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Abstract. We consider the path-integral representation of the ideal Bose gas under various boundary

conditions. We show that Bose–Einstein condensation occurs at the famous critical density threshold,

by proving that its 1-particle-reduced density matrix exhibits off-diagonal long-range order above that

threshold, but not below. Our proofs are based on the well-known Feynman–Kac formula and a

representation in terms of a crucial Poisson point process. Furthermore, in the condensation regime, we

derive a law of large numbers with strong concentration for the number of particles in short loops. For

all boundary conditions other than the free ones, we obtain the limiting Poisson–Dirichlet distribution

for the collection of the lengths of all long loops, in contrast to the situation for free boundary condition,

where the entire condensate sits in just one loop.

Our proofs are new and purely probabilistic (a part from a standard eigenvalue expansion), using

elementary tools like Markov’s inequality, Poisson point processes, combinatorial formulas for cardi-

nalities of particular partition sets and asymptotics for random walks with Pareto-distributed steps.
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1. Introduction and main results

In this paper, we consider a prominent and much-studied object, namely the free (i.e., ideal, non-

interacting) Bose gas in a large box in the thermodynamic limit, and its famous Bose–Einstein conden-

sation (BEC) phase transition. While in the physics literature the occurrence of this phase transition

is considered a fact long-established, in the mathematics literature this appears to us much less clear.

Furthermore, the well-known interpretation of BEC in terms of Brownian cycles (also called loops)

has been stated a lot, but (as far as we are aware of) seems to have never been rigorously proved, at

least not for all boundary conditions.

The main purpose of this paper is to close this gap and provide proofs for the occurrence of the

BEC phase transition using the well-known Feynman–Kac formula, and to draw rigorous consequences

about the relation between the long Brownian cycles and the condensate. In doing so, we will also

demonstrate the strength of using probabilistic methods – like combinatorics, Poisson point processes

and large deviations for random walks – to study the free Bose gas.

The most popular definitions of the occurrence of BEC [PO56] are in terms of a macroscopic

occupation of the zero Fourier mode and in terms of off-diagonal long-range order (ODLRO). The

latter is defined as the existence of an eigenvalue of order N for the 1-particle-reduced density operator
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2 ODLRO FOR THE FREE BOSE GAS VIA FEYNMAN–KAC FORMULA

(1-prdm), and it is this definition that we will be relying on in this paper. It is well-known (e.g., [Fey53,

Gin71]) that the Feynman–Kac formula allows for a reformulation in terms of an ensemble of Brownian

loops, each carrying a random number of particles (sometimes called ‘winding number’ [Uel06]). This

is suggestive of a connection between BEC and the appearance of a macroscopic part in the system

in long loops [BDZ08]. Feynman himself suggested the portion of particles in long loops as a new

order parameter, but warned that their physical relevance must be checked on a case-by-case basis.

Hence, we consider it a useful goal to rigorously prove this relevance by deriving ODLRO using the

Feynman–Kac formula, thereby rigorously showing that the mass of the condensate coincides with the

amount of particles in the long cycles.

While most of the mathematical literature (see Section 1.7 for a brief overview) focuses on the

case of periodic boundary conditions, presumably because it gives a mathematical simplification, we

wish to stress the relevance of considering different ones (e.g., zero, Neumann or mixed boundary

conditions): not only because they may be more akin to the conditions used for experiments but also

because, in the thermodynamic limit, they seem to influence statistical properties of the Bose gas that

are relevant for BEC, [HKKS01,HKS02]. We will be considering both diffusive (e.g., zero Dirichlet

and Neumann) and periodic boundary conditions, and comparing to the analogous formulas for the

so-called free boundary conditions, where the influence of the boundary is ignored (note, however,

that this does not come from a quantum mechanical model).

The organisation of the remainder of this section is as follows. In Section 1.1, we introduce the

free Bose gas. In Section 1.2, we present the main quantity of interest, the 1-particle-reduced density

matrix, and formulate our main result, Theorem 1.1, on the occurrence of off-diagonal long-range

order for large particle densities (the supercritical case) in dimensions ≥ 3, and the non-occurrence

for low densities (the subcritical case). As a preparation for the proof, in Section 1.3, we present

the path-integral representation of the free Bose gas, and use it to rewrite the 1-particle-reduced

density matrix. In Section 1.4, we introduce a fundamental and crucial Poisson point process of

loop lengths, and present fine estimates for these lengths (Proposition 1.7). Some crucial assertions

about the number of particles in short, respectively in long, loops for diffusive and periodic boundary

conditions are formulated in Section 1.5, in particular the distributional convergence of the collection

of loop lengths towards the Poisson–Dirichlet distribution. Finally, in Section 1.6, we compute explicit

formulas for the limiting free energy. A literature survey is found in Section 1.7.

Section 2 is dedicated to the proof of the occurrence of ODLRO in the supercritical regime, for

periodic and diffusive boundary conditions, Section 2.1, and for the free case, Section 2.7. In Section 3,

we show that ODLRO does not occur in the subcritical case. In Section 4, we prove the estimates on

the distribution of the long loops. Remaining statements are proved in Appendix A.

1.1. The free Bose gas. For a fixed centred box Λ in Rd, we consider an ideal bosonic system at

positive temperature 1/β ∈ (0,+∞) (working with the Boltzmann constant kB = 1).

More precisely, we introduce the N -particle Hamilton operator H(Λ,bc)

N = −1
2

∑N
i=1∆

(Λ,bc)

i acting on

the Hilbert space L2(ΛN ) of square-integrable complex functions on ΛN , with kinetic energy given by

the Laplace operator ∆(Λ,bc) in ΛN with a given boundary condition bc. More precisely, we consider

the diffusion equation
∂ψ

∂t
(x, t) = −1

2
∆ψ(x, t) , t > 0, x ∈ Λ ,

where either Λ is a torus (periodic boundary conditions), or we impose what we call diffusive boundary

conditions, i.e.,

∂ψ

∂n
(x, t) = u(x/L)ψ(x, t) t > 0, x ∈ ∂Λ, where Λ = L[−1

2 ,
1
2 ]

d ,
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for a given function u : [−1
2 ,

1
2 ]

d\
(
−1

2 ,
1
2

)d → [0,∞], which is either continuously differentiable or ≡ +∞
on the boundary of the centred unit box (in the latter case, this is to be interpreted as ψ(x, t) = 0),

see, e.g., [BR81, page 373]. We talk about Dirichlet boundary conditions for u = +∞ and Neumann

boundary conditions for u = 0. Intermediary values of u correspond to semi-reflecting, semi-absorbing

boundary conditions.

In this work, for the purpose of having a uniform presentation, fixing a boundary condition ‘bc’ will

mean that we choose a function u or study the problem on the torus. We write bc ∈ {diffusive, per}.
The partition function of the system is given by the symmetrised trace

Z(Λ,bc)

N (β) = Tr
(
Π+ ◦ e−βH(Λ,bc)

N

)
, N ∈ N, β ∈ (0∞) ,

where Π+ : L2(ΛN ) → L2
sym(Λ

N ) is the symmetrisation operator defined by Π+f(x1, . . . , xN ) =
1
N !

∑
σ∈SN

f(xσ1 , . . . , xσN ), and SN denotes the set of all permutations of 1, . . . , N .

We study this trace in the thermodynamic limit, and will therefore choose Λ to be the centred box

ΛN of volume N/ρ, where ρ ∈ (0,∞) is the particle density. Since β > 0 remains fixed throughout

this paper, we omit this dependency from the notations. It is known that the free energy per volume,

f(ρ) = − 1

β
lim

N→∞

1

|ΛN |
logZ

(ΛN,bc)

N (β) ,

exists and does not depend on the boundary condition. In fact, it exhibits a phase transition in

dimensions d ≥ 3 at the critical particle density threshold

ρc =
∑
k∈N

(2πkβ)−d/2 = (2πβ)−d/2ζ(d/2)

{
= ∞ in d ≤ 2,

<∞ in d ≥ 3 ,
(1.1)

where ζ(a) =
∑

k∈N k
−a denotes the Riemann zeta function. Indeed, f is analytic in (0, ρc) and

constant in [ρc,∞); see Section 1.6 for more details. Clearly, ρc does not depend on the boundary

conditions.

1.2. Main results: ODLRO and limiting distribution of loop lengths. We would like to

identify the phase transition seen in the non-analyticity of the free energy as the famous Bose–Einstein

condensation phase transition. For this, we need to introduce the 1-particle-reduced density matrix,

i.e., the kernel γ(Λ,bc)

N : Λ× Λ → [0,∞) of the following partial trace over N − 1 variables:

Γ(Λ,bc)

N =
N

Z(Λ,bc)

N

TrN−1

(
Π+ ◦ e−βH(Λ,bc)

N

)
.

The operator Γ(Λ,bc)

N acts on L2(Λ). Its principal (i.e., largest) eigenvalue is given by

σ(Λ,bc)

N = sup
f∈L2(Λ): ∥f∥L2(Λ)=1

⟨f,Γ(Λ,bc)

N (f)⟩.

We say that the system exhibits off-diagonal long-range order if σ
(ΛN,bc)

N ≍ N in the thermodynamic

limit at some density ρ. The BEC phase transition at the critical density ρc is then mathematically

defined as the occurrence of ODLRO for ρ > ρc, but not for ρ < ρc.

The main purpose of this paper is to use the Feynman–Kac formula to prove that this property

holds for the above-mentioned boundary conditions. The novelty is twofold: firstly, we prove ODLRO

not only for periodic, but also for all boundary conditions (including Dirichlet and Neumann); this

was – to the best of our knowledge – missing in the literature. Secondly, our proof is intrinsically

probabilistic, as it uses the Feynman–Kac formula and works in the setting of an ensemble of many

Brownian loops with long and short lengths. Indeed, we also prove ODLRO for the mathematical

model of free boundary conditions. See also the discussion in Section 1.7.
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We denote by U = [−1
2 ,

1
2 ]

d the closed centred unit box, and by ϕ(bc)

1 : U → [0,∞) the L2(U)-

normalised eigenfunction corresponding to the smallest eigenvalue of −1
2∆

(U,bc). For example,

ϕ(free)

1 (x) = ϕ(per)

1 (x) = ϕ(Neu)

1 (x) = 1 and ϕ(Dir)

1 (x) = 2d/2
∏d

i=1 cos(πxi), for x = (x1, . . . , xd). We

can now state our main result.

Theorem 1.1 (ODLRO for the free Bose gas with boundary conditions). Fix d ∈ N, let ΛN be the

centred box LNU with volume Ld
N = N/ρ where U = [−1

2 ,
1
2 ]

d. Fix any periodic or diffusive boundary

condition bc, and β, ρ ∈ (0,∞). Then the following hold:

(i) (Supercritical regime: ρ > ρc.) Assume that d ≥ 3 and ρ > ρc, then the kernel satisfies,

uniformly in x, y ∈ LN , as N → ∞,

γ
(ΛN,bc)

N (x, y) =
ρ− ρc + o(1)

|ΛN |
ϕ(bc)

1 ( x
LN

)ϕ(bc)

1 ( y
LN

) + ψ(|x− y|) + o(1), (1.2)

with some function ψ : (0,∞) → (0,∞) satisfying ψ(r) ≤ Cr2−d as r → ∞ for some C > 0.

As a consequence,

σ
(ΛN,bc)

N ∼ (ρ− ρc) |ΛN | , N → ∞.

(ii) (Subcritical regime: ρ ≤ ρc.) For some c > 0 and all x, y ∈ ΛN , as N → ∞,

γ
(ΛN,bc)

N (x, y) = O
(
e−c|x−y|

)
. (1.3)

As a consequence,

σ
(ΛN,bc)

N ≤ O(1).

Note that the same results hold true for free (open) boundary conditions (see Proposition 1.5),

even though it is not a quantum mechanical model; see the definition of γ
(ΛN,free)

N in (1.7) below for

bc = free.

The proof of the theorem is in Section 2 for the supercritical regime, and in Section 3 for the

subcritical one. The main message of Theorem 1.1 is that the 1-prdm is asymptotically equal to the

‘overshoot’, the mass of the condensate, times the tensor product of the eigenfunction associated to

the smallest eigenvalue, up to an additive error that is small away from the diagonal.

1.3. Expansion in terms of the Feynman–Kac formula. It has been known for more than 50

years that the trace of the density matrix admits a path-integral representation in terms of Brownian

bridges (see, e.g., [Gin71]). This representation is sometimes called the Feynman–Kac formula; it

appears in (A.1) below. The following lemma is the starting point of our analysis, and we consider the

objects that it introduces as important mathematical quantities that are worth being studied in their

own right; see our additional results on the behaviour of the loop lengths in Proposition 1.7 below.

Fix a centred box Λ ⊂ Rd. We denote by g(Λ,bc)

rβ (x, y) the kernel of the fundamental solution to the

Cauchy problem for the heat equation 1
2∆

(Λ,bc)g = 0 in Λ with boundary condition bc. By

t(Λ,bc)

k =

∫
Λ
g(Λ,bc)

kβ (x, x) dx, k ∈ N ,

we denote the trace of the convolution operator with kernel g(Λ,bc)

kβ . We write

PN =
{
m = (mk)k∈N ∈ NN

0 :
∑
k∈N

kmk = N
}

(1.4)

for the set of partitions of N .

We are now ready to present the key representations of the partition function and 1-prdm. The

proof is in Appendix A.
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Lemma 1.2 (FK-representations). Fix a centred box Λ ⊂ Rd and any periodic or diffusive boundary

condition bc. Then, for any N ∈ N and β ∈ (0,∞),

Z(Λ,bc)

N =
∑

m∈PN

∏
k∈N

tmk
k

kmkmk!
, (1.5)

and

γ(Λ,bc)

N (x, y) =

N∑
r=1

g(Λ,bc)

rβ (x, y)
Z(Λ,bc)

N−r

Z(Λ,bc)

N

, x, y ∈ Λ . (1.6)

1.4. A crucial Poisson point process. In [ACK11], the observation was made that the ensemble

of Brownian loops in the Feynman–Kac formula can be conceived as a Poisson soup of sites, appended

with a mark that is the Brownian loop starting and ending at this site. As our second main reformu-

lation step, we will rewrite the quotient of partition functions in (1.6) in terms of probabilities with

respect to such a Poisson point process (PPP). Since we are not interested here in the entire loops,

but only in their lengths, the mark of a Poisson point will be just the length of the appended loop.

This leads to a reduced version of that PPP, which we might see as a kind of grand-canonical point

process on N.
Fix a centred box Λ ⊂ Rd, boundary condition bc, and N ∈ N. Let P(bc,N)

Λ be the distribution of a

Poisson point process (ωi)i on N with intensity measure given by

ν(bc,N)

Λ =

N∑
k=1

1

k
t(Λ,bc)

k δk .

The total mass of ν(bc,N)

Λ is equal to |Λ|p(bc,N)

Λ , where

p(bc,N)

Λ =
1

|Λ|

N∑
k=1

1

k
t(Λ,bc)

k

is the pressure in Λ.

The points ω of the PPP sitting at k ∈ N are called the loops of length k. The number Xk of such

points is a Poisson-distributed random variable with parameter 1
k t

(Λ,bc)

k , and the family (Xk)k∈N is

independent. The number N(1l)

Λ (η) :=
∑N

k=1Xk of Poisson points in Λ is then Poisson-distributed with

parameter p(bc,N)

Λ |Λ|. Since Xk counts the number of loops of length k, we say that the total number

of particles of η that belong to loops starting in Λ is given by NΛ(η) :=
∑N

k=1 kXk. We denote by

Poiλ the Poisson distribution with parameter λ > 0.

The following expresses the partition function of the bosonic system in terms of the above PPP.

Lemma 1.3. For any centred box Λ ⊂ Rd, N ∈ N, β ∈ (0,∞), and any diffusive or periodic bc, we

have

Z(Λ,bc)

N = e|Λ|p
(bc,N)
Λ P

(bc,N)

Λ (NΛ = N).

Proof. We drop all super-indices from the notation in the proof. We start from (1.5), that is

ZN =
∑

m∈PN

∏
k≥1

(tk/k)
mk

mk!
= e

∑
k≥1

1
k
tk

∑
m∈PN

∏
k∈N

P(Xk = mk).

From the independence of the Xk’s, since
∑

k kmk = N and NΛ =
∑

k kXk, the claim follows. Indeed,

PΛ(NΛ = N) =
∑

m∈PN

PΛ(NΛ = N |Xk = mk ∀k)
∏
k

P(Xk = mk)

=
∑

m∈PN

∏
k

P(Xk = mk) .
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□

Combining this with Lemma 1.2 yields the following representation.

Corollary 1.4. For any centred box Λ ⊂ Rd, N ∈ N, any diffusive or periodic boundary condition bc,

and for any x, y ∈ Λ, we have

γ(Λ,bc)

N (x, y) =

N∑
r=1

g(Λ,bc)

rβ (x, y)
P
(bc,N)

Λ (NΛ = N − r)

P
(bc,N)

Λ (NΛ = N)
. (1.7)

This will be the starting point of our analysis.

The formula in (1.7) allows us to introduce what we call free boundary conditions. In place of

the heat-equation solution g(Λ,bc)

kβ with some boundary condition bc, we consider the solution with free

boundary condition, i.e., the standard kernel g(free)

kβ (x, y) = (2πβk)−d/2 exp{−1
2 |x−y|

2/2βk}. Substitut-
ing this in (1.7) is mathematically sound and simplifies and streamlines the formulas and asymptotics;

however, one needs to keep in mind that the kernel γ(free)

N does not come from any quantum model

and is not the trace of any symmetrised operator. Indeed, the restriction of g(free)

kβ to a box Λ does

not satisfy the Chapman–Kolmogorov equations, hence Lemma 1.2 does not apply to the free-bc case.

Nevertheless, we include the free-bc case into our analysis and tacitly introduce all objects like t(Λ,bc)

k ,

ν(bc)

Λ , the Poisson process, and so on also for bc = free, in which case, the above definitions are for

N = +∞. The analogous result of Theorem 1.1 holds:

Proposition 1.5 (ODLRO for the free Bose gas with free boundary condition). For d ≥ 3, let ΛN be

the centred box LNU with volume Ld
N = N/ρ where U = [−1

2 ,
1
2 ]

d. Fix β, ρ ∈ (0,∞). Then the same

asymptotics of γ
(ΛN,free)

N as in (1.2), respectively in (1.3), hold. In particular, the principal eigenvalue of

the operator Γ
(ΛN,free)

N : L2(ΛN ) → L2(ΛN ) with kernel γ
(ΛN,free)

N is asymptotically equal to (ρ− ρc) |ΛN |
in the supercritical phase ρ > ρc and is of order one otherwise.

Our proof of Proposition 1.5 is in Section 2.7. It is based on an extended (‘spatial’) version of our

Poissonian representation and is pretty different from the proof of Theorem 1.1.

1.5. Particle numbers in short and long loops. One of the purposes of the present paper is to

analyse the behaviour of the statistics of the loop lenghts and the number of particles in the loops

in the Bose gas. These quantities play a decisive role in the understanding of the Bose gas and

are since decades under interest of many researchers. They are interesting mathematical objects,

worth to be studied on their own. After having introduced the crucial PPP in Section 1.4, we have

now a mathematical frame to talk about these quantities. Indeed, in the frame of the Feynman–

Kac representation of Section 1.3, we introduce a natural random variable with values in PN with

distribution

PN ∋ (mr)
N
r=1 = m 7→ 1

ZN

N∏
k=1

tmk
k

kmkmk!
.

Thanks to the PPP formulation from Section 1.4, its distribution can be written as

P
(bc,N)

Λ

(
(Xr)r ∈ · |NΛ = N

)
.

Hence, we can now talk about particle numbers in certain loops in the framework of the process

(Xr)
N
r=1. Denote the number of particles in loops of length between l1 and l2 by

N
[l1,l2]

Λ =

l2∑
r=l1

rXr, l1, l2 ∈ N0 .
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Since Feynman’s [Fey53] proposal to conceive the lengths of the longest loops as an order parameter,

a high interest lies on the question of whether or not macroscopically long loops occur, whether this

coincides with the occurrence of BEC, and whether or not the long loops themselves have something

to do with the condensate. Most of the answers that are given for the free gas in the literature apply

only to free boundary conditions. However, as we will see, the behaviour of the lengths of the long

loops differs significantly between the gas with diffusive or periodic boundary conditions, as well as the

model with free boundary conditions. In fact, while for the latter there is only one scale of the length

distribution, as their are not influenced by the box, for diffusive or periodic boundary conditions, in the

presence of a macroscopic box, the distribution of the loop lengths is significantly different for small

and large lengths. The critical threshold lies close to L2
N , the square of the diameter of the box ΛN .

For example, for Dirichlet zero boundary condition, the long loops are probabilistically suppressed

in a stretched-exponential way, while their probability under free boundary condition has polynomial

tails. Actually, we will put the threshold between short and long loops at

TN = ⌈L2
N log1/2(N)⌉, N ∈ N .

Loops with length ≤ TN are called short, the others long. We denote the number of particles in short

and in long loops, respectively, by

N(short)

Λ = N
[1,TN ]

Λ =

TN∑
k=1

kXk and N(long)

Λ = N
[TN+1,N ]

Λ =
∑
k>TN

kXk .

Our first result concerning the number of particles in short loops in the thermodynamic limit is the

following. We see that 1
|ΛN |NΛN

converges to ρc, the critical threshold defined in (1.1). Actually, the

deviations of this quantity from its expectation are rather small: the probability of such a deviation is

stretched-exponentially small in N . To demonstrate this, we divide the short loops into finite length

and the remainder. For R ∈ N, we introduce ρ(R)
c = (2πβ)−d/2

∑R
k=1 k

−d/2, which converges to ρc as

R→ ∞.

Proposition 1.6. Fix any boundary condition bc ∈ {diffusive, per, free}. Fix d ≥ 3 and ρ ∈ (ρc,∞),

and consider the centred box ΛN with volume N/ρ. Then, for any ε > 0 and any R ∈ N, there exists

Cε,R > 0 such that, for any large N ,

P
(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |
N[1,R]

ΛN
− ρ(R)

c

∣∣∣∣ > ε
∣∣∣ NΛN

= N

)
≤ e−Cε,R|ΛN | .

Moreover, for any (large) κ > 0 and for any (small) ε > 0, for diffusive or periodic boundary condi-

tions, for any large N ,

P
(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |
N

[R+1,TN ]

ΛN
− (ρc − ρ(R)

c )

∣∣∣∣ > ε
∣∣∣ NΛN

= N

)
≤ e−κ|ΛN |1−

2
d , (1.8)

while for free boundary conditions, (1.8) is true for N
[R+1,TN ]

ΛN
replaced with N[R+1,N ]

ΛN
.

That is, the particle number in loops of length in (RN , TN ], respectively in (RN , N ], is o(|ΛN |) with
very high probability. The proof of Proposition 1.6 follows from Propositions 2.3 and 2.4, together

with Lemma 2.6.

Now let us turn to the particle numbers in long loops. The reader will see that, by combining

(2.13) and (2.14), one gets that E
(bc,N)

ΛN
[ 1
|ΛN |NΛN

] → ρ ∧ ρc, hence, N
(long)

ΛN
is o(|ΛN |) under the free

measure P
(bc,N)

ΛN
. However, we are interested, for ρ > ρc, in the behaviour under the conditioning on

NΛN
being equal to N = ρ|ΛN |, i.e., on having many more particles than in the ‘usual’ behaviour.

From Proposition 1.6 we see that N(short)

ΛN
will hardly contribute to this extremal event, so N(short)

ΛN
will

contribute practically everything. It turns out below that the probabilistically cheapest way to do so

is to create a finite number of macroscopically-large loops that altogether make up for the requested
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amount (ρ−ρc)|ΛN |. However, the precise way to do this differs between diffusive or periodic boundary

conditions, and free boundary conditions.

For a realisation (Xr)
N
r=1 of the Poisson point process, let L(N)

1 ≥ L(N)

2 ≥ · · · ≥ 0 denote the lengths of

all the loops in the process, ordered according to their size. Hence, L(N)

1 = max{r : Xr > 0} = r∗ > 0,

and L(N)

1 = L(N)

2 = · · · = L(N)

Xr∗
> L(N)

Xr∗+1 and so on. In particular,
∑

i∈N L
(N)

i =
∑N

r=1 rXr. On the

event {NΛ = N}, the sequence (L(N)

i )i∈N forms a partition of N .

Let us recall that the Poisson–Dirichlet distribution with parameters 0 and 1 (denoted PD1) is

given as the joint distribution of the random variables (Yn
∏n−1

k=1(1 − Yk))n∈N, where (Yn)n∈N is an

i.i.d. sequence of Beta(1, 1)-distributed random variables (i.e., uniformly over [0, 1] distributed). Note

that the sum of the elements of a PD1-distributed sequence is equal to one, i.e., this distribution is

in fact a random partition. It is well-known in asymptotics for random permutations, as the joint

distribution of the lengths of all the cycles of a uniformly picked random permutation of 1, . . . , N ,

ordered according to their sizes and normalized by a factor 1/N , converges weakly to PD1.

We obtain the following:

Proposition 1.7 (Lengths of long loops). Fix any bc ∈ {diffusive,per}. Fix ρ ∈ (ρc,∞) and consider

the centred box ΛN with volume N/ρ. Then, under P(bc,N)

Λ , conditional on {NΛ = N}, as N → ∞,

(L(N)

i )i∈N
|ΛN |(ρ− ρc)

=⇒ PD1.

However, for free boundary conditions [Vog23], with high probability under the above conditioning,

there exists a single macroscopic loop with length ∼ (ρ−ρc)|ΛN |, and the length of the second-longest

is o(|ΛN |). In fact, the loop lengths starting from the second follow the limiting order-statistics for

i.i.d. Pareto-distributed variables on a scale o(|ΛN |). In particular, we do not observe the Poisson–

Dirichlet distribution in the limit.

Proposition 1.7 says that ODLRO occurs for the same particle densities as macroscopic loop(s) occur,

and the number of particles in the long loops is asymptotically equal to the mass of the condensate.

However, the precise distribution of the macroscopic loop lengths depends on the boundary condition.

Our proof of Proposition 1.7 is in Section 4. It is based on our Poissonian representation and differs

significantly from other proofs in the literature for some special cases.

1.6. The free energy. From our results, we may easily identify the free energy for all boundary

conditions. For the proof of this statement, see Appendix A.

Proposition 1.8 (Identification of the free energy). Fix N ∈ N and ρ ∈ (0,∞) and consider the

centred box ΛN of volume N/ρ. Fix any boundary condition bc ∈ {diffusive, per, free}. Then, for

ρ ̸= ρc

f(ρ) = − 1

β
lim

N→∞

1

|ΛN |
logZ

(ΛN,bc)

N = µ(ρ)ρ− 1

β

∑
j∈N

eβµ(ρ)j

j (2πβj)d/2
, (1.9)

where µ(ρ) is defined by

ρ ∧ ρc =
∑
k∈N

eβµ(ρ)k(2πβk)−d/2.

Note that the right-hand side of (1.9) is continuous in ρ ∈ R. It is equal to −β−1−d/2ζ(d/2) for

ρ > ρc.
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1.7. Literature remarks. The occurrence of BEC, i.e., that a finite fraction of bosons are assembled

in the lowest energy state, seems to be an established fact within the physics community, and indeed the

physical literature on the free Bose gas with various boundary conditions is extensive, see, e.g. [Lon38,

ZUK77,BL82,Ber83,WMH11,KPS20].

BEC is usually characterised, for the ideal gas, in terms of the phenomenon of non-trivial occupation

of the zero Fourier mode, i.e., that a finite fraction of the number of particles occupies the state of

zero momentum, as this can be expressed as the Fourier transform γ̂(Λ,bc)

N (0), see [PO56]. In this

paper, the authors also provided ODLRO as alternative definition of BEC, arguing that, for periodic

boundary conditions, it allowed to extend the Fourier mode criterion to interacting gases. In [Gir65],

it was noted that this reasoning could also be extended to other boundary conditions, see also [CK07]

and [BDZ08].

Furthermore, we were not able to find a rigorous proof (at least not for all boundary conditions) of

the occurrence of ODLRO (other than via the zero Fourier mode ansatz) for large enough densities

in the mathematical literature. Even in the probabilistic works that are often cited for proving BEC,

e.g., [Süt93, Süt02,Uel06,BCMP05], the authors only work with periodic boundary conditions. Fur-

thermore, often the notion of BEC used there is either not based on ODLRO nor on zero Fourier mode,

but on the occurrence of long cycles in the Feynman–Kac formula in certain senses; or additional scal-

ings are introduced (e.g. mean-field cycle weights) which do not follow from the quantum mechanical

set-up. In [BCMP05], among other interesting assertions, the phenomenon of ODLRO for the free

Bose gas with an additional exponential tilting, leading to a kind of mean-field model, was proved for

periodic boundary conditions, but the exponential tilting was simplifying the proof and is not easily

overcome. Moreover, the distribution of long loops was investigated in [BU08, BU11, BUV11], for

models of weighted spatial permutations that can be related to the Bose gas with periodic boundary

conditions. We would also like to mention the recent study of the infinite volume limit in the free

case [AFY21] and thermodynamic limit result [Vog23] relating the supercritical Bose gas to random

interlacements.

Hence, even though quite a number of authors showed a great interest in the Feynman–Kac approach

to the Bose gas, we were not able to find in the literature a probabilistic proof of ODLRO for all

boundary conditions. In the present paper, we therefore provide a proof for ODLRO for all boundary

conditions, using the Feynman–Kac formula, thereby closing what we consider a gap in the literature.

Furthermore, we provide rigorous assertions about the number of particles in long and short loops.

2. Proof of ODLRO in the supercritical regime

In this section, we present the proof of the occurrence of off-diagonal long-range order (ODLRO)

above the critical threshold ρc, for all boundary conditions, that is, the proof of Theorem 1.1(i). Hence,

we assume that d ≥ 3 and fix ρ ∈ (ρc,∞) for the remainder of this section.

A survey on this section is as follows. In Section 2.1 we formulate, for diffusive or periodic boundary

condition, our main statement on the asymptotics of the kernel γ
(ΛN,bc)

N (x, y), the proof of which is

finished in Section 2.5. A crucial tool box for bounding the solution g(Λ,bc)

kβ (x, y) to the heat equation

and its trace t(Λ,bc)

k is provided in Section 2.2, based on spectral theory and eigenvalue expansions. In

Section 2.3 and 2.4, respectively, we derive some fine asymptotics for the number of particles in short,

respectively in long, loops. While the method used in Section 2.3 is based on standard probability

estimates, the material on Section 2.4 constitutes the core of novelty that we needed to derive in this

paper. Section 2.6 then finishes the proof of ODLRO for diffusive and periodic boundary condition

(i.e., Theorem 1.1(i)), based on all the preceding material of this section. Finally, Section 2.7 proves

Proposition 1.5 (i.e., ODLRO for free boundary condition), using ad-hoc methods.
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2.1. Asymptotics of the kernel for diffusive and periodic boundary conditions. In this

section we formulate Proposition 2.1 about lower and upper bounds for the kernel for diffusive and

periodic boundary conditions and give a survey on its proof. We drop the superscript ‘bc’. The main

result of this section is the following. Recall that U = [12 ,
1
2 ]

d is the closed centred unit box in Rd.

Proposition 2.1. For any diffusive or periodic boundary condition bc, fix ρ ∈ (ρc,∞) and consider

the centred box ΛN of volume Ld
N = N/ρ for N ∈ N. Then there is c ∈ (0,∞) such that, for any

κ,M > 0, for all x, y ∈ ΛN , in the limit N → ∞,

(1 + o(1))
ρ− ρc
|ΛN |

ϕ1(
x
LN

)ϕ1(
y

LN
) ≤ γ

(ΛN,bc)

N (x, y)

≤ (1 + o(1))
ρ− ρc
|ΛN |

(
ϕ1(

x
LN

)ϕ1(
y

LN
) + e−Mc

)
+ CMψ(|x− y|) + e−κLd−2

,

where CM ∈ (0,∞) depends only on M , and ψ : (0,∞) → (0,∞) satisfies ψ(r) ≤ O(r2−d) as r → ∞.

The proof is in Section 2.5. Here is a summary. Our starting point is (1.7) in Corollary 1.4. First,

we will use a standard eigenvalue expansion to approximate

g(Λ)

βr (x, y) ∼
1

|Λ|
ϕ1(

x
L)ϕ1(

y
L)e

−λ1βr|Λ|−
2
d , (2.1)

where λ1 is the smallest eigenvalue of −1
2∆

(U) in the unit box U = [−1
2 ,

1
2 ]

d, and ϕ1 is the associated

L2-normalised eigenfunction. In case of Dirichlet, periodic or Neumann boundary conditions, we have,

λ(Dir)

1 =
π2

2
d, λ(per)

1 = 0 = λ(Neu)

1 ,

ϕ(Dir)

1 (x) = 2d/2
d∏

i=1

cos
(
πxi

)
, ϕ(per)

1 (x) = 1 = ϕ(Neu)

1 (x) .

Furthermore, we decompose the total number of particles, NΛN
, into the numbers of particles N(short)

ΛN

and N(long)

ΛN
of short and of long loops, where TN ≈ N

2
d is the threshold between short and long. Under

the PPP, these two numbers are independent, and we can write, in terms of a convolution,

PΛ (NΛ = N − r) =
∑
k

PΛ

(
N(short)

ΛN
= k

)
PΛ

(
N(long)

ΛN
= N − r − k

)
. (2.2)

The random variable 1
|ΛN |N

(short)

ΛN
is strongly concentrated on the value ρc (Proposition 2.3). Further-

more, for N(long)

ΛN
, Proposition 2.7 gives, for sufficiently large N − r − k, that

PΛ

(
N(long)

ΛN
= N − r − k

)
∼ eγ

TN
e−λ1β(N−k−r)|Λ|−

2
d ,

for some constant γ ∈ (0,∞). Using this once more for N − k in place of N − k − r, we see that

PΛ

(
N(long)

ΛN
= N − r − k

)
∼ PΛ

(
N(long)

ΛN
= N − k

)
eλ1βr|Λ|−

2
d .

Using this in (2.2) shows that we obtain, again by convolution, the term PΛ (NΛ = N − r) (i.e., the

denominator in (1.7)), times an exponential that precisely cancels the exponential term in (2.1). For

these r, the summands in (1.7) have turned out to be asymptotically not dependent on r. The number

of the r’s that contribute to this procedure is ∼ (ρ−ρc)|ΛN |, which finishes the summary of the proof.

2.2. Preparation: eigenvalue expansion. We now express and approximate the fundamental so-

lution g(Λ)

βk and its trace t(Λ)

k =
∫
Λ g

(Λ)

βk (x, x) dx by using an eigenvalue expansion with respect to all

the eigenvalues and eigenfunctions of the Laplacian 1
2∆

(Λ) in the box Λ = LU with U = [−1
2 ,

1
2 ]

d. For

large k, we give upper and lower bounds that depend on spectral properties and will finally give the
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main terms in Proposition 2.1, while for small k, we give upper bounds that will suffice to give the

error terms in Proposition 2.1.

We collect the relevant assertions in the following lemma. By λ2 = λ(bc)

2 > λ1 we denote the

second-smallest eigenvalue of −1
2∆

(U,bc) in U .

Lemma 2.2 (Asymptotics and bounds for gkβ and tk). For any centred box Λ = LU and any periodic

or diffusive boundary condition (which we suppress from the notation), the following hold:

(i) ((Spectral) Asymptotics of g(Λ)

kβ for large k.) Fix c ∈ (0, β(λ2−λ1)), then, uniformly in x, y ∈ Λ

and in k ≥ 1, as L→ ∞,

e−λ1kβL−2 ϕ1
(
x
L

)
ϕ1

( y
L

)
Ld

≤ g(Λ)

kβ (x, y) ≤ e−λ1kβL−2
(ϕ1 ( x

L

)
ϕ1

( y
L

)
Ld

+O(k−d/2e−ckL−2
)
)
.

(ii) (Uniform upper bound for g(Λ)

kβ .) For any M > 0, there exist c, c′ > 0 such that, for all L,

g(Λ)

kβ (x, y) ≤ cg(free)

kβ/c′(x, y), x, y ∈ Λ, k ≤ML2.

(iii) (Asymptotics of t(Λ)

k for large k.) For any ε > 0 and all k satisfying kL−2 ≥ ε,

e−λ1βkL−2 ≤ t(Λ)

k ≤ e−λ1βkL−2
(
1 +O

(
e−β(λ2−λ1)kL−2))

. (2.3)

(iv) (Asymptotics of t(Λ)

k for small k.) For any kL−2 ≤ o(1), as L→ ∞,∣∣∣(2πβk)d/2 t(Λ)

k

|Λ|
− 1

∣∣∣ ≤ 1 +O
(√
kL−2

)
. (2.4)

Proof. The scaling properties of the Laplacian make it easy to go from the unit box U = [−1
2 ,

1
2 ]

d to

the centred box Λ = LU = [−1
2L,

1
2L]

d:

g(Λ)

βk (x, y) = L−dgβk/L2(x/L, y/L), x, y ∈ Λ, k ∈ N,

where we wrote g instead of g(U). In particular, writing t instead of t(U),

t(Λ)

k = tkL−2 , k ∈ N .

Hence, it will be enough to prove the assertions for g(Λ) replaced by g, x/L and y/L replaced by x and

y, and kβL−2 replaced by t ∈ (0,∞).

Pick an orthonormal basis (ϕn)n∈N of L2(U) consisting of eigenfunctions corresponding to the se-

quence (λn)n of eigenvalues (ordered such that λ1 < λ2 ≤ λ3 ≤ . . . ) then we have the spectral

(Sturm–Liouville) decomposition

gt(x, y) =
∑
n∈N

e−tλnϕn(x)ϕn(y), t ∈ (0,∞). (2.5)

Note that ϕ1(x) > 0 for x ∈ U \ ∂U .

(i) The lower bound already follow from restricting the sum in (2.5) to the first summand. Let us

turn to the proof of the upper bound. For any x ∈ U and t ∈ (0,∞),∣∣∣gt(x, x)− e−tλ1ϕ21(x)
∣∣∣ ≤ e−

t
2
λ2

∑
n≥2

e−
t
2
λnϕ2n(x) = e−

t
2
λ2
(
gt/2(x, x)− e−

t
2
λ1ϕ21(x)

)
.

Iterating this m ∈ N times yields∣∣∣gt(x, x)− e−tλ1ϕ21(x)
∣∣∣ ≤ Ct2−me−tλ2(m), x ∈ U,
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with Cs = supx∈U gs(x, x) > 0 and using the short-hand notation λ2(1− 2−m) =: λ2(m). From (2.6)

we obtain that Cs = O
(
s−d/2

)
. Furthermore, we have, for all x, y ∈ U ,∣∣∣gt(x, y)− e−tλ1ϕ1(x)ϕ1(y)

∣∣∣ ≤ e−
t
2
λ2

∑
n≥2

e−
t
2
λn |ϕn(x)ϕn(y)|

≤ e−
t
2
λ2

√∑
n≥2

e−
t
2
λnϕ2n(x)

√∑
n≥2

e−
t
2
λnϕ2n(y)

= e−
t
2
λ2

√
gt/2(x, x)− e−

t
2
λ1ϕ21(x)

√
gt/2(y, y)− e−

t
2
λ1ϕ21(y) ≤ Ct2−me−tλ2(m) .

Picking m such that λ2(1− 2−m)− λ1 > c, this implies Assertion (i).

(ii) According to [BR81, Theorem 6.3.8], there are, for any M > 0, constants c, c′, c′′ > 0 such that∣∣gt(x, y)− g(free)

t (x, y)
∣∣ ≤ cg(free)

t/c′ (x, y)e
−c′′dist(y,∂U)2/t, x, y ∈ U, t ∈ (0,M ]. (2.6)

This implies (ii).

(iii) Putting x = y and t = kβ in (2.5) and integrating over x ∈ U , we obtain

tk =

∫
U
gt(x, x) dx =

∑
n∈N

e−t λn = e−tλ1
∑
n∈N

e−t (λn−λ1) ≤ e−tλ1

(
1 +

∞∑
n=2

e−t (λn−λ1)
)
. (2.7)

This implies Assertion (iii), as for t ∈ [ε,∞),
∞∑
n=2

e−t (λn−λ1) = e−t(λ2−λ1)
(
1 +

∞∑
n=3

e−t (λn−λ2)
)
≤ e−t(λ2−λ1)

(
1 + eελ1

∞∑
n=1

e−ε λn

)
= O

(
e−t(λ2−λ1)

)
,

using (2.7) for ε instead of t.

(iv) First note that it is enough to show (2.4) for Dirichlet, Neumann, and periodic boundary con-

ditions, as the following monotonicity holds, see [BR81, page 373]: for u1 ≤ u2,

t
(u1)
k ≥ t

(u2)
k .

Hence, for any boundary condition u,

t
(Dir)
k ≤ t

(u)
k ≤ t

(Neu)
k .

Hence, for the diffusive boundary conditions, it is enough to show the lower bound for Dirichlet

condition and the upper bound for Neumann condition.

In d = 1, the eigenvalues for the Laplacian −1
2∆

(U,bc) are given by

λ(Dir)
n =

π2

2
n2, λ(Neu)

n =
π2

2
(n− 1)2, λ(per)

1 = 0, λ(per)

2n = λ(per)

2n+1 = 2π2n2, for n ∈ N.

The d-dimensional eigenvalues are then of the form π2

2

∑d
i=1 n

2
i for Dirichlet b.c., π2

2

∑d
i=1(ni − 1)2

for Neumann b.c., and 2π2
∑d

i=1(ni − 1)2 for periodic b.c., with n1, . . . , nd ∈ N. They are simple for

Dirichlet and Neumann b.c., while they have multiplicity two in the periodic case (with the exception

of λ1 = 0).

We first show the lower bound for Dirichlet boundary conditions. In the limit as t ↓ 0,

t(U,Dir)

t =
∑
n∈N

e−tλ
(U,Dir)
n ≥

( ∑
m∈N

e−tπ
2

2
m2

)d
≥

(∫ ∞

1
e−tπ2 x2

2 dx
)d

≥
(∫ ∞

0
e−tπ2 x2

2 dx− 1
)d

=
(
(2tπ)−1/2 − 1

)d
= (2tπ)−d/2

(
1−O(

√
t)
)
,
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which implies the lower bound in (2.4). For periodic boundary conditions, we have, since the non-zero

eigenvalues have multiplicity 2,

t(U,per)

t =
∑
n∈N

e−tλ
(U,per)
n =

(
1 + 2

∑
m∈N

e−t2π2m2
)d

≥
(
1 + 2

∫ ∞

1
e−4tπ2 x2

2 dx
)d

=
(
1 +

1√
2tπ

− 2

∫ 1

0
e−4tπ2 x2

2 dx
)d

≥ 1

(2tπ)d/2

(
1−O

(√
t
))
,

where the last step was in the limit t ↓ 0.

We now show the upper bound for Neumann b.c.. For any t ∈ (0,∞),

t(U,Neu)

t =
( ∑

m∈N
e−tπ

2

2
(m−1)2

)d
=

(
1 +

∑
m∈N

e−tπ
2

2
m2

)d

≤
(
1 +

∫ ∞

0
e−tπ2 x2

2 dx
)d

=
(
1 +

1√
2tπ

)d
=

1 +O(
√
t)

(2tπ)d/2
,

where the last assertion is in the limit t ↓ 0.

For periodic boundary conditions, we see that

t(U,per)

t =
(
1 + 2

∑
m∈N

e−t2π2m2
)d

<
(
1 + 2

∫ ∞

0
e4tπ

2 x2

2 dx
)d

=
(
1 +

1√
2tπ

)d
=

1 +O(
√
t)

(2tπ)d/2
,

with the same upper bound as above.

□

In the following, we will often use the estimates of the above lemma with some generic constant

C ∈ (0,∞) that may change its value from appearance to appearance; it may depend only on d, β, ρ

and bc.

2.3. Particle numbers in small loops in the Poisson point process. We consider now the

Poisson point process (ωi)i on N that we introduced in Section 1.4. Recall that we call each Poisson

point ω at k ∈ N a loop of length k, and it contains k particles. Then Xk denotes their cardinality,

and Xk is Poisson-distributed with parameter 1
k t

(ΛN,Dir)

k , and (Xk)k∈N is independent. Also recall that

a loop ω is said to be short if its length is less or equal to TN := ⌈N
2
d log1/2(N)⌉, and N(short)

Λ denotes

the total particle number in all the short loops in Λ ⊂ Rd. Otherwise, ω is called long, and N(long)

Λ

denotes the number of particles in long loops in Λ.

In this section we study the number of particles in short loops and the entire particle number in

terms of a law of large numbers with exponential bounds for the probability of a deviation from the

asymptotic mean. We split into loops of bounded lengths and longer ones, and finally we consider

the total number of particles. In this section we use standard probabilistic tools for sums of indepen-

dent Poisson random variables with various parameters, mainly Markov’s inequality for exponential

functions.

Let us first turn to the loops of bounded length. With a parameter R ∈ N, we recall that N[1,R]

Λ

is the number of particles in loops of lengths ≤ R in Λ (we call these loops R-short). In the next

proposition, we show that N[1,R]

Λ concentrates with stretched-exponentially small probability on ρ(R)
c |Λ|,

where ρ(R)
c = (2πβ)−d/2

∑R
k=1 k

−d/2, which converges to ρc for R → ∞. As in Proposition 2.1, we fix

a diffusive or periodic boundary condition and suppress it from the notation.
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Proposition 2.3 (Number of particles in R-short loops). Fix ρ ∈ (ρc,∞) and pick the centred box

ΛN with diameter LN such that Ld
N = N/ρ. Fix R ∈ N, then

E(bc,N)

ΛN
[N[1,R]

ΛN
] ∼ ρ(R)

c |ΛN | , N → ∞. (2.8)

Furthermore, for any ε > 0, there exists Cε > 0 such that, for all N ∈ N,

P(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |
N[1,R]

ΛN
− ρ(R)

c

∣∣∣∣ > ε

)
≤ e−Cε|ΛN | . (2.9)

Proof. We abbreviate Λ for ΛN . We use the Campbell formula E(bc,N)

Λ [N[1,R]

Λ ] =
∑R

j=1 t
(Λ,bc)

j and note

that t(Λ,bc)

j ∼ |Λ| (2πβj)−d/2 as N → ∞ by (2.4), which implies (2.8).

Now we prove (2.9). According to (2.8), we are considering the probability of deviations of N[1,R]

Λ

from its mean. We handle only the upper deviations, since the lower deviations are handled in the

same way (with negative s instead of positive s). By the exponential Chebyshev inequality, we have

that for any s > 0,

P(bc,N)

Λ

(
N[1,R]

Λ − ρ(R)
c |Λ| > ε |Λ|

)
≤ e−sε|Λ|E(bc,N)

Λ

[
e
s
(
N

[1,R]
Λ −E(bc,N)

Λ

[
N

(≤R)
Λ

])]

= e−sε|Λ| exp

 R∑
j=1

1

j

(
esj − 1− sj

)
t(Λ,bc)

j

 ,

(2.10)

where we used Campbell’s formula in the second step. Note that 1
j

(
esj − 1− sj

)
= O

(
s2
)
for s ↓ 0.

Also using that
∑R

j=1 t
(Λ,bc)

j ∼ ρ(R)
c |Λ|, we see that

R∑
j=1

1

j

(
esj − 1− sj

)
t(Λ,bc)

j = O
(
s2 |Λ|

)
.

By choosing s sufficiently small (not depending on Λ, but on ε), the linear term in the exponential in

(2.10) dominates. This implies (2.9). □

Now we control the deviations of the number N
[R+1,TN ]

Λ = N(short)

Λ − N[1,R]

Λ of particles in loops of

lengths between R+ 1 and TN . It turns out that N
[R+1,TN ]

Λ is strongly concentrated on (ρc − ρ(R)
c )|Λ|.

Even more, the probability of the deviations again decays exponentially, however, not in |ΛN |, but in
|ΛN |1−d/2, but with an arbitrarily large prefactor. The proof is similar to the one of Proposition 2.3.

Proposition 2.4 (Particles in short, but not R-short loops). Fix ρ ∈ (ρc,∞) and let ΛN be the centred

box with volume N/ρ. Fix R ∈ N, then

E(bc,N)

ΛN
[N

[R+1,TN ]

ΛN
] ∼ (ρc − ρ(R)

c ) |ΛN | , N → ∞. (2.11)

Furthermore, for any ε > 0 and for any κ > 0, we have, for all large N ∈ N,

P
(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |
N

[R+1,TN ]

ΛN
− (ρc − ρ(R)

c )

∣∣∣∣ > ε

)
≤ e−κ|ΛN |1−d/2

. (2.12)

Furthermore, the latter assertion remains true if ε is replaced by a sequence εN , tending to zero as

N → ∞ slowly (say at logarithmic speed in N).

Proof. Again, we write Λ instead of ΛN , and we drop the superscript ‘N ’ in the probability measure.

We use Campbell’s formula and split, for small δ > 0,

E
(bc)

Λ [N
[R+1,TN ]

Λ ] =

N
2
d
−δ∑

k=R+1

t(Λ,bc)

k +
∑

N
2
d
−δ<k≤TN

t(Λ,bc)

k . (2.13)
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By (2.4), we get that

N
2
d
−δ∑

k=R+1

t(Λ,bc)

k ∼ |Λ|
N

2
d
−δ∑

k=R+1

1

(2πβj)d/2
∼ (ρc − ρ(R)

c ) |Λ| , (2.14)

and on the other hand,∑
N

2
d
−δ<k≤TN

t(Λ,bc)

k ≤ O (|Λ|)
∑

N
2
d
−δ<k≤TN

1

(2πβk)d/2
= O(|Λ|

2
d
+δ( d

2
−1)) = o (|Λ|) .

This concludes the proof of (2.11).

Now we prove (2.12). First we proceed with estimating the probability of deviation from below. We

use the exponential Chebyshev inequality with some α ∈ (0,∞), to obtain

P
(bc)

Λ

(
1

|Λ|
N

[R+1,TN ]

Λ ≤ ρc − ρ(R)
c − ε

)
≤ eα|Λ|(ρc−ρ

(R)
c −ε)E

(bc)

Λ

[
e−αN

[R+1,TN ]

Λ

]
.

Then we use the Campbell formula and the estimate, for some small δ > 0, according to Lemma 2.2(iv),

tk = (1 + o(1))|Λ|(2πβk)−d/2 for k ≤ L2−δ to get, picking α = sL−2 for some s ∈ (0,∞),

E
(bc)

Λ

[
e−αN

[R+1,TN ]

Λ

]
= exp

{ TN∑
k=R+1

(e−αk − 1)
tk
k

}

≤ exp
{
(1 + o(1))

L2−δ∑
k=R+1

(
e−skL−2 − 1

) |Λ|
(2πβk)d/2

1

k

}
≤ exp

{
− (1 + o(1))

Ld

(2πβ)d/2
sL−2ζ(d/2)

}
= exp

{
− sρcL

d−2 (1 + o(1))
}
,

where we estimated e−w − 1 ≤ −(1 + o(1))w for w ∈ [0, sL−δ] and
∑L2−δ

k=R+1 k
−d/2 ≥ ζ(d/2)(1 + o(1)).

Taking s = κ/ε yields the lower-deviations claim.

To estimate the probability of the upper deviations, we proceed at the beginning analogously with

‘≤ ρc − ρ(R)
c − ε’ replaced by ‘≥ ρc − ρ(R)

c + ε’, and have now to handle positive exponential moments:

E
(bc)

Λ

[
eαN

[R+1,TN ]

Λ

]
= exp

{ TN∑
k=R+1

(eαk − 1)
tk
k

}
.

The sum on k = R+1, . . . , TN is split into the some on k = R+1, . . . , L2−δ and the remainder for some

small δ > 0. For k in the first sum, we use again Lemma 2.2(iv) to write tk = (1+o(1))|Λ|(2πβk)−d/2.

For the exponential term, this time we use ew − 1 ≤ w+w2ew for w ∈ (0, sL−δ]. Hence, the first sum

gives

L2−δ∑
k=R+1

(eαk − 1)
tk
k

= (1 + o(1))
Ld

(2πβ)d/2

[
sL−2

L2−δ∑
k=R+1

k−d/2 + s2L−4esL
−δ

L2−δ∑
k=R+1

k−d/2+1
]

≤ (1 + o(1)) sLd−2
[
ρc − ρ(R)

c + L−2esL
−δ

L2−δ∑
k=1

k−d/2+1
]
.

Now we see that the last term in the square brackets vanishes as N → ∞, by distinguishing d = 3,

d = 4 and d ≥ 5. Hence, this part of the sum in the exponential term is not larger than (1 +

o(1))sLd−2(ρc − ρ(R)
c ).
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Next, we turn to the sum on k = L2−δ, . . . , TN . We use (2.3) to estimate crudely t(Λ,bc)

k ≤
Ce−kβλ1L−2 ≤ C and obtain, putting α = sL−2, and recalling that TN = L2 log1/2(N),

TN∑
k=L2−δ

(eαk − 1)
tk
k

≤ Ces log
1/2(N)

TN∑
k=L2−δ

1

k
≤ Ces log

1/2(N) log
(
Lδ log1/2(N)

)
,

which is o(Ld−2). Summarising, we get

P
(bc)

Λ

(
1

|Λ|
N

[R+1,TN ]

Λ ≥ ρc − ρ(R)
c + ε

)
≤ esL

−2|Λ|(ρc−ρ
(R)
c −ε)e(1+o(1))sLd−2(ρc−ρ

(R)
c )e−(1+o(1))sLd−2ε.

Taking s = κ/ε, the proof of (2.12) is finished.

The additional assertion is seen to follow from the above proof by taking s = sN = κ/εN , tending

slowly to infinity in a way that all the steps in the above proof remain true. □

Putting together Propositions 2.3 and 2.4, we obtain the corresponding estimate for N(short)

Λ .

Corollary 2.5 (Deviations of the particle number in short loops). For any ε > 0 and for any κ > 0,

we have, for all large N ∈ N,

P
(bc,N)

ΛN

(∣∣∣∣ 1

|ΛN |
N(short)

ΛN
− ρc

∣∣∣∣ > ε

)
≤ e−κ|ΛN |1−d/2

.

The latter assertion remains true if ε is replaced by a sequence εN , tending to zero as N → ∞ suitably

slowly.

Let us now give a rough lower bound for the probability that the total number of particles is equal

to N , i.e., for the term in the denominator in (1.7). We fix a diffusive or periodic boundary conditions.

Lemma 2.6 (Lower bound for the denominator in (1.7)). Fix ρ ∈ (ρc,∞) and let ΛN be the centred

box with volume N/ρ. Then, if λ1 > 0,

P
(bc,N)

ΛN
(NΛN

= N) ≥ e−(ρ−ρc)βλ1|ΛN |1−
2
d (1+o(1)) , N → ∞. (2.15)

If λ1 = 0, the lower bound is polynomial: for any ε > 0,

P
(bc,N)

ΛN
(NΛN

= N) ≥ |ΛN |−2− 2
d
−ε, N → ∞.

Proof. We abbreviate Λ = ΛN and drop the super-indices. Recall that NΛ =
∑N

k=1 kXk, where

X1, . . . , XN are independent Poisson-distributed variables with parameters t1, . . . , tN .

We pick δ ∈ (0, 2d(1−
2
d)), R = RN = N

2
d
−δ, a sequence εN ↓ 0, and estimate

PΛN
(NΛN

= N) = P
( N∑

j=1

jXj = N
)

≥
∑

m∈[(ρc−εN )|Λ|,(ρc+εN )|Λ|]

P
(∑

j≤R

jXj = m
)

× P(XN−m = 1)P(Xj = 0 ∀j /∈ [1, R] ∪ {N −m}) .

Then, uniformly for any m in the above sum, we have N − m ∼ (ρ − ρc)|Λ|. First note that

E[
∑

j≤R jXj ] ∼ ρc|Λ| (see Proposition 2.4) and the standard deviation of
∑

j≤R jXj is o(|Λ|), hence,∑
m∈[(ρc−εN )|Λ|,(ρc+εN )|Λ|] P(

∑
j≤R jXj = m) tends to one as N → ∞, if εN vanishes at a sufficiently

low speed. Moreover:
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If λ1 > 0, we use Lemma 2.2(iii) to obtain

P(XN−m = 1) = e−
1

N−m
t
(Λ)
N−m

t(Λ)

N−m

N −m
∼

t(Λ)

N−m

N −m
= e−βλ1(ρ−ρc)|Λ|1−

2
d (1+o(1)), N → ∞ .

The zero probability for the remaining Poisson variables is estimated as follows, with the help of

Lemma 2.2(iii) and (iv).

P(Xj = 0 ∀j /∈ [1, RN ] ∪ {N −m}) ≥ e
−

∑N
j=RN

1
j
tj ≥ e

−O(Ld)
∑L2

j=RN
j−1−d/2+o(1)

= e−O(|Λ|δ
d
2 ) ≥ e−o(|Λ|1−

2
d ) ,

the last step follows from our assumption that δ < 2
d(1−

2
d). This finishes the proof of (2.15).

In the case λ1 = 0, we pick a small ε > 0 and adapt δ later. We use Lemma 2.2(iii) to estimate

P(XN−m = 1) = e−
1

N−m
t
(Λ)
N−m

t(Λ)

N−m

N −m
∼

t(Λ)

N−m

N −m
≥ 1

N −m
≥ O( 1

N ).

In order to estimate the zero probability of the other Poisson variables, we estimate, using tj ≤
1 +O(e−βλ2jL−2

),

e
−

∑N
j=RN

1
j
tj ≥ exp

(
− log

N

N
2
d
−δ

− C
N∑

j=RN

1

L−2j
e−βλ2jL−2

L−2
)
.

With an integral comparison, the second term in the exponential can be upper bounded by∫∞
1 dx 1

xe
−βλ2x +

∑L2

j=RN

1
j ≤ C + δd logL, so we have

e
−

∑N
j=RN

1
j
tj ≥ N−(1− 2

d
+δ)Ce−Cδd logL ,

which is not smaller than |ΛN |−1− 2
d
−ε, if δ is picked small enough. □

2.4. Particle numbers in long loops in the Poisson point process. We are now interested in

the distribution of the number N(long)

Λ of particles in long loops, i.e., longer than TN = ⌈|Λ|
2
d log1/2N⌉.

For these loops, we need to find precise asymptotics (i.e., up to a factor of 1+o(1)) for the probability

that N(long)

Λ is equal to a large number. As this is rather subtle, we need to use finer and non-standard

means. In Proposition 2.7, below, we prove a slightly more general assertion, which will then be used

in the identification of the limiting distribution of the long loops.

We will be able to use some well-known fine asymptotics and limiting assertions about uniformly-

distributed random partitions from [ABT03]. For this, we need the density p : (0,∞) → [0,∞) of the

distribution on (0,∞) with Laplace-transform

(0,∞) ∋ s 7→ exp

(
−
∫ 1

0

(
1− e−sx 1

x

)
dx

)
. (2.16)

For x ∈ [0, 1], the value of p(x) = e−γ is explicitly known, where γ ≈ 0.5772 is the Euler–Mascheroni

constant.

Denote N+ = ⌈N2/d log2(N)⌉.

Proposition 2.7 (Distribution of the number of particles in long loops). Fix ρ ∈ (ρc,∞) and let ΛN

be the centred box with volume N/ρ.

Then, for any y ∈ (0,∞), in the limit as N → ∞, uniformly in N+ ≤ j ≤ k ≤ N such that k/j → y,

P
(bc,N)

ΛN

(
N

[TN+1,j]

ΛN
= k

)
∼ p(y)e−βλ1k|ΛN |−

2
d ×


1
TN

if λ1 > 0 ,

1
j if λ1 = 0 .

(2.17)
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In particular, in the limit as N → ∞, uniformly in N+ ≤ k ≤ N ,

P
(bc,N)

ΛN

(
N(long)

ΛN
= k

)
∼ e−γe−βλ1k|ΛN |−

2
d ×


1
TN

if λ1 > 0 ,

1
N if λ1 = 0 .

(2.18)

Furthermore, there exists a C ∈ (0,∞) such that

P
(bc,N)

ΛN

(
N(long)

ΛN
= k

)
≤ Ck/TN e−βλ1k|ΛN |−

2
d , k ∈ {1, . . . , N}, N ∈ N. (2.19)

Proof. Recall from (1.4) the set Pk of all partitions m satisfying
∑

i imi = k of k. Denote by

P
[TN+1,j]

k =
{
m ∈ Pk : mi = 0 for i /∈ [TN + 1, j]

}
the set of all partitions of k with partition sets of sizes in [TN + 1, j]. Again, we write Λ instead

of ΛN , drop the boundary condition from the notation, and put Ld = |Λ|. Assume that j, k ∈
{N+, N+ + 1, . . . , N} with j ≤ k.

Recall that N
[TN+1,j]

Λ is equal in distribution to
∑j

r=TN+1 rXr, where X1, . . . , XN are independent

Poisson-distributed random variables, and Xr has parameter 1
r t

(Λ)
r . Hence, the exact value of the

probability in question is

PΛ

(
N

[TN+1,j]

Λ = k
)
= e

−
∑j

r=TN+1
1
r
t
(Λ)
r

∑
m∈P[TN+1,j]

k

j∏
r=TN+1

(
t(Λ)
r

)mr

mr! rmr
. (2.20)

We first compute the exponential prefactor in the first term of the right-hand side of the above

equation. By Lemma 2.2(iv), we have, uniformly in r ∈ {TN + 1, . . . , N}, the asymptotics t(Λ)
r =

e−λ1rβL−2
(1 + e−c log1/2(N)) for some c ∈ (0, 1) and hence

j∑
r=TN+1

1

r
t(Λ)
r = (1 + e−c log1/2(N))L−2

j∑
r=TN+1

1

rL−2
e−λ1rβL−2

= (1 + e−c log1/2(N))

∫ jL−2

(TN+1)L−2

1

x
e−λ1xβ dx

=

{
(1 + e−c log1/2(N)) log j

TN
if λ1 = 0 ,

o(1) if λ1 > 0 .

(2.21)

Hence the first term on the right-hand side of (2.20) is TN
j (1 + o(1)) if λ1 = 0 and 1 + o(1) if λ1 > 0.

Therefore, for proving (2.17), it only remains to show that, uniformly in N+ ≤ j ≤ k ≤ N such that

k/j → y ∈ (0,∞), ∑
m∈P[TN+1,j]

k

j∏
r=TN+1

(
t(Λ)
r

)mr

mr! rmr
∼ p1(y)

TN
e−βλ1k|ΛN |−

2
d , N → ∞ . (2.22)

Proof of lower bound in (2.22): Using the lower bound in Lemma 2.2(iii), and using that∑j
r=TN+1 rmr = k for m ∈ P

[TN+1,j]

k , we have

∑
m∈P[TN+1,j]

k

j∏
r=TN+1

(
t(Λ)
r

)mr

mr! rmr
≥ e−λ1βk|Λ|−2/d ∑

m∈P[TN+1,j]

k

j∏
r=TN+1

1

mr! rmr
. (2.23)
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Consider the vector (Yr)1≤r≤k of independent Poisson-distributed random variables such that Yr has

parameter 1/r, then [ABT03, Thm. 4.13] states that

P
( j∑

r=TN+1

rYr = k
)
∼ p1(y)

j
, (2.24)

where we recall that we assumed that k/j → y. Hence, the sum on the right-hand side of (2.23) has

the asymptotics∑
m∈P[TN+1,j]

k

j∏
r=TN+1

1

mr! rmr
= e

∑j
r=TN+1

1
rP

 j∑
r=TN+1

rYr = k

 ∼ j

TN

p1(y)

j
=
p1(y)

TN
, (2.25)

according to the asymptotics
∑m

r=1
1
r ∼ logm as m → ∞. This finishes the proof of the lower bound

in (2.22) and hence the lower bound in (2.17).

Proof of (2.19) and (2.18) given (2.17): We need to put j = k, noting that N(long)

Λ = N
[TN+1,N ]

Λ =

N
[TN+1,k]

Λ on the event {N(long)

Λ = k}, and that

P
(bc,N)

ΛN

(
N(long)

ΛN
= k

)
= P

(bc,N)

ΛN

(
N

[TN+1,k]

Λ = k
)
e−

∑N
r=k+1

1
r
t
(Λ)
r ,

since all Xr with r > k are zero on the event {N(long)

Λ = k}. Now (2.18) follows from (2.17), noting

that the last term is asymptotic to k/N in the case λ1 = 0 and to 1 in the case λ1 > 0; see (2.21).

For deriving (2.19) use, for any r ∈ {1, . . . , N}, just the estimate tr ≤ Ce−λ1βr|Λ|−2/d

(see Lemma

2.2(iii)) in (2.20), then (2.19) follows, since
∑j

r=TN+1mr ≤ 1
TN+1

∑j
r=TN+1 rmr ≤ k/(TN +1). Indeed,

also using (2.25),

P
(bc)

ΛN

(
N(long)

ΛN
= k

)
≤ Ck/TN e−λ1βk|Λ|−2/d

e
−

∑N
r=TN+1

1
r
(t

(Λ)
r −1)P

 j∑
r=TN+1

rYr = k


≤ Ck/TN e−λ1βk|Λ|−2/d

,

since tr ≥ 1, according to Lemma 2.2(iii).

Proof of upper bound in (2.22): For deriving the upper bound, we need to use the stronger

upper bound in Lemma 2.2(iii) and need to show that the difference to the lower bound is negligible.

Indeed, we have, for some c ∈ (0,∞), and all large L,

∑
m∈P[TN+1,j]

k

j∏
r=TN+1

(t(Λ)
r )mr

mr! rmr
≤ e−λ1βk|Λ|−2/d ∑

m∈P[TN+1,j]

k

j∏
r=TN+1

(
1 + e−crL−2

)mr

mr!rmr

∼ e−λ1βk|Λ|−2/d j

TN
E

 j∏
r=TN+1

(
1 + e−crL−2

)Yr

1l
{ j∑

r=TN+1

rYr = k
}

≤ e−λ1βk|Λ|−2/d j

TN
E

exp
 j∑

r=TN+1

Yre
−crL−2

 1l
{ j∑

r=TN+1

rYr = k
} ,

where the asymptotics uses that
∑j

r=TN+1
1
r ∼ j

TN
, and the last estimate uses the bound 1 + x ≤ ex

for x > 0.



20 ODLRO FOR THE FREE BOSE GAS VIA FEYNMAN–KAC FORMULA

Note that for r ≥ N+, we have e−crL−2 ≤ e−c log2(N) and hence the sum over r ≥ N+ is negligible:

j∑
r=N+

Yre
−crL−2 ≤

∑
r≥N+

Yre
−c log2 N ≤ Ne−c log2 N = o(1) .

According to (2.24), it suffices to show that

E

e∑N+

r=TN+1 Yre−crL−2

1l
{ j∑

r=TN+1

rYr = k
} ≤ P

 j∑
r=TN+1

rYr = k

(
1 + o(1)

)
. (2.26)

Note that by the independence of the Poisson point process variables,

l.h.s. of (2.26) =
k∑

l=0

E

e∑N+

r=TN
Yre−crL−2

1l
{ N+∑

r=TN

rYr = l
}P

 j∑
r=N++1

rYr = k − l

 .

Note that, on the event {
∑N+

r=TN+1 rYr = l}, we can always estimate

N+∑
r=TN+1

Yre
−crL−2 ≤ e−cTNL−2

N+∑
r=TN+1

r

TN
Yr =

l

TN
e−c log1/2(N) . (2.27)

We distinguish two cases, depending on the size of l in the above sum.

Sum on l ≤ L2 log8(N): Here, the bound in (2.27) is o(1), such that we obtain

N2/d log8(N)∑
l=0

E

e∑N+

r=TN+1 Yre−crn−2/d

1l
{ N+∑

r=TN+1

rYr = l}

P

 j∑
r=N++1

rYr = k − l


≤ (1 + o(1))P

 j∑
r=TN+1

rYr = k

 . (2.28)

Sum on l > L2 log8(N): We derive an upper bound for any l, which shows that the sum on l >

L2 log8(N) is negligible.

Using the rough bound in (2.27), we obtain

E

e∑N+

r=TN+1 Yre−crL−2

1l
{ N+∑

r=TN+1

rYr = l
} ≤ exp

(
l

TN
e−c log1/2(N)

)
P

 N+∑
r=TN+1

rYr = l

 . (2.29)

Furthermore, use the exponential Chebyshev inequality to see, for any l ∈ N, and any α ∈ (0,∞),

estimating tr ≤ 2 for r ≥ TN + 1,

P

 N+∑
r=TN+1

rYr = l

 ≤ e−αl exp
( N+∑

r=TN+1

2

r
(eαr − 1)

)
≤ e−

l
N+ e4N

+α ≤ e−
l

N+ e4 ,

choosing α = 1/N+ in the second step, and using that eαr − 1 ≤ 2αr in the summation. Using this in

(2.29), gives, for all large N ,

E

e∑N+

r=TN+1 Yre−crL−2

1l
{ N+∑

r=TN+1

rYr = l
} ≤ exp

(
− l

N+

[
1− log3/2(N)e−c log1/2(N)

])
e4

≤ e−
1
2

l
N+ .
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Now we sum on l > L2 log8(N) and obtain, for all sufficiently large N ,

k∑
l=L2 log8(N)

E

e∑N+

r=TN+1 Yre−crn−2/d

1l
{ N+∑

r=TN+1

rYr = l}

P

 j∑
r=N++1

rYr = k − l


≤

k∑
l=L2 log8(N)

e−
1
2

l
N+ ≤ ke−

1
2
log6(N) ≤ o( 1k ).

Now we build the sum of this with (2.28) and obtain that the left-hand side of (2.26) is not larger

than P(
∑j

r=TN+1 rYr = k)(1+o(1)), since this is itself asymptotic to p1(y)/j ≍ 1
k , according to (2.24).

This concludes the proof of (2.26), and hence of the proposition. □

2.5. Proof of Proposition 2.1: asymptotics of the kernel. Fix a boundary condition bc (diffusive

or periodic) and drop ‘bc’ from the notation. We abbreviate Λ for ΛN and L for LN . Furthermore,

we write PΛ instead of P(N,bc)

Λ for the probability with respect to the Poisson point process (Xr)r=1,...,N

introduced in Section 1.4.

Our goal is to show that there exists c ∈ (0,∞) such that, for any κ,M > 0 and for any x, y ∈ Λ,

in the limit as N → ∞,

(1 + o(1))(ρ− ρc)
1

|Λ|
ϕ1(

x
L)ϕ1(

y
L)

≤
N∑
r=1

g(Λ)

rβ (x, y)
PΛ (NΛ = N − r)

PΛ (NΛ = N)

≤ (1 + o(1))(ρ− ρc)
1

|Λ|

(
ϕ1(

x
L)ϕ1(

y
L) + e−Mc

)
+ CMψ(|x− y|) + e−κLd−2

,

(2.30)

where CM ∈ (0,∞) depends only on M , and ψ satisfies ψ(r) ≤ r2−d in the limit r → ∞. Note that

the middle term of (2.30) is equal to γ(Λ)

N (x, y) by Corollary 1.4. Hence, (2.30) implies Proposition 2.1.

Recall that TN = ⌈L2 log1/2(N)⌉, that N(long)

Λ = N
[TN+1,N ]

Λ =
∑N

r=TN+1 rXr is the number of particles

in long loops, and N(short)

Λ = NΛ − N(long)

Λ is the number of particles in short loops. Under PΛ, the

number of particles in short and long loops are independent, hence we can build a convolution for

NΛ = N(short)

Λ +N(long)

Λ to obtain, for the probability term in the numerator,

PΛ (NΛ = N − r) =
N∑
k=0

PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k − r
)
, r ∈ {1, . . . , N − k} . (2.31)

Noting that N(long)

Λ takes values only in {0} ∪ {TN + 1, . . . , N}, the k-sum can be restricted to k ∈
{N − r} ∪ {TN + 1− r, . . . , N − r}. We now apply twice (2.18) in Proposition 2.7 to get, for k and r

such that r ≤ N − k −N+, in the case λ1 > 0,

PΛ
(
N(long)

Λ = N − k − r
)
∼ e−λ1β(N−k−r)|Λ|1−

2
d eγ

TN
∼ eλ1β r|Λ|1−

2
d
PΛ

(
N(long)

Λ = N − k
)
, (2.32)

and in the case λ1 = 0,

PΛ
(
N(long)

Λ = N − k − r
)
∼ eγ

N
∼ PΛ

(
N(long)

Λ = N − k
)
.



22 ODLRO FOR THE FREE BOSE GAS VIA FEYNMAN–KAC FORMULA

Hence, in both cases, we have (2.32). We write the numerator on the left-hand side of (2.30) as

N∑
r=1

g(Λ)

βr (x, y)PΛ (NΛ = N − r)

=
∑

(k,r)∈A

g(Λ)

βr (x, y)PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k − r
)
,

where A = {(k, r) ∈ N0 × N : k + r ∈ {N} ∪ {1, . . . , N − TN}}. For some (large) M ∈ (0,∞), we now

split this sum into three sums, (I), (II), and (III), on

A1 = {(k, r) : r ≥ML2, k + r ≤ N −N+} ,
A2 = {(k, r) : r < ML2, k + r ∈ {0, 1, . . . , N −N+} ∪ {N}} ,
A3 = {(k, r) : N −N+ < k + r ≤ N − TN − 1} ,

respectively. From Lemm 2.2(i), we obtain that there is some c ∈ (0, 1) such that, for any M > 0 and

any large N ,

g(Λ)

βr (x, y) ≤ e−λ1rβL−2 1

|Λ|

(
ϕ1(

x
L)ϕ1(

y
L) +O(e−Mc)

)
, r ≥ML2, x, y ∈ Λ .

Hence, on A1 we can use this, the convolution in (2.31), and (2.32), to obtain

(I) =
∑

k∈N0,r≥ML2 :
k+r≤N−N+

g(Λ)

βr (x, y)PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k − r
)

≤ 1 + o(1))

|Λ|

(
ϕ1(

x
L)ϕ1(

y
L) +O(e−Mc)

)
×

N∑
k=0

PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k
) N − TN − k −ML2

|Λ|
.

(2.33)

We need to show that the sum on k on the right-hand side of (2.33) is close to (ρ− ρc)PΛ(NΛ = N).

It is clear that we can replace N − TN − k−ML2 by N − k. We use again this convolution to see, for

any ε > 0, that (recalling that N = ρ|Λ|)∣∣∣ N∑
k=0

N − k

|Λ|
PΛ

(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k
)
− (ρ− ρc)PΛ(NΛ = N)

∣∣∣
≤

N∑
k=0

PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k
) ∣∣ρc − k

|Λ|
∣∣

≤ ε

ε|Λ|∑
k=−ε|Λ|

PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k
)
+ (ρc + ρ)PΛ

(∣∣∣ 1

|Λ|
N(short)

Λ − ρc

∣∣∣ ≥ ε
)

≤ εPΛ(NΛ = N) + e−κLd−2
,

with any κ > 0, for all sufficiently large N , according to Corollary 2.5.

If we pick κ larger than (ρ− ρc)βλ1, Lemma 2.6 tells us that the last summand is o(PΛ(NΛ = N))

as N → ∞. Hence, (2.33) implies that

(I) ≤ 1

|Λ|

(
ϕ1(

x
L)ϕ1(

y
L) +O(e−Mc)

)
(ρ− ρc)PΛ(NΛ = N)(1 + o(1)).

This yields the first term on the right-hand side of (2.30).
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The lower bound for γ(Λ)

N (x, y) in (2.30) follows from the preceding, using the lower bound for

gβr(x, y) in Lemma 2.2(i), since (II) and (III) are nonnegative.

Next, we handle the term (II). For r ≤ ML2, we use the bound from Lemma 2.2(ii), with some

suitable CM ∈ (0,∞) and c ∈ (0, 1),

g(Λ)

βr (x, y) ≤ CMe−λ1rβL−2
r−d/2e−|x−y|2/2cr, r ≤ML2, x, y ∈ Λ .

Using first the convolution in (2.31), then (2.32), and finally once more the convolution, we find

(II) =
∑

k∈N0,r≤ML2 :
k+r≤N−N+ or k+r=N

g(Λ)

βr (x, y)PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k − r
)

≤ CM (1 + o(1))
N∑
k=0

PΛ
(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k
)ML2∑

r=1

r−d/2e−|x−y|2/2cr

≤ CMPΛ (NΛ = N)ψ(|x− y|) ,

where ψ does not depend on M and satisfies ψ(s) ≤ Cs2−d as s → ∞ for some C ∈ (0,∞, as follows

from the asymptotics (see [LL10, Lemma 4.3.2])
∞∑
k=1

k−d/2e−r/k ∼ Γ(d/2− 1)

rd/2−1
as r → ∞ . (2.34)

Hence, (II) gives the second term on the right-hand side of (2.30).

Finally, we handle the term (III). We want to show that

(III)

PΛ(NΛ = N)
=

∑
k∈N0,r∈N :

N−N+<k+r≤N−TN−1

g(Λ)

βr (x, y)
PΛ

(
N(short)

Λ = k
)
PΛ

(
N(long)

Λ = N − k − r
)

PΛ(NΛ = N)

!
≤ o(1) .

In the case λ1 > 0, we use that PΛ(NΛ = N) ≥ e−λ1βNL−2(1+o(1)) from Lemma 2.6, PΛ(N
(long)

Λ = k) ≤
Ck/TN e−λ1βkL−2

from Proposition 2.7, and gβr ≤ C e−λ1βrL−2
from Lemma 2.2(i). This yields

(III)

PΛ(NΛ = N)

≤ Ceλ1βNL−2(1+o(1))
∑

k∈N0,r∈N :
N−N+<k+r≤N−TN−1

e−λ1βrL−2
Ck/TN e−λ1βkL−2

P(N(short) = N − r − k)

≤ Ceλ1βNL−2(1+o(1))
N−TN−1∑
m=N−N+

e−λ1βmL−2
P(N(short) = N −m)

m∑
k=0

Ck/TN .

(2.35)

Since
∑m

k=0C
k/TN = C

m+1
TN −1

C
1

TN −1

≤ O(TN )C
N
TN = eo(L

d−2),

l.h.s. of (2.35) ≤ Ceλ1βNL−2(1+o(1))eo(L
d−2)

N+∑
j=TN

e−λ1β(N−j)L−2
P(N(short) = j)

≤ Ceo(L
d−2)eλ1βN+L−2

e−κLd−2
,

where in the last step we used Corollary 2.5. After adapting the value of κ, this gives the third term

on the right-hand side of (2.30) in the case λ1 > 0.
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For λ1 = 0, we use that PΛ(NΛ = N) ≥ N−c, for some c > 0, from Lemma 2.6, and gβr ≤ C from

Lemma 2.2(i). The claim then follows again from Corollary 2.5:

(III)

PΛ(NΛ = N)
≤ CN c

∑
k∈N0,r∈N :

N−N+<k+r≤N−TN−1

P(N(short) = N − r − k) ≤ CN c+1e−κLd−2
.

After adapting the value of κ, this gives the third term on the right-hand side of (2.30) in the case

λ1 = 0, finishing the proof of Proposition 2.1.

2.6. Proof of Theorem 1.1(i) for diffusive and periodic boundary conditions. Let us finally

show that ODLRO follows from Proposition 2.1, i.e., let us prove Theorem 1.1(i) for diffusive and

periodic boundary conditions. Explicitly, we will show that the principal L2-eigenvalue of Γ
(ΛN,bc)

N

behaves like

sup
f∈L2(ΛN ) : ∥f∥L2(ΛN )=1

⟨f,Γ(ΛN,bc)

N (f)⟩ ∼ (ρ− ρc)|ΛN |, N → ∞ ,

where ΛN = LNU = [−1
2LN ,

1
2LN ]d. For deriving the lower bound, we may use the L2-normalised

test function fN (x) = L
−d/2
N ϕ(bc)

1 (x/LN ), and obtain, as N → ∞, the following lower bound from the

lower bound in Proposition 2.1:

⟨fN ,Γ
(ΛN,bc)

N (fN )⟩ ≥
∫
ΛN

∫
ΛN

fN (x)γ
(ΛN,bc)

N (x, y)fN (y) dxdy

≥ (1 + o(1))
ρ− ρc
|ΛN |

∫
ΛN

∫
ΛN

ϕ(bc)

1 ( x
LN

)2ϕ(bc)

1 ( y
LN

)2 dxdy

= (1 + o(1))(ρ− ρc)|ΛN | .

Now we prove the upper bound. For any L2(ΛN )-normalised function fN , from the upper bound in

Proposition 2.1, we get that

⟨fN ,Γ
(ΛN,bc)

N (fN )⟩ ≤
∫
ΛN

∫
ΛN

∣∣∣fN (x)γ
(ΛN,bc)

N (x, y)fN (y)
∣∣∣ dxdy

≤ (1 + o(1))
ρ− ρc
|ΛN |

∫
ΛN

∫
ΛN

∣∣∣fN (x)ϕ(bc)

1 ( x
LN

)fN (y)ϕ(bc)

1 ( y
LN

)
∣∣∣ dxdy

+
[e−Mc

|ΛN |
+ e−κLd−2

]
∥fN∥21 + CM

∫
ΛN

∫
ΛN

|fN (x)ψ(|x− y|)fN (y)|dxdy

≤ (1 + o(1))(ρ− ρc)|ΛN |+ o(1)|ΛN |+ CM

∫
ΛN

|x|2−d dx

≤ (1 + o(1))(ρ− ρc)|ΛN |+O(L2
N ) ≤ (1 + o(1))(ρ− ρc)|ΛN | ,

after using the Cauchy–Schwarz inequality twice for both the first and second term, and using that

x 7→ L
−d/2
N ϕ(bc)

1 (x/LN ) is L2(ΛN )-normalised. For the last term, we used Young’s inequality:∫
Rd

∫
Rd

g(x)h(|x− y|)g(y) dxdy ≤ ∥h∥1, g ∈ L2(Rd), ∥g∥2 = 1, h ∈ L1(Rd) , (2.36)

This concludes the proof of Theorem 1.1(i) for diffusive and periodic boundary condition.

2.7. Proof of Proposition 1.5. In this section, we prove Proposition 1.5, that is, the equivalent of

Theorem 1.1(i) for free boundary conditions, i.e., for g(free)

t (x, y) equal to the (free) Gaussian density

with variance t. In this case, we are not able to use an eigenvalue expansion as in the other cases,

however, we have other tools that are more explicit.

We formulate our main statement about the behaviour of the kernel of the one-particle-reduced

density matrix. Proposition 1.5 then follows from this in the same way as in Section 2.6.
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Proposition 2.8. Fix ρ ∈ (ρc,∞) and consider the centred box ΛN of volume N/ρ for N ∈ N. Then,

uniformly in x/LN , y/LN ∈ U , as N → ∞,

γ
(ΛN,free)

N (x, y) ∼ ρ− ρc + o(1) + ψ(|x− y|),

for some function ψ : (0,∞) → (0,∞) that satisfies ψ(r) ≤ O(r2−d) as r → ∞.

The main tool in our proof is again a Poisson point process of loops, however, we will need an

extended version of it that is more ‘spatial’. Indeed, we consider a marked PPP on Λ with marks

in N (called loops). The intensity measure of the process of points with mark k ∈ N has constant

Lebesgue density x 7→ gfreeβk (x, x) = 1
k (2πβk)

−d/2, and the entire marked PPP is the superposition of

these PPPs over k ∈ N. The number N(1l)

Λ of Poisson points in this process is Poisson-distributed with

parameter |Λ|pfree = |Λ|(2πβ)−d/2ζ(d2 + 1), i.e., it has the same distribution as
∑

r∈NXr under the

Poisson process introduced in Section 1.4 with N = ∞ and free boundary condition. Furthermore,

the sum over all marks in the PPP in Λ has the same distribution as NΛ =
∑∞

r=1 rXr (again with

N = ∞). We incorporate the extended PPP into the notation P(free,∞)

Λ = P(free)

Λ , which is consistent

with the notation that we introduced in Section 1.4.

The difference in our approach now in the case of free boundary condition is that we will split the

PPP into the i.i.d. sum N(1l)

Λ =
∑

z∈Λ∩Zd N
(1l)

z+U of numbers of Poisson points in unit cells in Λ. Each

of these N(1l)

z+U is easily seen to have a Pareto distribution, i.e., the probability that it is equal to j is

given by j−
d
2
−1/ζ(d2 +1), for any j ∈ N. Hence, the main probabilistic tool will be to find polynomial

asymptotics for deviations of a random walk with this step distribution. Hence, we begin with a

summary of some existing results on random walks with heavy-tailed steps.

Proposition 2.9. Let d ≥ 3. Suppose (Zi)i is a collection of i.i.d. N-valued random variables such

that, for some α > 0,

P (Z1 = j) ∼ αj−d/2−1 as j → ∞.

Write Sn =
∑n

i=1 Zi. Suppose that E [Z1] = a > 0. Then, for every c ∈ (0, 1) and any k ∈ N satisfying

cn ≤ an+ k ≤ 1
cn,

P (Sn = an+ k) ∼ nP (X1 = k) as n→ ∞,

Furthermore, there exists ε > 0 and C > 0 such that for all k ≥ n1−ε

P (Sn = an+ k) ≤ CnP (Z1 = k) for all large n ∈ N.

Proof. See [Ber19, Theorem 2.4] for the case d = 3, [DDS08, Corollary 2.1] for d = 4, [Don97, Theorem

2] for d ≥ 5. □

From this, we deduce the following:

Lemma 2.10. Fix ρ > ρc. Recall that ΛN is the centred box of volume N/ρ, N ∈ N. Then, locally

uniformly in w ∈ (ρc,∞), as N → ∞,

P
(free)

ΛN
(NΛN

= w |ΛN |) ∼ 1

(w − ρc)d/2+1 (2πβ |ΛN |)d/2
.

Proof. From the definition of the above marked PPP, N(1l)

ΛN
is Poisson-distributed with parameter

|ΛN | p(free). Using the Markov inequality for a suitable stretched-exponential function, one derives

that

P
(free)

ΛN

(∣∣∣N(1l)

ΛN
− |ΛN | p(free)

∣∣∣ > |ΛN |5/6
)
≤ e−|ΛN |1/2 ,
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for all large enough N . Furthermore, note that, conditionally on {N(1l)

ΛN
= k}, the total length NΛN

of

the loops is given by the sum Sk =
∑k

i=1 Zi of i.i.d. random variables with distribution

P (Zi = j) =
1

p(free)
1

j
g(free)

βj (x, x) =
1

ζ(d2 + 1)
j−

d
2
−1 .

In particular, a = E(Z1) = ζ(d2)/ζ(
d
2 + 1). Furthermore, recall that ρc = ζ(d2)(2πβ)

−d/2 = ap(free) and

therefore, for k ∈ N satisfying |k − |ΛN | p(free)| ≤ |ΛN |5/6,

w|ΛN | = ak + (w − ρc)|ΛN |+ o(|ΛN |) .

This means that we can apply Proposition 2.9, and obtain

P
(free)

ΛN
(NΛN

= w |ΛN |) = o(|ΛN |−d/2) +
∑
k∈N :

|k−|ΛN |p(free)|≤|ΛN |5/6

P
(free)

ΛN
(N(1l)

ΛN
= k)

× P(Sk = ak + (w − ρc)|ΛN |+ o(|ΛN |)

∼
∑

k∈N : |k−|ΛN |p(free)|≤|ΛN |5/6
P
(free)

ΛN
(N(1l)

ΛN
= k)kP (Z1 = (w − ρc)|LN |)

∼ |ΛN | p(free)P (Z1 = (w − ρc) |ΛN |) ∼ 1

(w − ρc)d/2+1 (2πβ |ΛN |)d/2
.

□

We are now ready to compute the asymptotics of the kernel for supercritical densities.

Proof of Proposition 2.8. We shorten Λ = ΛN . The idea of the proof is as follows. We start from (1.7)

(which holds by definition also for free boundary conditions), and recall that N = ρ|Λ|. We restrict

the sum on r ∈ {1, . . . , N} to a neighbourhood of (ρ − ρc)|Λ|, and show that the remainder of the

sum is negligible, since the expectation of NΛ is asymptotic to ρc|Λ|. For r ≈ (ρ− ρc)|Λ| we may use

explicit formulas for the g-term (here the dependence on x and y vanishes), and Lemma 2.10 for the

two probability terms.

We put ρe = ρ−ρc ∈ (0,∞) and observe that g(free)

βr (x, y) = (2πrβ)−d/2e−|x−y|2/2rβ . Fix ε > 0. Note

that there exists aε such that aε → 0 as ε ↓ 0 and for all k with (ρe − ε) |Λ| ≤ r ≤ (ρe + ε) |Λ|,∣∣∣ g(free)

βr (x, y)

(2πρe |Λ|β)−d/2
− 1

∣∣∣ ≤ aε, x, y ∈ Λ. (2.37)

Indeed, since |x− y|2 ≤ L2
N , we have that |x− y|2 /r = o(1) uniformly in the k’s specified above. Note

that (Nz+U )z∈ΛN∩Zd is a family of i.i.d. random variables with mean ρc under P(free)

ΛN
. Hence, by the

strong law of large numbers,

lim
N→∞

P
(free)

Λ (|NΛ − ρc |Λ|| > ε |Λ|) = 0 . (2.38)

Using (2.37), we can bound∑
k∈Z

|k−ρe|Λ||<ε|Λ|

g(free)

βk (x, y)P(free)

Λ (NΛ = ρ |Λ| − k)

≤ (2πρe |Λ|β)−d/2 (1 + aε) P
(free)

Λ (|NΛ − ρc |Λ|| < ε |ΛN |)

≤ (2πρe |Λ|β)−d/2 (1 + aε) ,
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and an analogous lower bound, using (2.38). Hence, employing Lemma 2.10,∑
k∈Z

|k−ρe|Λ||<ε|Λ|

g(free)

βk (x, y)
P
(free)

Λ (NΛ = ρ |Λ| − k)

P
(free)

Λ (NΛ = ρ |Λ|)
≤ ρe (1 + o(1) + aε) ,

and an analogous lower bound (cf. (2.38)). Recalling N = ρ|Λ|, making N → ∞ and ε ↓ 0, we see that

this part of the sum has the claimed asymptotics. We conclude the proof by showing that the sum on

k ∈ N with |k − ρe |Λ|| > ε |Λ| is negligible. We split this in the upper part and the lower part.

Large k’s: Since g(free)

βk (x, y) ≤ O
(
k−d/2

)
, we see that

ρ|Λ|∑
k=(ρe+ε)|Λ|

g(free)

βk (x, y)
P
(free)

Λ (NΛ = ρ|Λ| − k)

P
(free)

Λ (NΛ = ρ|Λ|)
≤ O

(
|Λ|−d/2

)P(free)

Λ (NΛ < (ρc − ε) |Λ|)
P
(free)

Λ (NΛ = ρ|Λ|)

≤
o
(
|Λ|−d/2

)
P
(free)

Λ (NΛ = ρ|Λ|)
≤ o(1) ,

using (2.38) in the first step and Lemma 2.10 in the last step.

Small k’s: For k < (ρe − ε) |Λ|, we have by Lemma 2.10 (applied to w = ρ and to w = ρ − k/|Λ|
with b ≥ ε) that

P
(free)

Λ (NΛ = ρ |Λ| − k)

P
(free)

Λ (NΛ = ρ |Λ|)
∼ C(ρe − k

|Λ|)
−1−d/2 ,

for some C, depending only on ρ and ρc. Hence, using C as a generic positive constant that depends

only on ρ and ρc and d, we have that for all N ∈ N,
(ρe−ε)|Λ|∑

k=1

g(free)

βk (x, y)
P
(free)

Λ (NΛ = ρ|Λ| − k)

P
(free)

Λ (NΛ = ρ |Λ|)

≤ C

ρe
2
|Λ|∑

k=1

g(free)

βk (x, y)(ρe/2)
−1−d/2 + C

(ρe−ε)|Λ|∑
k= ρe

2
|Λ|

k−d/2ε−1−d/2

≤ o(1) + C
∑
k∈N

g(free)

βk (x, y).

The last term behaves as |x− y|2−d for |x− y| → ∞, as follows from (2.34). □

3. No ODLRO in the subcritical regime

We now show that, for any particle density ρ below the critical threshold ρc, there is no ODLRO, in

any dimension d. Our main result in this respect is the validity of (1.3), that is, the following.

Proposition 3.1. Fix ρ ∈ (0, ρc) and consider the centred box ΛN of volume N/ρ, N ∈ N. Then, for

any boundary condition bc ∈ {diffusive, per, free}, there exist constants C, c ∈ (0,∞), such that, for

all sufficiently large N ,

γ
(ΛN,bc)

N (x, y) ≤ Ce−c|x−y| + Ce−c|ΛN |1/2 , x, y ∈ ΛN .

Indeed, since x 7→ e−c|x| is integrable, Young’s inequality (see (2.36)) directly implies that the

principal eigenvalue of the operator Γ
(ΛN,bc)

N is even bounded in N , and this implies that the system

does not exhibit ODLRO.

The idea of our proof of Proposition 3.1 is the following. We will make a change of measure of

our crucial Poisson point process to a transformation that exponentially suppresses long loops. This

process has very nice properties, since the arising sums can essentially be handled as if they were only
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over a bounded summation set. In particular, the number of particles will turn out to satisfy a local

central limit theorem, allowing us to estimate the transformed partition function with high precision.

We now prepare to prove Proposition 3.1.

We first introduce a transformation of the PPP (Xk)k∈N introduced in Section 1.4, with an additional

chemical potential µ < 0. The intensity measure of this PPP is given by

ν(bc)

Λ,µ =

N∑
k=1

eβµk

k
t(Λ,bc)

k δk .

We denote its distribution by P
(bc,N)

Λ,µ . Then P
(bc,N)

Λ,µ has Radon–Nikodym derivative with respect to

P
(bc,N)

Λ = P
(bc,N)

Λ,0 given by

dP(bc,N)

Λ,µ

dP(bc,N)

Λ,0

= e|Λ|(p
(bc)
Λ,0 −p

(bc)
Λ,µ ) eβµN

(1l)
Λ , (3.1)

where we recall that N(1l)

Λ =
∑

k∈NXk is the number of Poisson points in the process, and the respective

pressure and density in finite volume are given by

p(bc,N)

Λ,µ =
1

|Λ|

N∑
k=1

eβµk

k
t(Λ,bc)

k and ρ(bc,N)

Λ,µ =
1

|Λ|

N∑
k=1

eβµkt(Λ,bc)

k =
1

β

d

dµ
p(bc,N)

Λ,µ ,

where t(Λ,bc)

k =
∫
Λ g

(bc)

βk (x, x) dx.

Then µ 7→ p(bc,N)

Λ (µ) and µ 7→ ρ(bc,N)

Λ (µ) are (approximate) power series that converge locally uni-

formly for µ ∈ (−∞, 0) in the thermodynamic limit as N → ∞, coupled with ΛN → Rd. This is

formulated as follows.

Lemma 3.2. For any boundary condition bc, for the centred box ΛN with volume N/ρ, as N → ∞,

lim
N→∞

p(bc,N)

ΛN ,µ = p(free)(µ) =
∑
k∈N

eβµk

k
(2πβk)−d/2,

lim
N→∞

ρ(bc,N)

Λ,µ = ρ(free)(µ) =
∑
k∈N

eβµk(2πβk)−d/2 ,

locally uniformly for µ ∈ (−∞, 0). The result also continues to hold for the µ-derivatives. For the

pressure p(bc)Λ (µ), the convergence is locally uniform even in (−∞, 0].

Proof. The proof is an easier version of the proof of (2.8). Indeed, recall that 1
|ΛN |t

(Λ,bc)

k converges

towards gβk(0, 0) = (2πβk)−d/2, and observe that the factors 1
ke

βµk provide a summable majorant. □

As a consequence, the quantity

µ(bc,N)

ΛN
(ρ) ∈ (−∞, 0) defined by ρ(bc,N)

Λ (µ(bc,N)

ΛN
(ρ)) = ρ, (3.4)

converges in the thermodynamic limit to the chemical potential µ = µ(ρ) defined by ρ(free)(µ(ρ)) = ρ.

The good control on the pressure and the density from Lemma 3.2 also gives us the tools to handle

the limiting distribution of the particle number NΛ =
∑N

k=1 kXk in the Poisson points (loops):

Lemma 3.3 (Local CLT for the particle number). For any boundary condition bc, for the centred

box ΛN with volume N/ρ, as N → ∞, the particle number NΛN
satisfies a local central limit theorem

under P(bc,N)

ΛN ,µN
In particular, there is C ∈ (0, 1) such that for any N ∈ N and any k ∈ {0, . . . , |ΛN |1/2},

C−1 |ΛN |−1/2 ≤ P
(bc,N)

ΛN ,µN
(NΛN

= ρ |ΛN | − k) ≤ C |ΛN |−1/2 .
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Proof. We abbreviate Λ for ΛN . Note that NΛ =
∑

z∈Λ∩Zd Nz+U , where we recall that U = [−1
2 ,

1
2 ]

d.

Under P(bc)

ΛN ,µN
, the family (Nz+U )z∈Λ∩Zd is an independent collection of random variables Nz+U (how-

ever, not identically distributed) with r-th moment given by

E(bc)

ΛN ,µN
[Nr

z+U ] =
N∑
k=1

eβµkkr−1

∫
z+U

g
(ΛN,bc)

βj (x, x) dx, r ∈ N.

Lemma 3.2 gives the convergence of
∑

z∈ΛN∩Zd E(bc)

ΛN ,µN
[Nr

z+U ] as N → ∞ for any r ∈ N towards the

values for the limiting objects for the free boundary condition,
∑

k∈N eβµkkr−1(2πβk)−d/2. Now the

Lindeberg central limit theorem (see [Kal97, Theorem 5.12]) implies the central limit theorem for NΛN
,

that is, the distributional convergence of∑
z∈ΛN∩Zd [Nz+U − E(bc)

ΛN ,µN
[Nz+U ]]

(
∑

z∈ΛN∩Zd [E(bc)

ΛN ,µN
[N2

z+U ]− E(bc)

ΛN ,µN
[Nz+U ]2])1/2

=
NΛN

−Nρ

(
∑

z∈ΛN∩Zd [E(bc)

ΛN ,µN
[N2

z+U ]− E(bc)

ΛN ,µN
[Nz+U ]2])1/2

towards a standard normal variable (recall (3.4)). Note that, again by Lemma 3.2, the denominator

is asymptotic to C|ΛN |1/2 for some C = C(ρ) ∈ (0,∞) as N → ∞.

Furthermore, as the third and fourth moments are bounded and converge uniformly (this follows

from Lemma 3.2), we also have the local central limit theorem, i.e., that the density of the rescaled

sum is uniformly close to a Gaussian density, see [Cra70, Chapter VII, Theorem 26]. This implies the

last assertion. □

We can now finish the proof:

Proof of Proposition 3.1. For any µ ∈ (−∞, 0), we can make the following change of measure:

P
(bc,N)

Λ,0 (NΛ = ρ |Λ| − k)

P
(bc,N)

Λ,0 (NΛ = ρ |Λ|)
= ekβµ

P
(bc,N)

Λ,µ (NΛ = ρ |Λ| − k)

P
(bc,N)

Λ,µ (NΛ = ρ |Λ|)
. (3.5)

Again, we write Λ for ΛN . We start from Corollary 1.4, which reads, using (3.5),

γ(Λ,bc)

N (x, y) =
N∑
k=1

g(Λ,bc)

βk (x, y)ekβµ
P
(bc,N)

Λ,µ (NΛ = ρ |Λ| − k)

P
(bc,N)

Λ,µ (NΛ = ρ |Λ|)
.

We will use this for µ replaced by µN = µ(bc)

ΛN
(ρ) (see (3.4)). For the sum on k ≤ |Λ|1/2, we can use the

local central limit theorem of Lemma 3.3 in both numerator and denominator, and for the remaining

k, we use a crude bound on g and on the numerator, but again the local CLT for the denominator.

Let us turn to the details.

By Lemma 3.3,∑
k≤|Λ|1/2

g(Λ,bc)

βk (x, y)ekβµN
P
(bc,N)

Λ,µN
(NΛ = ρ |Λ| − k)

P
(bc,N)

Λ,µN
(NΛ = ρ |Λ|)

≤ C2
∑

k≤|Λ|1/2
g(Λ,bc)

βk (x, y)ekβµN . (3.6)

Furthermore, using Lemma 2.2(ii) for the case of boundary conditions, for some c > 0,

g(Λ,bc)

βk (x, y) ≤ e
− |x−y|2

2βck , k ∈ N, x, y ∈ Λ .

Hence, the right-hand side of (3.6) is not larger than C2
∑

k≤|Λ|1/2 e
− |x−y|2

2βk ekβµN . Now reserve e
1
2
kβµN

for convergence, and use a quadratic extension for the remaining terms in the exponent to see that,
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for sufficiently small c′ ∈ (0,∞), any N , and all x, y,

|x− y|2

2βck
− 1

2
kβµN − c′ |x− y|

=
1

k

( |x− y|√
2βc

− k
1√
2

√
−βµN

)2
+ |x− y| (

√
−µN/c− c′)) ≥ 0 .

This implies that

l.h.s. of (3.6) ≤
∑

k≤|Λ|1/2
e

1
2
kβµN e−c′|x−y| ≤ Ce−c|x−y| , (3.7)

for some C ∈ (0,∞) that depends only on β and the infimum of the sequence (µN )N .

Let us turn to the sum on k ≥ |Λ|1/2. Here we estimate |Λ|1/2 gβk(x, y) ≤ C for any x, y ∈ Λ, using

Lemma 2.2(i) for the case of (diffusive or periodic) boundary conditions. Using again the local CLT

for the denominator and the simple bound 1 for the probability, leads to the estimate

ρ|Λ|∑
k=|Λ|1/2

g(Λ,bc)

βk (x, y)ekβµN
P
(bc,N)

Λ,µN
(NΛ = ρ |Λ| − k)

P
(bc,N)

Λ,µN
(NΛ = ρ |Λ|)

≤ C

ρ|Λ|∑
k=|Λ|1/2

g(Λ,bc)

βk (x, y) |Λ|1/2 ekβµN

≤
∑

k≥|Λ|1/2
ekβµN ≤ Ce−c|Λ|1/2 ,

where we have used the formula for the remainder sum of a geometric series, for a suitably picked

C (larger than the maximum of (1 − eβµN )−1 over N), and c > 0 picked smaller than the infimum

of |βµN | over N (recall from Lemma 3.2 that µN → µ ∈ (−∞, 0) defined by ρ(free)(µ) = ρ). Since

|x−y| ≤
√
|Λ|, we see that the upper bound in (3.7) is not smaller than this bound. Hence, combining

it with (3.7), we have derived the claim, for suitable C, c ∈ (0,∞). □

4. Distribution of the lengths of the long loops

In this section, we prove Proposition 1.7. Fix ρ > ρc for the whole section and write ρe = ρ− ρc.

We will show that, for bc ∈ {diffusive,per}, the finite-dimensional distributions of 1
|ΛN |(L

(N)

i )i∈N
under PΛN

(· |NΛN
= N) converge to the ones of the Poisson–Dirichlet distribution of parameter 1.

The latter ones are known [ABT03] to have, for any s ∈ N, the s-dimensional probability density

f (s)(x) =
eγ∏s
i=1 xi

p

(
1− (x1 + . . .+ xs)

xs

)
, 0 ≤ xs ≤ · · · ≤ x1 ≤ 1,

s∑
i=1

xi ≤ 1 ,

where we recall the definition of p : [0,∞) → [0,∞) from the beginning of Section 2.4 (see

around (2.16)), in particular recall that γ is the Euler–Mascheroni constant. Note that f (s) is contin-

uous and bounded on its domain, since p is.

We will prove converge in distribution via locally uniform convergence of densities in the interior of

the domain of f (s). The main step in the proof of Proposition 1.7 is the following.

Proposition 4.1. Consider the centred box ΛN with volume N/ρ. Fix s ∈ N and 0 < xs < xs−1 <

. . . < x1 < 1 with 0 < x1 + . . . + xs < 1. Then, for all positive integers ms ≤ ms−1 ≤ . . . ≤ m1,

depending on N , with mi/(ρe |ΛN |) → xi for all i ∈ {1, . . . , s} as N → ∞,

lim
N→∞

(ρe |ΛN |)s P(bc)

ΛN

(
L(N)

i = mi, ∀i ∈ {1, . . . , s}
∣∣∣NΛN

= N
)
= f (s)(x1, . . . , xr) .

From this, the weak convergence of (ρe|ΛN |)−1(L(N)

i )i=1,...,s towards the first s-dimensional dis-

tribution of the Poisson–Dirichlet distribution follows, according to the Portemanteau theorem.
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From Scheffé’s theorem, see [ABT03, Corollary 5.11], the convergence of the entire sequence

(ρe|ΛN |)−1(L(N)

i )i∈N follows, that is, Proposition 1.7.

Proof. We can take N so large that ms < ms−1 < . . . < m1, as the xi’s are different. As usual, we

write Λ = ΛN , and drop the superscripts bc and N .

Abbreviate A = {L(N)

i = mi, ∀i ∈ {1, . . . , s}}. For N large enough, it is independent of (Xr)r≤TN
.

Hence, we can decompose as follows.

P
(bc)

Λ (A |NΛ = N)

=
∑

k∈N : | k
|Λ|−ρe|≤εN

P
(bc)

Λ (N(short) = N − k)

P
(bc)

Λ (NΛ = N)
P
(bc)

Λ (A ∩ {N(long) = k}) + o(|ΛN |s) ,

where the sequence (εN )N is picked in (0, 1) tending to zero such that the remaining sum on k on

P
(bc)

Λ (N(short) = N − k)/P(bc)

Λ (NΛ = N) is o(|ΛN |s), using the last assertion of Corollary 2.5.

Hence, it will be sufficient to show that, uniformly for all k = kN satisfying | k
|Λ| − ρe| ≤ εN ,

lim
N→∞

(ρe |Λ|)s P(bc)

Λ (A |N(long) = k) = f (s)(x1, . . . , xr) .

We write the probability explicitly in terms of the Poisson point process (Xr)
N
r=TN+1. We abbreviate

[j] = {1, . . . , j} for j ∈ N, and we write m =
∑

i∈[s]mi. We can decompose into independent events

as follows:

A ∩ {N(long) = k}

=
( ⋂

i∈[s]

{Xmi = 1}
)
∩
( ⋂

r∈[N ]\([ms]∪{mi : i∈[s]})

{Xr = 0}
)
∩
{
N

[TN+1,ms−1]

Λ = k −m
}
.

Hence,

P
(bc)

Λ (A |N(long) = k) = e−
∑N

r=ms+1
1
r
t
(bc)
r

( ∏
i∈[s]

t(bc)mi

mi

)P(bc)

Λ

(
N

[TN+1,ms−1]

Λ = k −m
)

P
(bc)

Λ (N(long) = k)
. (4.1)

Now we carry out the limit as N → ∞ and recall that k/|Λ| → ρe, mi/|Λ| → xiρe for i ∈ [s] and hence

m/|Λ| → ρe
∑

i∈[s] xi. We may then use (2.3) for all the t(bc)r , and Proposition 2.7 for the two terms in

the last quotient. We need to distinguish the cases λ1 > 0 and λ1 = 0.

In the case λ1 > 0, every t(bc)r vanishes as N → ∞ in a stretched-exponential way, such that the first

term on the right-hand side of (4.1) tends to one, and the second is∏
i∈[s]

t(bc)mi

mi
∼

∏
i∈[s]

e−λ1βmiL
−2

xi|Λ|ρe
= (|Λ|ρe)−s e

−λiβmL−2∏
i∈[s] xi

.

Now, recalling that p(1) = e−γ , the last term on the right-hand side of (4.1) is

P
(bc)

Λ

(
N

[TN+1,ms−1]

Λ = k −m
)

P
(bc)

Λ (N(long) = k)
∼

1
TN
p(k−m

ms
)e−λ1β(k−m)L−2

1
TN
p(1)e−λ1βkL−2

∼ eλiβmL−2
eγp

((
1−

∑
i∈[s]

xi

)
/xs

)
.

In the case λ1 = 0, we have that t(bc)r converges very quickly towards one, hence, using the asymptotics∑N
r=1

1
r ∼ logN , the first term on the right-hand side of (4.1) is

e−
∑N

r=ms
1
r
t
(bc)
r ∼ e−

∑N
r=ms

1
r ∼ ms

N
.
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Furthermore, the second is asymptotic to (|Λ|ρe)−s/
∏

i∈[s] xi, and the last one is

P
(bc)

Λ

(
N

[TN+1,ms−1]

Λ = k −m
)

P
(bc)

Λ (N(long) = k)
∼

1
ms
p(k−m

ms
)

1
N p(1)

∼ N

ms
eγp

((
1−

∑
i∈[s]

xi

)
/xs

)
.

This finishes the proof of Proposition 4.1 □

Appendix A. Proof of the remaining statements

Proof of Lemma 1.2. We drop the super-indices for the boundary conditions during the proof, and

keep N, β, x, y fixed. By µ(β)
x,y we denote the canonical Brownian bridge measure from x to y with time

interval [0, β] with boundary condition bc in the box Λ. Its total mass is equal to µ(β)
x,y(1l) = gβ(x, y)

for x, y ∈ Λ, where we write µ(f) for the integral of a function f with respect to a measure µ.

The proof of (1.5) is well-known (see e.g. [ACK11, Proposition 1]), but let us give some hints. The

starting point is the Feynman–Kac formula

ZN =
1

N !

∑
σ∈SN

∫
Λ
dx1· · ·

∫
Λ
dxN

[ N⊗
i=1

µ(β)
xi,xσ(i)

]
(1l)

=
1

N !

∑
σ∈SN

∫
ΛN

d(x1, . . . , xN )
N∏
i=1

g(xi, xσi) ,

which follows from an application of the symmetrisation operator Π+ to the well-known trace formula

for e−β∆ (recall that SN is the set of permutations σ of 1, . . . , N). Now decompose every permutation

σ into its cycles and use that (gβ)β∈(0,∞) is a convolution semigroup, i.e.,
∫
Λ gβ(x, y)gβ′(y, z) dy =

gβ+β′(x, z) for all x, z ∈ Λ and β, β′ ∈ (0,∞) (this is why (1.5) does not hold for free boundary

conditions). Iterating this k − 1 times in a cycle of length k gives that tk is the contribution to this

cycle. If mk(σ) denotes the number of cycles of length k in σ, then the number of σ’s such that

mk(σ) = mk for all k is given as N !/
∏

k∈N k
mkmk!.

We now turn to the proof of (1.6). Introducing the product measure

M (β,N)
u,v =

N⊗
i=1

µ(β)
ui,vi , u = (u1, . . . , uN ), v = (v1, . . . , vN ) ∈ ΛN ,

we can identify the kernel γN (see [Gin71], and also [BR81, Theorem 6.3.14]) as

γN (x, y) =
N

ZNN !

∑
σ∈SN

∫
ΛN

M (β,N)

(x,u),σ(y,u)[1l] du, (A.1)

where we write σ(v1, . . . , vN ) = (vσ(1), . . . , vσ(N)).

In this expression, we see N Brownian bridges that connect the N +1 points x, y, u1, . . . , uN in such

a way that x is only a starting site, y is only a terminating site, and each ui is both. In particular,

there is a bridge (concatenation of bridges with time horizon [0, β]) starting in x and terminating in

y. Say r ∈ {1, . . . , N} is the length of such a path, containing r − 1 points of {u1, . . . , uN−1}; we can

then split the permutation of σ ∈ SN into π ∈ Sr and σ′ ∈ SN−r, and with the help of the Markov

property of the bridges, rewrite

γN (x, y) =
1

ZN

N∑
r=1

1

(N − r)!
grβ(x, y)

∑
σ∈SN−r

∫
ΛN−r

M (β,N−r)

u,σ(u) [1l]

N−r⊗
i=1

dui ,
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where we recall that gkβ(x, y) is the total mass of µ(kβ)
x,y . Abbreviate A(m) =

∏
k∈N

1
kmkmk!

. Similarly

to (1.5), we then get

γN (x, y) =

∑N
r=1 grβ(x, y)

∑
m∈PN−r

A(m)
∏N−r

k=1 tmk
k∑

m∈PN
A(m)

∏N
k=1 t

mk
k

=
N∑
r=1

grβ(x, y)
ZN−r

ZN
,

which ends the proof. □

Proof of Proposition 1.8. According to our representation in Lemma 1.3,

Z
(ΛN,bc)

N (β) = e
|Λ|p(bc),NΛN P

(bc,N)

ΛN ,0 (NΛN
= ρ |Λ|N ) .

For ρ > ρc, the probability term vanishes as N → ∞, but exponentially fast in |ΛN |, as we proved in

Lemma 2.6 for for the diffusive or periodic boundary condition. Hence,

f(ρ) = − 1

β
lim

N→∞
p(bc),NΛN

= − 1

β
p(bc)0 = −β−1−d/2ζ(1 + d

2) ,

as we can easily deduce from Lemma 2.2(ii) and (iii). The right-hand side is equal to the right-hand

side of (1.9). For free boundary condition, the entire argument is even more immediate.

For ρ < ρc, we make a change of measure using (3.1):

e|Λ|p
(bc)
Λ P

(bc,N)

Λ,0 (NΛ = ρ |Λ|) = e
|Λ|p(bc)

Λ,µ(ρ)e−βµ(ρ)ρ|Λ|P(bc,N)

Λ,µ(ρ) (NΛ = ρ |Λ|) .

In Lemma 3.3, we showed that P(bc,N)

Λ,β,µ(ρ) (NΛ = ρ |Λ|) is of order |Λ|−1/2 (i.e., vanishes, but not expo-

nentially fast in |Λ|) and hence

f(ρ) = − 1

β
lim

N→∞

(
p(bc)Λ,µ(ρ) − βµ(ρ)ρ

)
= − 1

β
pµ(ρ) + µ(ρ)ρ ,

which is equal to the right-hand side of (1.9). □
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