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A prediction of 1924

■ In 1924, the unknown young physicist SATYENDRA NATH BOSE asked the famous ALBERT

EINSTEIN to help him publishing his latest achievement in Zeitschrift für Physik.

■ Einstein translated the manuscript into German and had published it there for Bose.

■ He stressed that the new method is suitable for explaining the quantum mechanics of the

ideal gas. He extended the idea to atoms in a second paper: he predicted the existence of

a previously unknown state of matter, now known as the Bose–Einstein condensate.

ALBERT EINSTEIN (1879-1955) in 1921 SATYENDRA NATH BOSE (1894-1974) in 1925

■ An experimental realisation had to wait until 1995, where some ten thousands of atoms

appeared in that condensate at a temperature of 10−9 K. =⇒ Nobel Prize in 2001
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Mathematics for BEC at positive temperature

■ Description of the Bose gas in terms of the trace of the negative exponential of an

N -particle Hamilton operator in a box

■ Bosons need symmetrization.

■ Feynman–Kac formula turns the trace into an ensemble of Brownian loops (Feynman

cycles) with various lengths (= particle numbers) with a total of N particles.

■ Vague idea [FEYNMAN (1953)]: the cycles and their lengths might be a physically relevant

quantity? Is the macroscopic appearance of long loops a signal for Bose–Einstein

condensation (BEC)? (=⇒ driving force for probabilists!).

■ Definition of BEC: reduced density matrix of the symmetrized trace operator has an

eigenvalue ≍ N . This property is called off-diagonal long-range order (ODLRO). One is

far away from proving this. It is conjectured to hold true only in d ≥ 3 (=⇒ famous open

problem!)

■ Surprisingly, even in the free (= non-interacting) case, the mathematical literature does

not have explicit proofs for that for any of the relevant boundary conditions!

Plan of this work: Provide a probabilistic proof in the framework of Feynman cycles.
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Illustration

Bose gas consisting of 14 particles, organised in three Brownian cycles, assigned to three

Poisson points. The red cycle contains six particles, the green and the blue each four.
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Illustration of condensate phase transition

Subcritical (low ρ) Bose gas

without condensate

Supercritical (large ρ) Bose gas

with additional condensate (red)
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Literature remarks

■ Popular definition of BEC: a positive fraction of the bosons are in the lowest energy state.

■ For the free gas often the non-trivial occupation of the zero Fourier mode is taken as a

criterion for BEC (i.e., a positive fraction of the particles occupies the state of zero

momentum) [PENROSE/ONSAGER 1956].

■ ODLRO as an alternative criterion in the same paper, first only for periodic b.c., later also

[GIRARDEAU 1965] for other b.c.’s

■ We were not able to find a proof for occurrence of ODLRO (other than via the Fourier

mode ansatz) for all reasonable b.c.’s.

■ Also in the mathematical literature, only periodic b.c.’s are considered. Often the

appearance of long cycles in the FK-formula (in whatever sense) is (wrongly) claimed to

be BEC.

■ ODLRO ansatz with FK-formula known [GINIBRE (1971)] and discussed [UELTSCHI 2006],

[CHEVALIER/KRAUTH (2007], but no proofs.

■ Distribution of long loops for several variants found [BETZ/UELTSCHI 2008-11]; no

ODLRO.

■ Connections with Brownian interlacements for description of long loops [VOGEL 2023],

[ARMENDARIZ, FERRARI, YUHJTMAN 2021].
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The interacting Bose gas

A quantum system of N particles in a box Λ ⊂ Rd with boundary condition “bc” and with

mutually repellent interaction is described by the Hamilton operator

H(Λ,bc)

N = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v
(
xi − xj

)
, x1, . . . , xN ∈ Λ.

■ The kinetic energy term ∆i acts on the i-th particle.

■ The pair potential v : Rd → [0,∞) is rotation symmetric and satisfies ... .

We concentrate on Bosons and introduce a symmetrisation. The symmetrised trace of

exp{−βH(Λ,bc)

N } at fixed temperature 1/β ∈ (0,∞) in Λ is the

partition function: Z
(ΛN,bc)

N (β) = Tr
(
Π+ ◦ exp{−βH(Λ,bc)

N }
)
.

(the trace of the projection on the set of symmetric (= permutation invariant) wave functions).

We will be working in the thermodynamic limit and will take a centred box ΛN with volume

N/ρ with ρ ∈ (0,∞) the particle density. We fix bc as periodic, Dirichlet zero or von

Neumann boundary condition. From now on, v ≡ 0.
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Free energy and reduced density matrix

Free energy per volume:

f(ρ) = − 1

β
lim

N→∞

1

|ΛN | logZ
(ΛN,bc)

N (β) .

Critical particle density threshold: ρc =
∑
k∈N

(4πkβ)−d/2

{
= ∞ in d ≤ 2,

<∞ in d ≥ 3 ,

Indeed, f is analytic in (0, ρc) and constant in [ρc,∞).

1-particle-reduced density matrix: the kernel γ(Λ,bc)

N : Λ× Λ → [0,∞) of the partial trace

over N − 1 variables:

Γ(Λ,bc)

N =
N

Z(Λ,bc)

N

TrN−1

(
Π+ ◦ e−βH(Λ,bc)

N

)
.

The operator Γ(Λ,bc)

N acts on L2(Λ).

Its principal eigenvalue: σ(Λ,bc)

N = sup
f∈L2(Λ) : ∥f∥

L2(Λ)
=1

⟨f,Γ(Λ,bc)

N (f)⟩.
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Main result

Definition of ODLRO

We say that the system exhibits off-diagonal long-range order if σ
(ΛN,bc)

N ≍ N in the

thermodynamic limit at some density ρ.

ODLRO for the free Bose gas with boundary conditions

Fix d ∈ N and β, ρ > 0, let ΛN = LNU = Ln[− 1
2
, 1
2
]d with volume Ld

N = N/ρ. Then

(i) If d ≥ 3 and ρ > ρc, then, uniformly in x, y ∈ ΛN , as N → ∞,

γ
(ΛN,bc)

N (x, y) = (ρ− ρc + o(1))ϕ(bc)

1 ( x
LN

)ϕ(bc)

1 ( y
LN

) + ψ(|x− y|) + o(1),

where ϕ(bc)

1 is the positive principal eigenfunction of ∆(U,bc), and ψ(r) ≤ Cr2−d as

r → ∞ for some C > 0. Hence, σ
(ΛN,bc)

N ∼ (ρ− ρc) |ΛN |.
(ii) If ρ ≤ ρc, then, for some c > 0 and all x, y ∈ ΛN , as N → ∞,

γ
(ΛN,bc)

N (x, y) = O
(
e−c|x−y|

)
.

As a consequence, σ
(ΛN,bc)

N ≤ O(1).
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Representations

g(Λ,bc)

β : Λ× Λ → [0,∞) : fundamental solution to ∂βgβ(x, y) = ∆(Λ,bc)gβ(x, ·)(y).

(For free boundary condition: g(Λ,free)

β (x, y) = (4πβ)−d/2e−|x−y|2/4β .)

Trace of convolution operator with kernel g(Λ,bc)

kβ : t(Λ,bc)

k =

∫
Λ

g(Λ,bc)

kβ (x, x) dx.

Feynman–Kac formula + partition representation, goes back to [GINIBRE 1970]

Z(Λ,bc)

N =
∑

m∈PN

∏
k∈N

(t(Λ,bc)

k )mk

kmkmk!
and γ(Λ,bc)

N (x, y) =
N∑

r=1

g(Λ,bc)

rβ (x, y)
Z(Λ,bc)

N−r

Z(Λ,bc)

N

.

Here PN = {m = (mk)k∈N ∈ NN
0 :

∑
k kmk = N} = set of partitions of N .
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Representation in terms of a PPP [ADAMS, COLLEVECCHIO, K. 2011]

NΛ =
∑N

k=1 kXk particle number of a PPP (Xk)k∈{1,...,N} on N with intensity measure

ν(bc,N)

Λ =
N∑

k=1

1

k
t(Λ,bc)

k δk . (1)

Xk = number of loops of length k in the box Λ.

(The Xk are independent Poisson variables with parameter 1
k
t(Λ,bc)

k .)

Put p(bc,N)

Λ =
∑N

k=1
1
k
t(Λ,bc)

k .

PPP representation

Z(Λ,bc)

N = e|Λ|p(bc,N)
Λ P

(bc,N)

Λ (NΛ = N),

γ(Λ,bc)

N (x, y) =

N∑
r=1

g(Λ,bc)

rβ (x, y)
P
(bc,N)

Λ (NΛ = N − r)

P
(bc,N)

Λ (NΛ = N)
.

Advantage: Main exponential term is isolated and drops out. Description is now based on

independent Poisson variables and the Gaussian kernel.

ODLRO for the free Bose gas · Hagen, 24 April 2024 · Page 11 (17)



Short and long loops

Threshold between short and long loops: TN = ⌈L2
N log1/2(N)⌉ ≈ N2/d, N ∈ N .

Number of particles in short and in long loops:

N(short)

Λ = N
[1,TN ]

Λ =

TN∑
k=1

kXk and N(long)

Λ = N
[TN+1,N]

Λ =
N∑

k=1+TN

kXk .

■ Later, we will see that 100percent of the short loops are even of length O(1) and

practically all long ones are of length ≍ N .

■ N(short)

Λ will be shown to be highly concentrated around its expectation ρc|ΛN | with

stretched-exponential decay of the probabilities of the deviations. The remaining

≈ N − ρc|ΛN | = (ρ− ρc)|ΛN | particles are in long loops.

■ The asymptotics of the probability for having k particles in long loops (on mixed

polynomial/stretched exponential order!) will be handled using a sophisticated result in the

framework of partitions.
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Second main result: behaviour of long loops

The Poisson–Dirichlet distribution

PD1 is the distribution of (Yn

∏n−1
k=1 (1− Yk))n∈N, where (Yn)n∈N is an i.i.d. sequence of

Beta(1, 1)-distributed random variables (i.e., uniformly over [0, 1] distributed).

Note that the sum of the elements of a PD1-distributed sequence is equal to one, i.e., this

distribution is in fact a random partition. It is well-known in asymptotics for random

permutations: As the joint distribution of the lengths of all the cycles of a uniformly picked

random permutation of 1, . . . , N , ordered according to their sizes and normalized by a factor

1/N , converges weakly to PD1.

Let L(N)

i denote the length of the i-th longest loop in the PPP (counted with multiplicity).

Lengths of long loops

Fix ρ ∈ (ρc,∞) and consider the centred box ΛN with volume N/ρ. Then, under P(bc,N)

Λ ,

conditional on {NΛN = N}, as N → ∞,

(L(N)

i )i∈N

|ΛN |(ρ− ρc)
=⇒ PD1.
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Proof summary for ODLRO (1)

Eigenvalue expansion =⇒ g(Λ)

βr (x, y) ∼
1

|Λ|e
−λ1βr|Λ|−

2
d
ϕ1(

x
L
)ϕ1(

y
L
) ,

where

eigenvalues of − 1

2
∆(U) : λ(Dir)

1 =
π2

2
d, λ(per)

1 = 0 = λ(Neu)

1 ,

and

eigenfunctions: ϕ(Dir)

1 (x) = 2d/2
d∏

i=1

cos
(
πxi

)
, ϕ(per)

1 (x) = 1 = ϕ(Neu)

1 (x) .

Furthermore, by convolution,

PΛ (NΛ = N − r) =
∑
k

PΛ

(
N(short)

ΛN
= k

)
PΛ

(
N(long)

ΛN
= N − r − k

)
.

On the other hand, for large N and N − r − k, for some constant γ ∈ (0,∞),

PΛ

(
N(long)

ΛN
= N − r − k

)
∼ eγ

TN
e−λ1β(N−k−r)|Λ|

− 2
d

N

∼ PΛ

(
N(long)

ΛN
= N − k

)
eλ1βr|Λ|

− 2
d

N .
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Proof summary for ODLRO (2)

The last term cancels precisely the eigenvalue term in the expansion! Indeed,

γN (x, y) =
N∑

r=1

grβ(x, y)
PΛN (NΛN = N − r)

PΛN (NΛN = N)

∼
(ρ−ρc)|ΛN |∑

r=1

1

|ΛN |ϕ1(
x

LN
)ϕ1(

y
LN

)e−λ1βr|ΛN |−
2
d

×
∑

k≈ρc|ΛN |

PΛN

(
N(short)

ΛN
= k

) PΛN

(
N(long)

ΛN
= N − k

)
PΛN (NΛN = N)

eλ1βr|ΛN |−
2
d

∼
(ρ−ρc)|ΛN |∑

r=1

1

|ΛN |ϕ1(
x

LN
)ϕ1(

y
LN

)

∼ (ρ− ρc)ϕ1(
x

LN
)ϕ1(

y
LN

).

ODLRO for the free Bose gas · Hagen, 24 April 2024 · Page 15 (17)



Proof summary for ODLRO (2)

The last term cancels precisely the eigenvalue term in the expansion! Indeed,

γN (x, y) =
N∑

r=1

grβ(x, y)
PΛN (NΛN = N − r)

PΛN (NΛN = N)

∼
(ρ−ρc)|ΛN |∑

r=1

1

|ΛN |ϕ1(
x

LN
)ϕ1(

y
LN

)e−λ1βr|ΛN |−
2
d

×
∑

k≈ρc|ΛN |

PΛN

(
N(short)

ΛN
= k

) PΛN

(
N(long)

ΛN
= N − k

)
PΛN (NΛN = N)

eλ1βr|ΛN |−
2
d

∼
(ρ−ρc)|ΛN |∑

r=1

1

|ΛN |ϕ1(
x

LN
)ϕ1(

y
LN

)

∼ (ρ− ρc)ϕ1(
x

LN
)ϕ1(

y
LN

).

ODLRO for the free Bose gas · Hagen, 24 April 2024 · Page 15 (17)



Crucial points in the proof (1)

Deviations of the particle number in short loops

For any ε > 0 and for any κ > 0, we have, for all large N ∈ N,

P
(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |N
(short)

ΛN
− ρc

∣∣∣∣ > ε

)
≤ e−κ|ΛN |1−2/d

.

Proof relatively standard with exponential Chebyshev inequality and some careful analysis.

Lower bound for the denominator

Fix ρ ∈ (ρc,∞). Then

P
(bc,N)

ΛN
(NΛN = N) ≥

e−(ρ−ρc)βλ1|ΛN |1−
2
d (1+o(1)) if λ1 > 0,

|ΛN |−2− 2
d
−ε if λ1 = 0,

Proof by picking the optimal size of a long loop (ρ− ρc)|ΛN | and the typical value of
1

|ΛN |N
(short)

ΛN
, namely ρc, then using the Poisson properties and the above lemma.
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Crucial points in the proof (2)

Distribution of the number of particles in long loops

Fix ρ ∈ (ρc,∞). Then, in the limit as N → ∞, uniformly in N2/d log2(N) ≤ k ≤ N ,

P
(bc,N)

ΛN

(
N(long)

ΛN
= k

)
∼ e−γe−βλ1k|ΛN |−

2
d ×


1

TN
if λ1 > 0 ,

1
N

if λ1 = 0 .

Our proof uses the eigenvalue asymptotics for t(Λ)
r and for the lower bound combinatorial

asymptotics for numbers of partitions from the literature:

P
( j∑

r=TN

rYr = k
)
∼ p1(k/j)

j
, N2/d log2(N) ≤ j ≤ k ≤ N,

where Yr ∼ Poi1/r , and
∑m

r=1
1
r
∼ logm as m→ ∞. Here p1 : (0,∞) → [0,∞) is the

density of the distribution on (0,∞) with Laplace transform

(0,∞) ∋ s 7→ exp

(
−
∫ 1

0

(
1− e−sx 1

x

)
dx

)
.

The upper bound is technical: it uses clever decompositions and elementary estimates for

Poisson probabilities.
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