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Abstract We study the non-negative solution u = u(x, t) to the Cauchy problem for
the parabolic equation ∂t u = Δu+ξu onZ

d×[0,∞)with initial datau(x, 0) = 10(x).
HereΔ is the discrete Laplacian onZ

d and ξ = (ξ(z))z∈Zd is an i.i.d. randomfieldwith
doubly-exponential upper tails. We prove that, for large t and with large probability,
most of the total mass U (t) := ∑

x u(x, t) of the solution resides in a bounded
neighborhood of a site Zt that achieves an optimal compromise between the local
Dirichlet eigenvalue of the Anderson HamiltonianΔ+ξ and the distance to the origin.
The processes t �→ Zt and t �→ 1

t logU (t) are shown to converge in distribution under
suitable scaling of space and time. Aging results for Zt , as well as for the solution
to the parabolic problem, are also established. The proof uses the characterization of
eigenvalue order statistics for Δ + ξ in large sets recently proved by the first two
authors.
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1 Introduction

Random Schrödinger operators—most notably, the Anderson Hamiltonian H = Δ+
ξ—have been a subject of intense research over several decades. Most of the attention
has been paid to the character of the spectrum and the ensuing physical consequences
for the quantum evolution.However, the associated parabolic problem—characterized
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by the PDE ∂t u = Δu + ξu—is of as much interest both for theory and applications.
Here we study the latter facet of this problem for a specific class of random potentials.
Our main result is the proof of localization of the solution to the above PDE for large
time in a neighborhood of a process determined solely by the random potential.

A standard way to describe the parabolic Anderson model (PAM) is via a non-
negative solution u : Z

d × [0,∞)→ [0,∞) of the Cauchy problem

∂t u(z, t) = Δu(z, t)+ ξ(z)u(z, t), z ∈ Z
d , t ∈ (0,∞), (1.1)

u(z, 0) = 10(z), z ∈ Z
d . (1.2)

Here ξ = (ξ(z))z∈Zd is an i.i.d. random potential taking values in [−∞,∞), 1x is the
indicator function of a point x ∈ Z

d , ∂t abbreviates the derivative with respect to t ,
and Δ is the discrete Laplacian acting on f : Z

d → R as

Δ f (z) :=
∑

y : |y−z|=1

[
f (y)− f (z)

]
, (1.3)

where | · | denotes the �1 norm on Z
d .

The interest in (1.1–1.2) for mathematics as well as applications comes from the
competing effect of the two terms on the right-hand side of (1.1). Indeed, the Laplacian
tends to make the solution smoother over time, while the field makes it rougher. The
problem (1.1) appears in the studies of chemical kinetics [13], hydrodynamics [8], and
magnetic phenomena [23]. We refer to the reviews [8,19] for more background, and
to [13] for the fundamental mathematical properties of the model. A recent compre-
hensive survey of mathematical results on the PAM and related models can be found
in [15]; the related spectral order-statistics questions are reviewed in [3].

A non-negative solution to the Cauchy problem (1.1–1.2) exists and is unique as
soon as the upper tail of [ξ(0)/ log ξ(0)]d is integrable [13]. Under this condition,
there is also a representation in terms of the changed-path measure,

Q(ξ)

t (dX) := 1

U (t)
exp

{∫ t

0
ξ(Xs)ds

}

P0(dX), (1.4)

on nearest-neighbor paths X = (Xs)s≥0 on Z
d , where P0 stands for the law of a

continuous-time random walk on Z
d (with generator Δ) started at zero. Indeed, the

Feynman–Kac formula shows

u(z, t) = U (t)Q(ξ)

t (Xt = z) = E0

[
e
∫ t
0 ξ(Xs )ds 1{Xt=z}

]
, (1.5)

whereby the normalization constant U (t) obtains the meaning

U (t) =
∑

x∈Zd

u(x, t) = E0

[

exp
∫ t

0
ξ(Xs)ds

]

. (1.6)

The aforementioned competition is now obvious probabilistically: the walk would
like to maximize the “energy”

∫ t
0 ξ(Xs)ds, by spending its time at the sites where ξ

is large, against the “entropy” of such trajectories under the path measure P0.

123



M. Biskup et al.

An alternative and equally usefulway to view (1.1) is as the definition of a semigroup
t �→ et (Δ+ξ) on �2(Zd). The solution to (1.1–1.2) is then given by

u(x, t) = 〈1x , e
t (Δ+ξ)10

〉
�2(Zd )

. (1.7)

This opens up the possibility to control the large-t behavior through spectral analysis
of the Anderson Hamiltonian. To this end, it is useful to restrict the problem to a
sufficiently large (in t-dependent fashion) finite volume Λ ⊂ Z

d (with 0 ∈ Λ) as
follows. Denote by HΛ the AndersonHamiltonian inΛwith (zero) Dirichlet boundary
conditions, i.e., for φ ∈ R

Λ, HΛφ = H φ̃ where H = Δ+ξ and φ̃ is the extension of φ
to R

Z
d
that is equal to zero on Λc. Let uΛ be the solution to (1.1–1.2) restricted to Λ

andwith the right-hand side of (1.1) substituted by HΛu. Then the above interpretation
yields

uΛ(x, t) =
|Λ|∑

k=1
etλ(k)Λ φ

(k)
Λ (x)φ(k)

Λ (0), (1.8)

where λ(k)Λ are the eigenvalues and φ(k)
Λ the corresponding eigenvectors of HΛ, which

we assume to be orthonormal in �2(Λ). Hereafter, we extend both the solution uΛ(·, t)
and the eigenfunctions of HΛ to Z

d by setting them to be equal to 0 on Λc.
The competition we described in the context of the changed-path measure (1.4)

now manifests itself as follows. The term in the sum in (1.8) that grows the fastest in t
is that with the largest eigenvalue. However, there is no a priori reason for it to be the
dominant term at a fixed time. Indeed, an eigenvalue will only contribute to (1.8) when
its eigenvector puts non-trivial mass on both 0 and x . Since the leading eigenvectors
decay exponentially away from their localization centers (Anderson localization),
|φ(k)

Λ (0)|will in fact be typically extremely small. It is thus the combined effect of both

etλ(k)Λ and φ(k)
Λ (x)φ(k)

Λ (0) that decides which index k will give the main contribution to
the sum.

In the present paper, we analyze these competing effects for a class of random
potentials with upper tails close to the doubly-exponential distribution, characterized
by

Prob
(
ξ(0) > r

) = exp
{−er/ρ}, r ∈ R, (1.9)

where ρ ∈ (0,∞). (Precise definitions will appear in Sect. 2.) For these potentials we
show that, at all large t , most of the total massU (t) of the solution resides in a bounded
neighborhood of a random point Zt determined entirely by ξ . This point marks the
optimal local peak of ξ for the strategy where the random walk in (1.4) traverses
to Zt in time o(t), and thereafter “sticks around” Zt in order to enjoy the benefits of a
“strong” local Dirichlet eigenvalue. We also characterize the scaling limits of Zt and
1
t logU (t), and obtain aging results for both Zt and u(x, t).
Our results build on a large body of literature on the PAM whose full account here

would divert from themainmessage of the paper. For now let us just say that we extend
results from [9,17,21,26], dealing with localization on one lattice site, to a benchmark
class of random potentials exemplified by (1.9), where the localization takes place in
large domains, albeit not growing with t . An important technical input for us is the
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recent work [7], where eigenvalue order statistics for the Anderson Hamiltonian H =
Δ + ξ was characterized for this class of ξ . Further connections will be given in
Sect. 3.1.

2 Main results

Wenowmove to the statements of ourmain results. Throughout the paper, ln x denotes
the natural logarithm of x , and ln2 x := ln ln x , ln3 x := ln ln ln x , etc denote its
iterates. We will use “Prob” to denote the probability law of the i.i.d. random field ξ .

2.1 Assumptions

We begin by identifying the class of potentials that we will consider in the sequel.
Besides some regularity, the following ensures that the upper tails of ξ(0) are in the
vicinity of the doubly-exponential distribution (1.9).

Assumption 2.1 (Upper tails) Suppose that esssup ξ(0) = ∞ and let

F(r) := ln2
1

Prob(ξ(0) > r)
, r > essinf ξ(0). (2.1)

We assume that F is differentiable on its domain and that

lim
r→∞ F ′(r) = 1

ρ
for some ρ ∈ (0,∞). (2.2)

The assumption above is exactly as Assumption 1.1 in [7], and implies Assump-
tion (F) of [14]. While the latter would be enough for most of our needs, the extra
requirements of Assumption 2.1 are used in the crucial step, performed in [7], of
identifying the max-order class of the local principal eigenvalues of the Anderson
Hamiltonian. In order to avoid technical inconveniences, we will also assume the
following condition on the lower tail of ξ .

Assumption 2.2 (Lower tails) Let ξ−(x) := max{0,−ξ(x)}. We assume that

∫ ∞

0
Prob

(
ξ−(0) > es) 1d ds <∞. (2.3)

Assumption 2.2 is only used in the proof of Lemma 8.1, which is used in Proposi-
tion 4.6 to give a lower bound for the total mass U (t). Note that (2.3) holds whenever
ln(1+ξ−(0)) has a (d+ε)-th finite moment (cf. [18]). We believe that, with the use of
percolation arguments, this assumption can be relaxed to ξ(0) > −∞ almost surely
in d ≥ 2. In d = 1, (2.3) is equivalent to ln(1+ξ−(0)) having the first moment, which
is known in the case of bounded potentials to be “essentially necessary” in the sense
that, when | ln(1+ ξ−(0))|δ is not integrable for some δ ∈ (0, 1), the solution might
scale differently. See [6], in particular Remarks 3 and 4 therein.
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Wewill assume the validity of Assumptions 2.1–2.2 throughout the rest of the paper
without explicitly stating this in each instance.

2.2 Results: Mass concentration

Recall that |x | denotes the �1-norm of x . Our first result concerns the concentration
of the total mass of the solution to the Cauchy problem (1.1–1.2):

Theorem 2.3 (Mass concentration) There is a Z
d-valued càdlàg stochastic process

(Zt )t>0 depending only on ξ such that t �→ |Zt | is non-decreasing and such that the
following holds: For each δ > 0, there exists R ∈ N such that, for any lt > 0 satisfying
limt→∞ 1

t lt = 0,

lim
t→∞Prob

⎛

⎝ sup
s∈[t−lt ,t+lt ]

∑

x : |x−Zt |>R

u(x, s)

U (s)
> δ

⎞

⎠ = 0. (2.4)

In words, (2.4) means that the solution at time t is with large probability concentrated
near a single point Zt , and the control in fact extends to sublinearly-growing intervals
of time around t . This cannot be extended to linearly growing time-intervals due to
the jumps of the process s �→ Zs (cf. Theorem 2.6 below), but a refinement of our
methods would show that, in this case, two islands would suffice, i.e., (2.4) would still
hold if the sum is taken over boxes of radius R centered around two processes Z (1)

s ,
Z (2)

s [see (4.9)]. We also believe that the almost-sure version of this statement, dubbed
as a “two-cities theorem” and proved in [16] for the case of Pareto potentials, could
be obtained with more work but prefer not to pursue this here.

In terms of the path measure Q(ξ)

t , Theorem 2.3 can be interpreted as concentration
for the law of the position of the path at time t . By letting the radius R grow slowly to
infinity, this can be improved to include a majority of the random walk path:

Theorem 2.4 (Path localization) For any εt ∈ (0, 1) with limt→∞ εt ln3 t = ∞,

lim
t→∞ Q(ξ)

t

(

sup
s∈[εt t,t]

|Xs − Zt | > εt ln t

)

= 0 in probability, (2.5)

where (Zt )t>0 is the stochastic process in Theorem 2.3.

To the best of our knowledge, statements about path localization such as Theo-
rem 2.4 were not yet available in the literature of the Parabolic Anderson Model. The
scales above come out of our methods and may be artificial; in particular, we do not
know if ln t/ ln3 t is the correct scaling for supεt t≤s≤t |Xs − Zt |.

2.3 Results: Scaling limit

Our next theorem identifies the large-t behavior of the pair of processes t �→ Zt and
t �→ 1

t lnU (t). While U (t) is continuous, Zt is only càdlàg and thus it is natural to
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use the Skorohod topology to discuss distributional convergence. Two relevant scales
are

dt := ρ

d ln t
and rt := t dt

ln3 t
= ρ

d ln t

t

ln3 t
, (2.6)

marking the size of fluctuations of 1
t lnU (t), and the typical size of |Zt |.

To describe the scaling limit, consider a sample {(λi , zi ) : i ∈ N} from the Poisson
point process on R× R

d with intensity measure e−λdλ⊗ dz. For θ > 0, define

ψθ(λ, z) := λ− |z|
θ
, (λ, z) ∈ R× R

d . (2.7)

It can be checked that, for every θ > 0, the set {ψθ(λi , zi ) : i ∈ N} is bounded and
locally finite. Moreover, the maximizing point is unique at all but at most a countable
set of θ ’s and we can thus define (Λθ , Z θ ) to be the càdlàg maximizer of ψθ over the
sample points of the process (cf. Sect. 7.2). We set

Ψ θ := ψθ(Λθ , Z θ ). (2.8)

Then we have:

Theorem 2.5 (Scaling limit of the localization process and the total mass) There is a
non-decreasing scale function at > 0 obeying

lim
t→∞

at

ln2 t
= ρ (2.9)

such that the following holds: The stochastic process (Zt )t>0 in Theorems 2.3 and 2.4
can be chosen such that, for all s ∈ (0,∞) and relative to the Skorohod topology on
D([s,∞),R× R

d),

(
1
θ t lnU (θ t)− art

dt
,

Zθ t

rt

)

θ∈[s,∞)

law−→
t→∞

(
Ψ θ , Z θ

)
θ∈[s,∞)

. (2.10)

In particular, for each θ > 0, the pair ([ 1
θ t lnU (θ t)−art ]/dt , Zθ t/rt ) converges in law

to the pair (Ψ θ , Z θ ) ∈ R×R
d whose coordinates are independent and distributed as

follows: Ψ θ follows a Gumbel distribution with scale 1 and location d ln(2θ), while
Z θ has i.i.d. coordinates, each of which is Laplace-distributed with location 0 and
scale θ .

The scaling function at characterizes the leading-order scale of the principal Dirich-
let eigenvalue of the Anderson Hamiltonian in a box of radius t , as identified in [7].
See (7.3) below for a precise definition.
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2.4 Results: Aging

The techniques used to prove the above theorems also permit us to address the phe-
nomenon of aging in the problem under consideration. The term “aging” usually
refers to the fact that certain decisive changes in the system occur at time scales that
increase proportionally to the age of the system. Our next result addresses aging in
the process (Zt )t>0:

Theorem 2.6 (Aging for the localization process) For each s > 0, and for (Zt )t>0
and (Zt )t>0 as in Theorems 2.3, 2.4 and 2.5,

lim
t→∞Prob

(
Zt+θ t = Zt ∀θ ∈ [0, s]) = lim

t→∞Prob
(
Zt+st = Zt

)

= Prob
(
Z1+s = Z1

) = Prob (Θ > s) ,
(2.11)

where the random variable

Θ := inf{θ > 0 : Z1+θ �= Z1} (2.12)

is positive and finite almost surely. Moreover,

lim
s→∞

sd

(log s)d
Prob (Θ > s) = dd

d! . (2.13)

In light of Theorem 2.5, Theorem 2.6 can be seen as a reflection of the fact that the
functional convergence stated in Theorem 2.5 is not achieved through a large number
of microscopic jumps, but rather through sporadic macroscopic jumps.

Our second aging result dealswith the jumps in the profile of the normalized solution
u(·, t)/U (t). It comes as a consequence of the mass concentration of the normalized
solution around Zt together with Theorem 2.6.

Theorem 2.7 (Aging for the solution) For any ε ∈ (0, 1), the random variable

1

t
inf

⎧
⎨

⎩
s > 0 :

∑

x∈Zd

∣
∣
∣
∣
u(x, t + s)

U (t + s)
− u(x, t)

U (t)

∣
∣
∣
∣ > ε

⎫
⎬

⎭
(2.14)

converges in distribution as t →∞ to the random variable Θ defined in (2.12).

A key point to note about Theorem 2.7 is that the limiting random variable does not
depend on ε. This suggests that, in fact, the sum in (2.14) jumps from values near 0
to values near 1 as s varies in a time interval of sublinear length in t .

2.5 Results: Limit profiles

The localization stated in Theorem 2.3 can be given in a more precise form provided
that we make an additional uniqueness assumption. In order to state this assumption,
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we need further definitions. Given a potential V : Z
d → R, let

L(V ) :=
∑

x∈Zd

e
V (x)
ρ . (2.15)

The functionalLplays the role of a large deviation rate function for randompotentials ξ
with doubly-exponential tails. WheneverL(V ) <∞ (in fact, whenever V (x)→−∞
as |x | → ∞),Δ+V has a compact resolvent as an operator on �2(Zd), and its largest
eigenvalue λ(1)(V ) is well-defined and simple. The constant

χ = χ(ρ) := − sup
{
λ(1)(V ) : V ∈ R

Z
d
, L(V ) ≤ 1

} ∈ [0, 2d] (2.16)

is key in the analysis of the asymptotic growth ofU (t). The set of centeredmaximizers

M∗
ρ :=

{
V ∈ R

Z
d : 0 ∈ argmax(V ),L(V ) ≤ 1 and λ(1)(V ) = −χ

}
(2.17)

is known to be non-empty. The assumption below deals with uniqueness:

Assumption 2.8 (Uniqueness of maximizer) We assume that M∗
ρ = {Vρ}, i.e., the

variational problem (2.16) admits a unique centered solution Vρ .

The uniqueness of the centered minimizer is conjectured to hold for all ρ > 0, but
has so far only been proved for ρ large enough; see [11]. In the latter paper it is also
shown that, for any V ∈M∗

ρ , the non-negative principal eigenfunction of the operator
Δ+ V is strictly positive and lies in �1(Zd). Under Assumption (2.8), we will denote
henceforth by vρ the principal eigenfunction of Δ+ Vρ , normalized so that

vρ > 0 and ‖vρ‖�1(Zd ) = 1. (2.18)

Then we have:

Theorem 2.9 (Limiting profiles) Suppose Assumption 2.8 and let (Zt )t>0 be the
process from Theorems 2.3, 2.4 and 2.5. There exist μt ∈ N and ât > 0 satisfy-
ing limt→∞ μt = ∞ and limt→∞ ât/(ρ ln2 t) = 1 such that, for all ε ∈ (0, 1),

sup
s∈[εt, ε−1t]

sup
x∈Zd : |x |≤μt

∣
∣ξ(x + Zs)− ât − Vρ(x)

∣
∣ −→

t→∞ 0 in probability. (2.19)

Moreover, for any lt > 0 satisfying limt→∞ 1
t lt = 0,

sup
s∈[t−lt ,t+lt ]

∑

x∈Zd

∣
∣
∣
∣
u(Zt + x, s)

U (s)
− vρ(x)

∣
∣
∣
∣ −→t→∞ 0 in probability. (2.20)

The scale ât in (2.19) coincides (up to terms that vanish as t →∞) with the maximum
of ξ inside a boxof radius t [see (5.1) for the definition, and alsoLemma5.1].Moreover,
the scales at and ât (with at as in Theorem 2.5) satisfy limt→∞ ât − at = χ . The
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scaleμt provided in the proof of Theorem 2.9 satisfiesμt � (ln t)κ for some arbitrary
κ < 1/d, but its actual rate of growth is not controlled explicitly.

The rest of the paper is organized as follows. In Sect. 3 below we discuss connec-
tions to the literature and provide some heuristics. Section 4 contains an extensive
overview of our proofs including the definition of the localization process Zt . The
technical core of the paper is formed by Sect. 5 (properties of the potential and spec-
tral bounds), Sect. 6 (path expansions) and Sect. 7 (a point process approach). The
bulk of the proofs related to our main results is carried out in Sects. 8–11, concern-
ing respectively negligible contributions to the Feynman–Kac formula, localization of
relevant eigenfunctions, path localization properties and the analysis of local profiles.
The proofs of some technical results are given in Appendices 12–14.

3 Connections and heuristics

In this section, we make connections to earlier work on this problem, and also provide
a short heuristic argument motivating the definition of the scales in (2.6).

3.1 Relations to earlier work

Let us give a quick survey on earlier works on the particular question that we consider;
we refer to [15] for a comprehensive account on the parabolic Anderson model, and
to [20] for a survey on certain aspects closely related to the present paper.

Since 1990, much of the effort went into developing a characterization of the log-
arithmic asymptotics of t �→ U (t) and its moments, which are all finite if and only
if all the positive exponential moments of ξ(0) are finite. For this case, under a mild
regularity assumption, [27] identified four universality classes of asymptotic behav-
iors: potentials with tails heavier than (1.9) (corresponding formally to ρ = ∞),
double-exponential tails of the form (1.9), the so-called “almost bounded” potentials
(corresponding formally to ρ = 0), and bounded potentials. The first two cases were
treated in [14], and the last two in [27] and [5], respectively. Potentials with infinite
exponential moments were analysed in [28] (more precisely, Pareto andWeibull tails),
where weak limits and almost sure asymptotics for U (t) were obtained.

In all of the classes mentioned above, the asymptotics of U (t) is expressed in terms
of a variational principle for the local time of the path in Q(ξ)

t and/or the “profile”
of ξ that maximizes a local eigenvalue. The picture that emerges is that a typical
path sampled from Q(ξ)

t for t large will spend an overwhelming majority of time in
a relatively small volume whose location is characterized by a favourable value of
the local Dirichlet eigenvalue. Proofs of such statements have first been available for
a related version of the model using the method of enlargement of obstacles [25]
and later also for the double-exponential class by probabilistic path expansions [12].
However, neither of these approaches was sharp enough to distinguish among the
many “favourable eigenvalues.” In fact, while the expectation was that only a finite
number of such eigenvalues needs to be considered, the best available bound on their
number was to(1).
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For distributions with tails heavier than (1.9), progress on the mass concentration
question has been made in [16] and more recently in [9,17,26]. The distributions
therein considered are, respectively, Pareto, exponential, Weibull with parameter γ ∈
(0, 2) and general Weibull. In these papers it is proven that, with large probability, the
solution is asymptotically concentrated on a single lattice point, which is an extremely
strong localization property. In the doubly-exponential case considered here, due to
less-heavy tails, the localization phenomenon is not so strong; indeed, restricting to
any bounded region misses some fraction of the total mass of the solution.

The analysis leading to our result depends crucially on the characterization of the
order statistics of local principal eigenvalues for the Anderson Hamiltonian performed
in [7], which allows us to conveniently represent local eigenvalues through a point
process approach. In this aspect, our paper shares similarities with [9], which draws
heavily upon the analysis of the spectral order statistics in [1,2]. However, our case also
harbors many significant differences, caused mainly by the non-degenerate structure
of the dominant eigenfunctions.

For the remaining two universality classes of ξ—namely, the bounded and “almost
bounded” fields—the mass-concentration question is yet more difficult because the
relevant eigenvectors extend over spatial scales that diverge with time. Nevertheless,
we believe that our approach could provide a strategy to study these cases as well.

3.2 Some heuristics

We present next a heuristic calculation based on [7] to motivate the appearance of
the scale rt defined in (2.6). We will describe a strategy to obtain a lower bound for
the total mass U (t) defined in (1.6). Our actual proof of the corresponding result (cf.
Proposition 4.6 below) follows similar but somewhat different steps.

Write Bt ⊂ Z
d for the �∞-ball with radius t , and denote by λ(k)Bt

, φ(k)
Bt
, 1 ≤ k ≤

|Bt |, the eigenvalues and corresponding orthonormal eigenfunctions of the Anderson
Hamiltonian in Bt with zero Dirichlet boundary conditions. If Y (k)

Bt
∈ Bt are points

maximizing |φ(k)
Bt
|2, it can be shown via spectral methods that

E
Y (k)

Bt

[
e
∫ t
0 ξ(Xr )dr 1 {Xr ∈ Bt ∀ r ∈ [0, t]}

]
� etλ(k)Bt . (3.1)

Inserting in (1.6) the event where the random walk X reaches Y (k)
Bt

at a time s < t and
then remains in Bt until time t , and using the Markov property at time s, we obtain

U (t) ≥ E0

[
e
∫ t
0 ξ(Xr ) dr 1

{
Xs = Y (k)

Bt
, Xr ∈ Bt ∀r ∈ [s, t]

}]

� P0(Xs = Y (k)
Bt
) e(t−s)λ(k)Bt ≈ e−|Y

(k)
Bt
| ln(|Y (k)

Bt
|/s) e(t−s)λ(k)Bt ,

(3.2)

where for simplicity we assumed that ξ is non-negative, and to approximate the
probability P0(Xs = Y (k)

Bt
), we assume |Y (k)

Bt
| � s. Optimizing over s gives the can-

didate s = |Y (k)
Bt
|/λ(k)Bt

, which we may plug in (3.2) provided that we also assume
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|Y (k)
Bt
|/λ(k)Bt

< t . With this choice, (3.2) becomes approximately

exp
{

tλ(k)Bt
− |Y (k)

Bt
| ln λ(k)Bt

}
= etat exp

{

tdt
λ
(k)
Bt
− at

dt
− |Y (k)

Bt
| ln λ(k)Bt

}

, (3.3)

where at ∼ ρ ln2 t is the leading order of the principal Dirichlet eigenvalue of H in
a box of radius t as identified in [7] (and is also the same scale appearing in Theo-
rem 2.5). In [7], it is shown that the collection of rescaled points {(λ(k)Bt

−at )/dt }1≤k≤|Bt |
converges in distribution to (the support of) a Poisson point process. Assuming thus
that (λ(k)Bt

−at )/dt is of finite order, an index k optimizing (3.3) should balance out the

two competing terms, implying |Y (k)
Bt
| ≈ rt .

4 Main results from key propositions

We give in this section an outline to the proof of Theorems 2.3, 2.4, 2.7 and 2.9. This
will be achievedbywayof a sequence of propositions that encapsulate the key technical
aspects of the whole argument. The proofs of these propositions and of Theorems 2.5–
2.6 constitute the remainder of this paper and are the subject of Sects. 5–11 as well as
the three appendices. Note that Theorem 2.6 will be assumed in Sects. 4.5–4.6 below.

Throughout the rest of this work, we set N := {1, 2, . . .} and N0 := N ∪ {0}.
We denote by dist(·, ·) the metric derived from the �1-norm | · |, and by diam(·)
the corresponding diameter. For a real-valued function f and a positive function g,
we write f (t) = O(g(t)) as t → ∞ to denote that there exists C > 0 such that
| f (t)| ≤ Cg(t) for all large enough t , and we write f (t) = o(g(t)) in place of
limt→∞ | f (t)|/g(t) = 0. In the latter case, we may also alternatively write | f (t)| �
g(t) or g(t) � | f (t)|. By o(·) or O(·) we will always mean deterministic bounds,
i.e., independent of the realization of ξ .

4.1 Definition of the localization process

For Λ ⊂ Z
d finite, we denote by λ(1)Λ the largest Dirichlet eigenvalue (i.e., with zero

boundary conditions) of Δ+ ξ in Λ. For L ∈ N and x ∈ Z
d , we let

BL(x) := x + [−L , L]d ∩ Z
d , (4.1)

and when x = 0 we write BL instead of BL(0).
Fix κ ∈ (0, 1/d). For each z ∈ Z

d , we define a ξ -dependent radius

�z :=
⌊

exp
{κ

ρ
ξ(z)

}⌋

(4.2)

and we let
C :=

{
z ∈ Z

d : ξ(z) ≥ ξ(y) ∀ y ∈ B�z (z)
}

(4.3)
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denote the set of local maxima of ξ in neighborhoods of radius �z , which we call
capitals. For z ∈ C , we abbreviate

λC (z) := λ
(1)
B�z (z)

. (4.4)

For t > 0, we define a cost functional over the points z ∈ C by setting

Ψt (z) := λC (z)− ln+3 |z|
t

|z|, where ln+3 x := ln3(x ∨ ee). (4.5)

The functional Ψt measures the relevance at time t of a capital z ∈ C by weighting
the principal eigenvalue in B�z (z) against the �

1-distance to the origin |z|. The next
proposition shows that Ψt admits a maximizer:

Proposition 4.1 Almost surely, |C | = ∞ and, for all t > 0 and all η ∈ R,

∣
∣{z ∈ C : Ψt (z) > η}∣∣ <∞. (4.6)

The proof of Proposition 4.1 will be given in Sect. 5. In order to define Zt as a
càdlàg maximizer of Ψt , we proceed as follows. Write (λ, z) � (λ′, z′) for the usual
lexicographical order of R× R

d , i.e., (λ, z) � (λ′, z′) if either λ > λ′, or λ = λ′ and
z � z′ according to the usual (non-strict) lexicographical order of R

d . Now define,
recursively for k ∈ N,

Ψ
(k)
t := sup

z∈C \
{

Z (1)
t ,...,Z (k−1)

t

}
Ψt (z), (4.7)

S(k)
t := {z ∈ C \ {Z (1)

t , . . . , Z (k−1)
t

} : Ψt (z) = Ψ
(k)
t
}
, (4.8)

and

Z (k)
t ∈

{
z ∈ S(k)

t : (λC (z), z
) � (λC (ẑ), ẑ

) ∀ ẑ ∈ S(k)
t

}
. (4.9)

Observe that (4.9) determines Z (k)
t uniquely. Then we set

Zt := Z (1)
t . (4.10)

The above definitions ensure that the maps t �→ Ψ
(k)
t are continuous while t �→ Z (k)

t
are càdlàg, with t �→ |Zt | non-decreasing [see Lemma 7.5 and (7.42–7.43)]. We point
out that the choice of κ in (4.2) is of minor relevance, not affecting the asymptotic
behavior of Ψt or its maximizers.

Note that we can have B�z (z)∩ B�z′ (z′) �= ∅ for distinct z, z′ ∈ C . Nevertheless, as
is shown next, the relevant points of C are well-separated with large probability:
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Proposition 4.2 (Separation of relevant capitals) There exist subsets Ct ⊂ C such
that, for any k ∈ N, β ∈ (0, 1), and 0 < a ≤ b <∞, with probability tending to 1 as
t →∞, {

Z (1)
s , . . . , Z (k)

s

} ⊂ Ct ∀ s ∈ [at, bt] (4.11)

and
dist(z, z′) > tβ for all distinct z, z′ ∈ Ct . (4.12)

Proposition 4.2 will be proved in Sect. 7.

Remark 4.3 It would have been perhaps more natural to define Ψt with ln
+
3 |z| substi-

tuted by ln λC (z), which is a form that appears in the literature (see also the proof of
Proposition 4.6). The analysis is slightly simpler with our definition, cf. Sect. 7 below.
Substituting however ln+3 |z| by ln3 t (which is the leading order of ln+3 |Zt |) would
not be as convenient, as this would complicate our proof of functional convergence.

4.2 Properties of the cost functional

The technical statements start with a discussion of the properties of the above cost
functional Ψt and the process Zt . Recall the definitions of rt and dt from (2.6). The
various error estimates that are to follow will require a host of auxiliary scales. First
we fix t �→ εt ∈ (0, 1), εt � (ln3 t)−1 arbitrary as in the statement of Theorem 2.4;
note that εt may converge to 0. Then, similarly to [22], we fix et , ft , gt , ht and bt such
that

et , ft , ht , bt −→
t→∞ 0 and gt −→

t→∞ ∞ (4.13)

while also gt

εt ln3 t
� bt � ft ht and gt ht � et . (4.14)

As an example of scales satisfying (4.13–4.14), one may take suitable powers
of εt ln3 t . We then have:

Proposition 4.4 Fix 0 < a ≤ b <∞. Then, with probability tending to 1 as t →∞,

inf
s∈[at,bt]Ψ

(1)
s > (ρ + o(1)) ln2 t, (4.15)

(
Ψ

(1)
at − Ψ

(2)
at
) ∧ (Ψ (1)

bt − Ψ
(2)
bt

)
> dt et (4.16)

and
rt ft < inf

s∈[at,bt] |Zs | ≤ sup
s∈[at,bt]

|Zs | < rt gt . (4.17)

Proposition 4.4 is proved in Sect. 7, together with Theorems 2.5–2.6. The proofs
rely strongly on the extreme order statistics of the principal Dirichlet eigenvalue in
a box identified in [7] and, similarly to the approach of [9,16,17,21,22,26], on a
Poisson point process approximation. However, in order to deal with the fact that
the local eigenvalues do not depend on bounded regions in space, a coarse-graining
scheme taken from [7] is required. Our approach provides a quite direct implication of
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functional convergence and aging for Zt from the convergence of the underlying point
process (in a suitable topology), see in particular Lemmas 7.4, 7.6 and 7.9 below. We
believe that this approach could be useful to prove analogous results in other contexts,
e.g., the PAM with lighter potential tails.

Notice that in (4.16) we only require a gap between Ψ (1)
s and Ψ (2)

s for s ∈ {at, bt}.
This is because, while the gap is greater than dt et with large probability at both at and
bt , there is by (2.11) a non-zero probability that s �→ Zs jumps in the interval [at, bt],
leading to a zero gap at the jump time. Notwithstanding, if no such jump occurs, then
the gap remains uniformly positive throughout the interval. Indeed, define

Gt,s :=
{
Ψ (1)

s − Ψ (2)
s ≥ dt et

}
. (4.18)

Then we have:

Proposition 4.5 With probability one, for any 0 < a ≤ b <∞ and any t > 0,

Gt,at ∩ Gt,bt ∩ {Zat = Zbt } =
⋂

s∈[at,bt]

(
Gt,s ∩ {Zs = Zat }

)
. (4.19)

The proof of Proposition 4.5 is related to that of Theorem 2.6, and so it is relegated to
Sect. 7 as well.

4.3 Mass decomposition and negligible contributions

Having dealt with the cost functional and localization process, we proceed by giving
estimates on the solution to (1.1–1.2). As noted already earlier, this solution can be
written using the Feynman–Kac formula (1.5), which offers the strategy to control
u(t, x) by decomposing the expectation based on various restrictions on the underlying
random walk. A starting point is a good lower bound on the total mass U (t):

Proposition 4.6 For any 0 < a ≤ b <∞,

inf
s∈[at,bt]

{
lnU (s)− sΨ (1)

s

}
≥ o(tdt btεt ) (4.20)

holds with probability tending to 1 as t →∞.

For Λ ⊂ Z
d , let

τΛ := inf {s > 0 : Xs ∈ Λ} (4.21)

denote the first hitting time of Λ by the random walk X . Our decomposition of (1.5)
begins by restricting the expectation to paths that never leave a box of side-length

Lt := �t ln+2 t�, where ln+2 t := ln2(t ∨ e). (4.22)

This restriction comes at little loss since we have:
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Proposition 4.7 For any 0 < a ≤ b < ∞, there is a t0 = t0(ξ) with t0 < ∞ a.s.
such that

sup
s∈[at,bt]

lnE0

[
e
∫ s
0 ξ(Xu)du1

{
τBc

Lt
≤ s
}]

≤ −1

8
t (ln2 t) ln3 t (4.23)

holds whenever t > t0.

Next we show that the bulk of the contribution to the Feynman–Kac formula comes
from paths that do not even leave the random domain

D◦
t,s :=

{
x ∈ Z

d : |x | ≤ |Zs |(1+ ht )
}
. (4.24)

Indeed, the contribution of paths that leave this set is bounded via:

Proposition 4.8 For any 0 < a ≤ b <∞,

sup
s∈[at,bt]

{

lnE0

[
e
∫ s
0 ξ(Xu)du1

{
τ(D◦

t,s )
c ≤ s < τBc

Lt

}]

−max
{
sΨ (2)

s , sΨ (1)
s − ht |Zs | ln3 t

}
}

≤ o(tdt bt ) (4.25)

holds with probability tending to 1 as t →∞.

We also control the contribution of paths that do not enter a fixed neighborhood
of Zt :

Proposition 4.9 For all large enough ν ∈ N and all 0 < a ≤ b <∞,

sup
s∈[at,bt]

{
lnE0

[
e
∫ s
0 ξ(Xu)du1

{
τBν (Zs ) ∧ τBc

Lt
> s
}]
− sΨ (2)

s

}
≤ o(tdt bt ) (4.26)

holds with probability tending to 1 as t →∞.

The above propositions will allow us to restrict the Feynman–Kac formula to the
event

Rν
t,s :=

{
τ(D◦

t,s )
c > s ≥ τBν (Zs )

}
, (4.27)

and proceed to control the result using spectral techniques; see Sect. 4.4.
Our proofs of Propositions 4.6 and 4.7, given respectively in Sects. 8.1 and 8.2, are

relatively simple and follow similar results in the literature. Propositions 4.8 and 4.9
are proven in Sect. 8.3; theirmain technical point is a path expansion scheme developed
in Sect. 6, based on an approach from [22]. Additional difficulties arise in our case due
to smaller gaps in the potential, and to the fact that the effective support of the relevant
local eigenvalues is unbounded in the limit of large times. This is overcome through
a careful analysis of the connectivity properties of the level sets of the potential and
their implications for the bounds derived via path expansions.

An important observation is that λC (Zs) is the largest possible over all capitals
inside D◦

t,s (cf. Lemma 9.1). This comes as a consequence of the choice of ht in (4.14),
which is of special relevance as it simultaneously allows the proofs of Proposition 4.8
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above (for which ht should be large enough) and Proposition 4.11 below (for which
ht should be small enough). We also note that a complementary upper bound to (4.20)
holds as well (cf. Lemma 8.6), which will be important for the proof of Theorem 2.5
in Sect. 8.4.

4.4 Localization

Once the path has been shown to enter a neighborhood of Zt by time t with large
probability, the next item of concern is to show that it will actually not be found far
away from Zt at time t . This will be done by bounding the end-point distribution using
the principal eigenfunction φ◦t,s corresponding to the largest Dirichlet eigenvalue of
the Anderson Hamiltonian in D◦

t,s , which we assume to be normalized so that

φ◦t,s > 0 on D◦
t,s, φ◦t,s = 0 on (D◦

t,s)
c and

∥
∥φ◦t,s

∥
∥
�2(Zd )

= 1. (4.28)

We have:

Proposition 4.10 For any ν ∈ N and 0 < a ≤ b < ∞, the following holds with
probability tending to 1 as t →∞: For all s ∈ [at, bt] and all x ∈ D◦

t,s ,

E0

[
e
∫ s
0 ξ(Xu)du1Rν

t,s∩{Xs=x}
]
≤ U (s) sup

y∈Bν (Zs )

{
φ◦t,s(y)−3

}
φ◦t,s(x). (4.29)

In order to use the bound in (4.29), we will need an estimate on the decay of φ◦t,s
away from Zs . On the event Gt,s from (4.18), this is the subject of:

Proposition 4.11 There exist c1, c2 > 0 and, for all ν ∈ N, also εν > 0 such that, for
all 0 < a ≤ b <∞, the following holds on with probability tending to 1 as t →∞:
For all s ∈ [at, bt], on Gt,s we have

(i) φ◦t,s(x) ≤ c1e
−c2|x−Zs | ∀x ∈ Z

d , (4.30)

(ii) φ◦t,s(y) ≥ εν ∀y ∈ Bν(Zs). (4.31)

Propositions 4.10–4.11 are proven in Sect. 9. Proposition 4.10 is similar to Propo-
sition 3.11 in [22], and is obtained by adaptation of [12, Theorem 4.1]. The proof of
Proposition 4.11(i) an adaptation of [7, Theorem 1.4], while part (ii) relies on results
from [11,14] and [12] regarding the optimal shapes of the potential.

4.5 Proof of mass concentration results

We have now amassed enough information for the proof of Theorem 2.3, assuming
Theorem 2.6 and the above propositions:

Proof of Theorem 2.3 Fix ν ∈ N large enough so that Proposition 4.9 is available. Fix
0 < a ≤ b < ∞. We will first show that, for all δ > 0, there exists an R ∈ N such
that
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lim
t→∞Prob

(∃ s ∈ [at, bt] : Ψ (1)
s − Ψ (2)

s ≥ dt et , Q(ξ)

s (|Xs − Zs | > R) > δ
) = 0,

(4.32)
and derive the desired claim from this at the very end.

We begin by noting that Propositions 4.6–4.9 imply that

ln

(
1

U (s)
E0

[
e
∫ s
0 ξ(Xu)du1(Rν

t,s )
c

])

≤ −s min

{

Ψ (1)
s − Ψ (2)

s , ht |Zs | ln3 t,
t ln2 t ln3 t

8s
+ Ψ (1)

s

}

+ o(tdt bt ) (4.33)

holds true for all s ∈ [at, bt] with probability tending to 1 as t → ∞. By Proposi-
tion 4.4, on Gt,s = {Ψ (1)

s − Ψ
(2)
s ≥ dt et } we may further bound (4.33) by

− at min
{
dt et , htrt ft ln3 t, 1

2ρ ln2 t
}+ o(tdt bt ) (4.34)

which goes to−∞ as t →∞by (2.6) and (4.14)—indeed, (4.14) shows that et ln3 t →
∞ (in fact, et � gt/ ln3 t with gt → ∞) and so tdt et � ct/[(ln t) ln3 t]—implying
that

lim
t→∞ sup

s∈[at,bt]
1Gt,s

U (s)
E0

[
e
∫ s
0 ξ(Xu)du1(Rν

t,s )
c

]
= 0 in probability. (4.35)

Fix now δ > 0 and let R ∈ N be large enough such that

ε−3ν c1
∑

|x |>R

e−c2|x | < δ

2
, (4.36)

where c1, c2 and εν are as in Proposition 4.11. By Propositions 4.10–4.11,

sup
s∈[at,bt]

1Gt,s

U (s)

∑

x : |x−Zs |>R

E0

[
e
∫ s
0 ξ(Xu)du1Rν

t,s∩{Xs=x}
]
<

δ

2
(4.37)

with probability tending to 1 as t →∞, which together with (4.35) implies (4.32).
To conclude the desired statement from (4.32), fix lt > 0, lt = o(t) and note that,

by Theorem 2.6 and Propositions 4.4–4.5, with probability tending to 1 as t →∞,

Zs = Zt and Ψ (1)
s − Ψ (2)

s ≥ dt et ∀s ∈ [t − lt , t + lt ]. (4.38)

This together with (4.32) (with a < 1 < b) implies (2.4). � 
The presence of the scale εt in (4.20) was not needed in the proof above, but it will

be important for the proof of Theorem 2.4. More precisely, it will be used to obtain
the following improvement of Proposition 4.9:
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Proposition 4.12 For all sufficiently large ν ∈ N,

1

U (t)
E0

[
e
∫ t
0 ξ(Xs )ds1

{
τ(D◦

t,t )
c > t ≥ τBν (Zt ) > εt t

}]
−→
t→∞ 0 (4.39)

in probability.

Wewill also need the following proposition, which bounds the contribution of paths
starting at a point x ∈ Bν(Zt ) and reaching a distance greater than 1

2εt ln t :

Proposition 4.13 For any k ∈ N and any ν ∈ N, the following holds with probability
tending to 1 as t →∞: For all x ∈ Bν(Zt ) and all 0 ≤ s ≤ t ,

Ex

[

e
∫ s
0 ξ(Xu)du1

{
τ(D◦

t,t )
c > s, sup

0≤u≤s
|Xu − x | > 1

2εt ln t
}
]

≤ t−k
Ex

[
e
∫ s
0 ξ(Xu)du

]
. (4.40)

Propositions 4.12–4.13 will be proved in Sect. 10. They allow us to give:

Proof of Theorem 2.4 Fix ν ∈ N large enough so that the conclusion of Proposi-
tion 4.12 becomes available. Write τ̃ := τBν (Zt ) and note that, since εt � (ln3 t)−1,
when t is large,

{

sup
s∈[εt t,t]

|Xs − Zt | > εt ln t

}

⊂ (Rν
t,t )

c ∪
{
τ(D◦

t,t )
c > t ≥ τ̃ > εt t

}
∪ At , (4.41)

where

At :=
{

τ(D◦
t,t )

c > t, τ̃ ≤ εt t, sup
s∈[̃τ ,t]

|Xs − X τ̃ | > 1
2εt ln t

}

. (4.42)

By (4.35), Propositions 4.4 and 4.12,

Q(ξ)

t
(
(Rν

t,t )
c) ∨ Q(ξ)

t

(
τ(D◦

t,t )
c > t ≥ τ̃ > εt t

)
−→
t→∞ 0 in probability. (4.43)

To control Q(ξ)

t (At ), let

Gt (x, s) := Ex

[
e
∫ s
0 ξ(Xu)du1

{
τ(D◦t,t )c>s, sup0≤u≤s |Xu−x |> 1

2 εt ln t
}]

(4.44)

and use the strong Markov property and Proposition 4.13 to get

E0

[
e
∫ t
0 ξ(Xs )ds1At

]
=

∑

x∈Bν (Zt )

E0

[
e
∫ τ̃
0 ξ(Xs )ds1{

τ(D◦t,t )c>τ̃=τx≤εt t
}Gt (x, t − τ̃ )

]

≤ t−1U (t) (4.45)

with probability tending to 1 as t →∞. The desired claim now readily follows from
(4.41), (4.43) and (4.45). � 
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4.6 Proof of aging and limit profiles

The last set of propositions to be introduced here concern the proof of Theorems 2.7
and 2.9.We startwith some supporting notation.Given a function t �→ μt withμt ∈ N,
let φ•t,s denote the eigenfunction corresponding to the largest Dirichlet eigenvalue of
the Anderson operator in Bμt (Zs), normalized so that

φ•t,s > 0 on Bμt (Zs), φ•t,s = 0 on Bc
μt
(Zs) and

∥
∥φ•t,s

∥
∥
�1(Zd )

= 1. (4.46)

(Notice our use of the �1-norm here.)When s = t we omit one index from the notation.
Recall the choice of κ ∈ (0, 1/d) in (4.2). We then have:

Proposition 4.14 For any μt ∈ N with 1� μt � (ln t)κ , and any 0 < a ≤ b <∞,

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∥
∥
∥
∥

u(·, s)

U (s)
− φ•t,s(·)

∥
∥
∥
∥
�1(Zd )

= 0 in probability. (4.47)

We may thus obtain information about the profile of u(·, s) via that of φ•t,s . As shown
next, the latter can be controlled under Assumption 2.8, along with the shape of ξ :

Proposition 4.15 If Assumption 2.8 holds, then there exists μt ∈ N with 1 � μt �
(ln t)κ and a function ât satisfying limt→∞ ât/ ln2 t = ρ such that, for any 0 < a ≤
b <∞, both

sup
s∈[at,bt]

sup
x∈Bμt

∣
∣ξ(x + Zs)− ât − Vρ(x)

∣
∣ (4.48)

and
sup

s∈[at,bt]
∥
∥φ•t,s(Zs + ·)− vρ(·)

∥
∥
�1(Zd )

(4.49)

converge to 0 in probability as t →∞.

The proofs of Propositions 4.14–4.15 are based on an approach from [12] and will
be given in Sect. 11 below. Together with Theorem 2.6, they imply:

Proof of Theorem 2.9 Note that (2.19) follows directly from (4.48). For (2.20),
use (4.47), (4.49), the triangle inequality for the �1-norm and (4.38). � 

We finish the section with:

Proof of Theorem 2.7 We adapt the proof of Theorem 1.1 of [21]. By Theorem 2.6, it
is enough to show that, for any ε ∈ (0, 1) and b > 1,

sup
s∈[t,bt]

∑

z∈Zd

∣
∣
∣
∣
u(z, s)

U (s)
− u(z, t)

U (t)

∣
∣
∣
∣ < ε if and only if Zs = Zt ∀ s ∈ [t, bt] (4.50)

holds with probability tending to 1 as t →∞.
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Assumefirst that Zs �= Zt for some s ∈ (t, bt]. By Propositions 4.4 and 4.5, wemay
assume that Zbt �= Zt , and therefore by Proposition 4.2 also that e.g. |Zbt − Zt | > √

t .
Fixing R so that (4.32) holds with δ < 1

2 (1− ε), we obtain

∑

z∈Zd

∣
∣
∣
∣
u(z, bt)

U (bt)
− u(z, t)

U (t)

∣
∣
∣
∣

≥
∑

|z−Zbt |≤R

∣
∣
∣
∣
u(z, bt)

U (bt)

∣
∣
∣
∣−

∑

|z−Zt |>R

∣
∣
∣
∣
u(z, t)

U (t)

∣
∣
∣
∣ ≥ 1− 2δ > ε (4.51)

with probability tending to 1 as t →∞, proving the “only if” part of (4.50).
Assume now that Zs = Zt ∀ s ∈ [t, bt]. Then φ•t,s = φ•t for all s ∈ [t, bt], and the

“if” part of (4.50) follows by (4.47) with a = 1 < b and Propositions 4.4–4.5. � 

5 Preparations

In this section, we collect auxiliary results that will be used in the remainder of the
paper. We start with a few basic properties of the potential field and of the principal
Dirichlet eigenvalue of the Anderson Hamiltonian in subdomains ofZ

d , leading to the
proof of Proposition 4.1. The two subsequent subsections concern additional properties
of the potential field, and the last one contains spectral bounds for the Feynman–Kac
formula.

5.1 Potentials and eigenvalues

First we consider themaximumof the potential in a box. Let âL be theminimal number
satisfying

Prob (ξ(0) > âL) = L−d , (5.1)

which exists since, by Assumption 2.1, ξ(0) has a continuous distribution. Note that,
in the notation of [14], âL = ψ(d ln L). Then we have:

Lemma 5.1 (Maximum of the potential)

lim
L→∞ max

x∈BL
ξ(x)− âL = 0 a.s. (5.2)

Proof See Corollary 2.7 of [14]. � 
Let us mention here some properties of âL . By equation (2.1) of [14],

âkL = âL + o(1) as L →∞ whenever ln kL = ln L(1+ o(1)) (5.3)

and, by Remark 2.1 therein, it is straightforward to verify that âL = (ρ + o(1)) ln2 L .
Next we recall the Rayleigh–Ritz formula for the principal eigenvalue of the Ander-

son Hamiltonian. ForΛ ⊂ Z
d and V : Z

d → [−∞,∞), let λ(1)Λ (V ) denote the largest
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eigenvalue of the operator Δ+ V in Λ with Dirichlet boundary conditions. Then

λ
(1)
Λ (V ) = sup

{
〈(Δ+ V )φ, φ〉�2(Zd ) : φ ∈ R

Z
d
, suppφ ⊂ Λ, ‖φ‖�2(Zd ) = 1

}
.

(5.4)
When V = ξ we sometimeswrite λ(1)Λ instead of λ(1)Λ (ξ). Here are some straightforward
consequences of the Rayleigh–Ritz formula:

1. for any Γ � Λ,

max
z∈Γ V (z)− 2d ≤ λ

(1)
Γ (V ) ≤ λ

(1)
Λ (V ) ≤ max

z∈Λ V (z); (5.5)

2. the eigenfunction corresponding to λ(1)Λ (V ) can be taken non-negative;
3. if V is real-valued and Λ is finite and connected (in the graph-theoretical sense

according to the usual nearest-neighbor structure ofZd ), then themiddle inequality
in (5.5) is strict and, moreover, the non-negative eigenfunction corresponding
to λ(1)Λ (V ) is strictly positive;

4. for Λ,Λ′ ⊂ Z
d such that dist(Λ,Λ′) ≥ 2,

λ
(1)
Λ∪Λ′(V ) = max

{
λ
(1)
Λ (V ), λ

(1)
Λ′(V )

}
. (5.6)

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1 Note that, for any R ∈ N and z ∈ Z
d ,

{z ∈ C } ⊇
{

ξ(z) ≤ ρκ−1 ln R, ξ(z) = max
x∈BR(z)

ξ(x)

}

, (5.7)

and the probability of the event on the right-hand side does not depend on z and is
positive for some fixed large enough R. As the events on the right of (5.7) depend
only on a finite number of coordinates, the second Borel–Cantelli lemma shows that
|C | = ∞ almost surely. Now, by (5.5), λC (z) ≤ ξ(z) for any z ∈ C while, by
Lemma 5.1, almost surely ξ(z) ≤ 2ρ ln2 |z| for all |z| large enough. This implies that,
almost surely,

lim sup
R→∞

sup
z∈C ,|z|=R

Ψt (z) ≤ lim
R→∞

(
2ρ ln2 R − R

ln3 R

t

)
= −∞ (5.8)

for each t > 0, finishing the proof. � 
Next we generalize (2.15–2.16). For Λ ⊂ Z

d and V : Z
d → [−∞,∞), let

LΛ(V ) :=
∑

x∈Λ
e

V (x)
ρ , (5.9)

with the convention e−∞ := 0. Then set

χΛ = χΛ(ρ) := − sup
{
λ
(1)
Λ (V ) : V ∈ [−∞, 0]Zd

, LΛ(V ) ≤ 1
}
. (5.10)
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When Λ = Z
d we write just χ . From the definition it follows that, if Γ ⊂ Λ, then

χΓ ≥ χΛ; in particular, 0 ≤ χ ≤ χΛ ≤ 2d since χ{x} = 2d for any x ∈ Z
d .

5.2 Islands

Central to our analysis is a domain truncation method taken from [7], which we
describe next. Recall the choice of κ ∈ (0, 1/d) in (4.2) and fix an increasing sequence
RL ∈ N such that

RL ≤ (ln L) ∨ 1 and RL � (ln L)β as L →∞ for some β ∈ (κ, 1/d). (5.11)

This sequence will control the spatial size of the regions in BL where the field is large,
and thus the (principal) local eigenvalue has a chance to be close to maximal. We will
often work with RL satisfying additionally

RL � (ln L)α as L →∞ for some α ∈ (β, 1/d), (5.12)

but for the proof of Proposition 4.13 in Sect. 10.2 we will need to consider RL growing
as ln L . Given A > 0 and L ∈ N, let

ΠL ,A := {z ∈ BL : ξ(z) > âL − 2A} (5.13)

be the set of high exceedances of the field inside the box BL , and put

DL ,A :=
⋃

z∈ΠL ,A

BRL (z) ∩ BL . (5.14)

The parameter A, providing the cutoff between the “high” and “small” values of the
field, will be later fixed to a suitably large value that depends only on the dimension d
and the parameter ρ.

Let CL ,A denote the set of all connected components of DL ,A, to be called islands.
For C ∈ CL ,A, let

zC := argmax {ξ(z) : z ∈ C} (5.15)

be the point of highest potential within C. Since ξ(0) has a continuous law, zC is a.s.
well defined for all C ∈ CL ,A.

Next we gather some useful properties of CL ,A. The first result concerns a uniform
bound on the size of the islands. Hereafter we will say that an L-dependent event
occurs “almost surely eventually as L → ∞” if there exists a.s. a (random) L0 ∈ N

such that the event happens for all L ≥ L0. Similar language will be used for events
depending on other parameters (e.g. t).

Lemma 5.2 (Maximum size of the islands) For any A > 0, there exists n A ∈ N such
that, for any RL satisfying (5.11), a.s. eventually as L → ∞, all C ∈ CL ,A satisfy
|C ∩ΠL ,A| ≤ n A and diam(C) ≤ n A RL.

Proof See the proof of Lemma 6.6 in [7]. � 
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For δ > 0, A > 0 and L ∈ N, let

CδL ,A :=
{
C ∈ CL ,A : λ(1)C > âL − χ − δ

}
(5.16)

denote the set of islands with large principal eigenvalue.We call these relevant islands,
as their eigenvalue is close to the principal eigenvalue of BL (cf. Lemma 6.8 of [7]).
In the proofs of our main theorems, δ will be fixed at some small enough value so as
to satisfy the requirements of some intermediate results below.

The next lemma is crucial for the proof of Proposition 7.1, which implies Proposi-
tion 4.4 and is one of the main ingredients in the proof of Theorem 2.5. It allows us to
compare the principal eigenvalues of relevant islands to those of disjoint boxes.

Lemma 5.3 (Coarse-graining for local principal eigenvalues) Assume RL satis-
fies (5.11) and (5.12). Let NL ∈ N satisfy Lβ � NL � Lα as L → ∞ for some
0 < β < α < 1. For all A > 0 sufficiently large and δ > 0 small enough, the
following holds true with probability tending to one as L →∞:

(i) Each C ∈ CδL ,A satisfies λ(1)C − λ
(2)
C ≥ 1

2ρ ln 2.

(ii) For each C ∈ CδL ,A, there exists z ∈ (2NL + 1)Zd such that C ⊂ BNL (z) ⊂ BL.

(iii) Every two distinct C, C′ ∈ CδL ,A satisfy dist(C, C′) > 4d NL .

(iv) Let ηA := {1+ A/(4d)}−1. For any z ∈ (2NL + 1)Zd such that

BNL (z) ⊂ BL and λ
(1)
BNL (z)

> âL − χ − δ + (ηA)
RL (5.17)

there exists a C ∈ CδL ,A satisfying C ⊂ BNL (z) and

λ
(1)
C > λ

(1)
BNL (z)

− (ηA)
RL . (5.18)

Proof Let A, δ be as in the statement of [7, Lemma 6.7]; we may assume that A >

χ + δ. Items (i–iii) follow from items (1–33) in this lemma (the scales there do not
match ours exactly, but the proof is the same). For (iv), assume that L is so large that
2d(ηA)

2RL−1 < (ηA)
RL , and note that λ(1)BNL

(z)− A > âL − 2A. By [7, Theorem 2.1]

applied to D := BNL (z) and (5.6), there exists C ∈ CL ,A, C ∩ BNL (z) �= ∅ such
that (5.18) holds. In particular, C ∈ CδL ,A so, by item (ii), we have C ⊂ BNL (z). � 

Our next goal is to control the behavior of the potential inside relevant islands. This
will be important for the proofs of Propositions 4.9 and 4.11 as well as Lemma 5.8
below. First we will need two lemmas concerning lower and upper bounds for L.

Lemma 5.4 For any Λ ⊂ Z
d and any a ∈ R, if λ(1)Λ ≥ a then LΛ(ξ − a − χΛ) ≥ 1.

Proof This is a consequence of (5.9–5.10) and λ(1)Λ (V + a) = λ
(1)
Λ (V )+ a. � 

Lemma 5.5 Let RL satisfy (5.11–5.12). For any A > 0,

lim sup
L→∞

sup
C∈CL ,A

LC(ξ − âL) ≤ 1 a.s. (5.19)
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Proof This is a consequence of Lemma 5.2 and a straightforward extension of Corol-
lary 2.12 in [14] with R substituted by n A RL . � 

We will now combine the previous two lemmas with results from [7,11] and [12]
to obtain upper and lower bounds around âL for the potential in relevant islands.

Lemma 5.6 (Upper bound for the potential inside relevant islands) Assume (5.11–
5.12). For all δ ∈ (0, 1) small enough, there exist A1 > 4d and ν1 ∈ N such that, for
all A > 0, a.s. eventually as L →∞,

sup
C∈Cδ

L ,A

sup
z∈C\Bν1 (zC)

ξ(z) ≤ âL − 2A1. (5.20)

Proof We follow the proof of Lemma 4.8 of [7]. Fix δ ∈ (0, 1) small enough such
that

A1 := − 1
2ρ ln

(
e
2δ
ρ − e−

2δ
ρ

)
> 4d > χ + δ, (5.21)

and let r ∈ N be such that 2dη2r−1
A1

< δ with ηA1 defined via ηA := (1 + A/4d)−1.
For C ∈ CδL ,A, let

S := {x ∈ C : ξ(x) > âL − 2A1} . (5.22)

We claim that
diam S ≤ 2(r + 1)|S|. (5.23)

Indeed, suppose by contradiction that (5.23) does not hold. Then S = S1 ∪ S2 with
dist(S1, S2) ≥ 2(r +1). Let Sr

i := {x ∈ C : dist(x, Si ) ≤ r}, i = 1, 2. Then, by (5.6),

λ
(1)

Sr
1
∨ λ

(1)

Sr
2
= λ

(1)

Sr
1∪Sr

2
> λ

(1)
C − 2dη2r−1

A1
> âL − χ − 2δ (5.24)

where for the first inequality we use Theorem 2.1 of [7] applied to D := C (note that
λ
(1)
C −A1 > âL−2A1 since C is assumed to be inCδL ,A, i.e., such that λ

(1)
C > âL−χ−δ,

and by (5.21)), and the last inequality follows by our choice of r . Supposing without
loss of generality that λ(1)Sr

1
≥ λ

(1)

Sr
2
, by Lemma 5.4 and (5.24) we have

LSr
1
(ξ − âL) ≥ e

(χSr
1
−χ−2δ)/ρ ≥ e−

2δ
ρ . (5.25)

By Lemma 5.5, we may suppose that LC(ξ − âL) ≤ e2δ/ρ . Then, for any x ∈ S2,

LSr
1
(ξ − âL) ≤ LC (ξ − âL)− e

ξ(x)−âL
ρ ≤ e

2δ
ρ − e

ξ(x)−âL
ρ . (5.26)

Combining (5.25–5.26) we obtain

ξ(x)− âL ≤ ρ ln
(
e
2δ
ρ − e−

2δ
ρ

)
= −2A1, (5.27)

123



M. Biskup et al.

contradicting x ∈ S. Therefore, (5.23) holds. To conclude, note that

e
2δ
ρ ≥ LC(ξ − âL) ≥ e−

2A1
ρ |S|. (5.28)

Since zC ∈ S by (5.5) and (5.21), the inequalities (5.23) and (5.28) imply (5.20) with
ν1 := &2(r + 1)e2(A1+δ)/ρ'. � 
Lemma 5.7 (Lower bound for the potential in relevant islands) Suppose RL is such
that (5.11–5.12) hold. For any ν ∈ N, there exist A∗, δ > 0 such that, for all A > 0,
the following is true a.s. eventually as L →∞:

inf
C∈Cδ

L ,A

inf
z∈Bν (zC)

ξ(z) ≥ âL − 2A∗. (5.29)

Proof Recall the definition of M∗
ρ in (2.17). We note that [12, Lemma 3.2(i)] holds

forM∗
ρ in place ofMρ , as can be inferred from the proof. In particular,M∗

ρ �= ∅ and,
by Lemma 3.1 therein, all V ∈ M∗

ρ satisfy L(V ) = 1. On the other hand, by (3.21)
in [12] together with Theorem 2 and Proposition 3 of [11] (see also (5.44) therein),

A∗ := − inf
V∈M∗

ρ

inf
x∈Bν

V (x) <∞. (5.30)

Fix, by (3.6) in [12], δ > 0 small enough such that

⎧
⎪⎨

⎪⎩

V ∈ [−∞, 0]Zd
, 0 ∈ argmax(V ),

L(V ) ≤ 1, inf
V∈M∗

ρ

sup
x∈Bν

∣
∣V (x)− V (x)

∣
∣ > A∗

⎫
⎪⎬

⎪⎭
⇒ λ(1)(V ) < −χ − 2δ.

(5.31)
Fix C ∈ CδL ,A and define

V ∗(x) :=
{
ξ(x + zC)− âL − δ if x + zC ∈ C,
−∞ otherwise.

(5.32)

By Lemma 5.1, V ∗ ∈ [−∞, 0)Z
d
a.s. eventually as L →∞, and 0 ∈ argmax(V ∗) by

the definition of zC . Furthermore, L(V ∗) = LC(ξ − âL − δ)which is a.s. smaller than
1 for large L by Lemma 5.5. Now, since C ∈ CδL ,A, we have λ

(1)(V ∗) = λ
(1)
C − âL−δ >

−χ − 2δ, and thus the conclusion follows from (5.30–5.31). � 
We end this subsection with a comparison between the islands and capitals with

large local eigenvalues, which will be crucial in the proof of Proposition 7.1 below.

Lemma 5.8 Assume (5.11–5.12). There exists a constant c1 > 0 such that, for all
A > 0 large enough and δ > 0 small enough, the following occurs with probability
tending to one as L →∞:

(i) If C ∈ CδL ,A, then zC ∈ C , (ln L)κ/2 < �zC < RL and

0 ≤ λ
(1)
C − λC (zC) ≤ e−c1(ln L)κ/2 . (5.33)
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(ii) For all z ∈ C such that B�z (z) ⊂ BL and λC (z) > âL − χ − δ, there exists
C ∈ CδL ,A such that z = zC and (5.33) holds.

Proof Let A, δ > 0 satisfy the hypotheses of Lemmas 5.3 and 5.6, and let A1 > 0
and ν1 ∈ N be as in Lemma 5.6. We may assume that 2A > A1. For (i), note that,
if C ∈ CδL ,A, then (ln L)κ/2 + ν1 < �zC ≤ maxz∈BL �z < RL for all L large enough
by (4.2), (5.2), (5.5) and (5.11), and thus zC ∈ C . By Lemma 5.6, the set

{
x ∈ C : dist(x,ΠL ,A1) ≤ (ln L)κ/2

}
(5.34)

is contained in B�zC (zC) and thus (5.33) follows by Theorem 2.1 of [7] with c1 :=
ln(1+ A1/(4d)).

For (ii), note that, again by (5.5), ξ(z) > âL − A1 and thus z ∈ ΠL ,A. Letting
C ∈ CL ,A such that z ∈ C, note that B�z (z) ⊂ C since �z < RL , and thus C ∈ CδL ,A.
Since �z > ν1, z = zC by Lemma 5.6, and (5.33) follows by (i). � 

5.3 Connectivity properties of the potential field

In this section, we provide bounds on the number of points in which the potential
achieves high values inside connected sets of the lattice. These will be important in
the proof of Proposition 6.1. We will use the following Chernoff bound:

Lemma 5.9 Let Bin(p, n) denote a Binomial random variable with parameters p and
n. Then

P
(
Bin(p, n) > u

) ≤ exp

{

−u

(

ln
u

np
− 1

)}

for all u > 0. (5.35)

Proof Write E
[
exp{αBin(p, n)}] = {1+ p(eα − 1)}n ≤ enpeα , apply Markov’s

inequality and optimize over α > 0. � 
Our first lemma reads as follows.

Lemma 5.10 (Number of intermediate peaks of the potential) For each β ∈ (0, 1),
there exists ε ∈ (0, β/2) such that, a.s. eventually as L →∞, for all finite connected
subsets Λ ⊂ Z

d with Λ ∩ BL �= ∅ and |Λ| ≥ (ln L)β ,

NΛ := |{z ∈ Λ : ξ(z) > (1− ε)̂aL}| ≤ |Λ|
(ln L)ε

. (5.36)

Proof Let ε ∈ (0, β/2) be small enough so that, for all L large enough,

pL := Prob (ξ(0) > (1− ε)̂aL) ≤ exp
{
−(ln L)1−

β
2

}
. (5.37)

This is possible by e.g. Lemma 6.1 in [7]. Now fix a point x ∈ BL and n ∈ N. The
number of connected subsets Λ ⊂ Z

d with |Λ| = n and x ∈ Λ is at most ec0n for
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some c0 > 0 independent of x (see e.g. [10], Section 4.2). For such a Λ, the random
variable NΛ has a Bin(pL , n)-distribution. Using (5.35) and a union bound, we obtain

Prob
(
∃ connected Λ ) x, |Λ| = n and NΛ > n/(ln L)ε

)

≤ exp

{

−n

(

(ln L)1−
β
2−ε − c0 − 1+ ε ln2 L

(ln L)ε

)}

. (5.38)

When L is large enough, the expression in the large parentheses above is at least
1
2 (ln L)1−β/2−ε. Summing over n ≥ (ln L)β and x ∈ BL , we get

Prob

( ∃ connected Λ such that Λ ∩ BL �= ∅,
|Λ| ≥ (ln L)β and (5.36) does not hold

)

≤ c1Ld exp

{

−c2(ln L)1+
β
2−ε
}

(5.39)

for some positive constants c1, c2. By our choice of ε, (5.39) is summable on L , so
the conclusion follows from the Borel–Cantelli lemma. � 

A similar computation bounds the number of high exceedances of the potential.

Lemma 5.11 (Number of high exceedances of the potential) For each A > 0, there
is a constant C ≥ 1 such that, for all δ ∈ (0, 1), the following holds a.s. eventually
as L → ∞: For all finite connected subsets Λ ⊂ Z

d with Λ ∩ BL �= ∅ and |Λ| ≥
C(ln L)δ it holds that

∣
∣Λ ∩ΠL ,A

∣
∣ ≤ |Λ|

(ln L)δ
. (5.40)

Proof Proceed as for Lemma 5.10 first noting that, by Lemma 6.1 in [7],

pL := Prob
(
0 ∈ ΠL ,A

) ≤ L−ε (5.41)

for some ε ∈ (0, 1) and all large enough L , and then taking C > 2(d + 1)/ε. � 

5.4 Spectral bounds

Here we state some spectral bounds for the Feynman–Kac formula. The results in this
section are deterministic, i.e., they hold for any fixed choice of potential ξ ∈ R

Z
d
.

Fix a finite connected subsetΛ ⊂ Z
d , and let HΛ denote the AndersonHamiltonian

in Λ with zero Dirichlet boundary conditions, as described after (1.7). For z ∈ Λ, let
uz
Λ be the positive solution of

∂t u(x, t) = HΛu(x, t), x ∈ Λ, t > 0,

u(x, 0) = 1z(x), x ∈ Λ,
(5.42)
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and set U z
Λ(t) :=

∑
x∈Λ uz

Λ(x, t). The solution admits the Feynman–Kac representa-
tion

uz
Λ(x, t) = Ez

[

exp

{∫ t

0
ξ(Xs)ds

}

1{τΛc > t, Xt = x}
]

(5.43)

where τΛc is as in (4.21). It also admits the spectral representation

uz
Λ(x, t) =

|Λ|∑

k=1
etλ(k)Λ φ

(k)
Λ (z)φ(k)

Λ (x), (5.44)

where λ(1)Λ ≥ λ
(2)
Λ ≥ · · · ≥ λ

(|Λ|)
Λ and φ(1)

Λ , φ
(2)
Λ , . . . , φ

(|Λ|)
Λ are respectively the eigen-

values and corresponding orthonormal eigenfunctions of HΛ. One may exploit these
representations to obtain bounds for one in terms of the other, as shown by the follow-
ing lemma.

Lemma 5.12 (Bounds on the solution) For any z ∈ Λ and any t > 0,

etλ(1)Λ φ
(1)
Λ (z)2 ≤ Ez

[
e
∫ t
0 ξ(Xs )ds1{τΛc>t,Xt=z}

]

≤ Ez

[
e
∫ t
0 ξ(Xs )ds1{τΛc>t}

]
≤ etλ(1)Λ |Λ|3/2 . (5.45)

Proof The first and last inequalities follow directly from (5.43–5.44); the middle
inequality is elementary. � 

The second lemma bounds the Feynman–Kac formula integrated up to the exit time
of the walk from the underlying domain:

Lemma 5.13 (Mass up to an exit time) For any z ∈ Λ and γ > λ
(1)
Λ ,

Ez

[

exp

{∫ τΛc

0
(ξ(Xs)− γ )ds

}]

≤ 1+ 2d |Λ|
γ − λ

(1)
Λ

. (5.46)

Proof See Lemma 4.2 in [12]. � 
The next lemma is a well-known representation for the principal eigenfunction:

Lemma 5.14 For any x, y ∈ Λ,

φ
(1)
Λ (x)

φ
(1)
Λ (y)

= Ex

[

exp

{∫ τy

0

(
ξ(Xu)− λ

(1)
Λ

)
du

}

1
{
τy < τΛc

}
]

. (5.47)

Proof See e.g. Proposition 3.3 in [22]. � 
Our last lemma bounds the Feynman–Kac formula when the random walk is

restricted to hit a subset, and is the principal ingredient in the proof of Proposition 4.10:
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Lemma 5.15 (Bound by principal eigenfunction) For all t > 0, all z, x ∈ Λ and all
Γ ⊂ Λ,

Ez

[
e
∫ t
0 ξ(Xs )ds1{Xt = x, τΛc > t ≥ τΓ }

]

≤ U z
Λ(t) φ

(1)
Λ (x) sup

y∈Γ

{∣
∣φ(1)

Λ (y)
∣
∣−3
}
. (5.48)

Proof We adapt the proof of Theorem 4.1 of [12]. Fix z ∈ Z
d and, for x ∈ Z

d and
t > 0, denote

w(x, t) := Ex

[
e
∫ t
0 ξ(Xs )ds1{Xt = z, τΛc > t ≥ τΓ }

]
. (5.49)

Note that, by invariance under time reversal, (5.49) is equal to the left-hand side
of (5.48). It will suffice to show that, for any 0 < s ≤ t and y ∈ Γ ,

Ey

[
e
∫ t−s
0 ξ(Xu)du1{Xt−s=z,τΛc>t−s}

]
≤ e−sλ(1)Λ

∣
∣φ(1)

Λ (y)
∣
∣−2 w(y, t). (5.50)

Indeed, writing f (y, s) for the quantity on the left-hand side, by the strong Markov
property, w(x, t) equals

∑

y∈Γ
Ex

[
e
∫ τy
0 ξ(Xu)du1{τΛc>τy=τΓ≤t} f (y, τy)

]

≤
∑

y∈Γ
|φ(1)

Λ (y)|−2w(y, t)Ex

[

e
∫ τy
0

(
ξ(Xu)−λ(1)Λ

)
du
1{τΛc>τy}

]

= φ
(1)
Λ (x)

∑

y∈Γ

∣
∣φ(1)

Λ (y)
∣
∣−3w(y, t)

≤ φ
(1)
Λ (x) sup

y∈Γ

{∣
∣φ(1)

Λ (y)
∣
∣−3
}

U z
Λ(t), (5.51)

where in the second line we used (5.50) and, in the last one, we invoked (5.47) and
one more time applied the invariance under time reversal.

To prove (5.50), restrict to Xs = y inside the expectation definingw(y, t) to obtain

w(y, t) ≥ Ey

[
e
∫ s
0 ξ(Xu)du1{Xs=y,τΛc>s}

]
Ey

[
e
∫ t−s
0 ξ(Xu)du1{Xt−s=z,τΛc>t−s}

]
.

(5.52)

By Lemma 5.12,

Ey

[
e
∫ s
0 ξ(Xu)du1{Xs=y,τΛc>s}

]
≥ esλ(1)Λ

∣
∣φ(1)

Λ (y)
∣
∣2 , (5.53)

implying (5.50) as desired. � 
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The proof above has the following corollary, which will be used in Sect. 11.

Corollary 1 For Γ ⊂ Λ, let w(x, t) be defined as in (5.49). Then

w(x, t − s) ≤ e−sλ(1)Λ φ
(1)
Λ (x) sup

y∈Γ

{∣
∣φ(1)

Λ (y)
∣
∣−5
}∑

y∈Γ
w(y, t), x ∈ Λ, 0 ≤ s ≤ t.

(5.54)

Proof The next-to-last inequality in (5.51) with t substituted by t − s yields

w(x, t − s) ≤ φ
(1)
Λ (x) sup

y∈Γ

{∣
∣φ(1)

Λ (y)
∣
∣−3
}∑

y∈Γ
w(y, t − s). (5.55)

Now use (5.50), noting that w(y, t − s) is not larger than its left-hand side. � 

6 Path expansions

In this section, we develop a setup to bound the contribution of certain specific classes
of random walk paths to the Feynman–Kac formula. This leads to Propositions 6.1–
6.2 below, which are the key to the proof of Propositions 4.8–4.9 in Sect. 8, and
Propositions 4.12–4.13 in Sect. 10.

6.1 Key propositions

To start, we define various sets of nearest-neighbor paths in Z
d as follows. For � ∈ N0

and subsets Λ,Λ′ ⊂ Z
d , define

P�(Λ,Λ′) :=
{

(π0, . . . , π�) ∈ (Zd)�+1 : π0 ∈ Λ,π� ∈ Λ′,
|πi − πi−1| = 1 ∀ 1 ≤ i ≤ �

}

(6.1)

and set
P(Λ,Λ′) :=

⋃

�∈N0

P�(Λ,Λ′),

P� :=P�(Z
d ,Zd),

P :=P(Zd ,Zd).

(6.2)

WhenΛ orΛ′ consists of a single point, we write x instead of {x}. If π ∈P�, we set
|π | := �. We write supp(π) := {π0, . . . , π|π |} to denote the set of points visited by π .

Let X = (Xt )t≥0 be a continuous-time simple symmetric random walk with total
jump rate 2d; this is the process that “drives” the Feynman–Kac formula. We denote
by (Tn)n∈N0 the sequence of its jump times (with T0 := 0). For � ∈ N0, let π(�)(X) :=
(X0, . . . , XT� ) be the path inP� consisting of the first � steps of X and, for t ≥ 0, let

π(X0,t ) = π(�t )(X), where �t ∈ N0 satisfies T�t ≤ t < T�t+1, (6.3)
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denote the path in P consisting of all the steps taken by X between times 0 and t .
For π ∈P , L ∈ N and A > 0, we define

λL ,A(π) := sup
{
λ
(1)
C : C ∈ CL ,A, supp(π) ∩ C ∩ΠL ,A �= ∅} , (6.4)

with the convention sup ∅ = −∞. This is the largest principal eigenvalue among the
components of CL ,A that have a point of high exceedance visited by the path.

The main results of this section are the following two propositions:

Proposition 6.1 Let RL satisfy (5.11–5.12). For any A > 0, there exists a constant
cA > 0 such that the following holds a.s. eventually as L → ∞: For each x ∈ BL,
each N ⊂ P(x,Zd) satisfying supp(π) ⊂ BL and max1≤�≤|π | |π� − x | ≥ ln L for
all π ∈ N , each assignment π �→ (γπ , zπ ) ∈ R× Z

d such that

γπ ≥ λL ,A(π) ∨ (̂aL − A)+ e−RL (6.5)

and
zπ ∈ supp(π) ∪

⋃

C∈CL ,A :
supp(π)∩C∩ΠL ,A �=∅

C (6.6)

are true for all π ∈ N , and all t ≥ 0, we have

lnEx

[
e
∫ t
0 ξ(Xs )ds1

{
π(X0,t ) ∈ N

}] ≤ sup
π∈N

{
tγπ−(ln3(d L)− cA) |zπ−x |

}
. (6.7)

We note that, while we assume (5.11–5.12) in most of the paper, the proof of
Proposition 4.13 will require us to work without (5.12). In this setting, we have:

Proposition 6.2 Fix A > 0 and let n A ∈ N as in Lemma 5.2. For any RL ∈ N

that obeys (5.11) and any ϑL ∈ N such that ϑL � ln3 L as L → ∞, the following
holds a.s. eventually as L → ∞: For each x ∈ BL, each N ⊂ P(x,Zd) satisfying
supp(π) ⊂ BL and max1≤�≤|π | |π� − x | ≥ (n A + 1)RL for all π ∈ N , each π �→
γπ ∈ R satisfying

γπ ≥ λL ,A(π) ∨ (̂aL − A)+ e−ϑL RL ∀π ∈ N , (6.8)

and all t ≥ 0,

lnEx

[
e
∫ t
0 ξ(Xs )ds1

{
π(X0,t ) ∈ N

}] ≤ t sup
π∈N

γπ − 1
2 RL ln3 L . (6.9)

The key to the proof of Propositions 6.1–6.2 is Lemma 6.5 below, whose proof in
turn depends on intermediate results obtained in the next two sections. We emphasize
that all of these results are deterministic, i.e., they hold for any fixed potential ξ ∈ R

Z
d
.
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6.2 Mass of the solution along excursions

The first step to control the contribution of a path to the mass is to control the contri-
bution of excursions outside of ΠL ,A [recall (5.13)]. A useful result is the following:

Lemma 6.3 (Path evaluation) For any � ∈ N0, any π ∈ P� and any γ satisfying
γ > maxi<|π | ξ(πi )− 2d,

Eπ0

[

exp

{∫ T�

0
(ξ(Xs)− γ )ds

} ∣
∣
∣
∣π

(�)(X) = π

]

=
�−1∏

i=0

2d

2d + γ − ξ(πi )
. (6.10)

Proof The left-hand side of (6.10) can be directly evaluated using the fact that T�
is the sum of � i.i.d. Exp(2d) random variables that are independent of π(�)(X). The
condition on γ ensures that all integrals are finite. � 

For a path π ∈P , L ∈ N and ε ∈ (0, 1), we write

M L ,ε
π := ∣∣{x ∈ {π0, . . . , π|π |−1

} : ξ(x) ≤ (1− ε)̂aL
}∣
∣, (6.11)

with the interpretation that M L ,ε
π = 0 if |π | = 0. Then we have:

Lemma 6.4 (Mass of excursions) For any A, ε > 0, there exist c > 0 and L0 ∈ N

such that, for all L ≥ L0, all γ > âL − A and all π ∈ P satisfying πi /∈ ΠL ,A for
all i < � := |π |,

Eπ0

[

exp

{∫ T�

0
(ξ(Xt )− γ )ds

} ∣
∣
∣
∣π

(�)(X) = π

]

≤ q�Ae
(c−ln3 L)M L ,ε

π , (6.12)

where qA := (1+ A/2d)−1.

Note that the statement of Lemma 6.4 allows for π� ∈ ΠL ,A.

Proof By our assumptions on π and γ , we can use Lemma 6.3. Splitting the product
on the right-hand side of (6.10) according to whether ξ(πi ) is larger than (1 − ε)̂aL

or not, and using that ξ(πi ) ≤ âL − 2A for all i < |π |, we bound the left-hand side of
(6.12) by

q�A

[

qA
εâL − A

2d

]−|{i<� : ξ(πi )≤(1−ε)̂aL }|
. (6.13)

For large L , âL ≥ 1
2ρ ln2 L and the number within square brackets in (6.13) exceeds

qAερ(ln2 L)/5d > 1. Since |{i < |π | : ξ(πi ) ≤ (1 − ε)̂aL}| ≥ M L ,ε
π , (6.12) holds

with c := ln(1 ∨ 5d(qAερ)
−1). � 

6.3 Equivalence classes of paths

Here we develop a setup similar as in Section 6.3 of [22]. The idea is to categorize
paths π ∈P according to their excursions betweenΠL ,A and Dc

L ,A [cf. (5.13–5.14)]
and then apply the results from Sects. 5.4 and 6.2. Note that dist(ΠL ,A, Dc

L ,A) ≥ RL .
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First we discuss the concatenation of paths. If π and π ′ are two paths in P such
that π|π | = π ′0, we define their concatenation as

π ◦ π ′ := (π0, . . . , π|π |, π ′1, . . . , π ′|π ′|) ∈P. (6.14)

Note that |π ◦π ′| = |π |+ |π ′|. If π|π | �= π ′0, we can still define the shifted concatena-
tion ofπ andπ ′ asπ ◦π̂ ′ where π̂ ′ := (π|π |, π|π |+π ′1−π ′0, . . . , π|π |+π ′|π ′|−π ′0). The
shifted concatenation of multiple paths is then defined inductively via associativity.

If a path π ∈ P intersects ΠL ,A, then it can be decomposed into an initial path,
a sequence of excursions between ΠL ,A and Dc

L ,A, and a terminal path. Explicitly,
there exists mπ ∈ N such that

π = π̌ (1) ◦ π̂ (1) ◦ · · · ◦ π̌ (mπ ) ◦ π̂ (mπ ) ◦ π̄ , (6.15)

where the paths in (6.15) satisfy

π̌ (1) ∈P(Zd ,ΠL ,A) and π̌
(1)
i /∈ ΠL ,A, 0 ≤ i <

∣
∣π̌ (1)

∣
∣ ,

π̌ (k) ∈P(Dc
L ,A,ΠL ,A) and π̌

(k)
i /∈ ΠL ,A, 0 ≤ i <

∣
∣π̌ (k)

∣
∣ , 2 ≤ k ≤ mπ ,

π̂ (k) ∈P(ΠL ,A, Dc
L ,A) and π̂

(k)
i ∈ DL ,A, 0 ≤ i <

∣
∣π̂ (k)

∣
∣ , 1 ≤ k ≤ mπ − 1,

π̂ (mπ ) ∈P(ΠL ,A,Z
d) and π̂

(mπ )

i ∈ DL ,A, 0 ≤ i <
∣
∣π̂ (mπ )

∣
∣ ,

(6.16)
while

π̄ ∈P(Dc
L ,A,Z

d), π̄i /∈ ΠL ,A ∀ i ≥ 0 if π̂ (mπ ) ∈P(ΠL ,A, Dc
L ,A),

π̄0 ∈ DL ,A, |π̄ | = 0 otherwise.
(6.17)

Note that the decomposition (6.15–6.17) is unique, and that the paths π̌ (1), π̂ (mπ ) and π̄
can have zero length. If π is contained in BL , so are all the paths in the decomposition.

For L ∈ N and ε > 0, whenever supp(π) ∩ΠL ,A �= ∅, we define

nπ :=
mπ∑

i=1

∣
∣π̌ (i)

∣
∣+ |π̄ | and kL ,ε

π :=
mπ∑

i=1
M L ,ε
π̌ (i) + M L ,ε

π̄ (6.18)

to be respectively the total time spent in exterior excursions and the sumof the numbers
ofmoderately lowpoints of the potential visited by exterior excursions (excluding their
last point). In the case when supp(π) ∩ ΠL ,A = ∅, we set mπ := 0, nπ := |π | and
kL ,ε
π := M L ,ε

π . Recall from (6.4) that, in this case, λL ,A(π) = −∞.
We say that π, π ′ ∈ P are equivalent, written π ′ ∼ π , if mπ = mπ ′ , π̌ ′(i) = π̌ (i)

for all i = 1, . . . ,mπ and π̄ ′ = π̄ if π̄0 ∈ Dc
L ,A. If π

′ ∼ π , then nπ ′ , kL ,ε
π ′ and

λL ,A(π
′) are all equal to the counterparts for π .

To state our key lemma, we define, for m, n ∈ N0,

P(m,n) = {π ∈P : mπ = m, nπ = n} , (6.19)
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and we denote by
CL ,A := max

{|C| : C ∈ CL ,A
}

(6.20)

the maximal size of the islands in CL ,A. We then have:

Lemma 6.5 For any A, ε > 0, there exist c > 0 and L0 ∈ N such that, for all L ≥ L0,
all m, n ∈ N0, all π ∈P(m,n) with supp(π) ⊂ BL, all γ > λL ,A(π)∨ (̂aL − A) and
all t ≥ 0,

Eπ0

[
e
∫ t
0 (ξ(Xs )−γ )ds1{π(X0,t ) ∼ π}

]

≤
(

C3/2
L ,A

)1{m>0}
(

1+ 2d CL ,A

γ − λL ,A(π)

)m (qA

2d

)n
e(c−ln3 L)kL ,ε

π . (6.21)

Proof Fix A, ε > 0 and let c > 0, L0 ∈ N be as given by Lemma 6.4. For 0 ≤ s ≤
t <∞, set I t

s := e
∫ t

s (ξ(Xu)−γ )du . Our strategy is to prove the claim by induction on m.
Supposefirst thatm = 1, let � := |π̌ (1)| and set z := π̌

(1)
� . There are twopossibilities:

either π̄0 belongs to DL ,A or not. Focussing first on the case π̄0 ∈ DL ,A, which in
particular implies |π̄ | = 0, the strong Markov property yields

Eπ0

[
I t
01{π(X0,t )∼π}

]
= Eπ0

[
I T�
0 I t

T�1{π(�)(X)=π̌ (1)}1{T�<t}1{Xs+T�∈DL ,A ∀s∈[0,t−T�]}
]

= Eπ0

⎡

⎣I T�
0 1{π(�)(X)=π̌ (1)}1{T�<t}

⎛

⎝Ez

⎡

⎣I t−s
0 1{

τDc
L ,A

>t−s

}

⎤

⎦

⎞

⎠

s=T�

⎤

⎦ .

(6.22)

Since z ∈ ΠL ,A, we may write Cz to denote the island in CL ,A containing z. As
τDc

L ,A
= τCc

z
Pz-a.s., Lemma 5.12 and our hypothesis on γ bound the inner expectation

in (6.22) by |Cz |3/2. Applying Lemma 6.4, we further bound (6.22) by

|Cz |3/2 Eπ0

[
I T�
0 1{π(�)(X)=π̌ (1)}

]
≤ C3/2

L ,A

(qA

2d

)�
e
(c−ln3 L)M L ,ε

π̌(1) , (6.23)

thus proving (6.21) in the case m = 1, π̄0 ∈ DL ,A.
Assume next x := π̄0 ∈ Dc

L ,A. Abbreviating σ := inf{s > T� : Xs /∈ DL ,A}, we
can then bound

Eπ0

[
I t
01{π(X0,t )∼π}

]

≤ Eπ0

[
I σ0 1{π(�)(X)=π̌ (1),σ<t}

(
Ex
[
I t−s
0 1{π(X0,t−s )=π̄}

])
s=σ
]
. (6.24)

Let �∗ := |π̄ | and note that, since π̄�∗ /∈ ΠL ,A, by the hypothesis on γ we have

Ex

[
I t−s
0 1{π(X0,t−s )=π̄}

]
≤ Ex

[
I

T�∗
0 1{π(�∗)(X)=π̄}

]
≤
(qA

2d

)�∗
e(c−ln3 L)M L ,ε

π̄ (6.25)
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by Lemma 6.4. On the other hand, by Lemmas 5.13 and 6.4,

Eπ0

[
I σ0 1{π(�)(X)=π̌ (1)}

]
= Eπ0

[
I T�
0 1{π(�)(X)=π̌ (1)}

]
Ez

[
I
τCcz
0

]

≤
(

1+ 2d CL ,A

γ − λL ,A(π)

)(qA

2d

)�
e
(c−ln3 L)M L ,ε

π̌(1) . (6.26)

Putting together (6.24–6.26), we finish the proof of the case m = 1.
By induction, assume now that the statement is proven for some fixed m ≥ 1,

and let π ∈ P(m+1,n). Define π ′ := π̌ (2) ◦ π̂ (2) ◦ · · · ◦ π̌ (m+1) ◦ π̂ (m+1) ◦ π̄ . Then
π ′ ∈ P(m,n′) where n = |π̌ (1)| + n′, and kL ,ε

π = kL ,ε
π ′ + M L ,ε

π̌ (1) . Setting � := |π̌ (1)|,
σ := inf{s > T� : Xs /∈ DL ,A} and x := π̌

(2)
0 , we get

Eπ0

[
I t
01{π(X0,t )∼π}

]

≤ Eπ0

[
I σ0 1{π(�)(X)=π̌ (1),σ<t}

(
Ex

[
I t−s
0 1{π(X0,t−s)∼π ′}

])

s=σ

]
, (6.27)

from which (6.21) follows using the induction hypothesis and (6.26). The case m = 0
follows from equation (6.25) after substituting π̄ by π and t − s by t . � 

6.4 Proof of Propositions 6.1–6.2

We are now ready to present the proofs of the above key propositions.

Proof of Proposition 6.2 Theproof is based onLemma6.5 and results fromSects. 5.2–
5.3. Fix A > 0 and, for β as in (5.11), take ε ∈ (0, β/2) as in Lemma 5.10. Let
L0 ∈ N be as given by Lemma 6.5 and take L ≥ L0 so large that the conclusions of
Lemmas 5.10 and 5.2 hold. Fix x ∈ BL . Recall the definition of P(m,n). Noting that
the relation ∼ is an equivalence relation in P(m,n), define

P̃(m,n)
x :=

{
equivalence classes of the paths inP(x,Zd) ∩P(m,n)

}
. (6.28)

We first claim that, for a constant c1 ∈ N, a.s. eventually as L →∞,

∣
∣
∣P̃(m,n)

x

∣
∣
∣ ≤ (c1Rd

L)
m(2d)n ∀m, n ∈ N0. (6.29)

Indeed, (6.29) is clear if m = 0. To prove it in the case m ≥ 1, write, for Λ ⊂ Z
d ,

∂Λ := {z /∈ Λ : dist(z,Λ) = 1}. By Lemma 5.2, there is a c0 ∈ N such that

|∂C| ≤ 2d|C| ≤ c0Rd
L ∀ C ∈ CL ,A a.s. eventually as L →∞. (6.30)

We then define a map Φ : P̃(m,n)
x → Pn(x,Zd) × {1, . . . , c0Rd

L + 1}m as follows:
For each Λ ⊂ Z

d with 1 ≤ |Λ| ≤ c0Rd
L , fix an injection fΛ : Λ → {1, . . . , c0Rd

L}.
Given a path π ∈ P(m,n) ∩P(x,Zd), decompose π as in (6.15), and denote by π̃
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the shifted concatenation, as defined after (6.14), of π̌ (1), . . . , π̌ (m), π̄ . Note that, for
each 2 ≤ k ≤ m, the starting point π̌ (k)

0 lies in ∂Ck for some Ck ∈ CL ,A, while
π̄0 = π̄0 ∈ ∂C ∪ C for some C ∈ CL ,A. Thus we may set

Φ(π) :=
{(

π̃ , f∂C2(π̌
(2)
0 ), . . . , f∂Cm (π̌

(m)

0 ), c0Rd
L + 1

)
if π̄0 ∈ C ⊂ DL ,A,(

π̃ , f∂C2(π̌
(2)
0 ), . . . , f∂Cm (π̌

(m)

0 ), f∂C̄(π̄0)
)

if π̄0 ∈ ∂C ⊂ Dc
L ,A.

(6.31)
As is readily checked, Φ(π) depends only on the equivalence class of π and, when
restricted to equivalence classes, Φ is injective. Thus (6.29) follows with the choice,
e.g., c1 := 2c0.

Take now N ⊂P(x,Zd) as in the statement, and set

Ñ (m,n) := {equivalence classes of paths in N ∩P(m,n)} ⊂ P̃(m,n)
x . (6.32)

Choose for each M ∈ Ñ (m,n) a representative πM ∈M and use (6.29) to write

Ex

[
e
∫ t
0 ξ(Xs )ds1{π(X0,t )∈N }

]
=

∑

m,n∈N0

∑

M∈Ñ (m,n)

Ex

[
e
∫ t
0 ξ(Xs )ds1{π(X0,t )∼πM}

]

≤
∑

m,n∈N0

(c1Rd
L)

m(2d)n sup
π∈N (m,n)

Ex

[
e
∫ t
0 ξ(Xs )ds1{π(X0,t )∼π}

]
, (6.33)

where we use the convention sup ∅ = 0. For fixed π ∈ N (m,n), by (6.5) we may
apply (6.21), Lemma 5.2 and (5.11) to obtain, for all L large enough,

(c1Rd
L)

m(2d)nEx

[
e
∫ t
0 ξ(Xs )ds1{π(X0,t )∼π}

]

≤ etγπ
(

R4d
L eϑL RL

)m
qn

Ae
(c−ln3 L)kL ,ε

π . (6.34)

We now claim that, for large enough L ,

kL ,ε
π ≥ {(m − 1) ∨ 1} RL

{
1− (ln L)−ε − R−1

L

}
. (6.35)

Indeed, whenm = 0, | supp(π)| ≥ max1≤�≤|π | |π�−x | ≥ (n A+1)RL by assumption.
When m ≥ 2, | supp(π̌ (i))| ≥ RL for all 2 ≤ i ≤ m. When m = 1, there are two cases:
if supp(π̌ (1)) ∩ Dc

L ,A �= ∅, then | supp(π̌ (1))| ≥ RL while, if supp(π̌ (1)) ⊂ DL ,A, then
| supp(π̄)| ≥ RL by Lemma 5.2. Thus (6.35) holds by (6.18), (6.11) and Lemma 5.10.
Using (6.35), (5.11) and ϑL � ln3 L , we may further bound (6.34) by

[

R8d
L e2ϑL RL e−(2ϑL+ 1

2 )RL

](m−1)∨1
qn

Ae
tγπ e(c+1+2ϑL−ln3 L)kL ,ε

π

≤
(
e−

RL
3
)(m−1)∨1

qn
A etγπ e(c+1+2ϑL−ln3 L)kL ,ε

π . (6.36)
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Inserting this back into (6.33), we obtain

Ex

[
e
∫ t
0 ξ(Xs )ds1{π(X0,t )∈N }

]

≤ sup
π∈N

exp
{

tγπ + (c + 1+ 2ϑL − ln3 L) kL ,ε
π

}
. (6.37)

Now (6.9) follows from (6.37), (6.35), (5.11) and ϑL � ln3 L . � 
Proof of Proposition 6.1 Note that, for large L , the assumptions of Proposition 6.1
imply those of Proposition 6.2withϑL ≡ 1, and thuswemay use (6.37).We proceed to
bound kL ,ε

π using assumption (5.12). Recall thatwe takeβ as in (5.11) and ε ∈ (0, β/2)
as in Lemma 5.10. Let C ≥ 1 be as in Lemma 5.11 and, for α ∈ (0, 1/d) as in (5.12),
take δ ∈ (αd, 1) and set ε′ := δ − αd > 0. We assume that L is so large that the
conclusions of Lemma 5.10 (with β,ε as above) and Lemma 5.11 (with δ as above)
are in place.

Note that, by Lemma 5.2, there exists a constant c2 ∈ (0,∞) such that

kL ,ε
π ≥ M L ,ε

π − ∣∣supp(π) ∩ΠL ,A
∣
∣ c2Rd

L . (6.38)

By our assumptions on N , we have | supp(π)| ≥ ln L ≥ C(ln L)δ for large L . By
Lemma 5.11,

∣
∣supp(π) ∩ΠL ,A

∣
∣ ≤ |supp(π)|

(ln L)δ
≤ |supp(π)|

Rd
L(ln L)ε′

(6.39)

by (5.12). By Lemma 5.10, M L ,ε
π + 1 ≥ | supp(π)|{1− (ln L)−ε}. Thus

kL ,ε
π ≥ |supp(π)|

{
1− (ln L)−1 − (ln L)−ε − c2(ln L)−ε′

}
. (6.40)

Now, by Lemma 5.2 and (6.6), | supp(π)| ≥ |zπ − x | − n A RL ; this in conjunction
with | supp(π)| ≥ ln L implies

|supp(π)| ≥ |zπ − x |
(

1− n A RL

ln L

)

. (6.41)

From (6.40–6.41) and (5.12) we obtain

(c + 3− ln3 L) kL ,ε
π ≤ (c + 4− ln3(d L)) |zπ − x | (6.42)

for large enough L , which together with (6.37) (with ϑL := 1) implies (6.7). � 

7 Analysis of the cost functional

In this section, we identify the order statistics ofΨt and give the proofs of Theorem 2.6
and Propositions 4.4–4.5. Motivated by Proposition 6.1 and Lemma 5.8, we define the
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following generalization of the cost functional: For any t > 0 and any c ∈ R, let

Ψt,c(z) := λC (z)− (ln+3 |z| − c
)+ |z|

t
, z ∈ C , (7.1)

where λC (z) is as in (4.4). Arguing as for (4.6), we can see that, almost surely,

∣
∣
{
z ∈ C : Ψt,c(z) > η

}∣
∣ <∞ for all t > 0, η ∈ R, (7.2)

and thus we may define Ψ (k)
t,c and Z (k)

t,c analogously to the corresponding objects for Ψt .
Let us now identify the scale at in Theorem 2.5. Noting that rt is strictly increasing

for large enough t , we may take t �→ L∗t ∈ N such that L∗rt
= Lt . Set Nt :=

� 12
√
ρt/d�, let N̂t := NL∗t and define at to be the smallest positive number satisfying

Prob
(
λ
(1)
BN̂t

> at

)
=
(
(ln t)(ln2 t) ln3 t

t

)d/2

. (7.3)

Such an at exists (for t large enough) since the principal Dirichlet eigenvalue of H in
BN̂t

is continuously distributed. Moreover, since N̂t is non-decreasing and the right-
hand side of (7.3) is eventually non-increasing, by (5.5) we can take at non-decreasing
as well.

Note that, as t →∞,

L∗t ∼
d

ρ
t (ln t)(ln2 t) ln3 t and 2N̂t ∼

√
t (ln t)(ln2 t) ln3 t . (7.4)

An important result of [7] (Theorem 2.4 therein) is that, for any θ ∈ R,

lim
t→∞

td

(2N̂t )d
Prob

(
λ
(1)
BN̂t

> at + θdt

)
= e−θ , (7.5)

where dt is as in (2.6). A strengthened version of this statement [more precisely,
(7.20) with Ŷt (0) as in (7.21) below]will allow us to identify the order statistics ofΨt,c.
Togetherwith Theorem2.3 andLemma 6.8 in [7], (7.5) implies that at = ât−χ+o(1).
In particular, at = (ρ + o(1)) ln2 t .

For 0 < a ≤ b <∞, c ∈ R and k ∈ N, we define the events

E (k)
t,a,b,c :=

{

min
i=1,...,k

(
Ψ

(i)
at,c − Ψ

(i+1)
at,c

) ∧
(
Ψ

(i)
bt,c − Ψ

(i+1)
bt,c

)
> dt et

}

∩
⋂

s∈[at,bt]

{
art + dt gt > Ψ (1)

s,c ≥ Ψ (k)
s,c > art − dt gt

}

∩
⋂

s∈[at,bt]

{

rt ft < min
1≤i≤k

|Z (i)
s,c| ≤ max

1≤i≤k
|Z (i)

s,c| < rt gt

}

.

(7.6)

When c = 0 and/or k = 1, we omit them in the notation.
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For a ∈ (0,∞), let C([a,∞),Rn), resp. D([a,∞),Rn), denote the set of contin-
uous, resp. càdlàg, functions from [a,∞) to R

n , both equipped with the Skorohod
topology (i.e., the J1 topology). The following result is the main objective of this
section:

Proposition 7.1 For all c ∈ R, all k ∈ N and all a > 0, the k-component stochastic
process

θ �→
(
Ψ

(i)
θ t,c − art

drt

,
λC (Z (i)

θ t,c)− art

drt

,
Z (i)
θ t,c

rt

)

i=1,...,k
, θ ∈ [a,∞), (7.7)

belongs a.s. to (C([a,∞),R)×D([a,∞),R)×D([a,∞),Rd))k . Moreover, as t →
∞, this process converges in distribution with respect to the Skorohod topology on
D
([a,∞), (R× R× R

d)k
)

to the process

θ �→
((
Ψ

(1)

θ , Λ
(1)

θ , Z
(1)

θ

)
, . . . ,

(
Ψ

(k)

θ , Λ
(k)

θ , Z
(k)

θ

))
, θ ∈ [a,∞), (7.8)

where Ψ
(i)

θ := Λ
(i)

θ − 1
θ
|Z (i)

θ | and (Λ
(i)

θ , Z
(i)

θ )
k
i=1 are the k first ordered maximizers of

the functional ψθ(λ, z)” = λ − |z|
θ

over the points (λ, z) of a Poisson point process

on R × R
d with intensity e−λdλ ⊗ dz, chosen in such a way that Ψ

(i)

θ is continuous

and Λ
(i)

θ , Z
(i)

θ càdlàg. In particular, the probability of the event E (k)
t,a,b,c defined in (7.6)

converges to 1 as t →∞ and, for any fixed θ ∈ (0,∞), the random vector

((
Ψ

(1)
θ t,c − art

drt

,
Z (1)
θ t,c

rt

)

, . . . ,

(
Ψ

(k)
θ t,c − art

drt

,
Z (k)
θ t,c

rt

))

(7.9)

converges in law to a random vector in (R× R
d)k with distribution given by

1{ψ1 > · · · > ψk}e−
(
1
θ
|z1|+···+ 1

θ
|zk |+ψ1+···+ψk+(2θ)de−ψk

) k∏

i=1
dψi ⊗ dzi . (7.10)

From this we immediately get:

Proof of Proposition 4.4 This follows directly from Proposition 7.1, the definitions
(2.6) and the fact that at ∼ ρ ln2 t as t →∞. � 

With the help of the results from Sect. 5, we also obtain:

Proof of Proposition 4.2 In light of Proposition 7.1, Lemma 5.8, Lemma 5.3(iii), and
Lemmas 5.1–5.2, the result follows by setting

Ct :=
{

z ∈ C : B�z (z) ⊂ BLt , λ
C (z) > art − dt gt

}
(7.11)

and noting that λC (z) ≥ Ψs(z), art = âLt − χ + o(1) and dt gt = o(1). � 
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Note that the part of Theorem 2.5 concerning (Zt )t>0 already follows from Propo-
sition 7.1. Another useful consequence is the following comparison between the
quantities Ψt,c and Ψt :

Lemma 7.2 For any c ∈ R and any 0 < a ≤ b <∞, on E (2)
t,a,b ∩ E (2)

t,a,b,c we have

sup
s∈[at,bt]

∣
∣
∣ sup

z �=Zs

Ψs,c(z)− Ψ (2)
s

∣
∣
∣ = o(dt btεt ), (7.12)

and
sup

s∈[at,bt]
∣
∣Ψs,c(Zs)− Ψ (1)

s

∣
∣ = o(dt btεt ). (7.13)

as t →∞.

Proof The inner supremum in (7.12) is attained at Z (1)
s,c if Z (1)

s,c �= Zs , and at Z (2)
s,c if

Z (1)
s,c = Zs . Since rt ft < |Z (1)

s,c| ∨ |Z (2)
s,c| ∨ |Z (2)

s | < rt gt on E (2)
t,a,b ∩ E (2)

t,a,b,c, we can
write

− |c|rt gt

at
≤ Ψs,c(Z

(2)
s )− Ψ (2)

s ≤ sup
z �=Zs

Ψs,c(z)− Ψ (2)
s

≤ sup
rt ft<|z|<rt gt

{
Ψs,c(z)− Ψs(z)

}
< |c|rt gt

at
. (7.14)

Hence (7.12) follows by using (2.6) and (4.14). The bound (7.13) is obtained analo-
gously. � 

Theproof of Proposition 7.1 is basedon apoint process approach,whichwedescribe
next. This approach will also allow us to prove Proposition 4.5 and Theorem 2.6.

7.1 A point process approach

The key to the proofs of Proposition 7.1 and Theorem 2.6 is the convergence of the
set {(λC (z), z) : z ∈ C } after suitable rescaling to (the support of) a Poisson point
process. We follow the setup and notation of [24] for point processes; some arguments
are for brevity relegated to the appendices.

Since we will need to apply the stated Poisson convergence to infer convergence
of certain non-local minimizing functions, we will need to compactify some sets of
R×R

d as follows. Embed R×R
d in a locally compact Polish space E such that the

set

Hθ
η :=

{

(λ, z) ∈ R× R
d : λ > |z|

θ
+ η

}

⊂ E (7.15)

is relatively compact for any η ∈ R and θ ∈ (0,∞) and, for each compact set K ⊂ E,
there exist θ > 0, η ∈ R such that K ∩ (R × R

d) ⊂ Hθ
η. A suitable choice of E is

given in Appendix 13. Note that a Poisson point process in R × R
d with intensity

e−λdλ ⊗ dz can be extended to E as the latter measure is a Radon measure on E.
Denote byMP =MP(E) the set of point measures (i.e., N0-valued Radon measures)
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on E. We equipMP with the topology of vague convergence, and let supp(P) denote
the support of P ∈MP.

Let us denote

Pt :=
∑

z∈C
δ(Yt (z), z/t) where Yt (z) := λC (z)− at

dt
. (7.16)

Our convergence result for Pt reads as follows.

Proposition 7.3 The point process Pt defined in (7.16) belongs almost surely to MP,
and converges in distribution as t →∞ with respect to the vague topology of MP to
a Poisson point process supported in R×R

d ⊂ E with intensity measure e−λdλ⊗dz.

The proof of the Proposition 7.3 relies on the following lemma:

Lemma 7.4 Let μ be a Radon measure on R such that μ ⊗ dz is a Radon measure
on E. Let N̂t ∈ N0 such that N̂t � t as t → ∞, and assume that, for each t > 0,
(Ŷt (z))z∈(2N̂t+1)Zd is a collection of i.i.d. real-valued random variables satisfying the
following two conditions:

(i) For each s ∈ R,

lim
t→∞

td

(2N̂t )d
Prob

(
Ŷt (0) > s

) = μ(s,∞). (7.17)

(ii) For each θ > 0, η ∈ R,

lim
n→∞ lim sup

t→∞

∑

x∈(2N̂t+1)Zd : |x |≥tn

Prob

(

Ŷt (0) >
|x |
θ t

+ η

)

= 0. (7.18)

Then, for each t > 0 large enough, the point process

P̂t :=
∑

x∈(2N̂t+1)Zd

δ(Ŷt (x), x/t) (7.19)

belongs almost surely to MP, and converges in distribution as t →∞ with respect to
the vague topology of MP to a Poisson point process in R × R

d ⊂ E with intensity
measure μ⊗ dz.

Proof Note first that, by (7.18), when t is large enough, the expected value of P̂t (Hθ
η)

is finite for all θ > 0, η ∈ R, and hence P̂t ∈ MP. The claimed convergence may be
proved by a straightforward generalization of Proposition 3.21 of [24], with [0,∞)

therein substituted by R
d and E therein substituted by R (see also [28, Lemma 2.4]).

Indeed, we only need to verify (3.20) and (3.21) in [24]. For (3.21), we note that, for
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any compact K ⊂ E, there exists η ∈ R such that K ∩ (R×R
d) ⊂ [η,∞)×R

d , and
thus (3.21) follows from (7.17). For (3.20), it suffices to prove that

∑

x∈(2N̂t+1)Zd

Prob
(
Ŷt (0) ∈ ·

)⊗ δx/t (dz) −→
t→∞ μ⊗ dz vaguely inMP. (7.20)

Indeed, by (7.17), the convergence in (7.20) holds when evaluated on functions with
support contained in the closure of a set of the form [−n,∞) × [−n, n]d ⊂ E with
n ∈ N. This is extended to functions compactly supported in E by applying (7.18)
and the fact that, for any compact K ⊂ E, there exists θ > 0, η ∈ R such that
K ∩ R× R

d ⊂ Hθ
η. � 

We can now proceed to:

Proof of Proposition 7.3 We will first apply Lemma 7.4 to an auxiliary process. For
each t ≥ 0 define

Ŷt (x) :=
λ
(1)
BN̂t

(x) − at

dt
, x ∈ (2N̂t + 1)Zd , (7.21)

and let P̂t be defined as in (7.19). Note that Ŷt (x), x ∈ (2N̂t + 1)Zd , are i.i.d. since
the corresponding boxes are disjoint. We claim the following:

The statement of Proposition 7.3 holds for P̂t in place of Pt . (7.22)

Indeed, condition (7.17) follows from (7.5), while (7.18) is proved in Appendix 12.
Arguing as in the proof of Proposition 4.1, we see that, almost surely, Pt ∈MP for

all large enough t . By (7.22) and since both Pt and P̂t are simple, it suffices to show
that, for any θ ∈ (0,∞) and η ∈ R, with probability tending to 1 as t → ∞ there
exists a bijection

Tt : supp(P̂t ) ∩Hθ
η → supp(Pt ) ∩Hθ

η (7.23)

such that
sup

Ξ∈supp(P̂t )∩Hθ
η

dist (Tt (Ξ),Ξ) −→
t→∞ 0 in probability. (7.24)

To that end, pick x ∈ (2N̂t + 1)Zd such that (Ŷt (x), x/t) ∈ Hθ
η . We first claim that,

a.s. eventually as t →∞, all such x satisfy

BN̂t
(x) ⊂ BL∗t and λ

(1)
BN̂t

(x) > âL∗t − χ + o(1). (7.25)

Indeed, the second claim above follows from (5.3). If the first were violated, then
by (5.5), Lemma 5.1 and the fact that s �→ 2ρ(dt )

−1 ln2 s − s/(θ t) is decreasing for
s ≥ 2dθ t ln t , we would have, a.s. eventually as t →∞,

λ
(1)
BN̂t

(x) − at

dt
− |x |

θ t
≤ 2ρ ln2 |x |

dt
− |x |

θ t
≤ 2ρ ln2 L∗t

dt
− L∗t − N̂t

θ t
−→
t→∞ −∞ (7.26)
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by (7.4), contradicting (Ŷt (x), x/t) ∈ Hθ
η. This finishes the proof of (7.25). Now,

since N̂t = NL∗t , by Lemmas 5.3 and 5.8 there exists, with probability tending to 1 as
t →∞, a unique z ∈ C satisfying

B�z (z) ⊂ BN̂t
(x) and λ

(1)
BN̂t

(x) − λC (z) ≤ 2e−c1(ln L∗t )κ/2 , (7.27)

which allows us to define an injective map

Tt

(
Ŷt (x),

x

t

)
:=
(

Yt (z),
z

t

)
∈ supp(Pt ). (7.28)

Let us verify that Tt satisfies the desired properties. Indeed, (7.24) follows since

∣
∣Ŷt (x)− Yt (z)

∣
∣+
∣
∣
∣
∣
z − x

θ t

∣
∣
∣
∣ ≤

2e−c1(ln L∗t )κ/2

dt
+ d

N̂t

θ t
=: εt → 0 as t →∞, (7.29)

and thus we only need to show that, with probability tending to 1 as t →∞, (7.28) is
inHθ

η and Tt is surjective. Indeed, by (7.22), with probability tending to 1 as t →∞,

P̂t

(
Hθ
η−εt

\Hθ
η+εt

)
= 0, (7.30)

implying by (7.29) that (7.28) is inHθ
η.Moreover, if (Yt (z), z/t) ∈ Hθ

η for some z ∈ C ,

then as before λC (z) > âL∗t − χ + o(1) and B�z (z) ⊂ BL∗t . Thus, by Lemmas 5.8
and 5.3, there exists x ∈ (2N̂t + 1)Zd such that (7.27) and (7.29) hold, implying
by (7.30) that (Yt (z), z/t) is the image by Tt of a point in supp(P̂t )∩Hθ

η . This finishes
the proof. � 

7.2 Order statistics: Proof of Propositions 7.1 and 4.5 and Theorem 2.6

Our next task is to translate (4.7–4.9) (and generalizations thereof) in terms of maps
defined on point measures. We start with some necessary notation.

Denote by M̂P the set of measures P on R× R
d that can be represented as

P =
∑

i∈I
δ(λi ,zi ) for some I ⊂ N and (λi , zi ) ∈ R× R

d , (7.31)

i.e., M̂P is the set of N0-valued σ -finite Borel measures on R× R
d .

Fix a measurable map ϑ : R× R
d → R

d . To prove our main results, we will only
need to consider ϑ independent of the first coordinate, but we keep the setup here
more general for possible future applications. For a measure P ∈ M̂P as in (7.31), we
define

Pϑ :=
∑

i∈I
δ(λi ,ϑ(λi ,zi )), (7.32)
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and we set
MP,ϑ := {P ∈ M̂P : Pϑ ∈MP}. (7.33)

Finally, we generalize (2.7) by setting, for θ > 0,

ψϑ
θ (λ, z) := λ− |ϑ(λ, z)|

θ
, (λ, z) ∈ R× R

d . (7.34)

For P ∈ MP,ϑ and θ > 0, we define Ψ (i)
ϑ (P)(θ), S(i)

ϑ (P)(θ) and Ξ
(i)
ϑ (P)(θ) recur-

sively for i ∈ N with i ≤ | supp(P)|, as follows: Abbreviating

Ξ̂
(<i)
ϑ (P)(θ) := {Ξ(1)

ϑ (P)(θ), . . . , Ξ(i−1)
ϑ (P)(θ)

}
, (7.35)

we set

Ψ
(i)
ϑ (P)(θ) := sup

{
ψϑ
θ (λ, z) : (λ, z) ∈ supp(P) � Ξ̂

(<i)
ϑ (P)(θ)

}
, (7.36)

let
S(i)
ϑ (P)(θ) :=

{
(λ, z) ∈ supp(P)\Ξ̂ (<i)

ϑ (P)(θ) : ψϑ
θ (λ, z) = Ψ

(i)
ϑ (P)(θ)

} (7.37)

and then pick

Ξ
(i)
ϑ (P)(θ)
∈ {(λ, z) ∈ S(i)

ϑ (P)(θ) : (λ, z) � (λ′, z′)∀ (λ′, z′) ∈ S(i)
ϑ (P)(θ)

}
, (7.38)

with � denoting the usual lexicographical order of R × R
d as introduced right

before (4.7). Note that this defines Ξ(i)
ϑ (P) unambiguously since the set in (7.38)

is a singleton. We then put

(
Λ

(i)
ϑ (P), Z (i)

ϑ (P)
) := Ξ

(i)
ϑ (P) (7.39)

and
Φ

(i)
ϑ (P) :=

(
Ψ

(i)
ϑ (P),Λ(i)

ϑ (P), Z (i)
ϑ (P)

)
. (7.40)

In the case ϑ(λ, z) = z for all (λ, z) ∈ R× R
d , we omit ϑ from the notation.

As functions of θ , the objects defined above enjoy the following properties:

Lemma 7.5 For any ϑ : R× R
d → R

d and any P ∈MP,ϑ , the following hold:

(i) Ψ
(1)
ϑ (P), Λ(1)

ϑ (P) and |ϑ(Ξ(1)
ϑ (P))| are non-decreasing in θ . Moreover, if θ0 < θ1

and Ξ(1)
ϑ (P)(θ0) �= Ξ

(1)
ϑ (P)(θ1), then they are strictly smaller at θ0 than at θ1.

(ii) For any a ∈ (0,∞) and any i ∈ N, i ≤ | supp(P)|,

Ψ
(i)
ϑ (P) ∈ C([a,∞),R) and Ξ

(i)
ϑ (P) ∈ D([a,∞),R× R

d). (7.41)
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The set of discontinuities of Ξ(i)
ϑ (P) is discrete and, if supp(Pϑ)∩ (R×{0}) = ∅,

then Ψ (1)
ϑ (P) is strictly increasing.

The proof of Lemma 7.5 is postponed to Appendix 14. It already implies the properties
claimed forΨ (k)

t , Z (k)
t at the end of Sect. 4.1: indeed, they follow from the representation

(Ψ
(k)
t , λC (Z (k)

t ), Z (k)
t ) = Φ

(k)
ϑ (PC )(t) (7.42)

where
ϑ(λ, z) := z ln+3 |z|, and PC :=

∑

z∈C
δ(λC (z), z). (7.43)

Note that we havePC ∈MP,ϑ a.s. by (4.6), and that |ϑ(λ1, z1)| > |ϑ(λ0, z0)| implies
|z1| > |z0|.

Nextwe consider continuity ofP �→ Φ(i)(P)with respect to theSkorohod topology,
i.e., specializing to the case ϑ(λ, z) = z. To this end, we define the following subsets
of MP, indexed by a ∈ (0,∞):

M̃ a
P :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ∈MP :

supp(P) ⊂ R× R
d\ (R× {0}) ,

(λ, z) �→ λ is injective over supp(P),
P(∂Hθ

η) ≤ 1 ∀θ ∈ {a} ∪ ((0,∞) ∩Q
)
, η ∈ R,

P(∂Hθ
η) ≤ 2 ∀θ ∈ (0,∞), η ∈ R,

|
{
η ∈ R : P(∂Hθ

η) = 2
}
| ≤ 1 ∀θ ∈ (0,∞)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (7.44)

Then we have:

Lemma 7.6 Fix a ∈ (0,∞) and P ∈ M̃ a
P . Let ϑt : R× R

d → R
d , t > 0, satisfy

(i)ϑt (λ, z) −→
t→∞ z locally uniformly for (λ, z) ∈ R× (Rd\{0}), (7.45)

(ii)∃ c∗ > 0 such that, for all η ∈ R and δ > 0,

lim inf
t→∞ inf

λ≥η,|z|≥δ
|ϑt (λ, z)|

|z| ≥ c∗. (7.46)

Let Pt ∈ MP ∩MP,ϑt such that Pt −→
t→∞ P vaguely in MP. Then also Pϑt

t → P
vaguely and, for all k ∈ N, k ≤ | supp(P)|,

(
Φ

(i)
ϑt
(Pt )

)

1≤i≤k
−→
t→∞

(
Φ(i)(P)

)
1≤i≤k (7.47)

in the Skorohod topology of D([a,∞), (R× R× R
d)k). In particular, (Φ(i))1≤i≤k is

continuous at P with respect to the Skorohod topology.

Lemma 7.6 will be also proved in Appendix 14. We now use it to finish:
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Proof of Proposition 7.1 By Lemma 7.5, we may realize the processes in (7.8) as

(
Ψ

(i)

θ , Λ
(i)

θ , Z
(i)

θ

)
= Φ(i)(P∞)(θ) (7.48)

where P∞ is a Poisson point process on R × R
d with intensity e−λdλ ⊗ dz. Note

that, for each a > 0, P∞ ∈ M̃ a
P almost surely. On the other hand, we also have the

representation

(
Ψ

(i)
θ t,c − art

drt

,
λC (Z (i)

θ t,c)− art

drt

,
Z (i)
θ t,c

rt

)

= Φ
(i)
ϑt

(
Prt

)
(θ) (7.49)

where Pt is as in (7.16) and

ϑt (λ, z) := z

(
ln+3 |rt z| − c

ln3 t

)+
dt

drt

. (7.50)

Note that, by (7.2),Prt ∈MP,ϑt almost surely for all t large enough. The convergence
claimed in Proposition 7.1 now follows by Proposition 7.3 and Lemma 7.6 together
with (7.48), (7.49–7.50) and the Skorohod representation theorem; in fact,

(

Prt ,
(
Φ

(i)
ϑt
(Prt )(θ)

)

θ∈[a,∞),1≤i≤k

)

law−→
t→∞

(
P∞,

(
Φ(i)(P∞)(θ)

)
θ∈[a,∞),1≤i≤k

)
. (7.51)

The statement regarding E (k)
a,b,c follows from the distributional convergence since drt =

dt (1+ o(1)) and, by the continuity properties of Ψ
(i)

θ and Z
(i)

θ ,

−∞ < inf
θ∈[a,b]Ψ

(i)

θ ≤ sup
θ∈[a,b]

Ψ
(i)

θ <∞,

0 < inf
θ∈[a,b]

∣
∣
∣Z

(i)

θ

∣
∣
∣ ≤ sup

θ∈[a,b]

∣
∣
∣Z

(i)

θ

∣
∣
∣ <∞

(
Ψ

(i)

a − Ψ
(i+1)
a

) ∧ (Ψ (i)

b − Ψ
(i+1)
b

)
> 0

(7.52)

hold almost surely for each i ∈ N. The expression for the density in (7.10) follows
from an analogous computation as performed in the proof of Proposition 3.2 in [26].

� 

Nextwe interpret the event in Theorem2.6 in terms of the underlying pointmeasure,
which is still kept rather general:

123



M. Biskup et al.

Lemma 7.7 For any ϑ : R × R
d → R

d , any P ∈ MP,ϑ and any 0 < a < b < ∞,
the following statements are equivalent:

(1) Λ
(1)
ϑ (P)(a) = Λ

(1)
ϑ (P)(b);

(2) Ξ
(1)
ϑ (P)(θ) = Ξ

(1)
ϑ (P)(a) for all θ ∈ [a, b];

(3) P
{

(λ, z) : ψ
ϑ
b (λ, z) > ψϑ

b (Ξ
(1)
ϑ (P)(a)), or

ψϑ
b (λ, z) = ψϑ

b (Ξ
(1)
ϑ (P)(a))& λ > Λ

(1)
ϑ (P)(a)

}

= 0.

(7.53)

If ϑ does not depend on λ, then (1)–(3) are also equivalent to:

(4) Z (1)
ϑ (P)(a) = Z (1)

ϑ (P)(b). (7.54)

Proof The implication (1)⇒ (2) follows from Lemma 7.5(i), and (2)⇒ (3)⇒ (1)
are easily verified using the definition of Ξ(i)

ϑ . It is clear that (2) ⇒ (4) and, when ϑ
does not depend on λ, (4)⇒ (1) also follows from Lemma 7.5(i). � 

The last equivalence in Lemma 7.7 can be extended to the setup of Lemma 7.6. The
following lemma will be proved in Appendix 14:

Lemma 7.8 Let a ∈ (0,∞) and suppose that ϑt : R × R
d → R

d and P and Pt are
as in Lemma 7.6. Then, for all b ∈ (a,∞) and all large enough t, (7.54) is equivalent
to (1)–(3) in (7.53) with ϑ = ϑt , P = Pt .

We study next continuity properties of the event in Lemma 7.7(3). To this end, we
define, for ϑ : R× R

d → R
d , P ∈MP,ϑ , (λ, z) ∈ R× R

d and θ > 0,

Fϑ
θ (P, λ, z) := P

{

(λ′, z′) : ψ
ϑ
θ (λ

′, z′) > ψϑ
θ (λ, z), or

ψϑ
θ (λ

′, z′) = ψϑ
θ (λ, z) and λ′ > λ

}

∈ N0. (7.55)

When ϑ(λ, z) = z, we again omit it from the notation. Then we have:

Lemma 7.9 Fix a ∈ (0,∞) and take P , ϑt and Pt as in Lemma 7.6. Assume that
(λ∗, z∗) ∈ supp(P), (λt , zt ) ∈ supp(Pt ) are such that (λt , zt )→ (λ∗, z∗) as t →∞.
Then

Fϑt
a (Pt , λt , zt ) −→

t→∞ Fa(P, λ∗, z∗). (7.56)

The proof of Lemma 7.9 is once more deferred to Appendix 14. Together with
Lemma 7.7, it permits us to give:

Proof of Theorem 2.6 Fix 0 < a < b < ∞ and use the representation (7.49–7.50)
(with c = 0), Lemma 7.7 and (7.55) to write (note that ϑt in (7.50) does not depend
on λ)

Zat = Zbt ⇔ Zθ t = Zat ∀ θ ∈ [a, b]
⇔ Fϑt

b

(
Prt ,Λ

(1)
ϑt
(Prt )(a), Z (1)

ϑt
(Prt )(a)

)
= 0. (7.57)
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SinceP∞ ∈ M̃ a
P ∩M̃ b

P a.s., the distributional convergence follows from (7.51), (7.48)
and Lemma 7.9. To show (2.13), fix u > 1 and let

Du(λ, z) :=
{
(λ′, z′) ∈ R× R

d : λ′ − λ < |z′| − |z| < u(λ′ − λ)
}
. (7.58)

Note that, by the definition of Ξ1 = Ξ(1)(P∞)(1) and the fact that P∞ ∈ M̃ 1
P ∩ M̃ u

P
almost surely, Fu(P∞, Ξ1) = P∞(Du(Ξ1)) almost surely. Moreover, conditionally
given Ξ1 = Ξ , Du(Ξ) is independent of Ξ1, and thus by Lemma 7.7,

Prob(Θ > u − 1) = E
[
exp

{−μ(Du(Ξ1)
}]

(7.59)

where μ := e−λdλ ⊗ dz and E denotes expectation under the law of P∞. We now
identify

μ(Du(λ, z)) = (2u)de−λGu(|z|), (7.60)

where

Gu(r) := 1− 1

ud
+

d−1∑

k=1

rk

k!
(
1

ui
− 1

ud

)

, (7.61)

and note that u →∞ asymptotic

∫

Rd

dz

e|z|/ud + Gu(|z|) ∼
∫

|z|<d ln u

dz

e|z|/ud + Gu(|z|) ∼
(2d ln u)d

d! . (7.62)

Then (2.13) follows by a computation using (7.59–7.62) and (7.10). � 
The last objective of the section is to prove Proposition 4.5. Our next lemma shows

that its statement holds in fact more generally:

Lemma 7.10 For any ϑ : R×R
d → R

d , any P ∈MP,ϑ and any 0 < a < b <∞, if

Ξ
(1)
ϑ (P)(θ) = Ξ

(1)
ϑ (P)(a) ∀ θ ∈ [a, b] (7.63)

then

inf
θ∈[a,b]

{
Ψ

(1)
ϑ (P)(θ)− Ψ

(2)
ϑ (P)(θ)

}

= min
θ∈{a,b}

{
Ψ

(1)
ϑ (P)(θ)− Ψ

(2)
ϑ (P)(θ)

}
. (7.64)

Proof For θ ∈ [a, b] and i ∈ {1, 2}, put (λ̂(i)θ , ẑ(i)θ ) := Ξ
(i)
ϑ (P)(θ) and write

Ψ
(1)
ϑ (P)(θ)− Ψ

(2)
ϑ (P)(θ)

= λ̂
(1)
θ − λ̂

(2)
θ −

∣
∣
∣ϑ(λ̂

(1)
θ , ẑ(1)θ )

∣
∣
∣−
∣
∣
∣ϑ(λ̂

(2)
θ , ẑ(2)θ )

∣
∣
∣

θ
. (7.65)
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If |ϑ(λ̂(1)θ , ẑ(1)θ )| ≥ |ϑ(λ̂(2)θ , ẑ(2)θ )|, use θ−1 ≤ a−1 and (7.63) to obtain

Ψ
(1)
ϑ (P)(θ)− Ψ

(2)
ϑ (P)(θ) ≥ Ψ

(1)
ϑ (P)(a)− ψϑ

a (λ̂
(2)
θ , ẑ(2)θ )

≥ Ψ
(1)
ϑ (P)(a)− Ψ

(2)
ϑ (P)(a).

(7.66)

If |ϑ(λ̂(1)θ , ẑ(1)θ )| < |ϑ(λ̂(2)θ , ẑ(2)θ )|, using θ−1 ≥ b−1 instead we analogously get

Ψ
(1)
ϑ (P)(θ)− Ψ

(2)
ϑ (P)(θ) ≥ Ψ

(1)
ϑ (P)(b)− Ψ

(2)
ϑ (P)(b). (7.67)

Now (7.64) follows from (7.66–7.67). � 

We can finally conclude:

Proof of Proposition 4.5 This follows from Lemmas 7.7 and 7.10 together with the
representation (7.42–7.43). � 

8 Mass decomposition

HereweproveProposition 4.6 (Sect. 8.1), Proposition 4.7 (Sect. 8.2), Propositions 4.8–
4.9 (Sect. 8.3), and finish the proof of Theorem 2.5 (Sect. 8.4).

8.1 Lower bound for the total mass

We begin with a lower bound for the mass up to the hitting time of a point.

Lemma 8.1 Under Assumption 2.2, there exists a constant K > 1 such that, a.s.
eventually as θ →∞, for all x ∈ Z

d with |x | > 4dθ ,

E0

[
e
∫ τx
0 ξ(Xu)du1{τx≤θ}

]
≥ exp

{

−|x | ln K |x |
θ

}

. (8.1)

Proof We follow the proof of Lemma 4.3 of [13] (case of d = 1 therein). Fix a path
π from 0 to x such that |π | = |x |. Then the left-hand side of (8.1) is at least

(2d)−|x |E0

⎡

⎣exp

⎧
⎨

⎩
−

|x |−1∑

i=0
σiξ

−(πi )

⎫
⎬

⎭
1{∑|x |−1

i=0 σi≤θ
}

⎤

⎦ (8.2)

where (σi )
∞
i=0 are i.i.d. exponential random variables with parameter 2d. We can

further bound (8.2) from below by

123



Mass concentration and aging in the parabolic Anderson…

(2d)−|x |e−θP0

(

σi ≤ θ/|x |
1+ ξ−(πi )

∀ i = 0, . . . , |x | − 1

)

≥ (2d)−|x |e−θ
|x |−1∏

i=0

dθ/|x |
1+ ξ−(πi )

= exp

⎧
⎨

⎩
−|x | ln 2|x |

θ
− θ −

|x |−1∑

i=0
ln(1+ ξ−(πi ))

⎫
⎬

⎭
(8.3)

where we used |x | > 4dθ and 1 − e−2y ≥ y when 0 < y < 1
4 . By Theorem 1.1 of

[18] and Assumption 2.2, there exists a constant c0 > 0 such that, a.s. eventually as
|x | → ∞,

|x |−1∑

i=0
ln(1+ ξ−(πi )) ≤ c0|x |. (8.4)

Now (8.1) follows from (8.4) and θ < |x |/(4d). � 

We can now prove Proposition 4.6.

Proof of Proposition 4.6 For a finite connected subset Λ ⊂ Z
d , let φ(1)

Λ be the �2-
normalized eigenfunction of HΛ corresponding to its largest eigenvalue λ

(1)
Λ as in

Sect. 5.4. Let x0 ∈ Λ be a point where φ(1)
Λ attains its maximum and note that, since

‖φ(1)
Λ ‖�2(Zd ) = 1, |φ(1)

Λ (x0)|2 ≥ |Λ|−1. By Lemma 5.12, for any s > 0,

Ex0

[
e
∫ s
0 ξ(Xu)du1{τΛc>s}

]
≥ esλ(1)Λ

∣
∣φ(1)

Λ (x0)
∣
∣2 ≥ esλ(1)Λ −ln|Λ|. (8.5)

Using the Feynman–Kac formula and the strong Markov property, we get, for any
θ < s,

U (s) ≥ E0

[

exp

{∫ τx0

0
ξ(Xu)du

}

1{τx0≤θ
}Ex0

[
e
∫ s−r
0 ξ(Xu)du1{τΛc>s−r}

]

r=τx0

]

≥ e
sλ(1)Λ −ln |Λ|−θ

∣
∣
∣λ
(1)
Λ

∣
∣
∣
E0

[

exp

{∫ τx0

0
ξ(Xu)du

}

1{τx0≤θ
}

]

. (8.6)

Specializing now to Λ := B�Zs
(Zs), let K > 1 as in Lemma 8.1 and set θ :=

K |x0|/λC (Zs). By Proposition (7.1), we may assume that Et,a,b [cf. (7.6)] occurs,
and by Lemma 5.1 also that �Zs ≤ ln t . Thus

|x0|
s

≤ |Zs | + |x0 − Zs |
at

≤ rt gt + d ln t

at
= o(dt btεt ), (8.7)
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while λC (Zs) ≥ Ψ
(1)
s ≥ art − dt gt → ∞ as t → ∞ since dt gt = o(1). Therefore,

θ < |x0|/(4d) < s for large enough t . On the other hand,

λC (Zs) ≤ ξ(Zs) ≤ 2ρ ln2 |Zs | ≤ 2ρ ln2 t (8.8)

for large enough t since rt gt = o(t). Hence

θ ≥ rt ft − 2d ln t

2ρ ln2 t
→∞ as t →∞, (8.9)

and so we may apply Lemma 8.1 to (8.6) obtaining

lnU (s)

s
≥ λC (Zs)− |x0|

s
ln λC (Zs)− K

|x0|
s

+ o(dt btεt ). (8.10)

Now, by (8.8),

lnU (s)

s
≥ Ψ (1)

s − |x0 − Zs | ln+3 |Zs |
s

− (| ln 2ρ| + K )
|x0|

s
+ o(dt btεt ). (8.11)

The claim follows by noting that the second and third terms in (8.11) are also o(dt btεt ).
� 

8.2 Macrobox truncation

Next we prove Proposition 4.7, ensuring that the Feynman–Kac formula is not affected
by restricting to randomwalkpaths that donot leave a boxof side Lt = �t ln+2 t� around
the starting point.

Proof of Proposition 4.7 We follow the proof of Proposition 2.1 in [9]. First wewrite

E0

[
e
∫ s
0 ξ(Xu)du1{supθ∈[0,s]|Xθ |≥Lt }

]

≤
∞∑

n=Lt

exp

{

s max
x∈Bn

ξ(x)

}

P0

(

sup
θ∈[0,s]

|Xθ | = n

)

. (8.12)

Denoting by Js the number of jumps of X up to time s, the fact that Js is a Poisson
random variable with parameter 2ds gives

P0

(

sup
θ∈[0,s]

|Xθ | = n

)

≤ P0 (Js ≥ n) ≤ (2ds)n

n! . (8.13)

By Lemma 5.1, maxx∈Bn ξ(x) ≤ 2ρ ln2 n a.s. for all n large enough. By Stirling’s
formula and s ≤ bt , the n-th summand in (8.12) is at most

exp
{
2ρbt ln2 n − n(ln n − ln t − c)

}
(8.14)
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for some deterministic constant c > 0. Now, when n ≥ Lt and t is large enough,
ln n − ln t − c ≥ 1

2 ln3 t . Since the function x �→ 2ρbt ln2 x − x
4 ln3 t is strictly

decreasing on [Lt ,∞) and negative at x = Lt , a.s. for all t large enough, (8.12) is
smaller than ∞∑

n=Lt

e−
n
4 ln3 t ≤ 2e−

Lt
4 ln3 t . (8.15)

Plugging in the definition of Lt now yields (4.23). � 

8.3 Negligible contributions

In this subsection we prove Propositions 4.8 and 4.9. Here and in the next subsection
we will work with RL satisfying (5.11–5.12). It will be useful to introduce yet another
family of auxiliary cost functionals Ψ̃t,s,c, indexed by t, s ≥ 0, c ∈ R, and defined on
the elements of CLt ,A as follows:

Ψ̃t,s,c(C) := λ
(1)
C − (ln+3 |zC | − c)+

s
|zC | , C ∈ CLt ,A. (8.16)

These functionals will be convenient to express bounds to the Feynman–Kac formula
obtained via Proposition 6.1. In order to compare Ψ̃t,s,c and Ψt , we will need the
following.

Lemma 8.2 Almost surely for all t, s > 0, there exists a component Ct,s ∈ CLt ,A such
that, for all 0 < a ≤ b < ∞, the following holds with probability tending to 1 as
t →∞:

zCt,s = Zs ∀ s ∈ [at, bt]. (8.17)

Proof By Lemma 5.8, there exists a δ > 0 such that, with probability tending to 1 as
t →∞, whenever |Zs |+2d�Zs < Lt and λC (Zs) > âLt −χ−δ we can find a unique
Ct,s ∈ CLt ,A with zCt,s = Zs . Fixing C∗t ∈ CLt ,A in an arbitrary (measurable) fashion,
we define Ct,s = C∗t when either the conclusion of Lemma 5.8 does not hold, or when
Zs does not satisfy the properties above. By Proposition 7.1, Ct,s satisfies (8.17) with
probability tending to 1 as t →∞. � 
When t = s, we write Ct instead of Ct,s . The following lemma relates Ψ̃t,s,c to Ψt .

Lemma 8.3 For all A > 0 large enough and any 0 < a ≤ b <∞, δ > 0 and c ∈ R,

Ct,s ∈ CδLt ,A and
∣
∣Ψ̃t,s,c(Ct,s)− Ψ (1)

s

∣
∣ ∨
∣
∣
∣
∣ max
C �=Ct,s

Ψ̃t,s,c(C)− Ψ (2)
s

∣
∣
∣
∣ ≤ o(dt btεt )

(8.18)

hold for all s ∈ [at, bt] with probability tending to 1 as t →∞.
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Proof Fix A, δ > 0 as in Lemma 5.8. By this lemma and Proposition 7.1, if C /∈ CδLt ,A

then Ψ̃t,s,c(C) ≤ λ
(1)
C < Ψ

(2)
s , while, if z ∈ C and C ∈ CδLt ,A

are related as in
Lemma 5.8, then

Ψ̃t,s,c(C) = Ψs,c(z)+ o(dt btεt ). (8.19)

By Proposition 7.1 and (5.5), the objects Zs , Z (1)
s,c and Z (2)

s,c all satisfy the conditions
of Lemma 5.8(ii) with L = Lt , and thus (8.19) and Lemma 7.2 together imply (8.18),
as desired. � 

We proceed to the proofs of Propositions 4.8–4.9. Recall (6.4) and consider the
following classes of paths: First set

N (0)
t,s :=

{
π ∈P(0,Zd) : supp(π) ⊂ BLt , supp(π) ∩ (D◦

t,s)
c �= ∅} (8.20)

and then let

N (1)
t,s :=

{
π ∈ N (0)

t,s : λLt ,A(π) ≤ λ
(1)
Ct,s

}
and N (2)

t,s := N (0)
t,s � N (1)

t,s , (8.21)

where Ct,s is as in Lemma 8.2. Note that, if τ(D◦
t,s )

c ≤ s < τBc
Lt
, then π(X0,s) ∈

N (1)
t,s ∪N (2)

t,s and hence wemay bound the contribution of each class of paths separately.
This is carried out in the following lemma, using Proposition 6.1.

Lemma 8.4 For all A > 0 large enough, there exists c > 0 such that, for all 0 < a ≤
b <∞,

lnE0

[

e
∫ s
0 ξ(Xu)du1{

π(X0,s )∈N (1)
t,s

}

]

≤ sΨ̃t,s,c(Ct,s)− (ln3(d Lt )− c)ht |Zs | + o(tdt bt )

(8.22)
and

lnE0

[

e
∫ s
0 ξ(Xu)du1{

π(X0,s )∈N (2)
t,s

}

]

≤ s max
C �=Ct,s

Ψ̃t,s,c(C)+ o(tdt bt ) (8.23)

hold for all s ∈ [at, bt] with probability tending to 1 as t →∞.

Proof On Et,a,b [cf. (7.6)], infs∈[at,bt] |Zs | � ln Lt and so we may apply Propo-
sition 6.1 to N (1)

t,s and N (2)
t,s . Choose γπ , zπ as follows. For π ∈ N (1)

t,s , let γπ =
λ
(1)
Ct,s

+ dt/ ln3 t and take zπ arbitrarily in supp(π) ∩ (D◦
t,s)

c �= ∅. If π ∈ N (2)
t,s , then

supp(π) ∩ ΠLt ,A �= ∅ and we may set γπ = λLt ,A(π) + dt/ ln3 t , zπ = zCπ where
Cπ ∈ CLt ,A is such that λLt ,A(π) = λ

(1)
Cπ . Note that, by Lemma 8.3, we may assume

that λ(1)Ct,s
> âLt − A. Then (8.22–8.23) follow by substituting our choice of γπ , zπ

in (6.7), using the definition of Ψ̃t,s,c, the fact that |zπ | > |Zs |(1 + ht ) for π ∈ N (1)
t,s

and noting that dt/ ln3 t = o(dt bt ) by (4.14). � 
Proof of Proposition 4.8 This now follows from Lemmas 8.3–8.4, Proposition 7.1,
the definition of dt and rt in (2.6) and the relations between the various error scales
in (4.14). � 
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Next we turn to Proposition 4.9. Note that paths avoiding Bν(Zs) do not necessarily
exit an �1-ball of radius ln Lt , so we may not directly use Proposition 6.1. As points
in ΠL ,A are typically far away from the origin, this can be remedied by considering

N (3)
t :=

{
π ∈P(0,Zd) : supp(π) ⊂ BLt \ΠLt ,A1

}
,

N (4)
t,s :=

{
π ∈P(0,Zd) : supp(π) ⊂ BLt \Bν(Zs), supp(π) ∩ΠLt ,A1 �= ∅

}
,

(8.24)
where A1 > 4d is fixed as in Lemma 5.6. Since τBν (Zs )∧τBc

Lt
> s implies π(X0,s) ∈

N (3)
t ∪ N (4)

t,s , we may again control the contribution of each set separately. For N (3)
t

this is an easy task since, for any A, s > 0,

lnE0

[
e
∫ s
0 ξ(Xu)du1

{
τBc

Lt
∧ τΠLt ,A

> s
}]

≤ s (̂aLt − 2A) (8.25)

by the definition of ΠLt ,A. For N
(4)
t,s , we may again apply Proposition 6.1:

Lemma 8.5 There exist ν1 ∈ N and c > 0 such that, for all A > 0 large enough and
all 0 < a ≤ b <∞, the following holds with probability tending to 1 as t →∞: For
all ν ≥ ν1, s ∈ [at, bt] and θ > 0,

lnE0

[

e
∫ θ
0 ξ(Xu)du1{

π(X0,θ )∈N (4)
t,s

}

]

≤ θ

(

max
C �=Ct,s

Ψ̃t,θ,c(C) ∨ (̂aLt − 4d)+ o(dt bt )

)

, (8.26)

where o(dt bt ) does not depend on θ .

Proof Let δ, A1 > 4d and ν1 be as in Lemma 5.6, and assume that t is large enough
for the conclusions of this lemma to hold with L = Lt . We may assume A > A1.

We will apply Proposition 6.1 using the islands of CLt ,A1 . We are justified to do so
because, by Lemma 5.1, ΠLt ,A1 ∩ Bln Lt = ∅ almost surely when t is large, and thus
all π ∈ N (4)

t,s exit a box of radius ln Lt . Let c = cA1 be as in (6.7). Since A > A1,

∀C ∈ CLt ,A1 , ∃ C′ ∈ CLt ,A s.t. C ⊂ C′. (8.27)

Recall the definition of λL ,A(π) in (6.4). For π ∈ N (4)
t,s , let zπ := zCπ where Cπ ∈

CLt ,A1 is such that π ∩ C ∩ ΠL ,A1 �= ∅ and λLt ,A1(π) = λ
(1)
Cπ . Note that zπ = zC′π

where Cπ ⊂ C′π ∈ CLt ,A. When t is large enough, Ct,s ∈ CδLt ,A
by Lemma 8.3; hence,

by Lemma 5.6 and the definition of N (4)
t,s , C′π �= Ct,s = ∅. From this we conclude that

θλLt ,A1(π)− (ln3(d Lt )− c)|zπ | = θλ
(1)
Cπ − (ln3(d Lt )− c)

∣
∣zCπ

∣
∣

≤ θ sup

{

λ
(1)
C′ − (ln+3 |zC′ | − c)+

|zC′ |
θ

: C′ ∈ CLt ,A\
{
Ct,s
}
}

.
(8.28)
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Choosing now γπ = λLt ,A1(π) ∨ (̂aLt − 4d) + dt/ ln3 t , (8.26) follows from (6.7),
(8.28) and (4.14). � 

Proof of Proposition 4.9 This follows from (8.25) with A := A1 together with
Lemma 8.5 applied to θ = s, Lemma 8.3 and the fact that, by Proposition 7.1,
Ψ

(2)
s > (̂aLt − 4d) for all s ∈ [at, bt] with probability tending to 1 as t → ∞.

� 

8.4 Upper bound for the total mass and proof of Theorem 2.5

We will prove Theorem 2.5 by comparing 1
t lnU (t) to Ψ (1)

t and then applying Propo-
sition 7.1. The last missing ingredient is the following upper bound for U (t). Recall
that we assume (5.11–5.12).

Lemma 8.6 (Upper bound for the total mass) For any 0 < a ≤ b <∞,

sup
s∈[at,bt]

{
lnU (s)− sΨ (1)

s

}
≤ o(tdt bt ) (8.29)

holds with probability tending to 1 as t →∞.

Proof Applying Proposition 6.1 to the set of paths

N (5)
t :=

{
π ∈P(0,Zd) : supp(π) ⊂ BLt , supp(π) ∩ΠLt ,A �= ∅

}
(8.30)

with γπ := λLt ,A(π)∨ (̂aLt − A)+dt/ ln3 t and zπ := zCπ where Cπ ∈ CLt ,A satisfies
λLt ,A(π) = λ

(1)
Cπ , we obtain

lnE0

[

e
∫ s
0 ξ(Xu)du1{

π0,s (X)∈N (5)
t

}

]

≤ s max
C∈CLt ,A

Ψ̃t,s,c(C)+ o(tdt bt ) ≤ sΨ (1)
s + o(tdt bt ) (8.31)

with probability tending to 1 as t →∞ by (6.7), (8.16), Lemma 8.3, (2.6) and (4.14).
Now (8.29) follows by (8.31) together with (8.25) and Propositions 4.7 and 7.1. � 

Proof of Theorem 2.5 Proposition 4.6 and Lemma 8.6 imply that, for any 0 < a ≤
b <∞,

lim
t→∞ sup

s∈[at,bt]

∣
∣ 1

s lnU (s)− Ψ
(1)
s
∣
∣

dt
= 0 in probability. (8.32)

The claim follows from Proposition 7.1 and drt = dt (1+ o(1)). � 
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9 Localization

In this section we prove Propositions 4.10–4.11, dealing with localization of the solu-
tion to the PAM as well as the eigenfunction φ◦t,s . The proof of the former proposition
is actually quite short:

Proof of Proposition 4.10 By (4.14) and (4.17), Bν(Zs) ⊂ D◦
t,s for all s ∈ [at, bt]

with probability tending to 1 as t → ∞, and thus we may apply Lemma 5.15 to
Λ = D◦

t,s , z = 0, Γ = Bν(Zs). � 
We now turn to the proof of Proposition 4.11. The first step is to obtain a spectral

gap in the inner domain D◦
t,s , which is a consequence of our choice of the scale ht

in (4.14). Recall the following useful formulas for the second largest eigenvalue of
the Anderson Hamiltonian in a subset of Z

d : For Λ ⊂ Z
d , let λ(k)Λ , resp., φ(k)

Λ be the
eigenvalues, resp., eigenvectors of HΛ as in Sect. 5.4. Then we may write

λ
(2)
Λ = sup

{
〈(Δ+ ξ)φ, φ〉 : φ ∈ R

Z
d
, suppφ ⊂ Λ, ‖φ‖�2(Zd ) = 1, φ ⊥ φ

(1)
Λ

}
.

(9.1)
A consequence of (9.1) and (5.4) is that, if Λ1,Λ2 ⊂ Z

d satisfy dist(Λ1,Λ2) ≥ 2,
then we have

λ
(1)
Λ1

≥ λ
(1)
Λ2

⇒ λ
(2)
Λ1∪Λ2

= max
{
λ
(2)
Λ1
, λ

(1)
Λ2

}
. (9.2)

In the following, we assume that the scale sequence RL obeys (5.11–5.12). Recall the
component Ct,s ∈ CLt ,A from Lemma 8.2, and the notation Gt,s := {Ψ (1)

s − Ψ
(2)
s >

et dt }. We then have:

Lemma 9.1 (Spectral gap) For any A > 0 large enough and any 0 < a ≤ b <∞, it
holds with probability tending to 1 as t →∞ that, for all s ∈ [at, bt], on Gt,s ,

λ
(1)
Ct,s

> sup
C∈CLt ,A\{Ct,s}:
dist(C,D◦

t,s )≤(ln t)2

λ
(1)
C + dt et + o(dt et ) (9.3)

and
λ
(1)
D◦

t,s
> λ

(2)
D◦

t,s
+ dt et + o(dt et ). (9.4)

Proof Let t be large enough such that the conclusion of Lemma 5.2 is in place with
L = Lt . Then, for any C ∈ CLt ,A\{Ct,s}, by (8.16) and Lemma 8.3, on Gt,s we have

λ
(1)
Ct,s

− λ
(1)
C ≥ dt et + o(dt bt )− |zC | ln+3 |zC | − |Zs | ln+3 |Zs |

s
(9.5)

with probability tending to 1 as t →∞. By Proposition 7.1 and Lemma 5.2, we may
assume that |Zs | ≥ t1/2 and that, for all C ∈ CLt ,A such that dist(C, D◦

t,s) ≤ (ln t)2,
|zC | ≤ |Zs |(1+ ht )+ (ln t)2 + n A RLt < t . With the help of (2.6), (4.14) and (5.11),
we can see that the right-hand side of (9.5) is at least
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dt et + o(dt bt )− 2(ln3 t)
|Zs | ht + (ln t)2

s

≥ dt et + o(dt bt )− 2(ln3 t)
rt gt ht + (ln t)2

at
= dt et + o(dt et ),

(9.6)

thus proving (9.3).
To show (9.4), wemay assume λ(2)D◦

t,s
> λ

(1)
D◦

t,s
− A/4 since otherwise (9.4) is trivially

satisfied. For A > χ+1 large enough, take δ ∈ (0, 1) as in Lemma 5.3. By Lemma 5.2,
Proposition 4.4 and Lemma 8.3, we may assume that Ct,s ⊂ D◦

t,s and Ct,s ∈ CδLt ,A
.

Thus, by (9.3), λ(1)D◦
t,s
− A ≥ λ

(1)
Ct,s

− A ≥ âLt − 2A. Applying Theorem 2.1 of [7] to

D := D◦
t,s together with (5.6) and (9.2), we obtain

λ
(2)
D◦

t,s
<

(

sup
C �=Ct,s : C∩D◦

t,s �=∅
λ
(1)
C

)

∨ λ
(2)
Ct,s

+ 2d(ηA)
RLt , (9.7)

where ηA :=
(
1+ A

4d

)−1
. Now, by Lemma 5.3(i), (9.3) and (9.7),

λ
(1)
D◦

t,s
− λ

(2)
D◦

t,s
> {dt et + o(dt et )} ∧ 1

2ρ ln 2− 2d(ηA)
Rt , (9.8)

which proves (9.4) since (ηA)
Rt = o(dt et ) by (2.6), (4.14) and (5.11). � 

We are now in position to finish the proof.

Proof of Proposition 4.11(i) We can use the proof of Theorem 1.4 in [7] with the
following three main modifications:

1. In the part of the proof dealing with large distances, Theorem 2.5 of [7] is invoked,
with the generic component C appearing in its statement now set to Ct,s (which we
may and do assume to be contained in D◦

t,s). For that we need to show that, with
probability tending to 1 as t →∞,

∥
∥φ◦t,s1Ct,s

∥
∥
2 >

1

2
∀s ∈ [at, bt]. (9.9)

The proof of Theorem 2.5 then shows that this inequality characterizes C.
2. Still in the part dealing with large distances, we use the bound (9.4) instead of

Lemma 8.1 of [7].
3. In the second part of the proof dealing with short distances, use (5.20) instead of

Lemma 4.8 of [7].

With these modifications, the proof goes through in our case.
In order to complete the proof, it thus remains to establish (9.9). Let D := D◦

t,s\Ct,s .
We first claim that, with probability tending to 1 as t →∞,

λ
(1)
D ≤ λ

(1)
Ct,s

− dt et + o(dt et ). (9.10)
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Indeed, take A > χ + δ. By Lemma 8.3, we may assume that Ct,s ∈ CδLt ,A
, and

thus we may also assume that λ(1)D > âLt − A since otherwise (9.10) is satisfied. By
Theorem 2.1 of [7] and (5.6),

λ
(1)
D ≤ sup

{
λ
(1)
C : C ∈ CLt ,A\

{
Ct,s
}
, C ∩ D◦

t,s �= ∅}+ 2d(ηA)
RLt (9.11)

where ηA := (1 + A/(4d))−1, so (9.10) follows by Lemma 9.1, (2.6), (4.14) and
(5.11). Now, for x ∈ D, the eigenfunction φ◦t,s satisfies the equation

(
−HD − λ

(1)
D◦

t,s

)
φ◦t,s(x) =

∑

y∈∂D,|y−x |=1
φ◦t,s(y) (9.12)

where HD is the Anderson operator in D with Dirichlet boundary conditions and
∂D := {x ∈ D◦

t,s\D : ∃ y ∈ D, |y − x | = 1}. By Lemma 4.2 of [7],

∥
∥φ◦t,s1∂D

∥
∥
�2(Zd )

≤ {1+ A/(2d)}−2RLt ≤ (ηA)
RLt . (9.13)

Using (9.12–9.13) together with the operator norm of the resolvent of −HD and the
Cauchy-Schwarz inequality, we obtain

∥
∥φ◦t,s1D

∥
∥
�2(Zd )

≤ dist(λ(1)D◦
t,s
,Spec(−HD))

−12d(ηA)
RLt

≤ (ln t)2(ηA)
RLt = o(1), (9.14)

where the last line holds by (9.10), λ(1)D◦
t,s
≥ λ

(1)
Ct,s

, (2.6), (4.14) and (5.11). In light of

‖φ◦t,s‖�2(Zd ) = 1, this implies (9.9) as desired. � 

Proof of Proposition 4.11(ii) To prove (4.31), we will use (4.30), the representa-
tion (5.47) and Lemma 5.7. Let c1, c2 as in (4.30). Since φ◦t,s is normalized in �2(Zd),
there exists ν0 = ν0(c1, c2) such that, for all ν ≥ ν0,

max
y∈Bν (Zs )

φ◦t,s(y) ≥ max
y∈Bν0 (Zs )

φ◦t,s(y) ≥ (2
∣
∣Bν0

∣
∣)−

1
2 =: ε0 > 0. (9.15)

Fix ν ≥ ν0 and let A∗, δ and A be as in Lemma 5.7. When t is large, the conclusion
of this lemma holds with L := Lt . By Lemma 8.3, we may assume that Ct,s ∈ CδLt ,A

,
and thus (5.29) holds for Ct,s . On the other hand, by (5.5), (4.17) and Lemma 5.1, we
have

λ
(1)
D◦

t,s
≤ max

x∈D◦
t,s

ξ(x) ≤ max
x∈BLt

ξ(x) ≤ âLt + 1, (9.16)

with probability tending to 1 as t →∞. Since Zs = zCt,s , for any z ∈ Bν(Zs),

λ
(1)
D◦

t,s
− ξ(z) ≤ 2A∗ + 1 =: A′. (9.17)
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Let x̄ ∈ Bν(Zs) with φ◦t,s(x̄) = maxy∈Bν (Zs ) φ
◦
t,s(y). For y ∈ Bν(Zs), fix a shortest-

distance path π from y to x̄ inside Bν(Zs). Then

Ey

[

exp
{∫ τx̄

0

(
ξ(Xs)− λ

(1)
D◦

t,s

)
ds
}
1{τx̄ < τ(D◦

t,s )
c}
]

≥ Ey

[

exp

{∫ T|π |

0

(
ξ(Xs)− λ

(1)
D◦

t,s

)
ds

}

1{π(|π |)(X) = π}
]

=
|π |−1∏

i=0

1

2d + λ
(1)
D◦

t,s
− ξ(πi )

≥ (2d + A′)−2dν =: ε1 > 0

(9.18)
by Lemma 6.3 and (9.17). To conclude, invoke (5.47) to write

φ◦t,s(y) = φ◦t,s(x̄)Ey

[

exp

{∫ τx̄

0

(
ξ(Xs)− λ

(1)
D◦

t,s

)
ds

}

1
{
τx̄ < τ(D◦

t,s )
c

}]

≥ ε0ε1

(9.19)
by (9.15) and (9.18). The claim now follows with εν := ε0ε1 > 0. � 

10 Path localization

In this section, we prove Propositions 4.12 and 4.13; these proofs come in Sects. 10.1
and 10.2, respectively. We assume throughout that A > 0 and ν ∈ N have been
fixed at sufficiently large values to satisfy the hypotheses of all previous results. We
also assume that RL obeys (5.11–5.12). In order to avoid repetition, statements inside
proofs are tacitly assumed to hold with probability tending to 1 as t →∞.

10.1 Fast approach to the localization center

Recall the component Ct = Ct,t ∈ CLt ,A from Lemma 8.2. We first show that,
under Q(ξ)

t , the random walk exits a box of radius ln Lt by time εt t , at least on the
event that a neighborhood of the localization center Zt is hit by time t .

Lemma 10.1 In probability under the law of ξ ,

1

U (t)
E0

[
e
∫ t
0 ξ(Xu)du1

{
τ(D◦

t,t )
c > t ≥ τBν (Zt ), τBc�ln Lt �

> εt t
}]

−→
t→∞ 0. (10.1)

Proof Note that, by Proposition 7.1, Bν(Zt ) ⊂ Bc�ln Lt �(x) for any x ∈ B�ln Lt �. For
such x , we may apply Proposition 6.1 to the set of paths

N (6)
t,x :=

{
π ∈P(x,Zd) : supp(π) ⊂ D◦

t,t , supp(π) ∩ Bν(Zt ) �= ∅
}

(10.2)

with γπ := λ
(1)
Ct
+ dt/ ln3 t and zπ ∈ Bν(Zt ) arbitrary, which is justified with the help

of Lemma 9.1, Lemma 8.3, (5.11) and (2.6). Since |zπ − x | ≥ |Zt | − dν − d�ln Lt�,
we obtain
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lnEx

[
e
∫ (1−εt )t
0 ξ(Xu)du1

{
τ(D◦

t,t )
c > (1− εt )t ≥ τBν (Zt )

}]

≤ (1− εt )tλ
(1)
Ct
− |Zt | ln3 |Zt | + o(tdt bt ) (10.3)

by (2.6) and (4.14). On the other hand, by Lemma 5.1, a.s. eventually as t →∞,

lnE0

[
e
∫ s
0 ξ(Xu)du1

{
τBc�ln Lt �

> s
}]

≤ s max
x∈B�ln Lt �

ξ(x) ≤ s 2ρ ln3 t ∀s ≥ 0. (10.4)

Now use the Markov property at time εt t , (10.3–10.4) and Proposition 4.6 to obtain

1

U (t)
E0

[
e
∫ t
0 ξ(Xu)du1

{
τ(D◦

t,t )
c > t ≥ τBν (Zt ), τBc�ln Lt �

> εt t
}]

≤ exp
{

t (Ψ̃ (1)
t − Ψ

(1)
t )− εt t (λ

(1)
Ct
− 2ρ ln3 t)+ o(tdt bt )

}
(10.5)

which goes to 0 as t →∞ by Lemma 8.3, (4.13) and εt � (ln3 t)−1. � 

The following result can be seen as an alternative version of Lemma 8.5.

Lemma 10.2 There exists a constant c > 0 such that, with probability tending to one
as t →∞,

lnE0

[
e
∫ εt t
0 ξ(Xu)du1

{
τBν (Zt ) ∧ τ(D◦

t,t )
c > εt t ≥ τBc�ln Lt �

, Xεt t = x
}]

≤ εt t max
C �=Ct

λ
(1)
C − (ln3(d Lt )− c) |x | + o(εt tdt bt ) (10.6)

for all x ∈ Z
d , and o(εt tdt bt ) in (10.6) does not depend on x.

Proof Let A > A1 where A1 > 4d is as in Lemma 5.6, and define the set of paths

N (7)
t,x :=

{
π ∈P(0, x) : D◦

t,t ⊃ supp(π) �⊂ B�ln Lt �, supp(π) ∩ Bν(Zt ) = ∅} .
(10.7)

Wewish to apply Proposition 6.1 toN (7)
t,x using the islands ofCLt ,A1 (i.e., with L = Lt ,

A = A1 therein), similarly as in the proof of Lemma 8.5. To this end, we take,
for π ∈ N (7)

t,s , γπ := maxC �=Ct λ
(1)
C + dt/ ln3 t (where the maximum is taken over

C ∈ CLt ,A\Ct ), and zπ := x . Let us check that γπ satisfies (6.5). Indeed, by Lemma 8.3
we may assume that maxC �=Ct λ

(1)
C > âLt − A1. Reasoning as in the arguments leading

to (8.27–8.28), we obtain λLt ,A1(π) ≤ maxC �=Ct λ
(1)
C for all π ∈ N (7)

t,x , so (6.5) fol-
lows. Inserting our choice of γπ , zπ in (6.7) and using (4.14), we obtain (10.6) with
c = cA1 . � 

We can now finish the proof of Proposition 4.12.
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Proof of Proposition 4.12 The key point is to show that, for some constant c > 0 and
uniformly in x ∈ Z

d ,

E0

[

e
∫ t
0 ξ(Xu)du1

{
τ(D◦

t,t )
c > t ≥ τBν (Zt ) > εt t ≥ τBc�ln Lt �

, Xεt t = x
}]

≤ exp

{

εt t sup
C �=Ct

λ
(1)
C + (1− εt )tλ

(1)
Ct
− (ln3(d Lt )− c)|Zt | + o(εt tdt bt )

}

.

(10.8)

Indeed, assuming (10.8), Proposition 4.6, Lemma 8.3 and (4.17) allow us to write

1

U (t)
E0

[

e
∫ t
0 ξ(Xu)du1{

τ(D◦t,t )c>t≥τBν (Zt )>εt t≥τBc�ln Lt �
}
]

≤
∣
∣D◦

t,t

∣
∣

U (t)
sup
x∈Zd

E0

⎡

⎣e
∫ t
0 ξ(Xu)du1{

τ(D◦t,t )c>t≥τBν (Zt )>εt t≥τBc�ln Lt �
,Xεt t=x

}

⎤

⎦

≤ exp

{

−εt t (λ
(1)
Ct
− max

C �=Ct

λ
(1)
C )+ o(εt tdt bt )

}

−→
t→∞ 0 in probability

(10.9)
by Lemma 9.1 and (4.14). This and Lemma 10.1 yield (4.39).

In order to prove (10.8), suppose first that dist(x, Bν(Zt )) ≥ ln Lt . Then we may
apply Proposition 6.1 to the set of paths

N (8)
t,x :=

{
π ∈P(x,Zd) : supp(π) ⊂ D◦

t,t , supp(π) ∩ Bν(Zt ) �= ∅
}

(10.10)

with γπ = λ
(1)
Ct
+ dt/ ln3 t and zπ ∈ Bν(Zt ) ∩ supp(π) arbitrary, obtaining

lnEx

[

e
∫ (1−εt )t
0 ξ(Xu)du1{

τ(D◦t,t )c>(1−εt )t≥τBν (Zt )

}

]

≤ (1− εt )tλ
(1)
Ct
− (ln3(d Lt )− cA)|Zt − x | + o(εt tdt bt ) (10.11)

since |zπ − x | ≥ |Zt − x | − dν. Noting that both (10.11) and (10.6) remain true if we
substitute c and cA by c∨ cA, (10.8) follows by applying the Markov property at time
εt t and then using (10.11), Lemma 10.2 and the triangle inequality.

If instead dist(x, Bν(Zt )) < ln Lt , we may bound using Lemma 5.12

Ex

[
e
∫ (1−εt )t
0 ξ(Xu)du1{τ(D◦t,t )c>(1−εt )t≥τBν (Zt )}

]

≤ e
(1−εt )tλ

(1)
D◦t,t
∣
∣D◦

t,t

∣
∣
3
2

≤ exp
{
(1− εt )tλ

(1)
D◦

t,t
+ o(εt tdt bt )

}
(10.12)
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by (4.17) and (4.13). By Theorem 2.1 of [7] together with Lemma 9.1, (5.6) and (5.11),

λ
(1)
D◦

t,t
< λ

(1)
Ct
+ o(εt dt bt ). (10.13)

Since |x | > |Zt |−dν−ln Lt , (10.8) again follows using theMarkov property together
with (10.12–10.13) and Lemma 10.2. � 

10.2 Local concentration

In this section, we address the principal ingredient needed for the proof of path local-
ization, culminating in the proof of Proposition 4.13.

For L ∈ N, let ε̃L := inf{εs : s > 0, Ls = L} and note that ε̃Lt ≤ εt . Using (4.22)
and limt→∞ εt ln3 t = ∞, it is straightforward to show that also limL→∞ ε̃L ln3 L =
∞. Define

R̃L :=
⌊

ε̃L ln L

2(n A + 1)

⌋

. (10.14)

Note that R̃L satisfies (5.11) but not (5.12). Furthermore, (n A + 1)R̃Lt ≤ 1
2εt ln t .

Let C̃L ,A be the analogue of CL ,A using the radius R̃L , and let C̃t ∈ C̃L ,A such that
Zt ∈ C̃t ∩ΠLt ,A. This is well-defined with probability tending to 1 as t →∞ since,
by (5.5) and Proposition 7.1, we may assume that Zt ∈ ΠLt ,A. Note that, without
assuming (5.12), we cannot use Lemma 5.8; in particular, it may be that Zt �= zC̃t

.
Nonetheless, we still have the following.

Lemma 10.3 With probability tending to 1 as t →∞,

C̃t ⊂ D◦
t,t , λ

(1)
D◦

t,t
≥ λ

(1)

C̃t
> âLt − χ + o(1) (10.15)

and

λ
(1)

C̃t
> sup

C̃∈C̃Lt ,A\
{
C̃t

}
: C̃∩D◦

t,t �=∅
λ
(1)

C̃ + dt et + o(dt et ). (10.16)

In particular, λ(1)C̃t
= max{λ(1)C̃ : C̃ ∈ C̃Lt ,A, C̃ ∩ D◦

t,t �= ∅}.

Proof Let us start with (10.15). Note that, by (4.14) and (4.17), ht |Zt | > ht ft rt �
R̃Lt , implying the containment; the inequality between eigenvalues then follows by
(5.5). Now fix RL ≤ R̃L satisfying (5.11–5.12) and let Ct = Ct,t ∈ CLt ,A as in
Lemma 8.2. Then Ct ⊂ C̃t and thus λ

(1)

C̃t
≥ λ

(1)
Ct
. In particular, the remaining inequality

in (10.15) follows by Lemma 8.3.Moving to (10.16), fix C̃ ∈ C̃Lt ,A\{C̃t }, C̃∩D◦
t,t �= ∅.
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Applying Theorem 2.1 of [7] to D := C̃ and then (5.6) and Lemma 5.2, we get

λ
(1)

C̃ ≤ sup
C∈CLt ,A : C∩C̃ �=∅

λ
(1)
C + 2d(ηA)

RLt

≤ sup
C∈CLt ,A\{Ct } :

dist(C,D◦
t,t )≤(ln t)2

λ
(1)
C + 2d(ηA)

RLt (10.17)

where ηA := (1+ A/(4d))−1. Hence (10.16) follows from Lemma 9.1. � 
We can now give the proof of Proposition 4.13.

Proof of Proposition 4.13 Let n A ∈ N be as in Lemma 5.2. Fix x ∈ Bν(Zt ) and define

N (9)
t,x :=

{

π ∈P(x,Zd) : supp(π) ⊂ D◦
t,t , max

1≤�≤|π | |π� − x | > (n A + 1)R̃Lt

}

.

(10.18)
Let ϑL := 3(n A + 1)�̃ε−1L � and note that

ϑL � ln3 L as L →∞ and ϑL R̃L ≥ ln L for all L large enough. (10.19)

Choosing γπ := λ
(1)

C̃t
+2/t , by Lemma 10.3 and (10.19), wemay apply Proposition 6.2

(using the islands of C̃Lt ,A) to N
(9)
t,x , obtaining, for all 0 ≤ s ≤ t ,

Ex

[

e
∫ s
0 ξ(Xu)du1{τ(D◦t,t )c>s, sup0≤u≤s |Xu−x |> 1

2 εt ln t}

]

≤ e2 exp
{

sλ(1)C̃t
− 1

2 R̃Lt ln3 Lt

}
(10.20)

since 1
2εt ln t ≥ (n A + 1)R̃Lt . Now we note that, by Lemma 5.12 and Proposi-

tion 4.11(ii),

Ex

[
e
∫ s
0 ξ(Xu)du

]

≥ Ex

[
e
∫ s
0 ξ(Xu)du1

{
τD◦

t,t
> s, Xs = x

}]
≥ ε2ν exp

{
sλ(1)D◦

t,t

}
. (10.21)

Noting that R̃L ln3 L � ln L , (4.40) follows from (10.20–10.21), (10.15) and the fact
that Lt > t . � 

11 Local profiles

In this section, we prove Propositions 4.14–4.15 dealing with the local “shapes” of the
solution to the PAMand of the potential configuration in the vicinity of the localization
center, starting with the latter. In the following we will assume that A > 0 and ν ∈ N

have been taken large enough so as to satisfy the hypotheses of all previous results.
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Proof of Proposition 4.15 Fix 0 < a ≤ b < ∞. Let d(·, ·) be a metric under which
[−∞, 0]Zd

is compact and has the topology of pointwise convergence. Since for each
R ∈ N the principal Dirichlet eigenvalue of Δ + Vρ in BR is simple, there exists
εR > 0 such that

d(V, Vρ) < εR ⇒ sup
x∈BR

∣
∣V (x)− Vρ(x)

∣
∣ ∨

∥
∥
∥vR

V − vR
ρ

∥
∥
∥
�1
<

1

R
, (11.1)

where vR
V , resp., v

R
ρ are the principal Dirichlet eigenfunctions ofΔ+V , resp.,Δ+Vρ

in BR , both normalized in �1. Under Assumption 2.8, Lemma 3.2(i) in [12] shows that
the quantity

F(ε) := −χ − sup

{

λ(1)(V ) : V ∈ [−∞, 0]Zd
, L(V ) ≤ 1,

0 ∈ argmax(V ), d(V, Vρ) ≥ ε

}

(11.2)

is strictly positive for ε > 0. By Lemmas 5.1, 5.5 and 8.3, there exists a deterministic
non-increasing function δt > 0 such that δt → 0 as t → ∞ and the following holds
with probability tending to 1 as t →∞:

max
x∈BLt

ξ(x) < âLt + δt , inf
s∈[at,bt] λ

(1)
Ct,s

> âLt − χ − δt (11.3)

and
sup

s∈[at,bt]
LCt,s (ξ − âLt − δt ) ≤ 1. (11.4)

Letting tR > 0 with tR →∞ be such that δt <
1
2F(εR) for all t ≥ tR , we define

μt := inf {R ∈ N : tR+1 > t} . (11.5)

Then μt → ∞, and we can take μt � (ln t)κ by making tR grow sufficiently fast
with R. By (5.11), (4.17) and Lemma 5.2, wemay assume that Bμt (Zs) ⊂ Ct,s ⊂ BLt .
Defining

V ∗(x) :=
{
ξ(x + Zs)− âLt − δt if x + Zs ∈ Ct,s,

−∞ otherwise,
(11.6)

we have V ∗ ∈ [−∞, 0]Zd
, L(V ∗) = LCt,s (ξ − âLt − δt ) ≤ 1 and 0 ∈ argmax(V ∗).

Furthermore, we also have λ(1)(V ∗) = λ
(1)
Ct,s

− âLt − δt > −χ − F(εμt ). Since also

v
μt
V ∗(·) = φ•t,s(· + Zs),

sup
x∈μt

∣
∣ξ(x + Zs)− âLt − Vρ(x)

∣
∣ ∨ ∥

∥φ•t,s(Zs + ·)− vμt
ρ (·)∥∥

�1
<

1

μt
+ δt (11.7)

by (11.1) and the definition of F(ε). To conclude, we observe that âLt = ât + o(1)
and that, by Lemma 3.3(iii) of [12], limt→∞ ‖vμt

ρ − vρ‖�1 = 0. � 
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Next we prove Proposition 4.14 by adapting the strategy of Section 8.2 of [12].
The proof is based on two lemmas whose proofs will be postponed to subsequent
subsections. Fix μt ∈ N, 1 � μt � Rt , which is enough by (5.11). We will again
decompose the solutionwith the help of the Feynman–Kac representation,which states
that, for a function f : Z

d → [0,∞), f �≡ 0, the function

(x, t) �→ Ex

[
e
∫ t
0 ξ(Xs )ds f (Xt )

]
(11.8)

is the unique positive solution of the equation (1.1) with initial condition f .
Fix an auxiliary function t �→ Tt ∈ N such that

√
μt � Tt � μt . For nota-

tional convenience we set Bt,s := Bμt (Zs). Using (11.8), we may write u(x, s) =
u(1)(x, s; t)+ u(2)(x, s; t) where

u(1)(x, s; t) := Ex

[

e
∫ s
0 ξ(Xu)du1{

Xs=0,τBct,s
>Tt

}

]

(11.9)

and u(2) is defined by replacing τBc
t,s
> Tt by the complementary inequality. The first

lemma shows that the contribution of u(2) is negligible.

Lemma 11.1 For any 0 < a ≤ b <∞,

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∑

x∈Zd

u(2)(x, s; t)

U (s)
= 0 in probability. (11.10)

Finally, the second lemma controls the distance between u(1) and φ•t,s .

Lemma 11.2 For any 0 < a ≤ b <∞,

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∑

x∈Zd

∣
∣
∣
∣
u(1)(x, s; t)

U (s)
− φ•t,s(x)

∣
∣
∣
∣ = 0 in probability. (11.11)

Proof of Proposition 4.14 Follows directly from Lemmas 11.1–11.2. � 
The remainder of this section is devoted to the proofs of Lemmas 11.1–11.2. In

order to avoid repetition, we fix here 0 < a ≤ b < ∞, and all statements made in
what follows are assumed to hold for all s ∈ [at, bt] with probability tending to 1 as
t →∞.

11.1 Contribution of u(2)

Proof of Lemma 11.1 Recall that Bt,s = Bμt (Zs). Since u(2)(x, s; t) ≤ u(x, s), (4.32)
implies

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∑

x /∈Bt,s

u(2)(x, s; t)

U (s)
= 0 in probability, (11.12)

123



Mass concentration and aging in the parabolic Anderson…

so we only need to control the sum over x ∈ Bt,s . By the strong Markov property,

u(2)(x, s; t) = Ex

[

exp

{∫ τBct,s

0
ξ(Xθ )dθ

}

u(XτBct,s
, s − τBc

t,s
)1{Xs=0,τBct,s

≤Tt }
]

.

(11.13)

Consider the event
Rν

t,s,θ :=
{
τ(D◦

t,s )
c > θ ≥ τBν (Zs )

}
, (11.14)

introduce the functions

u1(x, θ) := Ex

[
e
∫ θ
0 ξ(Xu)du1{Xθ=0}∩Rν

t,s,θ

]
, (11.15)

u2(x, θ) := Ex

[
e
∫ θ
0 ξ(Xu)du1{Xθ=0}∩(Rν

t,s,θ )
c

]
= u(x, θ)− u1(x, θ), (11.16)

and define u(2)
i (x, s; t), i = 1, 2, by substituting ui for u in (11.13). Then, clearly, we

have u(2)(x, s; t) = u(2)
1 (x, s; t) + u(2)

2 (x, s; t). Our strategy is to separately estimate
the contribution of u(2)

1 and u(2)
2 . Starting with u(2)

2 , we claim that, for all θ < s,

u2(x, s − θ) ≤ eθ(2d−ξ(0))u2(x, s). (11.17)

Indeed, (11.17) can be obtained from (11.16) with θ = s by intersecting with the
event (Rν

t,s,s−θ )c ∩ {Xu = 0 ∀ u ∈ [s − θ, s]} and applying the Markov property. The
inequality (11.17) in turn shows

∑

x∈Bt,s

u(2)
2 (x, s; t)

U (s)
≤ ∣∣Bμt

∣
∣ eTt (2d+|ξ(0)|+2ρ ln2 t)

∑

x∈Zd

u2(x, s)

U (s)
, (11.18)

where we bound ξ(Xθ ) ≤ 2ρ ln2 t by Lemma 5.1 noting that Bt,s ⊂ Bt . By (4.33–
4.34) (and invariance under time-reversal of the law of X ), on Gt,s we can bound
(11.18) by

∣
∣Bμt

∣
∣ exp

{
−t (ln t)−2 + Tt (2d + |ξ(0)| + 2ρ ln2 t)

}
, (11.19)

which tends to 0 as t →∞.
Thus we are left with controlling u(2)

1 . To this end, recall the setting of Lemma 5.15
and note that, taking z = 0, Λ = D◦

t,s and Γ = Bν(Zs), we have u1(x, θ) = w(x, θ)
with w as defined in (5.49). Then Corollary 1 and Proposition 4.11 give, on Gt,s ,

u1(x, s − θ) ≤ e−θλ◦t,s
(

inf
y∈Γ φ

◦
t,s(y)

)−5
φ◦t,s(x)

∑

y∈Γ
u1(y, s)

≤ e−θλ◦t,s ε−5ν φ◦t,s(x)U (s),

(11.20)
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whereλ◦t,s is the largestDirichlet eigenvalue of HD◦
t,s
and εν is as inProposition4.11(ii).

Inserting (11.20) in the definition of u(2)
1 , we obtain, for some constant c0 > 0,

∑

x∈Bt,s

u(2)
1 (x, s; t)

U (s)

≤ c0μ
d
t sup

x /∈Bt,s

φ◦t,s(x) sup
x∈Bt,s

Ex

[

e
∫ τBct,s
0 (ξ(Xu)−λ◦t,s )du1{

τBct,s
≤Tt

}

]

. (11.21)

Since Bt,s ⊂ D◦
t,s , (5.5) shows that maxx∈Bt,s ξ(x) − λ◦t,s ≤ 2d. Applying Proposi-

tion 4.11(i), on Gt,s we may further bound (11.21) by

c0c1μ
d
t e
−c2μt+2dTt . (11.22)

By our choice of Tt , the quantity (11.22) tends to 0 as t →∞, concluding the proof
of Lemma 11.1. � 

11.2 Contribution of u(1)

Let λ(k)t,s , resp., φ
(k)
t,s be the ordered Dirichlet eigenvalues, resp., the corresponding

orthonormal eigenfunctions of the Anderson operator in Bt,s . We extend the eigen-
functions to be 0 outside of Bt,s = Bμt (Zs). In our previous notation,

λ•t,s = λ
(1)
t,s and φ•t,s = φ

(1)
t,s/
∥
∥φ(1)

t,s

∥
∥
�1(Zd )

(11.23)

We start with the following important fact.

Lemma 11.3 For any 0 < a ≤ b <∞, with probability tending to 1 as t →∞,

inf
s∈[at,bt] λ

(1)
t,s > âLt − χ + o(1), (11.24)

and
inf

s∈[at,bt] λ
(1)
t,s − λ

(2)
t,s ≥ 1

3ρ ln 2. (11.25)

Proof By Lemma 8.3, may assume λ(1)Ct,s
> âLt − χ + o(1). Thus, by Lemma 5.3(i),

λ
(1)
Ct,s

− λ
(2)
Ct,s

> 1
2ρ ln 2. (11.26)

Since Bt,s ⊂ Ct,s , λ
(2)
t,s ≤ λ

(2)
Ct,s

by the minimax formula (see e.g. the proof of [7,
Lemma 4.3]). Furthermore, by Lemma 5.6 together with [7, Theorem 2.1] (note that
λ
(1)
Ct,s

− A1 > âLt − 2A1),

λ
(1)
t,s > λ

(1)
Ct,s

− 2d

(

1+ A1

4d

)1−2(μt−ν1)
. (11.27)
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Now (11.24–11.25) follow from (11.26–11.27). � 
Lemma 11.3 will allow us to prove the following localization property for φ(1)

t,s .

Lemma 11.4 There exist c1, c2 ∈ (0,∞) and, for R ∈ N, ε•R > 0 such that, for all
0 < a ≤ b <∞, the following holds with probability tending to 1 as t →∞: For all
s ∈ [at, bt],

φ
(1)
t,s(x) ≤ c1e

−c2|x−Zs | ∀x ∈ Z
d , (11.28)

and
φ
(1)
t,s(y) ≥ ε•R ∀y ∈ BR(Zs). (11.29)

Proof Fix A1, ν1 as in Lemma 5.6 and take r > ν1. By Lemma 4.2 of [7] and (11.24),

∑

x∈Bt,s\Br (Zs )

∣
∣φ(1)

t,s(x)
∣
∣2 ≤

(

1+ A1

2d

)−2(r−ν1)
, (11.30)

proving (11.28). The bound (11.29) is obtained using (11.28) and Lemma 5.7 as in
the proof of Proposition 4.11(ii). � 

We can now finish the proof of Lemma 11.2.

Proof of Lemma 11.2 Using the Markov property, we can write

u(1)(x, s; t) = Ex

[
e
∫ Tt
0 ξ(Xu)duu(XTt , s − Tt )1{τBct,s

>Tt }
]
. (11.31)

Since

(x, T ) �→ Ex

[

e
∫ T
0 ξ(Xu)duu(XT , s − Tt )1{

τBct,s
>T
}

]

(11.32)

solves the parabolic equation (5.42) with Λ := Bt,s and initial condition u(·, s −
Tt )1Bt,s , an eigenvalue expansion as (5.44) gives

u(1)(x, s; t) =
|Bt,s |∑

k=1
eTtλ

(k)
t,s φ

(k)
t,s(x)〈φ(k)

t,s, u(·, s − Tt )〉, (11.33)

where 〈·, ·〉 is the canonical inner product in �2(Zd).
Set U (1)(s; t) :=∑x∈Zd u(1)(x, s; t) and note that, by Lemma 11.1,

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∣
∣
∣
∣
U (1)(s; t)

U (s)
− 1

∣
∣
∣
∣ = 0 in probability. (11.34)

It is thus enough to show (11.11) with U (s) substituted by U (1)(s; t). Using (11.33),
write

u(1)(x, s; t)

U (1)(s; t)
= φ

(1)
t,s(x)+ Et,s(x)

∥
∥φ(1)

t,s

∥
∥
�1(Zd )

+∑x∈Zd Et,s(x)
(11.35)
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where

Et,s(x) :=
|Bt,s |∑

k=2
e−Tt (λ

(1)
t,s−λ(k)t,s )φ

(k)
t,s(x)

〈φ(k)
t,s, u(·, s − Tt )〉

〈φ(1)
t,s, u(·, s − Tt )〉

. (11.36)

Once we show that

lim
t→∞ sup

s∈[at,bt]
1Gt,s

∥
∥Et,s

∥
∥
�1(Zd )

= 0 in probability, (11.37)

the desired conclusion will follow by the bound (recall φ•t,s = φ
(1)
t,s/‖φ(1)

t,s‖�1 )
∥
∥
∥
∥

u(1)(·, s; t)

U (1)(s; t)
− φ•t,s(·)

∥
∥
∥
∥
�1(Zd )

≤
2
∥
∥Et,s

∥
∥
�1(Zd )

1− ∥∥Et,s
∥
∥
�1(Zd )

, (11.38)

where we used that ‖φ(1)
t,s‖�1(Zd ) ≥ ‖φ(1)

t,s‖2�2(Zd )
= 1. To prove (11.37), we first use the

Cauchy-Schwarz inequality and Parseval’s identity to obtain

|Et,s(x)| ≤ e−Tt (λ
(1)
t,s−λ(2)t,s )

〈φ(1)
t,s, u(·, s − Tt )〉

⎛

⎝
|Bt,s|∑

k=1
〈φ(k)

t,s,1x 〉2
⎞

⎠

1
2
⎛

⎝
|Bt,s|∑

k=1
〈φ(k)

t,s, u(·, s − Tt )〉2
⎞

⎠

1
2

= e−Tt (λ
(1)
t,s−λ(2)t,s )

‖u(·, s − Tt )‖�2(Bt,s )

〈φ(1)
t,s, u(·, s − Tt )〉

1Bt,s (x). (11.39)

Now it suffices to show that, for some positive constants c0, c1, on Gt,s

‖u(·, s − Tt )‖�2(Zd ) ≤ c0 e
−Ttλ

•
t,s U (s), (11.40)

and
〈φ(1)

t,s, u(·, s − Tt )〉 ≥ c1 e
−Ttλ

•
t,s U (s); (11.41)

indeed, using (11.39–11.41) and (11.25), we can bound

sup
s∈[at,bt]

1Gt,s

∥
∥Et,s

∥
∥
�1(Zd )

≤ c0
c1
(2μt + 1)de−

ρ ln 2
3 Tt (11.42)

which tends to 0 as t → ∞ by our choice of Tt . Thus it only remains to prove
(11.40–11.41). We start with (11.40). By the triangle inequality,

‖u(·, s − Tt )‖�2(Zd ) ≤ ‖u1(·, s − Tt )‖�2(Zd ) + ‖u2(·, s − Tt )‖�2(Zd ) (11.43)

where u1, u2 are defined as in (11.15–11.16). Reasoning as in (11.17–11.19), we can
see that, on Gt,s ,

‖u2(·, s − Tt )‖�2(Zd )

U (s)
≤ ‖u2(·, s − Tt )‖�1(Zd )

U (s)
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≤ exp
{

Tt (2d + |ξ(0)|)− t (ln t)−2
}
� e−Ttλ

•
t,s (11.44)

since λ•t,s ≤ maxx∈Bt,s ξ(x) ≤ 2ρ ln2 t by Lemma 5.1. Using (11.20) we get, on Gt,s ,

‖u1(·, s − Tt )‖�2(Zd )

U (s)
≤ ε−5ν e−Ttλ

◦
t,s ≤ ε−5ν e−Ttλ

•
t,s (11.45)

since λ◦t,s ≥ λ•t,s . This shows (11.40). For (11.41), let u(1), u(2) be as in (11.9) and write

〈u(·, s), φ(1)
t,s〉 = 〈u(1)(·, s; t), φ(1)

t,s〉 + 〈u(2)(·, s; t), φ(1)
t,s〉

= eTtλ
•
t,s 〈u(·, s − Tt ), φ

(1)
t,s〉 + 〈u(2)(·, s; t), φ(1)

t,s〉 (11.46)

(where we used the spectral representation (11.33)) to obtain

〈u(·, s − Tt ), φ
(1)
t,s〉 = e−Ttλ

•
t,s
{〈u(·, s), φ(1)

t,s〉 − 〈u(2)(·, s; t), φ(1)
t,s〉
}
. (11.47)

Fix R ∈ N such that (4.32) holds with δ < 1
2 and, for this R, take ε•R > 0 as in (11.29).

Then on Gt,s we can estimate

〈u(·, s), φ(1)
t,s〉 ≥

∑

x∈BR(Zs )

φ
(1)
t,s(x)u(x, s) ≥ ε•R(1− δ)U (s) > 1

2ε
•
RU (s). (11.48)

On the other hand, by Lemma 11.1, the second term inside the brackets in (11.47) mul-
tiplied by 1Gt,s is smaller than ε•RU (s)/4 with probability tending to 1, proving (11.41)
with c1 = 1

4ε
•
R . This concludes the proof of Lemma 11.2. � 
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12 Appendix: A tail estimate

In this section, we prove (7.18) for Ŷt given by (7.21) using an approach from [7]. We
will strongly rely on Assumption 2.1. The first step concerns the asymptotic for the
upper tail of ξ .

Lemma 12.1 For any ε > 0, there exists t0 > 0 such that, for all t ≥ t0,

td Prob (ξ(0) > ât + sdt ) ≤ e−s(1−ε) ∀s ≥ 0. (12.1)

Proof Recall the definition of F in (2.1). Note that td = exp(eF (̂at )) to write
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− ln
{

tdProb (ξ(0) > ât + sdt )
}

= eF (̂at )
(
eF (̂at+sdt )−F (̂at ) − 1

)

≥ eF (̂at ) {F (̂at + sdt )− F (̂at )} , (12.2)

where in the last inequality we used ex − 1 ≥ x . Using (2.2) and the Mean Value
Theorem, we obtain F (̂at + sdt ) − F (̂at ) ≥ sdt (1 − ε)/ρ for all s ≥ 0 if t is large
enough. Since dt = ρe−F (̂at ), (12.1) follows from (12.2). � 
Lemma 12.1 will allow us to reduce the sum in (7.18) to |x | ≤ 6dθ t/dt .

Corollary 2 For any η ∈ R, θ ∈ (0,∞),

lim
t→∞

∑

x∈(2N̂t+1)Zd

|x |>6dθ t/dt

Prob

(

Ŷt (0) >
|x |
θ t

+ η

)

= 0. (12.3)

Proof Recall that maxx∈BN̂t
ξ(x) ≥ λ

(1)
BN̂t

by (5.5). Using at = ât − χ + o(1) and

χ ≤ 2d, we obtain, for each L ∈ N,

lim sup
t→∞

∑

x∈(2N̂t+1)Zd

|x |>6dθ t/dt

Prob

(

Ŷt (0) >
|x |
θ t

+ η

)

≤ lim sup
t→∞

∑

x∈(2N̂t+1)Zd

|x |>6dθ t/dt

|BN̂t
|Prob

(

ξ(0) > ât + dt

2

( |x |
θ t

+ 2η

))

≤ lim sup
t→∞

∑

x∈Zd

|x |>Lt/(2N̂t+1)

∣
∣BN̂t

∣
∣

td
exp

{

− 1
4

( |x |(2N̂t + 1)

θ t
+ 2η

)}

=
∫

|z|≥L
e
− 1
4

( |z|
θ
+2η

)

dz

(12.4)

by Lemma 12.1 and (2.6). Since the last integral converges to 0 as L → ∞, the
claim (12.3) follows. � 

To control the sum in (7.18) with |x | ≤ t6dθ/dt , we will use the following lemma.

Lemma 12.2 There exist c0, ε > 0 such that, for all large enough t and all s ≥ 0,

td

(2N̂t )d
Prob

(
Ŷt (0) > s

) ≤ 4 e−c0s + t−ε. (12.5)

Before we prove Lemma 12.2, let us finish the proof of (7.18).
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Proof of (7.18) By Corollary 2, we may restrict the sum over |x | ≤ t6dθ/dt . Fix
η ∈ R. Taking n ≥ θ |η|, if |x | ≥ nt then |x |/(θ t) + η ≥ 0. Thus we may bound, by
Lemma 12.2,

∑

x∈(2N̂t+1)Zd

nt≤|x |≤t6dθ/dt

Prob

(

Ŷt (0) >
|x |
θ t

+ η

)

≤ c2(ln t)d

tε
+

∑

x∈Zd

nt≤|x |(2N̂t+1)≤t6dθ/dt

(2N̂t )
d

td
4 exp

{

−c0

( |x |(2N̂t + 1)

θ t
+ η

)}

(12.6)

for a constant c2 > 0 and all large enough t . To conclude (7.17), note that the right-hand
side of (12.6) converges as t →∞ to

4
∫

|z|≥n
e
−c0

( |z|
θ
+η
)

dz, (12.7)

which converges itself to 0 as n →∞. � 
The remainder of this section is dedicated to the proof of Lemma 12.2. Note that,

by Assumption 2.1, ξ(0) has a density f with respect to Lebesgue measure given by

f (r) =
{

F ′(r) exp
{

F(r)− eF(r)
}
, r > essinf ξ(0),

0 otherwise.
(12.8)

The following bound holds for f .

Lemma 12.3 Fix a finiteΛ ⊂ Z
d and two functions α, ϕ : Λ→ R. Then, as t →∞,

∏

x∈Λ

f (̂at + ϕ(x)+ α(x)dt )

f (̂at + ϕ(x))

≤ exp

{

−(1+ o(1))
∑

x∈Λ
α(x)e

ϕ(x)
ρ + o(1)LΛ(ϕ)

}

(12.9)

where LΛ(ϕ) is as in (5.9). If α(x) ≥ 0 and |ϕ(x)| ≤ M, then o(1) only depends
on M. If |α(x)| ∨ |ϕ(x)| ≤ M, then equality holds in (12.9) with o(1) only depending
on M.

Proof This follows by the arguments in the proof of [7, Lemma 7.5]. � 
Fix now c0 := 1

4e
−2(d+1)/ρ ; thiswill the constant appearing in (12.2). The following

corollary is a convenient rephrasing of (12.9):
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Corollary 3 There exists t0 > 0 such that, for all t ≥ t0, s ≥ 0, Λ ⊂ Z
d and all

α, ϕ : Λ→ R with α(x) ≥ 0, −2(d + 1) ≤ ϕ(x) ≤ 1,

∏

x∈Λ

f (̂at + ϕ(x)+ sα(x)dt )

f (̂at + ϕ(x))
≤ exp

{

−2c0s
∑

x∈Λ
α(x)+ LΛ(ϕ)

}

. (12.10)

We can now prove Lemma 12.2:

Proof of Lemma 12.2 For t > 0 such that at > essinf ξ(0) + 1, define the continu-
ous map

Ft,s(r) :=
⎧
⎨

⎩

r if r ≤ at − 1,
r − sdt if r ≥ at + sdt ,

linear, otherwise.
(12.11)

Then Ft,s is bijective with inverse

F−1
t,s (r) :=

⎧
⎨

⎩

r if r ≤ at − 1,
r + sdt if r ≥ at ,

linear, otherwise.
(12.12)

Let ξt,s(x) := Ft,s(ξ(x)). Then ξt,s(x) has a density with respect to ξ(x) given by

dξt,s(x)

dξ(x)
(r) =

{
1 if r ≤ at − 1,

(1+ sdt )
1{r<at } f (F−1

t,s (r))
f (r) otherwise.

(12.13)

Recalling that λ(1)BR
(ξ) denotes the principal Dirichlet eigenvalue ofΔ+ξ in BR , define

Gt,s :=
{

ξ : λ(1)BRt
(ξ) > at + sdt , LBRt

(ξ − ât ) ≤ ln 2, max
x∈BRt

ξ(x) ≤ ât + 1

}

.

(12.14)

Since ξ(x)− sdt ≤ ξt,s(x) ≤ ξ(x), ξ ∈ Gt,s implies ξt,s ∈ Gt,0. Write

Prob
(
ξt,s ∈ Gt,0

)

= E

⎡

⎢
⎢
⎣1Gt,0(ξ) (1+ sdt )

|{x∈BRt : at−1<ξ(x)<at }| ∏
x∈BRt

ξ(x)>at−1

f (F−1
t,s (ξ(x)))

f (ξ(x))

⎤

⎥
⎥
⎦

(12.15)

where E denotes expectation with respect to environment law Prob. Bound the middle
term in (12.15) by

(1+ sdt )
|BRt | ≤ esdt (2Rt+1)d ≤ esc0 (12.16)

123



Mass concentration and aging in the parabolic Anderson…

for large t by (5.11). For the product term, define ϕ(x) := ξ(x)− ât ≤ 1 on Gt,0, and
α(x) ∈ [0, 1] by the equation ξ(x) + sdtα(x) = F−1

t,s (ξ(x)). Note that, if α(x) �= 0,
then ϕ(x) > at − 1− ât ≥ −2(d + 1) for large t ; thus, by Corollary 3,

∏

x∈BRt : ξ(x)>at−1

f (F−1
t,s (ξ(x)))

f (ξ(x))
≤ 2 exp

⎧
⎨

⎩
−2c0s

∑

x∈BRt : ξ(x)>at−1
α(x)

⎫
⎬

⎭
(12.17)

sinceLBRt
(ϕ) ≤ ln 2 on Gt,0. Moreover, by (5.5), on Gt,0 we have ξ(x) > at for some

x ∈ BRt and thus also α(x) = 1. Noting now that, by (12.1) and Lemma 6.4 of [7],

Prob
(
λ
(1)
BRt

(ξ) > at + sdt

)
≤ Prob

(
ξ ∈ Gt,s

)+ o(t−(d+ε0)) (12.18)

for some ε0 > 0, we obtain by (12.14–12.18)

Prob
(
λ
(1)
BRt

(ξ) ≥ at + sdt

)
≤ 2e−c0sProb

(
λ
(1)
BRt

(ξ) ≥ at

)
+ o(t−(d+ε0)). (12.19)

To pass the estimate to λ(1)BN̂t
(ξ), note first that, by Lemma 7.6 of [7],

lim sup
t→∞

td

(2Rt )d
Prob

(
λ
(1)
BRt

(ξ) ≥ at

)
≤ 1, (12.20)

and thus for large t the right-hand side of (12.19) is at most 3 e−c0s(2Rt/t)d +
o(t−(d+ε0)). Moreover, by Lemma 7.7 of [7] applied to tL := aL − âL + sdL and
R′

L := (ln2 L)2,

td

(2N̂t )d
Prob

(
λ
(1)
BN̂t

(ξ) ≥ at + sdt

)
≤ N̂−d

t + 4 e−c0s + o(t−ε0) (12.21)

for t large enough, noting that o(L−d) and o(1) in equation (7.27) of [7] are uniform
on the sequence tL . Note that the factor 2 multiplying Rt and N̂t here and not in
[7] appears since our boxes have side-length 2R + 1 while theirs R. Recalling that
N̂t � tβ for some β > 0 and taking ε := ε0 ∧ (βd), the lemma is proved. � 

13 Appendix: Compactification

Let E := (R × R
d) ∪ [0,∞) be equipped with a metric d defined by setting, for

θ, θ ′ ∈ [0,∞) and (λ, z), (λ′, z′) ∈ R× R
d ,

d(θ, θ ′) := ∣∣θ − θ ′
∣
∣ , d(θ, (λ, z)) := e−λ +

∣
∣
∣
∣
|z|

1 ∨ λ
− θ

∣
∣
∣
∣ ,

d((λ, z), (λ′, z′)) := e−λ∧λ′
(
1− e−|λ−λ′|−|z−z′|)+

∣
∣
∣
∣
|z|

1 ∨ λ
− |z′|

1 ∨ λ′

∣
∣
∣
∣ .

(13.1)
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One may verify that d is indeed a metric under which E is separable, complete and
locally compact. Moreover:

Lemma 13.1 For any (θ, η) ∈ (0,∞) × R, the set Hθ
η ⊂ E defined in (7.15) is

relatively compact.

Proof Note that the closure of Hθ
η in E is given by

Hθ
η =

{

(λ, z) ∈ R× R
d : λ− |z|

θ
≥ η

}

∪ [0, θ ]. (13.2)

Fix a sequence (Ξn)n∈N inHθ
η and consider the following three cases:

1. Ξn ∈ [0, θ ] for infinitely many n;
2. There is an infinite subsequenceΞn j = (λ j , z j ) ∈ R×R

d and (λ j ) j∈N is bounded,
implying that {Ξn j : j ∈ N} is contained in a compact subset of R× R

d ;
3. There is an infinite subsequenceΞn j = (λ j , z j ) ∈ R×R

d and lim j→∞ λ j = ∞.
Note that lim sup j→∞ |z j |/λ j ≤ θ .

As is directly checked, in each case there exists a subsequence converging in E to a
point of Hθ

η, thus proving the claim. � 
We finish the section with the following important property of E.

Lemma 13.2 For any compact set K ⊂ E, there exist θ ∈ (0,∞) and η ∈ R such
that K ∩ (R× R

d) ⊂ Hθ
η.

Proof Cover each x ∈ K with an open set Hθx
ηx ∪ [0, θx ) for some θx > 0, ηx ∈ R.

Use compactness to extract a finite subcover corresponding to x1, . . . , xN and set
θ := maxN

i=1 θxi , η := minN
i=1 ηxi to obtain the result. � 

14 Appendix: Properties of the cost functional

In this section we prove Lemmas 7.5, 7.6, 7.8 and 7.9.

Proof of Lemma 7.5(i) Fix θ0 < θ1 and set (λi , zi ) = Ξ
(1)
ϑ (P)(θi ), i = 0, 1. Then

θ0(λ1 − λ0) ≤ |ϑ(λ1, z1)| − |ϑ(λ0, z0)| ≤ θ1(λ1 − λ0) (14.1)

by the definition of Ψ (1)
ϑ (P), so that all three functions are non-decreasing. Now,

if (λ0, z0) �= (λ1, z1), then one of the inequalities above is strict, since otherwise
λ1 = λ0, |ϑ(λ1, z1)| = |ϑ(λ0, z0)| and we would have (λi , zi ) ∈ S(1)

ϑ (P)(θ j ) for
all i, j ∈ {0, 1}, implying that (λ1, z1) = (λ0, z0) by the definition of Ξ(1)

ϑ (P). This
concludes the proof. � 
Proof of Lemma 7.5(ii) We will first consider the case | supp(P)| < ∞. We may
assume | supp(P)| ≥ 2 since otherwise there is nothing to prove.
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Consider first the case i = 1. Ψ (1)
ϑ (P) is continuous as the pointwise maximum of

finitely many continuous functions. Lemma 7.5(i) implies that Ξ(1)
ϑ (P) jumps finitely

many times, and thus has left limits; let us to show that it is càdlàg. Fix θ0 > 0 and
let (λ0, z0) := Ξ

(1)
ϑ (P)(θ0). Note first that, if (λ, z) ∈ S(1)

ϑ (P)(θ0), then ψϑ
θ (λ, z) ≤

ψϑ
θ (λ0, z0) for all θ ≥ θ0 because λ ≤ λ0 by definition. On the other hand, if (λ, z) /∈

S(1)
ϑ (P)(θ0), then there exists δλ,z > 0 such that ψϑ

θ (λ, z) < ψϑ
θ (λ0, z0) for all

θ ∈ [θ0, θ0 + δλ,z]. Setting δ > 0 to be the smallest among these, we can see that

(λ0, z0) ∈ S(1)
ϑ (P)(θ) ⊂ S(1)

ϑ (P)(θ0) ∀ θ ∈ [θ0, θ0 + δ] (14.2)

implying Ξ
(1)
ϑ (P)(θ) = Ξ

(1)
ϑ (P)(θ0) for all θ ∈ [θ0, θ0 + δ], i.e., Ξ(1)

ϑ (P) is right-
continuous.

Assume now by induction that the statement of Lemma 7.5(ii) has been proved in
the case | supp(P)| <∞ for all i ≤ k − 1, k ≥ 2. Note that, by the definition of Φ(k)

ϑ ,

Φ
(k)
ϑ (P)(θ) =

∑

Ξ∈supp(P)

1{
Ξ
(1)
ϑ (P)(θ)=Ξ

}Φ
(k−1)
ϑ (PΞ)(θ) (14.3)

where PΞ(·) := P(·\{Ξ}). Since Ξ(1)
ϑ (P) is càdlàg, it follows from the induction

hypothesis that Φ(k)
ϑ (P) is also càdlàg. To prove in addition that Ψ (k)

ϑ (P) is continu-
ous, we only need to show that, if Ξ0 := Ξ

(1)
ϑ (P)(θ−) �= Ξ

(1)
ϑ (P)(θ) =: Ξ , then

Ψ
(k−1)
ϑ (PΞ0)(θ) = Ψ

(k−1)
ϑ (PΞ)(θ); but this follows from the definition of Ψ (k−1)

ϑ since,
by the continuity of Ψ (1)

ϑ (P), ψϑ
θ (Ξ0) = ψϑ

θ (Ξ). This finishes the proof in the case
| supp(P)| <∞.

The case | supp(P)| = ∞ can be reduced to the previous one as follows. First note
that we may substitute (0,∞) by [a, b] with 0 < a < b < ∞ arbitrary. Fix i ∈ N.
Since Ha

η ↑ R × R
d as η → −∞, Hb

η is relatively compact and Pϑ ∈ MP, there
exists an η ∈ R such that i ≤ | supp(Pϑ) ∩ Ha

η| ≤ Pϑ(Hb
η) < ∞. Noting that, on

[a, b],Φ(i)
ϑ (P) = Φ

(i)
ϑ (P ′)whereP ′(·) := P(·∩ {(λ, z) : (λ, ϑ(λ, z)) ∈ Hb

η}), we fall
into the previous case.

For the last statements, note that the proof above shows thatΞ(i)
ϑ (P) jumps finitely

many times in each compact interval [θ1, θ2] ⊂ (0,∞). Moreover, if we have
ϑ(Ξ

(1)
ϑ (P)(θ1)) �= 0 andΞ(1)

ϑ (P) is constant in [θ1, θ2], thenΨ (1)
ϑ (P) is strictly increas-

ing in [θ1, θ2]. � 
Proof of Lemma 7.6 We first consider the case 1 ≤ | supp(P)| < ∞. By Proposi-
tion 3.13 of [24], for t large enough there exist bijections Tt : supp(P) → supp(Pt )

such that
lim

t→∞ sup
Ξ∈supp(P)

dist(Tt (Ξ),Ξ) = 0. (14.4)

Letting Tt (λ, z) := (λ, ϑt (λ, z)), by (7.45) and supp(P)∩R× {0} = ∅ we also have

lim
t→∞ sup

Ξ∈supp(P)

dist(Tt ◦ Tt (Ξ),Ξ) = 0, (14.5)
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and Tt ◦ Tt is a bijection onto supp(Pϑt
t ). In particular, Pϑt

t → P .
To characterize the jump times of our processes, the following definition will be

useful: For ϑ : R× R
d , Ξi = (λi , zi ) ∈ R× R

d , i = 0, 1, and θ > 0, let

Fϑ
θ (Ξ1, Ξ0) :=

{ |ϑ(Ξ1)|−|ϑ(Ξ0)|
λ1−λ0 if λ1 > λ0 and ψϑ

θ (Ξ1) < ψϑ
θ (Ξ0),

∞ otherwise.
(14.6)

When ϑ(λ, z) = z, we omit it from the notation.
We now proceed with the proof. Let a0 := a and, recursively for � ∈ N,

a� := inf
{
θ > a�−1 : ∃ 1 ≤ i ≤ |supp(P)| , Ξ(i)

ϑ (P)(θ) �= Ξ
(i)
ϑ (P)(a�−1)

}
. (14.7)

Note that Ξ(i)(P) jumps finitely many times. Indeed, for i = 1 this follows by
Lemma 7.5(i), and for i ≥ 2, by induction using (14.3). Thus �∗ = �∗(a,P) :=
inf{� ≥ 0 : a�+1 = ∞} <∞.

We proceed by induction on �∗, starting with �∗ = 0. Since P ∈ M̃ a
P , the values

i �→ ψa(Ξ
(i)(P)(a)) are all distinct, which together with (14.4–14.5) implies that

Ξ
(i)
ϑt
(Pt )(a) = Tt (Ξ

(i)(P)(a)) for all i when t is large enough. In particular, (14.4)
implies the result in the case �∗ = 0. Assume by induction that, for some L ∈ N, the
statement has been proved for all a′ ∈ (0,∞) and P ′ ∈ M̃ a′

P satisfying | supp(P ′)| <
∞ and �∗(a′,P ′) ≤ L − 1, and suppose that �∗ = �∗(a,P) = L (in which case
necessarily | supp(P)| ≥ 2).

Note now that, becauseP ∈ M̃ a
P , there exists a unique i1 such that bothΞ(i1)(P) and

Ξ(i1+1)(P) jumpata1 whileΞ(i)(P) is continuous ata1 for all i /∈ {i1, i1+1}.Moreover,
Ξ(i1)(P)(a1) is the point Ξ ∈ supp(P) minimizing Fa(Ξ,Ξ

(i1)(P)(a)) [cf. (14.6)],
while a1 = Fa(Ξ

(i1)(P)(a1),Ξ(i1)(P)(a)) and Ξ(i1+1)(P)(a1) = Ξ(i1)(P)(a).
Let at

�, �
t∗ be the analogues of a�, �∗ for Ξ(i)

ϑt
(Pt ), and fix a′ ∈ (a1, a2) ∩ Q.

By (14.4–14.5) and the previous discussion, when t is large enough, Ξ(i)
ϑt
(Pt ) does

not jump in [a, a′] for all i /∈ {i1, i1 + 1}, Ξ(i1)

ϑt
(Pt )(at

1) = Tt (Ξ
(i1)(P)(a1)), and

Ξ
(i1+1)
ϑt

(Pt )(at
1) = Ξ

(i1)

ϑt
(Pt )(a) = Tt (Ξ

(i1)(P)(a)). Moreover, at
2 > a′ > at

1 and

at
1 = Fϑt

a (Ξ
(i1)

ϑt
(Pt )(a

t
1),Ξ

(i1)

ϑt
)(a))

= Fa(Tt ◦ Tt (Ξ
(i1)(P)(a1)), Tt ◦ Tt (Ξ

(i1)(P)(a))), (14.8)

allowing us to conclude, by (14.5),

|a1 − at
1| ≤ max

Ξ1,Ξ2∈supp(P)
Fa(Ξ1,Ξ2)<∞

|Fa(Ξ1, Ξ2)− Fa(Tt ◦ Tt (Ξ1), Tt ◦ Tt (Ξ2))| −→
t→∞ 0.

(14.9)
Define now a time change σt : [a, a′] → [a, a′] by setting

σt (a) = a, σt (a1) = at
1, σt (a

′) = a′ and linear otherwise. (14.10)
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Then, by the previous discussion together with (14.4), (14.5) and (14.9),

lim
t→∞ sup

1≤i≤| supp(P)|
sup

θ∈[a,a′]
|σt (θ)− θ | ∨

∣
∣
∣Φ

(i)
ϑt
(Pt )(σt (θ))−Φ(i)(P)(θ)

∣
∣
∣ = 0.

(14.11)
Since �∗(a′,P) = L − 1 and P ∈ M̃ a′

P , by the induction hypothesis we can extend σt

to [a,∞) in such a way that (14.11) holds with [a, a′] substituted by [a,∞), finishing
the proof in the case | supp(P)| <∞.

Consider now the case | supp(P)| = ∞. We may assume without loss of generality
that c∗ in (7.46) is not larger than 1. Let us first show (7.47). Fix k ∈ N and a point
b ∈ (a,∞) ∩ Q. Note that, since P ∈ M̃ a

P , b is a continuity point of Φ(i)(P) for all
1 ≤ i ≤ k. Let η ∈ R be negative enough such that, for all t large enough,

k ≤
∣
∣
∣supp(P) ∩Ha

η

∣
∣
∣

=
∣
∣
∣supp(Pt ) ∩Ha

η

∣
∣
∣ ≤ Pt (H2b/c∗

η ) = P(H2b/c∗
η ) <∞, (14.12)

which is possible becauseP ∈MP andPt → P .Moreover, since supp(P)∩R×{0} =
∅, by (7.45–7.46) we may also assume that

k ≤
∣
∣
∣supp(Pϑt

t ) ∩Ha
η

∣
∣
∣ (14.13)

and
supp(Pϑt

t ) ∩Hb
η ⊂ Tt

(
supp(Pt ) ∩H2b/c∗

η

)
, (14.14)

where Tt is defined right before (14.5). Now (14.12–14.14) imply that, on [a, b],
Φ(i)(P) = Φ(i)(P ′) and Φ

(i)
ϑt
(Pt ) = Φ

(i)
ϑt
(P ′

t ) for all 1 ≤ i ≤ k, where P ′(·) :=
P(· ∩H2b/c∗

η ) and analogously for P ′
t . Since P ′

t → P ′, (7.47) follows by the previous
case and Theorem 16.2 of [4]. The convergencePϑt

t → P follows from (14.14), (7.45)
and Pt → P (note that b, η above can be taken arbitrarily large, respec. negative). � 

Proof of Lemma 7.8 By Lemma 7.7, it suffices to show (4) ⇒ (1). Arguing as
at the end of the proof of Lemma 7.6, we reduce to the case | supp(P)| < ∞.
Denote by π : R × R

d → R
d the projection on the second coordinate, i.e., the

map π(λ, z) := z. For z ∈ π(supp(P)), set λz := max{λ : (λ, z) ∈ supp(P)} and
define P̂ := ∑

z∈π(supp(P)) δ(λz ,z). Note that π is injective over supp(P̂), and that

Ξ(1)(P) = Ξ(1)(P̂). By (14.4–14.5), when t is large enough, π is injective over the
support of P̂t := P̂ ◦T−1

t , and moreoverΞ(1)
ϑt
(Pt )(θ) = Ξ

(1)
ϑt
(P̂t )(θ) for all θ ∈ [a, b].

This concludes the proof. � 

Proof of Lemma 7.9 For (λ, z) ∈ R× (Rd\{0}), let

A(λ, z) :=
{

(λ′, z′) ∈ R× R
d : ψa(λ

′, z′) > ψa(λ, z) or
ψa(λ

′, z′) = ψa(λ, z) and λ′ > λ

}

. (14.15)
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By the definition of Pϑ , Fϑ
a (P, λ, z) = Pϑ {A(λ, ϑ(λ, z))}. Since ϑt (λt , zt ) → z∗

by (7.45) and Pϑt
t → P by Lemma 7.6, we may assume that ϑt (λ, z) = z for all

(λ, z) ∈ R× R
d .

Now, since P ∈ M̃ a
P , Fa(P, λ∗, z∗) = P

{
Ha
ψa(λ∗,z∗)

}
and there exists a δ > 0

such that
P
{
Ha
ψa(λ∗,z∗)−δ

}
= 1+ P

{
Ha
ψa(λ∗,z∗)+δ

}
. (14.16)

On the other hand, since Pt → P and (λt , zt ) → (λ∗, z∗), when t is large we also
have

Pt

{
Ha
ψa(λ∗,z∗)±δ

}
= P

{
Ha
ψa(λ∗,z∗)±δ

}
(14.17)

and
(λt , zt ) ∈ Ha

ψb(λ∗,z∗)−δ\Ha
ψa(λ∗,z∗)+δ. (14.18)

In particular, for all t large enough,

Pt {A(λt , zt )} = Pt

{
Ha
ψa(λ∗,z∗)+δ

}

= P
{
Ha
ψa(λ∗,z∗)+δ

}
= P

{
Ha
ψa(λ∗,z∗)

}
,

(14.19)

concluding the proof. � 
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