from [a, ∞) to Rn, both equipped with the Skorohod topology.
The following result is the main objective of this section.

Proposition 7.1 For all c ∈ R, k ∈N and a > 0, the stochastic process((
Ψ(1)

θt,c − art

drt

,
λC (Z(1)

θt,c)− art

drt

,
Z(1)

θt,c

rt

)
, . . . ,

(
Ψ(k)

θt,c − art

drt

,
λC (Z(k)

θt,c)− art

drt

,
Z(k)

θt,c

rt

))
θ∈[a,∞)

(7.7)
belongs to (C([a, ∞), R) × D([a, ∞), R) × D([a, ∞), Rd))k and converges in distribution as
t→ ∞ with respect to the Skorohod topology of D

(
[a, ∞), (R×R×Rd)k) to the process((

Ψ(1)

θ , Λ
(1)

θ , Z(1)

θ

)
, . . . ,

(
Ψ(k)

θ , Λ
(k)

θ , Z(k)

θ

))
θ∈[a,∞)

(7.8)

where Ψ(i)

θ := Λ
(i)

θ − 1
θ Z(i)

θ and (Λ
(i)

θ , Z(i)

θ )
k
i=1 are the k first ordered maximizers of the functional

ψθ(λ, z) = λ− |z|θ over the points (λ, z) of a Poisson point process on R×Rd with intensity
e−λdλ⊗ dz, chosen in such a way that Ψ(i)

θ is continuous and Λ
(i)

θ , Z(i)

θ càdlàg.
In particular, the probability of the event E (k)

t,a,b,c defined in (7.6) converges to 1 as t→ ∞ and,
for any fixed θ ∈ (0, ∞), the random vector(

Ψ(1)
θt,c − art

drt

,
Z(1)

θt,c

rt

)
, . . . ,

(
Ψ(k)

θt,c − art

drt

,
Z(k)

θt,c

rt

)
(7.9)

converges in law to a random vector in (R×Rd)k with distribution given by

1{ψ1 > · · · > ψk}e−(
1
θ |z1|+···+ 1

θ |zk |+ψ1+···+ψk+(2θ)de−ψk)
k

∏
i=1

dψi ⊗ dzi. (7.10)

From this we immediately obtain:

Proof of Proposition 4.2. (4.13–4.14) follow directly from Proposition 7.1 and (2.6), while
for (4.15) we use additionally Lemma 5.1 and ξ(z) ≥ λC (z) ≥ Ψt(z) for z ∈ C , as
implied by (5.5). �

Note that the part of Theorem 2.6 concerning (Zt)t>0 already follows from Proposi-
tion 7.1. Another useful consequence is the following comparison between Ψt,c and Ψt.

Lemma 7.2 For any c ∈ R and any 0 < a ≤ b < ∞, on the event E (2)
t,a,b,c the following holds

for all s ∈ [at, bt]: ∣∣∣ sup
z 6=Zs

Ψs,c(z)−Ψ(2)
s

∣∣∣ ≤ o(dtbt), (7.11)

and ∣∣Ψs,c(Zs)−Ψ(1)
s
∣∣ ≤ o(dtbt). (7.12)
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Proof. The supremum in (7.11) is attained at Z(1)
s,c if Z(1)

s,c 6= Zs, or Z(2)
s,c if Z(1)

s,c = Zs. Since
|Z(1)

s,c| ∨ |Z(2)
s,c| ≤ rtgt on E (2)

t,a,b,c, in either case we have∣∣∣ sup
z 6=Zs

Ψs,c(z)−Ψ(2)
s

∣∣∣ ≤ |c| rtgt

at
= o(dtbt) (7.13)

since rtgt/t = o(dtbt) by (4.12). The bound (7.12) is obtained analogously. �

The proof of Proposition 7.1 is based on a point process approach, which we describe
next. This approach will also allow us to prove Proposition 4.3 and Theorem 2.7.

7.1 A point process approach.

The key to the proofs of Proposition 7.1 and Theorem 2.7 is the convergence of suitably
rescaled set {(λC (z), z) : z ∈ C } to (the support of) a Poisson point process. We follow
the setup and notation of [R87] for point processes; some arguments are for brevity
relegated to the appendices.

Since we will need to apply the stated Poisson convergence to infer convergence of
certain non-local minimizing functions, we will need to compactify some sets of R×Rd

as follows. Embed R×Rd in a locally compact Polish space E such that the set

Hθ
η :=

{
(λ, z) ∈ R×Rd : λ >

|z|
θ

+ η

}
⊂ E (7.14)

is relatively compact for any η ∈ R and θ ∈ (0, ∞) and, for each compact K ⊂ E, there
exist θ > 0, η ∈ R such that K ⊂ Hθ

η . A suitable choice of E is given in Appendix B.
Note that a Poisson point process in R×Rd with intensity e−λdλ⊗ dz can be extended
to E as the latter measure is a Radon measure on E. Denote by MP = MP(E) the set of
point measures (i.e., N0-valued Radon measures) on E. We equip MP with the topology
of vague convergence, and let supp(P) denote the support of P ∈MP.

Let us denote

Pt := ∑
z∈C

δ(Yt(z), z/t) where Yt(z) :=
λC (z)− at

dt
. (7.15)

Then we have:

Proposition 7.3 The point process Pt defined in (7.15) belongs almost surely to MP and con-
verges in distribution as t → ∞ with respect to the vague topology of MP to a Poisson point
process supported in R×Rd ⊂ E with intensity measure e−λdλ⊗ dz.

The proof of the Proposition 7.3 relies on the following lemma.

Lemma 7.4 Let µ be a Radon measure on R such that µ⊗ dz is a Radon measure on E. Let
N̂t ∈ N0 such that N̂t � t as t → ∞ and assume that, for each t > 0, (Ŷt(z))z∈(2N̂t+1)Zd is a
sequence of i.i.d. real-valued random variables satisfying the following two conditions:

(i) For each s ∈ R,

lim
t→∞

td

(2N̂d
t + 1)

Prob
(

Ŷt(0) > s
)
= µ(s, ∞). (7.16)
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(ii) For each θ > 0, η ∈ R,

lim
n→∞

lim sup
t→∞

∑
x∈(2N̂t+1)Zd : |x|≥tn

Prob
(

Ŷt(0) >
|x|
θt

+ η

)
= 0. (7.17)

Then, for each t > 0 large enough, the point process

P̂t := ∑
x∈(2N̂t+1)Zd

δ(Ŷt(x), x/t) (7.18)

belongs almost surely to MP, and converges in distribution as t → ∞ with respect to the vague
topology of MP to a Poisson point process in R×Rd ⊂ E with intensity measure µ⊗ dz.

Proof. Note first that, by (7.17), the expected value of P̂t(Hθ
η) is finite for all θ > 0, η ∈ R

when t is large enough, and hence P̂t ∈ MP. The claimed convergence may be proved
by a straightforward generalization of Proposition 3.21 of [R87], with [0, ∞) therein sub-
stituted by Rd and E therein substituted by R (see also [HMS08, Lemma 2.4]). Indeed,
we only need to verify (3.20) and (3.21) in [R87]. For (3.21), we note that, for any compact
K ⊂ E, there exists η ∈ R such that K ∩ (R×Rd) ⊂ [η, ∞)×Rd, and thus (3.21) follows
from (7.16). For (3.20), it suffices to prove that

∑
x∈(2N̂t+1)Zd

Prob
(

Ŷt(0) ∈ ·
)
⊗ δx/t(dz) −→

t→∞
µ⊗ dz vaguely in MP. (7.19)

Indeed, by (7.16), the convergence in (7.19) holds when evaluated on functions with
support contained in the closure of a set of the form [−n, ∞)× [−n, n]d ⊂ E with n ∈N.
This is extended to functions compactly supported in E by applying (7.17) and the fact
that, for any compact K ⊂ E, there exists θ > 0, η ∈ R such that K ⊂ Hθ

η . �

We can now proceed to:

Proof of Proposition 7.3. We will first use Lemma 7.4 to obtain convergence of an auxiliary
process. Define

Ŷt(x) :=
λ(1)

BN̂t
(x) − at

dt
, x ∈ (2N̂t + 1)Zd, (7.20)

and let P̂t be defined as in (7.18). We claim the following:

The statement of Proposition 7.3 holds for P̂t in place of Pt. (7.21)

Indeed, condition (7.16) follows from (7.5), while (7.17) is proved in Appendix A.
Arguing as in the proof of Proposition 4.1, we see that, almost surely, Pt ∈MP for all

t large enough. By (7.21) and since Pt and P̂t are simple, it suffices to show that, for any
θ ∈ (0, ∞) and η ∈ R, with probability tending to 1 as t→ ∞ there exists a bijective map

Tt : supp(P̂t) ∩Hθ
η → supp(Pt) ∩Hθ

η (7.22)

such that
sup

Ξ∈supp(P̂t)∩Hθ
η

dist (Tt(Ξ), Ξ) −→
t→∞

0 in probability. (7.23)
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To this end, pick x ∈ (2N̂t + 1)Zd such that (Ŷt(x), x/t) ∈ Hθ
η . We first claim that, a.s.

eventually as t→ ∞, all such x satisfy

BN̂t
(x) ⊂ BL∗t and λ(1)

BN̂t
(x) > âL∗t − χ + o(1). (7.24)

Indeed, the second claim above follows from (5.3). If the first were violated, then by (5.5),
Lemma 5.1 and the fact that s 7→ 2ρ(dt)−1 ln2 s− s/(θt) is decreasing for s ≥ 2dθt ln t,
we would have, a.s. eventually as t→ ∞,

λ(1)

BN̂t
(x) − at

dt
− |x|

θt
≤ 2ρ ln2 |x|

dt
− |x|

θt
≤ 2ρ ln2 L∗t

dt
− L∗t − 2dN̂t

θt
−→
t→∞
−∞ (7.25)

by (7.4), contradicting (Ŷt(x), x/t) ∈ Hθ
η . This finishes the proof of (7.24). Now, since

N̂t = NL∗t , by Lemmas 5.3 and 5.8 there exists, with probability tending to 1 as t → ∞, a
unique z ∈ C satisfying

B$z(z) ⊂ BN̂t
(x) and λ(1)

BN̂t
(x) − λC (z) ≤ 2e−c1(ln L∗t )

κ/2
, (7.26)

which allows us to define an injective map

Tt

(
Ŷt(x),

x
t

)
:=
(

Yt(z),
z
t

)
∈ supp(Pt). (7.27)

Let us verify that Tt satisfies the desired properties. Indeed, (7.23) follows since∣∣∣Ŷt(x)−Yt(z)
∣∣∣+ ∣∣∣∣ z− x

θt

∣∣∣∣ ≤ 2e−c1(ln L∗t )
κ/2

dt
+ 2d

N̂t

θt
=: εt → 0 as t→ ∞, (7.28)

and thus we only need to show that, with probability tending to 1 as t → ∞, (7.27) is in
Hθ

η and Tt is surjective. Indeed, by (7.21), with probability tending to 1 as t→ ∞,

P̂t

(
Hθ

η−εt
\ Hθ

η+εt

)
= 0, (7.29)

implying by (7.28) that (7.27) is in Hθ
η . Moreover, if (Yt(z), z/t) ∈ Hθ

η for some z ∈ C ,
then as before λC (z) > âL∗t − χ + o(1) and B$z(z) ⊂ BL∗t . Thus, by Lemmas 5.8 and 5.3,
there exists x ∈ (2N̂t + 1)Zd such that (7.26) and (7.28) hold, implying by (7.29) that
(Yt(z), z/t) is the image by Tt of a point in supp(P̂t) ∩Hθ

η . This finishes the proof. �

7.2 Order statistics: proof of Propositions 7.1 and 4.3 and Theorem 2.7.

Our next task is to translate (4.7–4.9) (and generalizations thereof) in terms of maps
defined on point measures. We start with some necessary notation.

Denote by M̂P the set of positive measures P on R×Rd that can be represented as

P = ∑
i∈N

δ(λi ,zi) for some (λi, zi) ∈ R×Rd, (7.30)

i.e., M̂P is the set of integer-valued σ-finite Borel measures on R×Rd.
Fix a measurable map ϑ : Rd → Rd. For a measure P ∈ M̂P as in (7.30), we define

Pϑ := ∑
i∈N

δ(λi ,ϑ(zi)), (7.31)
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and we set
MP,ϑ := {P ∈ M̂P : Pϑ ∈MP}. (7.32)

Finally, we generalise (2.7) by setting, for θ > 0,

ψϑ
θ (λ, z) := λ− |ϑ(z)|

θ
, (λ, z) ∈ R×Rd. (7.33)

Now, for P ∈MP,ϑ and θ > 0, we set, recursively for i ∈N, i ≤ | supp(P)|,

Ψ(i)
ϑ (P)(θ) :=

sup
{

ψϑ
θ (λ, z) : (λ, z) ∈ supp(P) \

{
Ξ(1)

ϑ (P)(θ), . . . , Ξ(i−1)
ϑ (P)(θ)

}}
,

(7.34)

S(i)
ϑ (P)(θ) :={

(λ, z) ∈ supp(P) \
{

Ξ(1)
ϑ (P)(θ), . . . , Ξ(i−1)

ϑ (P)(θ)
}

: ψϑ
θ (λ, z) = Ψ(i)

ϑ (P)(θ)
}

(7.35)
and

Ξ(i)
ϑ (P)(θ) ∈

{
(λ, z) ∈ S(i)

ϑ (P)(θ) : (λ, z) � (λ′, z′) ∀ (λ′, z′) ∈ S(i)
ϑ (P)(θ)

}
, (7.36)

where � is the usual lexicographical order of R×Rd as introduced right before (4.7).
Note that Ξ(i)

ϑ (P) is well defined since the set in (7.36) has cardinality 1. Writing

Ξ(i)
ϑ (P) =:

(
Λ(i)

ϑ (P), Z(i)
ϑ (P)

)
, (7.37)

we put

Φ(i)
ϑ (P) :=

(
Ψ(i)

ϑ (P), Λ(i)
ϑ (P), Z(i)

ϑ (P)
)

. (7.38)

When ϑ is the identity, i.e., ϑ(z) = z for all z ∈ Rd, we omit it from the notation.
The functions defined above enjoy the following properties.

Lemma 7.5 For any ϑ : Rd → Rd and any P ∈MP,ϑ, the following hold:

(i) Ψ(1)
ϑ (P), Λ(1)

ϑ (P) and |ϑ(Z(1)
ϑ (P))| are non-decreasing and, if Ξ(1)

ϑ (P)(θ0) 6= Ξ(1)
ϑ (P)(θ1)

for some θ0 < θ1, then they are strictly smaller at θ0 than at θ1.
(ii) For any a ∈ (0, ∞) and any i ∈N, i ≤ | supp(P)|,

Ψ(i)
ϑ (P) ∈ C([a, ∞), R) and Ξ(i)

ϑ (P) ∈ D([a, ∞), R×Rd). (7.39)

The set of discontinuities of Ξ(i)
ϑ (P) is discrete and, if supp(Pϑ) ∩ (R× {0}) = ∅,

then Ψ(1)
ϑ (P) is strictly increasing.

The proof of Lemma 7.5 is postponed to Appendix C. It already implies the properties
claimed for Ψ(k)

t , Z(k)
t at the end of Section 4.1: indeed, they follow from the representation

(Ψ(k)
t , λC (Z(k)

t ), Z(k)
t ) = Φ(k)

ϑ (PC )(t) with ϑ(z) := z ln+
3 |z|, PC := ∑

z∈C

δ(λC (z), z). (7.40)

Note thatPC ∈MP,ϑ almost surely by (4.6), and that |ϑ(z1)| > |ϑ(z0)| implies |z1| > |z0|.
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Next we consider continuity of P 7→ Φ(i)(P) with respect to the Skorohod topology,
i.e., specializing to the case where ϑ is the identity. To this end, we define the following
subsets of MP, indexed by a ∈ (0, ∞):

M̃ a
P :=

{
P ∈MP : supp(P) ⊂ R×Rd \ (R× {0}) ,

(λ, z) 7→ λ is injective over supp(P),
P(∂Hθ

η) ≤ 1 ∀θ ∈ {a} ∪ (0, ∞) ∩Q, η ∈ R,

P(∂Hθ
η) ≤ 2 ∀θ ∈ (0, ∞), η ∈ R,

|{η ∈ R : P(∂Hθ
η) = 2}| ≤ 1 ∀θ ∈ (0, ∞)

}
.

(7.41)

Then we have:

Lemma 7.6 Fix a ∈ (0, ∞) and P ∈ M̃ a
P . Let ϑt : Rd → Rd, t > 0, satisfy

(i) ϑt(z) −→
t→∞

z locally uniformly for z ∈ Rd \ {0}, and (7.42)

(ii) there exists a c∗ ∈ (0, 1] such that, for all δ > 0, lim inf
t→∞

inf
|z|≥δ

|ϑt(z)|
|z| ≥ c∗. (7.43)

Let Pt ∈ MP ∩MP,ϑt such that Pt −→
t→∞
P vaguely in Mp. Then also Pϑt

t → P vaguely and,

for all k ∈N, k ≤ | supp(P)|,(
Φ(i)

ϑt
(Pt)

)
1≤i≤k

−→
t→∞

(
Φ(i)(P)

)
1≤i≤k (7.44)

in the Skorohod topology of D([a, ∞), (R×R×Rd)k). In particular, (Φ(i))1≤i≤k is continuous
at P with respect to the Skorohod topology.

Lemma 7.6 will be also proved in Appendix C. We note that it may be used to study
the continuity of P 7→ Φ(i)

ϑ (P) when ϑ is a homeomorphism by using the representation
Λ(i)(Pϑ) = Λ(i)

ϑ (P), Z(i)(Pϑ) = ϑ(Z(i)
ϑ (P)), which is valid e.g. whenever Pϑ ∈ M̃ a

P .
We now use Lemma 7.6 to finish the:

Proof of Proposition 7.1. By Lemma 7.5, we may realise the processes in (7.8) as(
Ψ(i)

θ , Λ
(i)

θ , Z(i)

θ

)
= Φ(i)(P∞)(θ) (7.45)

where P∞ is a Poisson point process on R×Rd with intensity e−λdλ⊗dz. Note that, for
each a > 0, P∞ ∈ M̃ a

P almost surely. On the other hand, we also have the representation(
Ψ(i)

θt,c − art

drt

,
λC (Z(i)

θt,c)− art

drt

,
Z(i)

θt,c

rt

)
= Φ(i)

ϑt
(Prt) (θ) (7.46)

where Pt is as in (7.15) and

ϑt(z) := z
(

ln+
3 |rtz| − c

ln3 t

)+ dt

drt

. (7.47)
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Note that, by (7.2), Prt ∈ MP,ϑt almost surely for all t large enough. The convergence
claimed in Proposition 7.1 now follows by Proposition 7.3 and Lemma 7.6 together
with (7.45), (7.46)–(7.47) and the Skorohod representation theorem; in fact,(

Prt ,
(

Φ(i)
ϑt
(Prt)(θ)

)
θ∈[a,∞),1≤i≤k

)
law−→

t→∞

(
P∞,

(
Φ(i)(P∞)(θ)

)
θ∈[a,∞),1≤i≤k

)
. (7.48)

The statement regarding E (k)
a,b,c follows from the distributional convergence since drt =

dt(1 + o(1)) and, by the continuity properties of Ψ(i)

θ and Z(i)

θ ,

−∞ < inf
θ∈[a,b]

Ψ(i)

θ ≤ sup
θ∈[a,b]

Ψ(i)

θ < ∞, 0 < inf
θ∈[a,b]

|Z(i)

θ | ≤ sup
θ∈[a,b]

|Z(i)

θ | < ∞

and
(

Ψ(i)

a −Ψ(i+1)

a

)
∧
(

Ψ(i)

b −Ψ(i+1)

b

)
> 0

(7.49)

hold almost surely for each i ∈ N. The expression for the density in (7.10) follows from
an analogous calculation as performed in the proof of Proposition 3.2 in [ST14]. �

Next we interpret the event in Theorem 2.7 in terms of the underlying point measure,
which is still kept rather general:

Lemma 7.7 For any ϑ : Rd → Rd, any P ∈ MP,ϑ and any 0 < a < b < ∞, the following
statements are equivalent:

(1) Z(1)
ϑ (P)(a) = Z(1)

ϑ (P)(b);
(2) Λ(1)

ϑ (P)(a) = Λ(1)
ϑ (P)(b);

(3) Ξ(1)
ϑ (P)(θ) = Ξ(1)

ϑ (P)(a) for all θ ∈ [a, b];

(4) P
{
(λ, z) :

ψϑ
b (λ, z) > ψϑ

b (Ξ
(1)
ϑ (P)(a)), or

ψϑ
b (λ, z) = ψϑ

b (Ξ
(1)
ϑ (P)(a)) and λ > Λ(1)

ϑ (P)(a)

}
= 0.

(7.50)

Proof. The equivalence between (1) and (2) follows from Lemma 7.5(i), and thus either
of them implies (3) since Λ(1)

ϑ (P) is non-decreasing. The implications (3) ⇒ (4) and
(4)⇒ (2) are then easily verified using the definition of Ξ(i)

ϑ . �

We study next continuity properties of the event in item (4) above. To this end, we
define, for ϑ : Rd → Rd, P ∈MP,ϑ, (λ, z) ∈ R×Rd and θ > 0,

F ϑ
θ (P , λ, z) := P

{
(λ′, z′) :

ψϑ
θ (λ

′, z′) > ψϑ
θ (λ, z), or

ψϑ
θ (λ

′, z′) = ψϑ
θ (λ, z) and λ′ > λ

}
∈N0. (7.51)

When ϑ is the identity, we again omit it from the notation. Then we have:

Lemma 7.8 Fix b ∈ (0, ∞), P ∈ M̃ b
P and take ϑt, Pt as in the statement of Lemma 7.6.

Assume that (λ∗, z∗) ∈ supp(P), (λt, zt) ∈ supp(Pt) are such that (λt, zt) → (λ∗, z∗) as
t→ ∞. Then

F ϑt
b (Pt, λt, zt) −→

t→∞
Fb(P , λ∗, z∗). (7.52)

The proof of Lemma 7.8 is again deferred to Appendix C. Together with Lemma 7.7, it
permits us to give the:



40 BISKUP, KÖNIG AND DOS SANTOS

Proof of Theorem 2.7. Fix 0 < a < b < ∞ and use the representation (7.46–7.47) (with
c = 0), Lemma 7.7 and (7.51) to write

Zat = Zbt ⇔ Zθt = Zat ∀ θ ∈ [a, b]

⇔ F ϑt
b

(
Prt , Λ(1)

ϑt
(Prt)(a), Z(1)

ϑt
(Prt)(a)

)
= 0. (7.53)

Since P∞ ∈ M̃ a
P ∩ M̃ b

P a.s., the result follows from Lemma 7.8, (7.48) and (7.45). �

The last objective of the section is to prove Proposition 4.3. Our next lemma shows
that its statement holds in fact more generally:

Lemma 7.9 For any ϑ : Rd → Rd, any P ∈MP,ϑ and any 0 < a < b < ∞, if

Ξ(1)
ϑ (P)(θ) = Ξ(2)

ϑ (P)(a) ∀ θ ∈ [a, b] (7.54)

then

inf
θ∈[a,b]

{
Ψ(1)

ϑ (P)(θ)−Ψ(2)
ϑ (P)(θ)

}
= min

θ∈{a,b}

{
Ψ(1)

ϑ (P)(θ)−Ψ(2)
ϑ (P)(θ)

}
. (7.55)

Proof. For θ ∈ [a, b] and i ∈ {1, 2}, put (λ̂(i)
θ , ẑ(i)

θ ) := Ξ(i)
ϑ (P)(θ) and write

Ψ(1)
ϑ (P)(θ)−Ψ(2)

ϑ (P)(θ) = λ̂(1)
θ − λ̂(2)

θ −
|ϑ(ẑ(1)

θ )| − |ϑ(ẑ(2)
θ )|

θ
. (7.56)

If |ϑ(ẑ(1)
θ )| ≥ |ϑ(ẑ(2)

θ )|, substitute θ = a in the denominator above and use (7.54) to obtain

Ψ(1)
ϑ (P)(θ)−Ψ(2)

ϑ (P)(θ) ≥ Ψ(1)
ϑ (P)(a)− ψϑ

a (λ̂
(2)
θ , ẑ(2)

θ )

≥ Ψ(2)
ϑ (P)(a)−Ψ(2)

ϑ (P)(a). (7.57)

If |ϑ(ẑ(1)
θ )| < |ϑ(ẑ(2)

θ )|, substituting θ = b instead we analogously get

Ψ(1)
ϑ (P)(θ)−Ψ(2)

ϑ (P)(θ) ≥ Ψ(2)
ϑ (P)(b)−Ψ(2)

ϑ (P)(b). (7.58)

In either case, (7.55) follows. �

We can finally conclude the:

Proof of Proposition 4.3. Follows from Lemmas 7.7 and 7.9 together with (7.40). �

8. MASS DECOMPOSITION

In this section, we prove Proposition 4.4 in Subsection 8.1, Proposition 4.5 in Subsec-
tion 8.2, Propositions 4.6–4.7 in Subsection 8.3 and Theorem 2.6 in Subsection 8.4.

8.1 Lower bound for the total mass.

We begin with a lower bound for the mass up to the hitting time of a point.

Lemma 8.1 Under Assumption 2.2, there exists a constant K > 1 such that, a.s. eventually as
T → ∞, for all θ ≥ T and all x ∈ Zd with |x| > 4dθ,

E0

[
e
∫ τx

0 ξ(Xu)du
1{τx≤θ}

]
≥ exp

{
−|x| ln K|x|

θ

}
. (8.1)
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Proof. We follow the proof of Lemma 4.3 of [GM90] (case of d = 1 therein). Fix a path π
from 0 to x such that |π| = |x|. Then the left-hand side of (8.1) is at least

(2d)−|x|E0

[
exp

{
−
|x|−1

∑
i=0

σiξ
−(πi)

}
1{∑|x|−1

i=0 σi≤θ}

]
(8.2)

where (σi)
∞
i=0 are i.i.d. exponential random variables with parameter 2d. We can further

bound (8.2) from below by

(2d)−|x|e−θP0

(
σi ≤

θ

|x|
1

1 + ξ−(πi)
∀ i = 0, . . . , |x| − 1

)
(8.3)

≥ (2d)−|x|e−θ
|x|−1

∏
i=0

(
θ

|x|
d

1 + ξ−(πi)

)
= exp

{
−|x| ln 2d|x|

θd
− θ −

|x|−1

∑
i=0

ln(1 + ξ−(πi))

}
(8.4)

where we used 1− e−y ≥ 1
2 y when 0 < y < 1

2 . By Theorem 1.1 of [M02] and Assump-
tion 2.2, there exists a constant c0 > 0 such that, a.s. eventually as |x| → ∞,

|x|−1

∑
i=0

ln(1 + ξ−(πi)) ≤ c0|x|. (8.5)

Now (8.1) follows from (8.3–8.5) and θ < |x|/(4d). �

We can now prove Proposition 4.4.

Proof of Proposition 4.4. For a finite connected subset Λ ⊂ Zd, let φ(1)
Λ be the normalised

eigenfunction of HΛ corresponding to its largest eigenvalue λ(1)
Λ as in Section 5.4. Let

x0 ∈ Λ be a point where φ(1)
Λ attains its maximum, and note that, since ‖φ(1)

Λ ‖`2(Zd) = 1,
|φ(1)

Λ (x0)|2 ≥ |Λ|−1. By Lemma 5.12,

Ex0

[
e
∫ s

0 ξ(Xu)du
1{τΛc>s}

]
≥ esλ

(1)
Λ |φ(1)

Λ (x0)|2 ≥ esλ
(1)
Λ −ln |Λ|. (8.6)

Using the Feynman-Kac formula, the strong Markov property and (8.6), we obtain, for
any θ < s,

U(s) ≥ E0

[
exp

{∫ τx0

0
ξ(Xu)du

}
1{τx0≤θ}Ex0

[
e
∫ s−r

0 ξ(Xu)du
1{τΛc>s−r}

]
r=τx0

]
≥ esλ

(1)
Λ −ln |Λ|−θ|λ(1)

Λ |E0

[
exp

{∫ τx0

0
ξ(Xu)du

}
1{τx0≤θ}

]
. (8.7)

Specializing now to Λ := B$Zs
(Zs), let K > 1 as in Lemma 8.1 and set θ := K|x0|/λC (Zs).

By Lemma 5.1 and Proposition 4.2, we may assume that $Zs ≤ ln t. Thus on Et,a,b we have

|x0|
s
≤ |Zs|+ |x0 − Zs|

at
≤ rtgt + 2d ln t

at
= o(dtbtεt), (8.8)

while λC (Zs) ≥ Ψ(1)
s ≥ art − dtgt → ∞ as t → ∞ since dtgt = o(1). Therefore, θ <

|x0|/(4d) < s for large enough t. On the other hand, by Lemma 5.1, on Et,a,b we have

λC (Zs) ≤ ξ(Zs) ≤ 2ρ ln2 |Zs| ≤ 2ρ ln2 t (8.9)
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for large enough t since rtgt = o(t). Hence

θ ≥ rt ft − 2d ln t
2ρ ln2 t

→ ∞ as t→ ∞, (8.10)

and so we may apply Lemma 8.1 to (8.7) obtaining

ln U(s)
s

≥ λC (Zs)−
|x0|

s
ln λC (Zs)− K

|x0|
s

+ o(dtbtεt). (8.11)

Now, by (8.9),

ln U(s)
s

≥ Ψ(1)
s −

|x0 − Zs| ln+
3 |Zs|

s
− (| ln 2ρ|+ K)

|x0|
s

+ o(dtbtεt), (8.12)

and to conclude we note that the second and third terms in (8.12) are also o(dtbtεt). �

8.2 Macrobox truncation.

Next we prove Proposition 4.5, ensuring that the Feynman-Kac formula is not affected
by restricting to random-walk paths that do not leave a box of side Lt = bt ln+

2 tc around
the starting point.

Proof of Proposition 4.5. We follow the proof of Proposition 2.1 in [FM14]. First write

E0

[
e
∫ s

0 ξ(Xu)du
1{supθ∈[0,s] |Xθ |≥Lt}

]
≤

∞

∑
n=Lt

exp
{

s max
x∈Bn

ξ(x)
}

P0

(
sup

θ∈[0,s]
|Xθ | = n

)
. (8.13)

Denoting by Js the number of jumps of X up to time s, the fact that Js is a Poisson random
variable with parameter 2ds gives

P0

(
sup

θ∈[0,s]
|Xθ | = n

)
≤ P0 (Js ≥ n) ≤ (2ds)n

n!
. (8.14)

By Lemma 5.1, we have that maxx∈Bn ξ(x) ≤ 2ρ ln2 n a.s. for all n large enough. Using
Stirling’s formula, we note that, since s ∈ [at, bt], the term corresponding to n in the sum
in (8.13) is at most

exp
{

2ρbt ln2 n− n(ln n− ln t− c)
}

(8.15)

for some deterministic constant c > 0. Now, when n ≥ Lt and t is large enough, ln n−
ln t − c ≥ 1

2 ln3 t. Since the function x 7→ 2ρbt ln2 x − x
4 ln3 t is strictly decreasing on

[Lt, ∞) and negative at x = Lt, a.s. for all t large enough, (8.13) is smaller than

∞

∑
n=Lt

e−
n
4 ln3 t ≤ 2e−

Lt
4 ln3 t. (8.16)

Plugging in the definition of Lt now yields (4.21). �
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8.3 Negligible contributions.

In this subsection we prove Propositions 4.6 and 4.7. Here and in the next subsection
we will work with RL satisfying (5.11–5.12). It will be useful to introduce yet another
family of auxiliary cost functionals Ψ̃t,s,c, indexed by t, s ≥ 0, c ∈ R, and defined on the
elements of CLt,A as follows:

Ψ̃t,s,c(C) := λ(1)
C −

(ln+
3 |zC | − c)+

s
|zC |, C ∈ CLt,A. (8.17)

These functionals will be convenient to express bounds to the Feynman-Kac formula ob-
tained via Proposition 6.1. In order to compare Ψ̃t,s,c and Ψt, we will need the following.

Lemma 8.2 Almost surely for all t, s > 0, there exists a component Ct,s ∈ CLt,A such that, for
all 0 < a ≤ b < ∞, the following holds with probability tending to 1 as t→ ∞:

zCt,s = Zs ∀ s ∈ [at, bt]. (8.18)

Proof. By Lemma 5.8, there exists a δ > 0 such that, with probability tending to 1 as
t → ∞, whenever |Zs| + 2d$Zs < Lt and λC (Zs) > âLt − χ − δ we can find a unique
Ct,s ∈ CLt,A with zCt,s = Zs. Fixing C∗t ∈ CLt,A in an arbitrary (measurable) fashion, we
define Ct,s = C∗t when either the conclusion of Lemma 5.8 does not hold, or when Zs does
not satisfy the properties above. By Proposition 4.2, Ct,s satisfies (8.18) with probability
tending to 1 as t→ ∞. �

When t = s we write Ct instead of Ct,s.
The following lemma relates Ψ̃t,s,c to Ψt.

Lemma 8.3 For all A > 0 large enough and any 0 < a ≤ b < ∞, δ > 0 and c ∈ R,

Ct,s ∈ Cδ
Lt,A,

∣∣∣Ψ̃t,s,c(Ct,s)−Ψ(1)
s

∣∣∣ ≤ o(dtbt) and
∣∣∣∣max
C 6=Ct,s

Ψ̃t,s,c(C)−Ψ(2)
s

∣∣∣∣ ≤ o(dtbt) (8.19)

hold for all s ∈ [at, bt] with probability tending to 1 as t→ ∞.

Proof. Fix A, δ > 0 as in Lemma 5.8 and let C ∈ CLt,A. By this lemma and Proposition 7.1,
we may assume that, if C /∈ Cδ

Lt,A, then Ψ̃t,s,c(C) ≤ λ(1)
C ≤ âLt − χ − δ < Ψ(2)

s while, if
C ∈ Cδ

Lt,A, zC ∈ C and
Ψ̃t,s,c(C) = Ψs,c(zC) + o(dtbt). (8.20)

(8.19) follows by considering in (8.20) the cases zC = Zs and zC 6= Zs and applying
Lemma 7.2. �

Recall (6.3) and consider the following classes of paths: First set

N (0)
t,s :=

{
π ∈P(0, Zd) : supp(π) ⊂ BLt , supp(π) ∩ (D◦t,s)

c 6= ∅
}

(8.21)

and then let

N (1)
t,s :=

{
π ∈ N (0)

t,s : λLt,A(π) ≤ λ(1)
Ct,s

}
and N (2)

t,s := N (0)
t,s rN

(1)
t,s , (8.22)

where Ct,s is as in Lemma 8.2. Note that, if τ(D◦t,s)c ≤ s < τBc
Lt

, then π(X0,s) ∈ N (1)
t,s ∪N

(2)
t,s

and hence we may bound the contribution of each class of paths separately. This is
carried out in the following lemma, using Proposition 6.1.
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Lemma 8.4 For all A > 0 large enough, there exists c > 0 such that, for all 0 < a ≤ b < ∞,

ln E0

[
e
∫ s

0 ξ(Xu)du
1{π(X0,s)∈N (1)

t,s }

]
≤ sΨ̃t,s,c(Ct,s)− (ln3(4dLt)− c)(1 + ht)|Zs|+ o(tdtbt), (8.23)

and

ln E0

[
e
∫ s

0 ξ(Xu)du
1{π(X0,s)∈N (2)

t,s }

]
≤ s max

C 6=Ct,s
Ψ̃t,s,c(C) + o(tdtbt) (8.24)

hold for all s ∈ [at, bt] with probability tending to 1 as t→ ∞.

Proof. On Et,a,b (cf. (7.6)), infs∈[at,bt] |Zs| � ln Lt and so we may apply Proposition 6.1 to
N (1)

t,s and N (2)
t,s . Choose γπ, zπ as follows. For π ∈ N (1)

t,s , let γπ = λ(1)
Ct,s

+ dt/ ln3 t and take

zπ arbitrarily in supp(π) ∩ (D◦t,s)
c 6= ∅. If π ∈ N (2)

t,s , then supp(π) ∩ΠLt,A 6= ∅ and we
may set γπ = λLt,A(π)+ dt/ ln3 t, zπ = zCπ

where Cπ ∈ CLt,A is such that λLt,A(π) = λ(1)
Cπ

.
Note that, by Lemma 8.3, we may assume that λ(1)

Ct,s
> âLt − A. Then (8.23–8.24) follow

by substituting our choice of γπ, zπ in (6.6), using the definition of Ψ̃t,s,c, the fact that
|zπ| > |Zs|(1 + ht) for π ∈ N (1)

t,s and noting that dt/ ln3 t = o(dtbt) by (4.12). �

Proof of Proposition 4.6. This now follows from Lemmas 8.3–8.4, Proposition 4.2, the defi-
nition of dt and rt in (2.6) and the relations between the various error scales in (4.12). �

Next we turn to Proposition 4.7. Note that paths avoiding Bν(Zs) do not necessarily
exit an `1-ball of radius ln Lt, so we may not directly use Proposition 6.1. As the points
in ΠLt,A are typically far away from the origin, this can be remedied by considering

N (3)
t :=

{
π ∈P(0, Zd) : supp(π) ⊂ BLt \ΠLt,A

}
,

N (4)
t,s :=

{
π ∈P(0, Zd) : supp(π) ⊂ BLt \ Bν(Zs), supp(π) ∩ΠLt,A 6= ∅

}
.

(8.25)

Since τBν(Zs) ∧ τBc
Lt
> s implies π(X0,s) ∈ N (3)

t ∪N
(4)
t,s , we may again control the contri-

bution of each set separately. For N (3)
t this is an easy task since, for all s ∈ [at, bt],

ln E0

[
e
∫ s

0 ξ(Xu)du
1{π0,s(X) ∈ N (3)

t }
]
≤ s(âLt − 2A) (8.26)

by the definition of ΠLt,A. For N (4)
t,s , we may again apply Proposition 6.1:

Lemma 8.5 For all A > 0 large enough, there exists ν1 ∈ N and c > 0 such that, for all
0 < a ≤ b < ∞, the following holds with probability tending to 1 as t → ∞. For all ν ≥ ν1,
s ∈ [at, bt] and θ > 0,

ln E0

[
e
∫ θ

0 ξ(Xu)du
1{π(X0,θ)∈N

(4)
t,s }

]
≤ θ

(
max
C 6=Ct,s

Ψ̃t,θ,c(C) ∨ (âLt − 4d) + o(dtbt)

)
(8.27)

where o(dtbt) does not depend on θ.

Proof. Let δ, A1 > 4d and ν1 be as in Lemma 5.6, and assume that t is large enough for
the conclusions of this lemma to hold with L = Lt. We may assume A > A1.
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We will apply Proposition 6.1 using the islands of CLt,A1 . We may do so as, by Lemma 5.1,
ΠLt,A ∩ Bln Lt = ∅ almost surely when t is large, and thus all π ∈ N (4)

t,s exit a box of radius
ln Lt. Let c = cA1 be as in (6.6). Since A > A1,

∀C ∈ CLt,A1 , ∃ C ′ ∈ CLt,A s.t. C ⊂ C ′. (8.28)

Recall the definition of λL,A(π) in (6.3). For π ∈ N (4)
t,s , let zπ := zCπ

where Cπ ∈ CLt,A1 is
such that π ∩ C ∩ΠL,A1 6= ∅ and λLt,A1(π) = λ(1)

Cπ
. Note that zπ = zC ′π where Cπ ⊂ C ′π ∈

CLt,A. When t is large enough, Ct,s ∈ Cδ
Lt,A by Lemma 8.3; hence, by Lemma 5.6 and the

definition of N (4)
t,s ,

Cπ ∩ Ct,s = ∅. (8.29)

From (8.28–8.29), we conclude that

θλLt,A1(π)−(ln3(4dLt)− c)|zπ|
= θλ(1)

Cπ
− (ln3(4dLt)− c)|zCπ

|

≤ θ sup
{

λ(1)
C ′ − (ln+

3 |zC ′ | − c)+
|zC ′ |

θ
: C ′ ∈ CLt,A \ {Ct,s}

}
.

(8.30)

Choosing now γπ = λLt,A1(π) ∨ (âLt − 4d) + dt/ ln3 t, (8.27) follows from (6.6), (8.30)
and (4.12). �

Proof of Proposition 4.7. Proposition 4.7 now follows from (8.26) together with Lemma 8.5
applied to θ = s, Lemma 8.3 and the fact that, by Proposition 7.1 and the properties of
aL, âL and χ, Ψ(2)

s > (âLt − 4d) ∨ (âLt − 2A) for all s ∈ [at, bt] with probability tending
to 1 as t→ ∞. �

8.4 Upper bound for the total mass and proof of Theorem 2.6.

We will prove Theorem 2.6 by comparing 1
t ln U(t) to Ψ(1)

t and then applying Proposi-
tion 7.1. The last missing ingredient is the following upper bound for U(t). Recall that
we assume (5.11–5.12).

Lemma 8.6 (Upper bound for the total mass) For any 0 < a ≤ b < ∞,

sup
s∈[at,bt]

{
ln U(s)− sΨ(1)

s

}
≤ o(tdtbt) (8.31)

holds with probability tending to 1 as t→ ∞.

Proof. Applying Proposition 6.1 to the set of paths

N (5)
t :=

{
π ∈P(0, Zd) : supp(π) ⊂ BLt , supp(π) ∩ΠLt,A 6= ∅

}
(8.32)

with γπ := λLt,A(π) ∨ (âLt − A) + dt/ ln3 t and zπ := zCπ
where Cπ ∈ CLt,A satisfies

λLt,A(π) = λ(1)
Cπ

, we obtain

ln E0

[
e
∫ s

0 ξ(Xu)du
1{π0,s(X) ∈ N (5)

t }
]
≤ s max

C∈CLt ,A
Ψ̃t,s,c(C) + o(tdtbt)

≤ sΨ(1)
s + o(tdtbt)

(8.33)
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with probability tending to 1 as t → ∞ by (2.6), (4.12), (6.6), (8.17) and Lemma 8.3.
Then (8.31) follows since, by (8.26) and Propositions 4.2, 4.4 and 4.5, the difference be-
tween ln U(s) and the left-hand side of (8.33) is bounded by o(1) uniformly on s ∈ [at, bt]
with probability tending to 1 as t→ ∞. �

Proof of Theorem 2.6. Proposition 4.4 and Lemma 8.6 imply that, for any 0 < a ≤ b < ∞,

lim
t→∞

sup
s∈[at,bt]

∣∣ 1
s ln U(s)−Ψ(1)

s
∣∣

dt
= 0 in probability, (8.34)

and thus the theorem follows from Proposition 7.1 and drt = dt(1 + o(1)). �

9. LOCALIZATION

In this section we prove Propositions 4.8–4.9, dealing with localization of the solution to
the PAM as well as the eigenfunction φ◦t,s. The proof of the former proposition is actually
quite short:

Proof of Proposition 4.8. By (4.12) and Proposition 4.2, Bν(Zs) ⊂ D◦t,s for all s ∈ [at, bt]
with probability tending to 1 as t→ ∞, and thus we may apply Lemma 5.15 to Λ = D◦t,s,
z = 0, Γ = Bν(Zs). �

We now turn to the proof of Proposition 4.9. The first step is to obtain a spectral gap
in the inner domain D◦t,s, which is a consequence of our choice of the scale ht in (4.12).
Recall the following useful formulas for the second largest eigenvalue of the Anderson
Hamiltonian in a subset of Zd: For Λ ⊂ Zd, let λ(k)

Λ , φ(k)
Λ be the eigenvalues and eigenvec-

tors of HΛ as in Section 5.4. Then we may write

λ(2)
Λ = sup

{
〈(∆ + ξ)φ, φ〉 : φ ∈ RZd

, supp φ ⊂ Λ, ‖φ‖`2(Zd) = 1, φ ⊥ φ(1)
Λ

}
. (9.1)

A consequence of (9.1) and (5.4) is that, if Λ1, Λ2 ⊂ Zd satisfy dist(Λ1, Λ2) ≥ 2, then

λ(1)
Λ1
≥ λ(1)

Λ2
⇒ λ(2)

Λ1∪Λ2
= max

{
λ(2)

Λ1
, λ(1)

Λ2

}
. (9.2)

In the following, we assume that the scale sequence RL obeys (5.11–5.12). Recall the
component Ct,s ∈ CLt,A from Lemma 8.2, and the notation Gt,s := {Ψ(1)

s − Ψ(2)
s > etdt}.

We then have:

Lemma 9.1 (Spectral gap) For any A > 0 large enough and any 0 < a ≤ b < ∞, it holds
with probability tending to 1 as t→ ∞ that, for all s ∈ [at, bt], on Gt,s,

λ(1)
Ct,s

> sup
C∈CLt ,A\{Ct,s} :

dist(C,D◦t,s)≤(ln t)2

λ(1)
C + dtet + o(dtet) (9.3)

and
λ(1)

D◦t,s
> λ(2)

D◦t,s
+ dtet + o(dtet). (9.4)
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Proof. Let t be large enough such that the conclusion of Lemma 5.2 is in place. Then, for
any C ∈ CLt,A \ {Ct,s}, by (8.17) and Lemma 8.3, on Gt,s we have

λ(1)
Ct,s
− λ(1)

C ≥ dtet + o(dtbt)−
|zC | ln+

3 |zC | − |Zs| ln+
3 |Zs|

s
(9.5)

with probability tending to 1 as t → ∞. By Proposition 7.1 and Lemma 5.2, we may
assume that |Zs| ≥ t1/2 and that, for all C ∈ CLt,A such that dist(C, D◦t,s) ≤ (ln t)2,
|zC | ≤ |Zs|(1 + ht) + (ln t)2 + nARLt < t. With the help of (2.6), (4.12) and (5.11), we can
see that the right-hand side of (9.5) is at least

dtet + o(dtbt)− 2(ln3 t)
|Zs|ht + (ln t)3

s
≥ dtet + o(dtbt)− 2(ln3 t)

rtgtht + (ln t)3

at
= dtet + o(dtet), (9.6)

thus proving (9.3).
To show (9.4), we may assume λ(2)

D◦t,s
> λ(1)

D◦t,s
− A/4 since otherwise (9.4) is trivially

satisfied. For A > χ + 1 large enough, take δ ∈ (0, 1) as in Lemma 5.3. By Lemma 5.2,
Proposition 4.2 and Lemma 8.3, we may assume that Ct,s ⊂ D◦t,s and Ct,s ∈ Cδ

Lt,A. Thus,
by (9.3), λ(1)

D◦t,s
− A ≥ λ(1)

Ct,s
− A ≥ âLt − 2A. Applying Theorem 2.1 of [BK16] to D := D◦t,s

together with (5.6) and (9.2), we obtain

λ(2)
D◦t,s

<

(
sup

C 6=Ct,s : C∩D◦t,s 6=∅
λ(1)
C

)
∨ λ(2)

Ct,s
+ 2d(ηA)

RLt , where ηA :=
(

1 +
A
4d

)−1

. (9.7)

Now, by Lemma 5.3(i), (9.3) and (9.7),

λ(1)
D◦t,s
− λ(2)

D◦t,s
> {dtet + o(dtet)} ∧ 1

2 ρ ln 2− 2d(ηA)
Rt , (9.8)

which proves (9.4) since (ηA)
Rt = o(dtet) by (2.6), (4.12) and (5.11). �

We are now in position to finish the proof.

Proof of Proposition 4.9(i). We can use the proof of Theorem 1.4 in [BK16] with the follow-
ing three main modifications:

(1) In the part of the proof dealing with large distances, Theorem 2.5 of [BK16] is
invoked, with the generic component C appearing in its statement now set to Ct,s
(which we may and do assume to be contained in D◦t,s by Lemma 8.2). For that
we need to show that, with probability tending to 1 as t→ ∞,∥∥φ◦t,s 1Ct,s

∥∥
2 >

1
2
∀s ∈ [at, bt]. (9.9)

The proof of Theorem 2.5 then shows that this inequality characterizes C.
(2) Still in the part dealing with large distances, we use (9.4) instead of Lemma 8.1

of [BK16].
(3) In the second part of the proof dealing with short distances, use (5.19) instead of

Lemma 4.8 of [BK16].
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With these modifications, the proof goes through in our case.
In order to complete the proof, it thus remains establish (9.9). Let D := D◦t,s \ Ct,s. We

first claim that, with probability tending to 1 as t→ ∞,

λ(1)
D ≤ λ(1)

Ct,s
− dtet + o(dtet). (9.10)

Indeed, take A > χ + δ. By Lemma 8.3, we may assume that Ct,s ∈ Cδ
Lt,A, and thus we

may also assume that λ(1)
D > âLt − A since otherwise (9.10) is satisfied. By Theorem 2.1

of [BK16] and (5.6),

λ(1)
D ≤ sup

{
λ(1)
C : C ∈ CLt,A \ {Ct,s}, C ∩ D◦t,s 6= ∅

}
+ 2d(ηA)

RLt (9.11)

where ηA := (1 + A/(4d))−1, so (9.10) follows by Lemma 9.1, (2.6), (4.12) and (5.11).
Now, for x ∈ D, the eigenfunction φ◦t,s satisfies the equation(

−HD − λ(1)
D◦t,s

)
φ◦t,s(x) = ∑

y∈∂D,|y−x|=1
φ◦t,s(y) (9.12)

where HD is the Anderson operator in D with Dirichlet boundary conditions and ∂D :=
{x ∈ D◦t,s \ D : ∃ y ∈ D, |y− x| = 1}. By Lemma 4.2 of [BK16],∥∥φ◦t,s 1∂D

∥∥
`2(Zd)

≤ {1 + A/(2d)}−2RLt ≤ (ηA)
RLt . (9.13)

Using (9.12–9.13) together with the operator norm of the resolvent of −HD and the
Cauchy-Schwarz inequality, we obtain∥∥φ◦t,s 1D

∥∥
`2(Zd)

≤ dist(λ(1)
D◦t,s

, Spec(−HD))
−12d(ηA)

RLt

≤ (ln t)2(ηA)
RLt = o(1), (9.14)

where the last line holds by (9.10), λ(1)
D◦t,s
≥ λ(1)

Ct,s
, (2.6), (4.12) and (5.11). As ‖φ◦t,s‖`2(Zd) = 1,

this implies (9.9) as desired. �

Proof of Proposition 4.9(ii). To prove (4.29), we use (4.28), the representation (5.46) and
Lemma 5.7. Let c1, c2 as in (4.28). Since φ◦t,s is normalized in `2(Zd), there exists ν0 =
ν0(c1, c2) such that, for all ν ≥ ν0,

max
y∈Bν(Zs)

φ◦t,s(y) ≥ max
y∈Bν0 (Zs)

φ◦t,s(y) ≥ 1
2 |Bν0 |−

1
2 =: ε0 > 0. (9.15)

Fix ν ≥ ν0 and let A∗, δ and A be as in Lemma 5.7. When t is large, the conclusion of
this lemma holds with L := Lt. By Lemma 8.3, we may assume that Ct,s ∈ Cδ

Lt,A, and
thus (5.28) holds for Ct,s. On the other hand, by (5.5) we have, with probability tending
to 1 as t→ ∞,

λ(1)
D◦t,s
≤ max

x∈D◦t,s
ξ(x) ≤ max

x∈BLt

ξ(x) ≤ âLt + 1, (9.16)

by Proposition 4.2 and Lemma 5.1. Since Zs = zCt,s , for any z ∈ Bν(Zs),

λ(1)
D◦t,s
− ξ(z) ≤ 2A∗ + 1 =: A′. (9.17)
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Let x̄ ∈ Bν(Zs) with φ◦t,s(x̄) = maxy∈Bν(Zs) φ◦t,s(y). For y ∈ Bν(Zs), fix a shortest-distance
path π from y to x̄ inside Bν(Zs). Then

Ey

[
exp

{∫ τx̄

0

(
ξ(Xs)− λ(1)

D◦t,s

)
ds
}
1{τx̄ < τ(D◦t,s)c}

]
≥ Ey

[
exp

{∫ T|π|

0

(
ξ(Xs)− λ(1)

D◦t,s

)
ds
}
1{π(|π|)(X) = π}

]
=
|π|−1

∏
i=0

1
2d + λ(1)

D◦t,s
− ξ(πi)

≥ (2d + A′)−2dν =: ε1 > 0

(9.18)

by Lemma 6.3 and (9.17). To conclude, invoke (5.46) to write

φ◦t,s(y) = φ◦t,s(x̄)Ey

[
exp

{∫ τx̄

0

(
ξ(Xs)− λ(1)

D◦t,s

)
ds
}
1{τx̄ < τ(D◦t,s)c}

]
≥ ε0ε1 (9.19)

by (9.15) and (9.18). The claim follows with εν := ε0ε1 > 0. �

10. PATH CONCENTRATION

In this section, we prove Propositions 4.10 and 4.11; these proofs come in Sections 10.1
and 10.2, respectively. We assume throughout that A > 0 and ν ∈ N have been fixed at
sufficiently large values to satisfy the hypotheses of all previous results. We also assume
that RL obeys (5.11–5.12). In order to avoid repetition, statements inside proofs are tacitly
assumed to hold with probability tending to 1 as t→ ∞.

10.1 Fast approach to the localization center.

Recall the component Ct = Ct,t ∈ CLt,A from Lemma 8.2. We first show that, under
Q(ξ)

t , the random walk exits a box of radius ln Lt by time εtt, at least on the event that a
neighborhood of the localization center Zt is hit by time t.

Lemma 10.1 In probability under the law of ξ,

1
U(t)

E0

[
e
∫ t

0 ξ(Xu)du
1{τ(D◦t,t)c > t ≥ τBν(Zt), τBc

bln Ltc
> εtt}

]
−→
t→∞

0. (10.1)

Proof. Note that τBν(Zt) > τBc
bln Ltc

. For x ∈ Bbln Ltc, we may apply Proposition 6.1 to the
set of paths

N (6)
t,x :=

{
π ∈P(x, Zd) : supp(π) ⊂ D◦t,t, supp(π) ∩ Bν(Zt) 6= ∅

}
(10.2)

with γπ = λ(1)
Ct
+ dt/ ln3 t and zπ ∈ Bν(Zt) arbitrary, which is justified by Lemma 8.3,

Lemma 9.1 and Proposition 4.2. Since |zπ − x| ≥ |Zt| − 2dν− 2dbln Ltc, we obtain

ln Ex

[
e
∫ (1−εt)t

0 ξ(Xu)du
1{τ(D◦t,t)c > (1− εt)t ≥ τBν(Zt)}

]
≤ (1− εt)tλ

(1)
Ct
− |Zt| ln3 |Zt|+ o(tdtbt). (10.3)
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On the other hand, by Lemma 5.1, a.s. eventually as t→ ∞,

ln E0

[
e
∫ s

0 ξ(Xu)du
1{τBc

bln Ltc
> s}

]
≤ s max

x∈Bbln Ltc
ξ(x) ≤ s 2ρ ln3 t ∀s ≥ 0. (10.4)

Now use the Markov property at time εtt together with (10.3–10.4) and Proposition 4.4
to obtain

1
U(t)

E0

[
e
∫ t

0 ξ(Xu)du
1{τ(D◦t,t)c > t ≥ τBν(Zt), τBc

bln Ltc
> εtt}

]
≤ exp

{
−εtt(λ

(1)
Ct
− 2ρ ln3 t) + o(tdtbt)

}
(10.5)

which goes to 0 as t→ ∞ by Lemma 8.3, (4.11) and εt � (ln3 t)−1. �

The following result can be seen as an alternative version of Lemma 8.5.

Lemma 10.2 There exists a constant c > 0 such that, with probability tending to 1 as t→ ∞,

ln E0

[
e
∫ εt t

0 ξ(Xu)du
1{τBν(Zt)

∧τ(D◦t,t)
c>εtt≥τBc

bln Ltc
,Xεt t=x}

]
≤ εtt max

C 6=Ct
λ(1)
C − (ln3(4dLt)− c) |x|+ o(εttdtbt) (10.6)

for all x ∈ Zd, and o(εttdtbt) in (10.6) does not depend on x.

Proof. Let A > A1 where A1 > 4d is as in Lemma 5.6, and define the set of paths

N (7)
t,x :=

{
π ∈P(0, x) : D◦t,t ⊃ supp(π) 6⊂ Bbln Ltc, supp(π) ∩ Bν(Zt) = ∅

}
. (10.7)

We wish to apply Proposition 6.1 toN (7)
t,x using the islands of CLt,A1 (i.e., with L = Lt, A =

A1 therein), similarly as in the proof of Lemma 8.5. To that end we take, for all π ∈ N (7)
t,s ,

γπ := maxC 6=Ct λ(1)
C + dt/ ln3 t (where the supremum is taken over C ∈ CLt,A \ Ct), and

zπ := x. Let us check that γπ satisfies (6.4). Indeed, by Lemma 8.3 and Proposition 7.1,
we may assume that supC 6=Ct

λ(1)
C > âLt − A1. Moreover, reasoning as in the arguments

leading to (8.28–8.29), we obtain λLt,A1(π) ≤ supC 6=Ct
λ(1)
C for all π ∈ N (7)

t,x , so (6.4) follows.
Inserting our choice of γπ, zπ in (6.6) and using (4.12), we obtain (10.6) with c = cA1 . �

We can now finish the proof of Proposition 4.10.

Proof of Proposition 4.10. The key point is to show that, for some constant c > 0 and
uniformly in x ∈ Zd,

E0

[
e
∫ t

0 ξ(Xu)du
1

{
τ(D◦t,t)c > t ≥ τBν(Zt) > εtt ≥ τBc

bln Ltc
, Xεtt = x

}]
≤ exp

{
εtt sup
C 6=Ct

λ(1)
C + (1− εt)tλ

(1)
Ct
− (ln3(4dLt)− c)|Zt|+ o(εttdtbt)

}
.

(10.8)
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Indeed, assuming (10.8), Propositions 4.2 and 4.4 allow us to write

1
U(t)

E0

[
e
∫ t

0 ξ(Xu)du
1{τ(D◦t,t)

c>t≥τBν(Zt)
>εtt≥τBc

bln Ltc
}

]
≤
|D◦t,t|
U(t)

sup
x∈Zd

E0

[
e
∫ t

0 ξ(Xu)du
1{τ(D◦t,t)

c>t≥τBν(Zt)
>εtt≥τBc

bln Ltc
,Xεt t=x}

]
≤ exp

{
−εtt(λ

(1)
Ct
−max
C 6=Ct

λ(1)
C ) + o(εttdtbt)

}
−→
t→∞

0 in probability

(10.9)

by Lemma 9.1 and (4.12). This and Lemma 10.1 yield (4.37).
In order to prove (10.8), suppose first that dist(x, Bν(Zt)) ≥ ln Lt. Then we may apply

Proposition 6.1 to the set of paths

N (8)
t,x :=

{
π ∈P(x, Zd) : supp(π) ⊂ D◦t,t, supp(π) ∩ Bν(Zt) 6= ∅

}
(10.10)

with γπ = λ(1)
Ct
+ dt/ ln3 t and zπ ∈ Bν(Zt) ∩ supp(π) arbitrary, obtaining

ln Ex

[
e
∫ (1−εt)t

0 ξ(Xu)du
1{τ(D◦t,t)

c>(1−εt)t≥τBν(Zt)
}

]
≤ (1− εt)tλ

(1)
Ct
− (ln3(4dLt)− cA)|Zt − x|+ o(εttdtbt) (10.11)

since |zπ − x| ≥ |Zt − x| − 2dν. Noting that both (10.11) and (10.6) remain true if we
substitute c and cA by c ∨ cA, (10.8) follows by applying the Markov property at time εtt
and then using (10.11), Lemma 10.2 and the triangle inequality.

If instead dist(x, Bν(Zt)) < ln Lt, we may bound

Ex

[
e
∫ (1−εt)t

0 ξ(Xu)du
1{τ(D◦t,t)

c>(1−εt)t≥τBν(Zt)
}

]
≤ e

(1−εt)tλ
(1)
D◦t,t |D◦t,t|

3
2

≤ exp
{
(1− εt)tλ

(1)
D◦t,t

+ o(εttdtbt)
}

(10.12)

by Lemma 5.12. By Theorem 2.1 of [BK16] together with Lemma 9.1 and (5.6),

λ(1)
D◦t,t

< λ(1)
Ct
+ o(εtdtbt). (10.13)

Since |x| > |Zt| − 2dν− ln Lt, (10.8) again follows using the Markov property together
with (10.12–10.13) and Lemma 10.2. �

10.2 Path concentration.

In this section, we address the principal ingredient needed for the proof of path localiza-
tion, culminating in the proof of Proposition 4.11.

For L ∈N, we define ε̃L := inf{εs : s > 0, Ls = L} and put

R̃L :=
⌊

ε̃L ln L
2(nA + 1)

⌋
. (10.14)

Note that R̃L satisfies (5.11) but not (5.12). Furthermore, (nA + 1)R̃Lt ≤ 1
2 εt ln t.

Let C̃L,A be the analogue of CL,A using the radius R̃L, and let C̃t ∈ C̃L,A such that
Zt ∈ C̃t ∩ΠLt,A. This is well-defined with probability tending to 1 as t→ ∞ since, by (5.5)
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and Proposition 7.1, we may assume that Zt ∈ ΠLt,A. Note that, without assuming (5.12),
we cannot use Lemma 5.8; in particular, it may be that Zt 6= zC̃t

. Nonetheless, we still
have the following.

Lemma 10.3 With probability tending to 1 as t→ ∞,

λ(1)

C̃t
> sup
C̃∈C̃Lt ,A\{C̃t} : C̃∩D◦t,t 6=∅

λ(1)

C̃ + dtet + o(dtet). (10.15)

In particular, λ(1)

C̃t
= max{λ(1)

C̃ : C̃ ∈ C̃Lt,A, C̃ ∩ D◦t,t 6= ∅}.

Proof. Fix RL ≤ R̃L satisfying (5.11–5.12) and let Ct = Ct,t ∈ CLt,A as in Lemma 8.2.
Then Ct ⊂ C̃t and thus λ(1)

C̃t
≥ λ(1)

Ct
. Now fix C̃ ∈ C̃Lt,A \ {C̃t}, C̃ ∩ D◦t,t 6= ∅. Applying

Theorem 2.1 of [BK16] to D := C̃ and then (5.6) and Lemma 5.2, we get

λ(1)

C̃ ≤ sup
C∈CLt ,A : C∩C̃ 6=∅

λ(1)
C + 2d(ηA)

RLt ≤ sup
C∈CLt ,A\{Ct} :

dist(C,D◦t,t)≤(ln t)2

λ(1)
C + 2d(ηA)

RLt (10.16)

where ηA := (1 + A/(4d))−1. Hence (10.15) follows from Lemma 9.1. �

We can now give the proof of Proposition 4.11.

Proof of Proposition 4.11. Let nA ∈ N be as in Lemma 5.2. Fix x ∈ Bν(Zt) and define the
set of paths

N (9)
t,x :=

{
π ∈P(x, Zd) : supp(π) ⊂ D◦t,t, max

1≤`≤|π|
|π` − x| > (nA + 1)R̃Lt

}
. (10.17)

Let ϑL := 3(nA + 1)bε̃−1
L c and note that

ϑL � ln3 L as L→ ∞ and ϑLR̃L ≥ ln L for all L large enough. (10.18)

Choosing γπ := λ(1)

C̃t
+ 2/t, by Lemma 10.3, Proposition 7.1 and (10.18), we may apply

Proposition 6.2 (using the islands of C̃Lt,A) to N (9)
t,x , obtaining, for all 0 ≤ s ≤ t,

Ex

[
e
∫ s

0 ξ(Xu)du
1
{τ(D◦t,t)

c>s, sup0≤u≤s |Xu−x|> 1
2 εt ln t}

]
≤ e2 exp

{
sλ(1)

C̃t
− 1

2 R̃Lt ln3 Lt

}
(10.19)

since 1
2 εt ln t ≥ (nA + 1)R̃Lt . Now note that, by Lemma 5.12 and Proposition 4.9(ii),

Ex

[
e
∫ s

0 ξ(Xu)du
]
≥ Ex

[
e
∫ s

0 ξ(Xu)du
1{τD◦t,t > s, Xs = x}

]
≥ ε2

ν exp
{

sλ(1)
D◦t,t

}
. (10.20)

Then (4.38) follows from (10.19–10.20) and C̃t ⊂ D◦t,t. �

11. LOCAL PROFILES

In this section we prove Propositions 4.12 and 4.13 dealing with the local “shapes” of the
solution to the PAM and of the potential configuration in the vicinity of the localization
center. In the following we will always assume that A > 0 and ν ∈ N have been
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taken large enough so as to satisfy the hypotheses of all previous results. We start with
Proposition 4.13.

Proof of Proposition 4.13. Fix 0 < a ≤ b < ∞. Let d(·, ·) be a metric under which [−∞, 0]Z
d

is compact and has the topology of pointwise convergence. Since for each R ∈ N the
principal Dirichlet eigenvalue of ∆ + Vρ in BR is simple, there exists εR > 0 such that

d(V, Vρ) < εR ⇒ sup
x∈BR

∣∣V(x)−Vρ(x)
∣∣ ∨ ∥∥∥vR

V − vR
ρ

∥∥∥
`1
<

1
R

, (11.1)

where vR
V , resp., vR

ρ are the principal Dirichlet eigenfunctions of ∆ + V, resp., ∆ + Vρ

in BR, both normalised in `1. Under Assumption 2.9, Lemma 3.2(i) in [GKM07] shows
that the quantity

F (ε) := −χ− sup
{

λ(1)(V) : V ∈ [−∞, 0]Z
d
,L(V) ≤ 1, 0 ∈ argmax(V), d(V, Vρ) ≥ ε

}
(11.2)

is strictly positive for ε > 0. By Lemmas 5.1, 5.5 and 8.3, Proposition 4.2 and the proper-
ties of aL, âL, there exists a deterministic non-increasing function δt > 0 such that δt → 0
as t→ ∞ and the following holds with probability tending to 1 as t→ ∞:

max
x∈BLt

ξ(x) < âLt + δt, inf
s∈[at,bt]

λ(1)
Ct,s

> âLt − χ− δt (11.3)

and
sup

s∈[at,bt]
LCt,s(ξ − âLt − δt) ≤ 1. (11.4)

Letting tR > 0 with tR → ∞ be such that δt <
1
2F (εR) for all t ≥ tR, we define

µt := inf{R ∈N : tR ≤ t < tR+1}. (11.5)

Note that µt → ∞, and we may suppose that µt � (ln t)κ by making tR grow sufficiently
fast with R. Then, defining

V∗(x) :=
{

ξ(x + Zs)− âLt − δt if x + Zs ∈ Ct,s,
−∞ otherwise, (11.6)

we have V∗ ∈ [−∞, 0]Z
d
, L(V∗) = LCt,s(ξ − âLt − δt) ≤ 1 and 0 ∈ argmax(V∗). Further-

more, λ(1)(V∗) = λ(1)
Ct,s
− âLt − δt > −χ−F (εµt). Since vµt

V∗(·) = φ•t,s(·+ Zs),

sup
x∈µt

∣∣ξ(x + Zs)− âLt −Vρ(x)
∣∣ ∨ ‖φ•t,s(Zs + ·)− vµt

ρ (·)‖`1 <
1
µt

+ δt (11.7)

by (11.1) and the definition of F (ε). To conclude, we observe that âLt = ât + o(1) and
that, by Lemma 3.3(iii) of [GKM07], limt→∞ ‖vµt

ρ − vρ‖`1 = 0. �

Next we prove Proposition 4.12 by adapting the strategy of Section 8.2 of [GKM07].
The proof is based on two lemmas whose proofs will be postponed to subsequent sub-
sections. Fix µt ∈N, 1� µt � Rt, which is enough by (5.11). We will again decompose
the solution with the help of the Feynman-Kac representation, which states that, for a
function f : Zd → [0, ∞), f 6≡ 0, the function

(x, t) 7→ Ex

[
e
∫ t

0 ξ(Xs)ds f (Xt)
]

(11.8)
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is the unique positive solution of the equation (1.1) with initial condition f .
Fix an auxiliary function t 7→ Tt ∈ N such that

√
µt � Tt � µt. For notational

convenience we set Bt,s := Bµt(Zs). Using (11.8), we may write u(x, s) = u(1)(x, s; t) +
u(2)(x, s; t) where

u(1)(x, s; t) := Ex

[
e
∫ s

0 ξ(Xu)du
1{Xs=0,τBc

t,s
>Tt}

]
(11.9)

and u(2) is defined by replacing τBc
t,s

> Tt by the complementary inequality. The first
lemma shows that the contribution of u(2) is negligible.

Lemma 11.1 For any 0 < a ≤ b < ∞,

lim
t→∞

sup
s∈[at,bt]

1Gt,s ∑
x∈Zd

u(2)(x, s; t)
U(s)

= 0 in probability. (11.10)

Finally, the second lemma controls the distance between u(1) and φ•t,s.

Lemma 11.2 For any 0 < a ≤ b < ∞,

lim
t→∞

sup
s∈[at,bt]

1Gt,s ∑
x∈Zd

∣∣∣∣u(1)(x, s; t)
U(s)

− φ•t,s(x)
∣∣∣∣ = 0 in probability. (11.11)

Proof of Proposition 4.12. Follows directly from Lemmas 11.1–11.2. �

The remainder of this section is devoted to the proofs of Lemmas 11.1–11.2. In order
to avoid repetition, we fix here 0 < a ≤ b < ∞, and all statements made in what follows
are assumed to hold for all s ∈ [at, bt] with probability tending to 1 as t→ ∞.

11.1 Contribution of u(2).

Proof of Lemma 11.1. Recall that Bt,s = Bµt(Zs) and note that, since u(2)(x, s; t) ≤ u(x, s),
(4.30) implies

lim
t→∞

sup
s∈[at,bt]

1Gt,s ∑
x/∈Bt,s

u(2)(x, s; t)
U(s)

= 0 in probability. (11.12)

We thus only need to consider the sum over x ∈ Bt,s. Using the strong Markov property
for X, we may write

u(2)(x, s; t) = Ex

[
exp

{∫ τBc
t,s

0
ξ(Xθ)dθ

}
u(XτBc

t,s
, s− τBc

t,s
)1{Xs=0,τBc

t,s
≤Tt}

]
. (11.13)

Consider the event
Rν

t,s,θ :=
{

τ(D◦t,s)c > θ ≥ τBν(Zs)

}
, (11.14)

introduce the functions

u1(x, θ) := Ex

[
e
∫ θ

0 ξ(Xu)du
1{Xθ=0}∩Rν

t,s,θ

]
(11.15)

and
u2(x, θ) := Ex

[
e
∫ θ

0 ξ(Xu)du
1{Xθ=0}∩(Rν

t,s,θ)
c

]
(11.16)
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and define u(2)
i (x, s; t), i = 1, 2, by substituting ui for u in (11.13). Then, clearly, we

have u(2)(x, s; t) = u(2)
1 (x, s; t) + u(2)

2 (x, s; t). Our strategy is to separately estimate the
contribution of u(2)

1 and u(2)
2 .

Starting with u(2)
2 , we claim that, for all θ < s,

u2(x, s− θ) ≤ eθ(2d−ξ(0))u2(x, s). (11.17)

Indeed, (11.17) can be obtained from (11.16) with θ = s by intersecting with the event
(Rν

t,s,s−θ)
c ∩ {Xu = 0 ∀ u ∈ [s− θ, s]} and applying the Markov property. The inequal-

ity (11.17) in turn shows

∑
x∈Bt,s

u(2)
2 (x, s; t)

U(s)
≤ |Bµt | eTt(2d+|ξ(0)|+2ρ ln2 t) ∑

x∈Zd

u2(x, s)
U(s)

, (11.18)

where we bound ξ(Xθ) ≤ 2ρ ln2 t by Lemma 5.1 noting that Bt,s ⊂ Bt. By (4.31–4.32)
(and invariance under time-reversal of the law of X), on Gt,s we can bound (11.18) by

|Bµt | exp
{
−t(ln t)−2 + Tt(2d + |ξ(0)|+ 2ρ ln2 t)

}
, (11.19)

which tends to 0 as t→ ∞.
Thus we are left with controlling u(2)

1 . To this end, recall the setup of Lemma 5.15 and
set Λ := D◦t,s and Γ := Bν(Zs). Applying (5.50) with t substituted by t− s and then (5.49)
to u1, we obtain, on Gt,s,

u1(x, s− θ) ≤ e−θλ◦t,s

(
inf
y∈Γ

φ◦t,s(y)
)−5

φ◦t,s(x) ∑
y∈Γ

u1(y, s) ≤ e−θλ◦t,s ε−5
ν φ◦t,s(x)U(s), (11.20)

where λ◦t,s is the largest Dirichlet eigenvalue of HD◦t,s and εν is as in Proposition 4.9(ii).
Inserting (11.20) in the definition of u(2)

1 , we obtain, for some constant c0 > 0,

∑
x∈Bt,s

u(2)
1 (x, s; t)

U(s)
≤ c0µd

t sup
x/∈Bt,s

φ◦t,s(x) sup
x∈Bt,s

Ex

[
e
∫ τBc

t,s
0 (ξ(Xu)−λ◦t,s)du

1{τBc
t,s
≤Tt}

]
. (11.21)

Since Bt,s ⊂ D◦t,s, (5.5) shows that maxx∈Bt,s ξ(x)− λ◦t,s ≤ 2d. Applying Proposition 4.9(i),
on Gt,s we may further bound (11.21) by

c0c1µd
t e−c2µt+2dTt . (11.22)

Since (11.22) tends to 0 as t→ ∞, the proof of Lemma 11.1 is concluded. �

11.2 Contribution of u(1).

Let λ(k)
t,s, φ(k)

t,s be the ordered Dirichlet eigenvalues and respective orthonormal eigenfunc-
tions of the Anderson operator in Bt,s. We extend the eigenfunctions to be 0 outside of
Bt,s = Bµt(Zs). In our previous notation, λ•t,s = λ(1)

t,s and φ•t,s = φ(1)
t,s/‖φ(1)

t,s‖`1(Zd). We start
with the following important fact.

Lemma 11.3 For any 0 < a ≤ b < ∞, with probability tending to 1 as t→ ∞,

inf
s∈[at,bt]

λ(1)
t,s > âLt − χ + o(1), (11.23)
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and
inf

s∈[at,bt]
λ(1)

t,s − λ(2)
t,s ≥ 1

3 ρ ln 2. (11.24)

Proof. By Proposition 4.2, Lemma 8.3 and âLt = ârt + o(1), may assume that λ(1)
Ct,s

>

âLt − χ + o(1). In particular, Ct,s ∈ Cδ
Lt,A for any δ ∈ (0, 1), so by Lemma 5.3(i),

λ(1)
Ct,s
− λ(2)

Ct,s
> 1

2 ρ ln 2. (11.25)

Since Bt,s ⊂ Ct,s, λ(2)
t,s ≤ λ(2)

Ct,s
by the minimax formula (see e.g. the proof of Lemma 4.3

in [BK16]). Furthermore, by Lemma 5.6 together with Theorem 2.1 of [BK16] (note that
λ(1)
Ct,s
− A1 > âLt − 2A1),

λ(1)
t,s > λ(1)

Ct,s
− 2d

(
1 +

A1

4d

)1−2(µt−ν1)

. (11.26)

Now (11.23–11.24) follows from (11.25–11.26). �

Lemma 11.3 will allow us to prove the following localization property for φ(1)
t,s .

Lemma 11.4 There exist c1, c2 ∈ (0, ∞) and, for fixed R ∈ N, a constant ε•R > 0 such that,
for all 0 < a ≤ b < ∞, the following holds with probability tending to 1 as t → ∞: For all
s ∈ [at, bt],

φ(1)
t,s(x) ≤ c1e−c2|x−Zs| ∀x ∈ Zd, (11.27)

and
φ(1)

t,s(y) ≥ ε•R ∀y ∈ BR(Zs). (11.28)

Proof. Fix A1, ν1 as in Lemma 5.6 and take r > ν1. By Lemma 4.2 of [BK16] and (11.23),

∑
x∈Bt,s\Br(Zs)

|φ(1)
t,s(x)|2 ≤

(
1 +

A1

2d

)−2(r−ν1)

, (11.29)

proving (11.27). The bound (11.28) is obtained using (11.27) and Lemma 5.7 as in the
proof of Proposition 4.9(ii). �

We can now finish the proof of Lemma 11.2.

Proof of Lemma 11.2. Using the Markov property, we can write

u(1)(x, s; t) = Ex

[
e
∫ Tt

0 ξ(Xu)duu(XTt , s− Tt)1{τBc
t,s
>Tt}

]
. (11.30)

Since

(x, T) 7→ Ex

[
e
∫ T

0 ξ(Xu)duu(XT, s− Tt)1{τBc
t,s
>T}

]
(11.31)

solves the parabolic equation (5.41) with Λ := Bt,s and initial condition u(·, s− Tt), an
eigenvalue expansion as (5.43) gives

u(1)(x, s; t) =
|Bt,s|

∑
k=1

eTtλ
(k)
t,s φ(k)

t,s(x)〈φ(k)
t,s, u(·, s− Tt)〉, (11.32)

where 〈·, ·〉 is the canonical inner product in `2(Zd).
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Set U(1)(s; t) := ∑x∈Zd u(1)(x, s; t) and note that, by Lemma 11.1,

lim
t→∞

sup
s∈[at,bt]

1Gt,s

∣∣∣∣u(1)(s; t)
U(s)

− 1
∣∣∣∣ = 0 in probability. (11.33)

Hence it is enough to prove (11.11) with U(s) substituted by U(1)(s; t). Using (11.32) we
may write

U(1)(x, s; t)
U(1)(s; t)

=
φ(1)

t,s(x) + Et,s(x)

‖φ(1)
t,s‖`1(Zd) + ∑x∈Zd Et,s(x)

(11.34)

where

Et,s(x) :=
|Bt,s|

∑
k=2

e−Tt(λ
(1)
t,s −λ

(k)
t,s )φ(k)

t,s(x)
〈φ(k)

t,s, u(·, s− Tt)〉
〈φ(1)

t,s , u(·, s− Tt)〉
. (11.35)

Noting that ‖φ(1)
t,s‖`1(Zd) ≥ ‖φ

(1)
t,s‖`2(Zd) = 1, we obtain∥∥∥∥u(1)(·, s; t)

U(1)(s; t)
− φ•t,s(·)

∥∥∥∥
`1(Zd)

≤ ‖Et,s‖`1(Zd)

(
1 +

1
U(1)(s; t)

+
‖Et,s‖`1(Zd)

U(1)(s; t)

)
(11.36)

and our problem is reduced to showing that

lim
t→∞

sup
s∈[at,bt]

1Gt,s ‖Et,s‖`1(Zd) = 0 in probability. (11.37)

To this end, we first use the Cauchy-Schwarz inequality and Parseval’s identity to obtain

|Et,s(x)| ≤ e−Tt(λ
(1)
t,s −λ

(2)
t,s )

〈φ(1)
t,s , u(·, s− Tt)〉

(
|Bt,s|

∑
k=1
〈φ(k)

t,s,1x〉2
) 1

2
(
|Bt,s|

∑
k=1
〈φ(k)

t,s, u(·, s− Tt)〉2
) 1

2

= e−Tt(λ
(1)
t,s −λ

(2)
t,s )
‖u(·, s− Tt)‖`2(Zd)

〈φ(1)
t,s , u(·, s− Tt)〉

1Bt,s(x). (11.38)

Once we show that, for some positive constants c0, c1, on Gt,s

‖u(·, s− Tt)‖`2(Zd) ≤ c0 e−Ttλ
•
t,s U(s), (11.39)

and
〈φ(1)

t,s , u(·, s− Tt)〉 ≥ c1 e−Ttλ
•
t,s U(s), (11.40)

then using (11.38–11.40) and (11.24) we will be able to bound

sup
s∈[at,bt]

1Gt,s ‖Et,s‖`1(Zd) ≤
c0

c1
(3µt)

de−
ρ ln 2

3 Tt (11.41)

which tends to 0 as t → ∞ by our choice of Tt. Thus it only remains to prove (11.39–
11.40).

We start with (11.39). By the triangle inequality,

‖u(·, s− Tt)‖`2(Zd) ≤ ‖u1(·, s− Tt)‖`2(Zd) + ‖u2(·, s− Tt)‖`2(Zd) (11.42)
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where u1, u2 are defined as in (11.15–11.16). Reasoning as in (11.17–11.19), we can see
that, on Gt,s,

‖u2(·, s− Tt)‖`2(Zd)

U(s)
≤
‖u2(·, s− Tt)‖`1(Zd)

U(s)

≤ exp
{

Tt(2d + |ξ(0)|)− t(ln t)−2}� e−Ttλ
•
t,s (11.43)

since λ•t,s ≤ maxx∈Bt,s ξ(x) ≤ 2ρ ln2 t by Lemma 5.1. On the other hand, using (11.20) we
get, on Gt,s,

‖u1(·, s− Tt)‖`2(Zd)

U(s)
≤ ε−5

ν e−Ttλ
◦
t,s ≤ ε−5

ν e−Ttλ
•
t,s (11.44)

since λ◦t,s ≥ λ•t,s. This shows (11.39).
For (11.40), let u(1), u(2) be as in (11.9) and write

〈u(·, s), φ(1)
t,s〉 = 〈u(1)(·, s; t), φ(1)

t,s〉+ 〈u(2)(·, s; t), φ(1)
t,s〉

= eTtλ
•
t,s〈u(·, s− Tt), φ(1)

t,s〉+ 〈u(2)(·, s; t), φ(1)
t,s〉 (11.45)

to obtain

〈u(·, s− Tt), φ(1)
t,s〉 = e−Ttλ

•
t,s

{
〈u(·, s), φ(1)

t,s〉 − 〈u(2)(·, s; t), φ(1)
t,s〉
}

. (11.46)

Fix R ∈ N such that (4.30) holds with δ < 1
2 and, for this R, take ε•R > 0 as in (11.28).

Then on Gt,s we can estimate

〈u(·, s), φ(1)
t,s〉 ≥ ∑

x∈BR(Zs)

φ(1)
t,s(x)u(x, s) ≥ ε•R(1− δ)U(s) > 1

2 ε•RU(s). (11.47)

On the other hand, by Lemma 11.1, the second term inside the brackets in (11.46) mul-
tiplied by 1Gt,s is smaller than ε•RU(s)/4 with probability tending to 1, proving (11.40)
with c1 = 1

4 ε•R. This concludes the proof of Lemma 11.2. �

A. A TAIL ESTIMATE

In this section we prove (7.16) for Ŷt given by (7.20) using an approach from [BK16]. We
will strongly rely on Assumption 2.1. The first step concerns the tail of ξ.

Lemma A.1 For any ε > 0, there exists t0 > 0 such that, for all t ≥ t0,

td Prob (ξ(0) > ât + sdt) ≤ e−s(1−ε) ∀s ≥ 0. (A.1)

Proof. Recall the definition of F in (2.1). Note that td = exp(eF(ât)) to write

− ln
{

tdProb (ξ(0) > ât + sdt)
}

= eF(ât)
(

eF(ât+sdt)−F(ât) − 1
)
≥ eF(ât) {F(ât + sdt)− F(ât)} (A.2)

where in the last inequality we used ex − 1 ≥ x. Using (2.2) and the Mean Value Theo-
rem, we obtain F(ât + sdt)− F(ât) ≥ sdt(1− ε)/ρ for all s ≥ 0 if t is large enough. Since
dt = ρe−F(ât), (A.1) follows from (A.2). �
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Lemma A.1 will allow us to reduce the sum in (7.16) to |x| ≤ 6dθt/dt.

Corollary A.2 For any η ∈ R, θ ∈ (0, ∞),

lim
t→∞ ∑

x∈(2N̂t+1)Zd

|x|>6dθt/dt

Prob
(

Ŷt(0) >
|x|
θt

+ η

)
= 0. (A.3)

Proof. Recall that maxx∈BN̂t
ξ(x) ≥ λ(1)

BN̂t
by (5.5). Using at = ât − χ + o(1) and χ ≤ 2d,

we obtain, for each L ∈N,

lim sup
t→∞

∑
x∈(2N̂t+1)Zd

|x|>6dθt/dt

Prob
(

Ŷt(0) >
|x|
θt

+ η

)

≤ lim sup
t→∞

∑
x∈(2N̂t+1)Zd

|x|>6dθt/dt

|BN̂t
|Prob

(
ξ(0) > ât +

dt

2

(
|x|
θt

+ 2η

))

≤ lim sup
t→∞

∑
x∈Zd

|x|>Lt/(2N̂t+1)

|BN̂t
|

td exp

{
− 1

4

(
|x|(2N̂t + 1)

θt
+ 2η

)}

=
∫
|z|≥L

e−
1
4

(
|z|
θ +2η

)
dz

(A.4)

by Lemma A.1 and (2.6). Since the integral converges to 0 as L→ ∞, (A.3) follows. �

To control the sum in (7.16) with |x| ≤ t6dθ/dt, we will use the following lemma.

Lemma A.3 There exist c0, ε > 0 such that, for all large enough t and s ≥ 0,

td

(2N̂t)d
Prob

(
Ŷt(0) > s

)
≤ 4 e−c0s + t−ε. (A.5)

Before we prove Lemma A.3, let us finish the proof of (7.16).

Proof of (7.16). By Corollary A.2, we only need to control the sum for |x| ≤ t6dθ/dt. Fix
η ∈ R. Letting n ≥ θ|η| and |x| ≥ nt, we have 0 ≤ |x|/(θt) + η ≤ 6d/dt. Thus we may
bound, by Lemma A.3,

∑
x∈(2N̂t+1)Zd

nt≤|x|≤t6dθ/dt

Prob
(

Ŷt(0) >
|x|
θt

+ η

)

≤ c2(ln t)d

tε
+ ∑

x∈Zd

nt≤|x|(2N̂t+1)≤t6dθ/dt

(2N̂t)d

td 2 exp

{
−c0

(
|x|(2N̂t + 1)

θt
+ η

)}
(A.6)
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for a constant c2 > 0 and large enough t. To conclude (7.16), note that the right-hand
side of (A.6) converges as t→ ∞ to

2
∫
|z|≥n

e−c0

(
|z|
θ +η

)
dz, (A.7)

which converges itself to 0 as n→ ∞. �

The remainder of this section is dedicated to the proof of Lemma A.3. Note that As-
sumption 2.1 implies that ξ(0) has a density f with respect to Lebesgue measure given
by

f (r) =

{
F′(r) exp

{
F(r)− eF(r)

}
, r > essinf ξ(0),

0 otherwise.
(A.8)

The following bound holds for f .

Lemma A.4 Fix a finite Λ ⊂ Zd and two functions α, ϕ : Λ→ R. Then, as t→ ∞,

∏
x∈Λ

f (ât + ϕ(x) + α(x)dt)

f (ât + ϕ(x))
≤ exp

{
−(1 + o(1)) ∑

x∈Λ
α(x)e

ϕ(x)
ρ + o(1)LΛ(ϕ)

}
(A.9)

where LΛ(ϕ) is as in (5.9) and o(1) is uniform on Λ and on α, ϕ whenever α(x) ≥ 0 and |ϕ(x)|
is uniformly bounded. If additionally α(x) is uniformly bounded, then equality holds in (A.9).

Proof. One can follow the reasoning leading to the proof of Lemma 7.5 in [BK16]. �

Fix now c0 := 1
2 e−3(d+1)/ρ; this will the constant appearing in (A.3). The following

corollary is a convenient rephrasing of (A.9).

Corollary A.5 There exists t0 > 0 such that, for all t ≥ t0, s ≥ 0, Λ ⊂ Zd and all α, ϕ : Λ→
R with α(x) ≥ 0, −2(d + 1) ≤ ϕ(x) ≤ 1,

∏
x∈Λ

f (ât + ϕ(x) + sα(x)dt)

f (ât + ϕ(x))
≤ exp

{
−2c0s ∑

x∈Zd

α(x) + LΛ(ϕ)

}
. (A.10)

We can now prove Lemma A.3.

Proof of Lemma A.3. For t > 0 such that at > essinf ξ(0) + 1, define the continuous map

Ft,s(r) :=


r if r ≤ at − 1,
r− sdt if r ≥ at + sdt,
linear, otherwise.

(A.11)

Then Ft,s is bijective with the inverse given by

F−1
t,s (r) :=


r if r ≤ at − 1,
r + sdt if r ≥ at,
linear, otherwise.

(A.12)

Let ξt,s(x) := Ft,s(ξ(x)). Then ξt,s(x) is absolutely continuous with respect to ξ(x) with
density

dξt,s(x)
dξ(x)

(r) =

{
1 if r ≤ at − 1,

(1 + sdt)
1{r<at} f (F−1

t,s (r))
f (r) otherwise.

(A.13)
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Recalling that λ(1)
BR
(ξ) denotes the principal Dirichlet eigenvalue of ∆ + ξ in BR, define

Gt,s :=

{
ξ : λ(1)

BRt
(ξ) > at + sdt, LBRt

(ξ − ât) ≤ ln 2, max
x∈BRt

ξ(x) ≤ ât + 1

}
. (A.14)

Since ξ(x)− 2dt ≤ ξt,s(x) ≤ ξ(x), ξ ∈ Gt,s implies ξt,s ∈ Gt,0. Write

Prob (ξt,s ∈ Gt,0) = E

1Gt,0(ξ) (1 + sdt)
|{x∈BRt : at−1<ξ(x)<at|} ∏

x∈BRt
ξ(x)>at−1

f (F−1
t,s (ξ(x)))

f (ξ(x))


(A.15)

where E denotes expectation with respect to Prob. Bound the middle term in (A.15) by

(1 + sdt)
|BRt | ≤ esdt(2Rt+1)d ≤ esc0 (A.16)

for large t by (5.11). For the product term, define ϕ(x) := ξ(x) − ât and α(x) ≥ 0 by
the equation ξ(x) + sdtα(x) = F−1

t,s (ξ(x)). Noting that, if α(x) 6= 0 then −2(d + 1) ≤
ϕ(x) ≤ 1, by Corollary A.5

∏
x∈BRt : ξ(x)>at−1

f (F−1
t,s (ξ(x)))

f (ξ(x))
≤ 2 exp

−2c0s ∑
x∈BRt : ξ(x)>at−1

α(x)

 (A.17)

since LBRt
(ϕ) ≤ ln 2 on Gt,0. Moreover, on this event we have ξ(x) > at and thus

α(x) = 1 for some x ∈ BRt since maxx∈BRt
ξ(x) ≥ λ(1)

BRt
(ξ). Noting now that, by (A.1) and

Lemma 6.4 of [BK16],

Prob
(

λ(1)
BRt

(ξ) > at + sdt

)
≤ Prob (ξ ∈ Gt,s) + o(t−(d+ε0)) (A.18)

for some ε0 > 0, we obtain by (A.14–A.18)

Prob
(

λ(1)
BRt

(ξ) ≥ at + sdt

)
≤ 2e−c0sProb

(
λ(1)

BRt
(ξ) ≥ at

)
+ o(t−(d+ε0)). (A.19)

To pass the estimate to λ(1)
BN̂t

(ξ), note first that, by Lemma 7.6 of [BK16],

lim sup
t→∞

td

(2Rt)d Prob
(

λ(1)
BRt

(ξ) ≥ at

)
≤ 1, (A.20)

and thus for large t the right-hand side of (A.19) is at most 3 e−c0s(2Rt/t)d + o(t−(d+ε0)).
Moreover, by Lemma 7.7 of [BK16] applied to tL := aL − âL + sdL and R′L := (ln2 L)2,

td

(2N̂t)d
Prob

(
λ(1)

BN̂t
(ξ) ≥ at + sdt

)
≤ N̂−d

t + 4 e−c0s + o(t−ε0) (A.21)

for t large enough, noting that o(L−d) and o(1) in equation (7.27) of [BK16] are uniform
on the sequence tL. Note that the factor 2 multiplying Rt and N̂t here and not in [BK16]
appears since our boxes have side-length 2R + 1 while theirs R. Recalling that N̂t � tβ

for some β > 0 and taking ε := ε0 ∧ (βd), the lemma is proved. �
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B. COMPACTIFICATION

Let E := (R×Rd) ∪ [0, ∞) be equipped with a metric d defined by setting, for θ, θ′ ∈
[0, ∞) and (λ, z), (λ′, z′) ∈ R×Rd,

d(θ, θ′) :=
∣∣θ − θ′

∣∣ , d(θ, (λ, z)) := e−λ +

∣∣∣∣ |z|1∨ λ
− θ

∣∣∣∣ ,

d((λ, z), (λ′, z′)) := e−λ∧λ′
(

1− e−|λ−λ′|−|z−z′|
)
+

∣∣∣∣ |z|1∨ λ
− |z′|

1∨ λ′

∣∣∣∣ .
(B.1)

One may verify that d is indeed a metric under which E is separable, complete and
locally compact. Moreover:

Lemma B.1 For any (θ, η) ∈ (0, ∞) × R, the set Hθ
η ⊂ E defined in (7.14) is relatively

compact.

Proof. Note that the closure ofHθ
η in E is given by

Hθ
η =

{
(λ, z) ∈ R×Rd : λ− |z|

θ
≥ η

}
∪ [0, θ]. (B.2)

Fix a sequence (Ξn)n∈N inHθ
η and consider the following three cases:

(1) Ξn ∈ [0, θ] for infinitely many n;
(2) Ξn = (λn, zn) ∈ R×Rd for all but a finite number of n and (λn)n∈N is bounded,

implying that {Ξn : n ∈N} is contained in a compact subset of R×Rd;
(3) Ξn = (λn, zn) ∈ R×Rd for all but a finite number of n and limn→∞ λn = ∞. Note

that lim supn→∞ |zn|/λn ≤ θ.
As is directly checked, in each case there exists a subsequence converging in E to a point
ofHθ

η , thus proving the claim. �

We finish the section with the following important property of E.

Lemma B.2 For any compact set K ⊂ E, there exist θ ∈ (0, ∞) and η ∈ R such that K ∩
(R×Rd) ⊂ Hθ

η .

Proof. Cover each x ∈ K with an open setHθx
ηx ∪ [0, θx) for some θx > 0, ηx ∈ R. Use com-

pactness to extract a finite subcover corresponding to x1, . . . , xN and set θ := maxN
i=1 θxi ,

η := minN
i=1 ηxi to obtain the result. �

C. PROPERTIES OF THE COST FUNCTIONAL

In this section we prove Lemmas 7.5, 7.6 and 7.8.

Proof of Lemma 7.5(i). Fix θ0 < θ1 and set (λi, zi) = Ξ(1)
ϑ (P)(θi), i = 0, 1. Then

θ0(λ1 − λ0) ≤ |ϑ(z1)| − |ϑ(z0)| ≤ θ1(λ1 − λ0) (C.1)

by the definition of Ψ(1)
ϑ (P), so that all three functions are non-decreasing. Now, if

(λ0, z0) 6= (λ1, z1), then one of the inequalities above is strict, since otherwise λ1 = λ0,
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|ϑ(z1)| = |ϑ(z0)| and we would have (λi, zi) ∈ S(1)
ϑ (P)(θj) with i 6= j ∈ {1, 2}, implying

that (λ1, z1) = (λ0, z0) by the definition of Ξ(1)
ϑ (P). This concludes the proof. �

Proof of Lemma 7.5(ii). We will first consider the case | supp(P)| < ∞. We may assume
| supp(P)| ≥ 2 since otherwise there is nothing to prove.

Consider first the case i = 1. Ψ(1)
ϑ (P) is continuous as the pointwise maximum of

finitely many continuous functions. Lemma 7.5(i) implies that Ξ(1)
ϑ (P) jumps finitely

many times, and thus has left limits; let us to show that it is càdlàg. Fix θ0 > 0 and let
(λ0, z0) := Ξ(1)

ϑ (P)(θ0). Note first that, if (λ, z) ∈ S(1)
ϑ (P)(θ0), then ψϑ

θ (λ, z) ≤ ψϑ
θ (λ0, z0)

for all θ ≥ θ0 because λ ≤ λ0 by definition. On the other hand, if (λ, z) /∈ S(1)
ϑ (P)(θ0),

then there exists δλ,z > 0 such that ψϑ
θ (λ, z) < ψϑ

θ (λ0, z0) for all θ ∈ [θ0, θ0 + δλ,z]. Setting
δ > 0 to be the smallest among these, we can see that

(λ0, z0) ∈ S(1)
ϑ (P)(θ) ⊂ S(1)

ϑ (P)(θ0) ∀ θ ∈ [θ0, θ0 + δ] (C.2)

implying Ξ(1)
ϑ (P)(θ) = Ξ(1)

ϑ (P)(θ0) for all θ ∈ [θ0, θ0 + δ], i.e., Ξ(1)
ϑ (P) is right-continuous.

Assume now by induction that the statement of Lemma 7.5(ii) has been proved in the
case | supp(P)| < ∞ for all i ≤ k− 1, k ≥ 2. Note that, by the definition of Φ(k)

ϑ ,

Φ(k)
ϑ (P)(θ) = ∑

Ξ∈supp(P)
1{

Ξ(1)
ϑ (P)(θ)=Ξ

}Φ(k−1)
ϑ (PΞ)(θ) (C.3)

where PΞ(·) := P(· \ {Ξ}). Since Ξ(1)
ϑ (P) is càdlàg, it follows from the induction hy-

pothesis that Φ(k)
ϑ (P) is also càdlàg. To prove in addition that Ψ(k)

ϑ (P) is continuous, we
only need to show that, if Ξ0 := Ξ(1)

ϑ (P)(θ−) 6= Ξ(1)
ϑ (P)(θ) =: Ξ, then Ψ(k−1)

ϑ (PΞ0)(θ) =

Ψ(k−1)
ϑ (PΞ)(θ); but this follows from the definition of Ψ(k−1)

ϑ since, by the continuity of
Ψ(1)

ϑ (P), ψϑ
θ (Ξ0) = ψϑ

θ (Ξ). This finishes the proof in the case | supp(P)| < ∞.
The case | supp(P)| = ∞ can be reduced to the previous one as follows. First note

that we may substitute (0, ∞) by [a, b] with 0 < a < b < ∞ arbitrary. Fix i ∈ N. Since
Ha

η ↑ R×Rd as η → −∞, Hb
η is relatively compact and Pϑ ∈MP, there exists an η ∈ R

such that i ≤ | supp(Pϑ)∩Ha
η | ≤ Pϑ(Hb

η) < ∞. Noting that, on [a, b], Φ(i)
ϑ (P) = Φ(i)

ϑ (P ′)
where P ′(·) := P(· ∩ {(λ, z) : (λ, ϑ(z)) ∈ Hb

η}), we fall into the previous case.
For the last statements, note that the proof above shows that Ξ(i)

ϑ (P) jumps finitely
many times in each compact interval [θ1, θ2] ⊂ (0, ∞). Moreover, if ϑ(Z(1)

ϑ (P)(θ1)) 6= 0
and Ξ(1)

ϑ (P) is constant in [θ1, θ2], then Ψ(1)
ϑ (P) is strictly increasing in [θ1, θ2]. �

Proof of Lemma 7.6. We first consider the case 1 ≤ | supp(P)| < ∞. By Proposition 3.13
of [R87], for t large enough there exist bijections Tt : supp(P)→ supp(Pt) such that

lim
t→∞

sup
Ξ∈supp(P)

dist(Tt(Ξ), Ξ) = 0. (C.4)

Moreover, letting Tt(λ, z) := (λ, ϑt(z)), by (7.42) and supp(P) ∩R× {0} = ∅ we have

lim
t→∞

sup
Ξ∈supp(P)

dist(Tt ◦ Tt(Ξ), Ξ) = 0, (C.5)

and Tt ◦ Tt is a bijection onto supp(Pϑt
t ). In particular, Pϑt

t → P .
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Let a0 := a and, recursively for ` ∈N,

a` := inf{θ > a`−1 : ∃ 1 ≤ i ≤ | supp(P)|, Ξ(i)
ϑ (P)(θ) 6= Ξ(i)

ϑ (P)(a`−1)}. (C.6)

Note that Ξ(i)(P) jumps finitely many times: for i = 1 this follows by Lemma 7.5(i), and
for i ≥ 2, by induction using (C.3). Thus `∗ = `∗(a,P) := inf{` ≥ 0 : a`+1 = ∞} < ∞.

We proceed by induction on `∗, starting with `∗ = 0. Since P ∈ M̃ a
P , the values i 7→

ψa(Ξ(i)(P)(a)) are all distinct, which together with (C.4)–(C.5) implies that Ξ(i)
ϑt
(Pt)(a) =

Tt(Ξ(i)(P)(a)) for all i when t is large enough. In particular, (C.4) implies the result in the
case `∗ = 0. Assume by induction that, for some L ∈ N, the statement has been proved
for all a′ ∈ (0, ∞) and P ′ ∈ M̃ a′

P satisfying | supp(P ′)| < ∞ and `∗(a′,P ′) ≤ L− 1, and
suppose that `∗ = `∗(a,P) = L (in which case necessarily | supp(P)| ≥ 2).

Note now that, because P ∈ M̃ a
P , there exists a unique i1 such that both Ξ(i1)(P) and

Ξ(i1+1)(P) jump at a1 while Ξ(i)(P) is continuous at a1 for all i /∈ {i1, i1 + 1}. Furthermore,
Ξ(i1)(P)(a1) is the point Ξ ∈ supp(P) minimizing Fa(Ξ, Ξ(i1)(P)(a)) where

Fθ((λ1, z1), (λ2, z2)) :=

{
|z1|−|z2|
λ1−λ2

if λ1 > λ2 and ψθ(λ1, z1) < ψθ(λ2, z2),
∞ otherwise,

(C.7)

and also a1 − a = Fa(Ξ(i1)(P)(a1), Ξ(i1)(P)(a)), Ξ(i1+1)(P)(a1) = Ξ(i1)(P)(a).
Let now at

`, `
t
∗ be the analogous of a`, `∗ for Ξ(i)

ϑt
(Pt) and fix a′ ∈ (a1, a2)∩Q. By (C.4)–

(C.5) and the previous discussion, when t is large enough, Ξ(i)
ϑt
(Pt) does not jump in

[a, a′] for all i /∈ {i1, i1 + 1}. Moreover, Ξ(i1)

ϑt
(Pt)(at

1) = Tt(Ξ(i1)(P)(a1)), Ξ(i1+1)

ϑt
(Pt)(at

1) =

Ξ(i1)

ϑt
(Pt)(a) = Tt(Ξ(i1)(P)(a)), at

1 < a′ < at
2 and

|a1 − at
1| =

∣∣∣Fa(Ξ(1)(P)(a1), Ξ(1)(P)(a))−Fa(Ξ
(1)
ϑt
(Pt)(at

1), Ξ(1)
ϑt
(Pt)(a))

∣∣∣
≤ max

Ξ1,Ξ2∈supp(P)
Fa(Ξ1,Ξ2)<∞

|Fa(Ξ1, Ξ2)−Fa(Tt(Ξ1), Tt(Ξ2))| −→
t→∞

0 (C.8)

by (C.4). Define now a time change σt : [a, a′]→ [a, a′] by setting

σt(a) = a, σt(a1) = at
1, σt(a′) = a′ and linear otherwise. (C.9)

Then, by (C.4) and (C.8),

lim
t→∞

sup
1≤i≤| supp(P)|

sup
θ∈[a,a′]

|σt(θ)− θ| ∨
∣∣∣Φ(i)

ϑt
(Pt)(σt(θ))−Φ(i)(P)(θ)

∣∣∣ = 0. (C.10)

Since `∗(a′,P) = L − 1 and P ∈ M̃ a′
P , by the induction hypothesis we can extend σt

to [a, ∞) in such a way that (C.10) holds with [a, a′] substituted by [a, ∞), finishing the
proof in the case | supp(P)| < ∞.

Consider now the case | supp(P)| = ∞. Let us first show (7.44). Fix k ∈ N and a
point b ∈ (a, ∞) ∩Q. Note that, since P ∈ M̃ a

P , b is a continuity point of Φ(i)(P) for all
1 ≤ i ≤ k. Let η ∈ R be negative enough such that, for all t large enough,

k ≤ | supp(P) ∩Ha
η | = | supp(Pt) ∩Ha

η | ≤ Pt(H2b/c∗
η ) = P(H2b/c∗

η ) < ∞, (C.11)
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where c∗ ∈ (0, 1] is as in (7.43); this is possible because P ∈MP and Pt → P . Moreover,
since supp(P) ∩R× {0} = ∅, by (7.42)–(7.43) we may also assume that

k ≤ | supp(Pϑt
t ) ∩Ha

η | and supp(Pϑt
t ) ∩Hb

η ⊂ Tt

(
supp(Pt) ∩H2b/c∗

η

)
, (C.12)

where Tt is defined right before (C.5). Now (C.11)–(C.12) imply that, on [a, b], Φ(i)(P) =
Φ(i)(P ′) and Φ(i)

ϑt
(Pt) = Φ(i)

ϑt
(P ′t) for all 1 ≤ i ≤ k, where P ′(·) := P(· ∩ H2b/c

η ) and
analogously for P ′t . Since P ′t → P ′, (7.44) follows by the previous case and Theorem 16.2
of [B99]). The convergence Pϑt

t → P follows from (C.12), (7.42) and Pt → P (note that
b, η above can be taken arbitrarily large, respec. negative). �

Proof of Lemma 7.8. For (λ, z) ∈ R× (Rd \ {0}), let

A(λ, z) :=
{
(λ′, z′) ∈ R×Rd :

ψb(λ
′, z′) > ψb(λ, z) or

ψb(λ
′, z′) = ψb(λ, z) and λ′ > λ

}
. (C.13)

Note that, by the definition of Pϑ, F ϑ
b (P , λ, z) = Pϑ {A(λ, ϑ(z))}. Since ϑt(zt) → z∗

by (7.42) and Pϑt
t → P by Lemma 7.6, we may assume that ϑt(z) = z for all z ∈ Rd.

Now, since P ∈ M̃ b
P , F (P , λ∗, z∗) = P

{
Hb

ψb(λ∗,z∗)

}
and there exists a δ > 0 such that

P
{
Hb

ψb(λ∗,z∗)−δ

}
= 1 + P

{
Hb

ψb(λ∗,z∗)+δ

}
. (C.14)

On the other hand, since Pt → P and (λt, zt)→ (λ∗, z∗), when t is large we also have

Pt

{
Hb

ψb(λ∗,z∗)±δ

}
= P

{
Hb

ψb(λ∗,z∗)±δ

}
and (λt, zt) ∈ Hb

ψb(λ∗,z∗)−δ \ H
b
ψb(λ∗,z∗)+δ. (C.15)

In particular, for all t large enough,

Pt {A(λt, zt)} = Pt

{
Hb

ψb(λ∗,z∗)+δ

}
= P

{
Hb

ψb(λ∗,z∗)+δ

}
= P

{
Hb

ψb(λ∗,z∗)

}
, (C.16)

concluding the proof. �
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66 BISKUP, KÖNIG AND DOS SANTOS
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[BK16] M. BISKUP and W. KÖNIG, Eigenvalue order statistics for random Schrödinger operators with
doubly-exponential tails, Commun. Math. Phys. 341:1, 179-218 (2016).

[CM94] R. CARMONA and S.A. MOLCHANOV, Parabolic Anderson problem and intermittency. Mem.
Amer. Math. Soc. 108 no. 518 (1994).

[FM14] A. FIODOROV and S. MUIRHEAD, Complete localisation and exponential shape of the parabolic
Anderson model with Weibull potential field, Electron. J. Probab. 19:58, 1–27 (2014).

[G99] G. GRIMMETT, Percolation, Second edition, Springer, Berlin (1999).
[GH99] J. GÄRTNER and F. DEN HOLLANDER, Correlation structure of intermittency in the parabolic

Anderson model. Probab. Theory Relat. Fields 114, 1–54 (1999).
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[R87] S.I. RESNICK, Extreme Values, Regular Variation, and Point Processes, Springer, New York (1987).
[S98] A.-S. SZNITMAN, Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998).
[ST14] N. SIDOROVA and A. TWAROWSKI, Localisation and ageing in the parabolic Anderson model

with Weibull potential, Ann. Probab. 42:4, 1666–1698 (2014).


	1. Introductionto.44em.
	2. Main resultsto.44em.
	  2.1. Assumptionsto.44em.
	  2.2. Results: Mass concentrationto.44em.
	  2.3. Results: Scaling limitto.44em.
	  2.4. Results: Agingto.44em.
	  2.5. Results: Limit profilesto.44em.

	3. Connections and heuristicsto.44em.
	  3.1. Relations to earlier workto.44em.
	  3.2. Some heuristicsto.44em.

	4. Main results from key propositionsto.44em.
	  4.1. Definition of the localization processto.44em.
	  4.2. Properties of the cost functionalto.44em.
	  4.3. Mass decomposition and negligible contributionsto.44em.
	  4.4. Localizationto.44em.
	  4.5. Proof of mass concentration resultsto.44em.
	  4.6. Proof of aging and limit profilesto.44em.

	5. Preparationsto.44em.
	  5.1. Potentials and eigenvaluesto.44em.
	  5.2. Islandsto.44em.
	  5.3. Connectivity properties of the potential fieldto.44em.
	  5.4. Spectral boundsto.44em.

	6. Path expansionsto.44em.
	  6.1. Key propositionsto.44em.
	  6.2. Mass of the solution along excursionsto.44em.
	  6.3. Equivalence classes of pathsto.44em.
	  6.4. Proof of Propositions 6.1–6.2to.44em.

	7. Analysis of the cost functionalto.44em.
	  7.1. A point process approachto.44em.
	  7.2. Order statistics: proof of Propositions 7.1 and 4.3 and Theorem 2.7to.44em.

	8. Mass decompositionto.44em.
	  8.1. Lower bound for the total massto.44em.
	  8.2. Macrobox truncationto.44em.
	  8.3. Negligible contributionsto.44em.
	  8.4. Upper bound for the total mass and proof of Theorem 2.6to.44em.

	9. Localizationto.44em.
	10. Path concentrationto.44em.
	  10.1. Fast approach to the localization centerto.44em.
	  10.2. Path concentrationto.44em.

	11. Local profilesto.44em.
	  11.1. Contribution of u(2)to.44em.
	  11.2. Contribution of u(1)to.44em.

	A. A tail estimateto.44em.
	B. Compactificationto.44em.
	C. Properties of the cost functionalto.44em.

