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Chapter 1

Introduction

We explain what an ordinary differential equation is, how they appear, how they may be inter-
preted, and further questions.

1.1 Motivation and basic notions

In many instances, a function y = y(x) under interest cannot be explicitly given, but only
characterized by some equation that it satisfies in (part of) its domain. If this equation involves
the derivative y′ of y or even higher derivatives y′′, y′′′ etc., then we say that y satisfies a
differential equation.

Example 1.1.1. The acceleration of a car depends on the velocity v(t), the mass m, the power
of propulsion Fp(v) = C1v, the rolling resistance Fr and the air resistance Fa(v) = C2v

2, where
C1, C2 and m are positive constants. More precisely, we have

mv′(t) = Fp(v(t)) − Fr − Fa(v(t)),

for some range of times t. The reason is that the power of propulsion is proportional to the
velocity, but the air resistance is proportional to its square, and the acceleration is the time
derivative of the velocity. 3

Example 1.1.2. Under rather crude assumptions, the size of a population at time t, p(t),
increases linearly in p(t) as t varies, and hence it satisfies the equation

p′(t) = Cp(t),

for some range of times t, where C > 0 is a constant. In this model, the increase of the
population is not hampered by anything, and it will increase unboundedly with great velocity.
A more realistic model also incorporates the boundedness of the space and assumes that the
population satisfies a equation of the type

p′(t) = p(t)(a − bp(t)),

where a, b are positive parameters. 3
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2 CHAPTER 1. INTRODUCTION

Example 1.1.3. A chain is fixed at two points (x1, y1) and (x2, y2) (with x1 < x2) in the x-y-
plane and hangs freely. The chain is described by a curve y = y(x), x ∈ [x1, x2]. The derivative
and the curvature of this chain line satisfy the equation

ay′′(x) =
√

1 + y′(x)2, x ∈ [x1, x2],

where the parameter a > 0 expresses the stiffness of the material of the chain. 3

In all these examples, there are reasons that it is easier (or even the only possibility) to
write down an equation that the function under interest satisfies than finding directly an explicit
formula for it. In general, such an equation often involves derivatives of the function if there
is a rule that says something about the behavior of the function under the influence of small
changes of its argument. In other words, one writes down a differential equation. We now define
what this is.

Definition 1.1.4. Let n ∈ N, D ⊂ R
n+2 and G ⊂ R

n+1 two domains and F : D → R and
f : G → R two functions.

(i) If y = y(x) satisfies the equation

F
(
x, y(x), y′(x), y′′(x), . . . , y(n)(x)

)
= 0, (1.1.1)

then we say that y satisfies an implicit ordinary differential equation of n-th order.

(ii) If y = y(x) satisfies the equation

y(n)(x) = f
(
x, y(x), y′(x), y′′(x), . . . , y(n−1)(x)

)
, (1.1.2)

then we say that y satisfies an explicit ordinary differential equation of n-th order.

Some few remarks are in order. Certainly we assumed that the vector in the argument of
F in (1.1.1) lies in D for all x considered. More precisely, y is a solution to (1.1.1) if there is
an interval I such that the vector (x, y(x), y ′(x), y′′(x), . . . , y(n)(x)) lies in D for all x ∈ I and
(1.1.1) is satisfied for every x ∈ I. An analogous remark applies to (1.1.2). Hence, it is left open
what the precise domain of the solution y is, and often there is no definite or no simple answer
to this question.

It is common to drop the argument x if no confusion can arise and to write

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0 (1.1.3)

instead of (1.1.1), analogously

y(n) = f
(
x, y, y′, y′′, . . . , y(n−1)

)
(1.1.4)

for (1.1.2).

In the following, we shall write for short ODE instead of ordinary differential equation.

Remark 1.1.5. Partial differential equations are equations for functions y = y(x1, . . . , xk),
depending on more than one argument, which involve one or more partial derivatives of y with
respect to different arguments. The theory of partial differential equations is is an enormously
large subfield of mathematics and will not be touched in this lecture. 3
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Example 1.1.6. y′ = xy2 is an explicit ODE of first order. A solution for I = R is y(x) =
−2(1 + x2)−2. 3

Example 1.1.7. (yy(5))2 + xy′′ + log y = 0 is an implicit ODE of fifth order. A solution with
I = R is y ≡ 1, e. g. 3

Example 1.1.8. The implicit ODE 1 + (y ′)2 = 0 does not possess any solution. 3

Example 1.1.9. Solutions of the circle equation x2 + y2 = c with c > 0 are solutions of the
implicit ODE of first order, yy′ + x = 0. Here one has a solution with domain I = (0,

√
c) and

another with domain I = (−√
c, 0). 3

ODEs may have no solution, precisely one solution or many solutions. In the latter case, it
may be that all the solutions can be assembled with one or more parameters. A simple example
is the ODE y′′ = 0, which has the two-parameter solution y(x) = a + bx. Typically, these
parameters are obtained as integration constants. One sometimes conceives a family of solution
with r parameters as one solution with r free parameters. Such a solution is called general. If all
solutions belong to this family, this solution is called complete. For a fixed choice of the values
of the parameters, the solution is called a particular solution, or a special solution. If it does not
belong to a family of solutions, it is called a singular solution.

Example 1.1.10. y′ − 5y = 0 has on I = R the general solution y(x) = ce5x with c ∈ R. It is
not difficult to show (see later) that this is a complete solution. Some particular solutions are
y(x) = 0 or y(x) = 17e5x. 3

Example 1.1.11. |y′| + |y| = 0 does not possess a general solution, but only the particular
solution y ≡ 0. 3

Example 1.1.12. (y′)2 − 4xy′ + 4y = 0 is an implicit ODE of first order. A general solution is
y(x) = 2cx− c2 with c ∈ R. These lines are the tangents at the parabola y(x) = x2, which itself
is a singular solution. 3

Remark 1.1.13. In comfortable cases, the solution of an ODE may be found by integration.
For instance, the ODE y′′ = f , where f = f(x) is a given nice function, can be explicitly solved
by two integrations as follows

y′(x) =

∫ x

x0

f(u) du + c1,

y(x) =

∫ x

x0

y′(v) dv + c2 =

∫ x

x0

∫ v

x0

f(u) dudv + (x − x0)c1 + c2,

where c1, c2 ∈ R are integration constants and x0 is suitably chosen in the domain of f . 3

Remark 1.1.14. The integrals appearing in Remark (1.1.13) are called definite (in fact, they
are Riemann-integrals) since the lower and upper boundaries of the integration are specified. It
is common to formulate them also as indefinite integrals, primitives, by writing

y′(x) =

∫
f(x) dx and y(x) =

∫ ∫
f(x) dxdx.

Here we have to keep in mind that the primitive
∫

f(x) dx is unique only up to adding a constant,
and the double-primitive

∫ ∫
f(x) dxdx is unique only up to adding a polynomial of first order.

3



4 CHAPTER 1. INTRODUCTION

1.2 Initial-value problems

In order to enforce uniqueness of an ODE of n-th order, one usually imposes n additional
hypotheses. The easiest way to do that is to fix the value of the solution and of its derivatives
in one certain point.

Definition 1.2.1. An initial-value problem, IVP, is an ODE of the form (1.1.4), together with
conditions of the form

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1, (1.2.1)

where (x0, y0, . . . , yn−1) ∈ R
n+1 is chosen in the domain of f .

We will see later that in many cases the condition in (1.2.1) makes the solution of (1.1.4)
unique. The notion ‘initial-value problem’ stems from applications where x = t plays the role of
time, and (y(t0), y

′(t0), . . . , y
(n−1)(t0)) is the initial value of the system.

Example 1.2.2. A movement with one axis is uniquely determined by the place x(t) and the
velocity v(t) = x′(t). If we consider a linear pendulum, then x satisfies the IVP

x′′ + ω2x = 0, x(0) = x0, x′(0) = v0.

The unique solution is

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt).

In the (x, y) plane, the phase plane, this movement is described by an ellipse. More precisely,

the graph of the function t 7→
(x(t)
v(t)

)
(where v(t) = x′(t)) describes an ellipse and actually runs

through this ellipse periodically after time intervals of length 2π
ω . This may also be seen by

noting that the movement satisfies the equation (x′)2

ω2 + x2 = x2
0 + v2

0/ω
2, which also describes

that ellipse. 3

Example 1.2.3. The IVP x′ = 1 + x2, x(0) = 0, is solved by x = tan, but only in the interval
t ∈ (−π

2 , π
2 ). This admits the pysical interpretation that the the movement reaches infinity in

finite time if its velocity increases with the square of its distance to the origin. 3

An IVP (1.1.4) with (1.2.1) is called locally solvable and the corresponding y is called a local
solution if there exists an interval I = (x0−ε, x0+ε) with some ε > 0 such that (1.2.1) is satisfied
and (1.1.4) is satisfied in I. The IVP is called properly posed if a local solution exists in such an
interval, is unique there, and if it depends continuously on the initial values y0, . . . , yn−1. These
requirements are obviously natural with respect to a proper use of numerical solution methods.

For a properly posed IVP, there arise two questions: What is the largest interval on which
(1.1.4) is satisfied (i.e., how far can the local solution be extended without losing the property
of being a solution), and how can the solution be explicitly computed?

A continuation of a function y : I → R on an interval J containing I is a function ỹ : J → R

that satisfies ỹ(x) = y(x) for all x ∈ I, i.e., the functions ỹ and y coincide on I. Continuations do
not have to be unique. If y is the local solution to an ODE, the question is to find continuations
ỹ of y that are still solutions on the larger interval, J . This question is difficult in general.
However, there are important and handy abstract criteria, see later.
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1.3 Orthogonal trajectories

Suppose we have a one-parameter family of curves yC = yC(x) in the plane indexed by C ∈ R,
given as the solution to the equation

Φ(x, y, C) = 0, i.e., Φ(x, yC(x), C) = 0 for all x. (1.3.1)

We are interested to describe the orthogonal trajectories of this family of curves, that is, all the
lines that intersect every curve yC at right angles. For finding them, we differentiate (1.3.1) with
respect to x using the chain rule and obtain

Φx(x, y, C) + Φy(x, y, C)y′ = 0, (1.3.2)

where Φx and Φy denote the partial derivatives with respect to x and y. Now we combine
(1.3.1) and (1.3.2) to eliminate the dependence on the parameter C. Let us assume that the
ODE F (x, y, y′) = 0 arises in this way (the F is certainly NOT unique). Then the orthogonal
trajectories satisfy the characteristic ODE F (x, y,−1/y ′) = 0. This is seen as follows.

First proof. Let the curve y have slope y ′(x) in x, then the slope of the orthogonal curve, ỹ, in
x is found as follows. Consider the tangents, t and t̃, of the curves y and ỹ in x, which are two
lines that intersect in (x, y(x)) at a right angle. Then y ′(x) = t′(x) = ∆t

∆x , where ∆x = x1 − x

and ∆t = t(x1) − t(x) for some x1 6= x. Analogously, ỹ′(x) = t̃′(x) = ∆et
∆x . By orthogonality,

∆t − ∆t̃ is the length of the hypothenuse of a triangle having a right angle at (x, y(x)). The
other side lengths of this triangle are, according to Pythagoras’ theorem, equal to the square
roots of (∆t)2 + (∆x)2 respectively (∆t̃)2 + (∆x)2. (A figure illustrates this.) Hence, applying
Pythagoras’ theorem once more yields that (∆t − ∆t̃)2 = (∆t)2 + (∆x)2 + ∆t̃)2 + (∆x)2. After
summarizing, we obtain that −∆t∆t̃ = (∆x)2, i.e.,

−y′(x)ỹ′(x) = − ∆t

∆x

∆t̃

∆x
= 1.

This shows that ỹ′ = −1/y′.

Second proof. We consider the curves x 7→
( x
y(x)

)
and x 7→

( x
ey(x)

)
and consider an x in which

the two curves meet. Then the derivative vectors
( 1
y′(x)

)
and

( 1
ey′(x)

)
have to be orthogonal to

each other, i.e.,

0 =

(
1

y′(x)

)
·
(

1

ỹ′(x)

)
= 1 + y′(x)ỹ′(x).

This leads obviously to the same equation.

Example 1.3.1. The tangents of the unit circle are describes by the family of ODEs Φ(x, y, C) =
0, where

Φ(x, y, C) = x cos C + y sinC − 1. (1.3.3)

Differentiating with respect to x yields cos C +y ′ sinC = 0. With the help of 1 = cos2 C +sin2 C
we can eliminate the parameter C: First we have 1 − sin2 C = cos2 C = (−y′ sinC)2, i.e.,
1/(1 + (y′)2) = sin2 C and, on the other hand, one easily sees that (y − xy ′)2 = sin−2 C. Hence,
we arrive at

1 + (y′)2 = (y − xy′)2,

an ODE which is solved by the circle line y2 = 1 − x2. 3



6 CHAPTER 1. INTRODUCTION

Example 1.3.2. All the circles in the plane that contain both the points (−1, 0) and (1, 0) are
given by the equation Φ(x, y, C) = 0 with Φ(x, y, C) = x2 +(y−C)2−1−C2. By differentiating
we obtain x + y′(y − C) = 0. By elimination we obtain the equation

(x2 − y2 − 1)y′ = 2xy.

Replacing y′ by −1/y′, we obtain the equation that describes the orthogonal trajectories:

x2 − y2 − 1 = −2xyy′.

The family of circles (x − c)2 + y2 = c2 − 1 with c2 > 1 satisfies this equation, hence all these
circles are the orthogonal lines for the circles that contain (−1, 0) and (1, 0). 3

Example 1.3.3 (Vector fields). Suppose we are given a planar vector field (v1, v2) : R
2 → R

2.
The differential equation of the field lines of this field is given by y ′ = v2(x, y)/v1(x, y), where
v1(x, y) 6= 0, or

dx

dy
=

v1(x, y)

v2(x, y)
, where v2(x, y) 6= 0.

The field (−v2, v1) is orthogonal to (v1, v2). Its differential equation is hence given as v1(x, y) +
v2(x, y)y′ = 0.

As a simple example, if v1(x, y) = y and v2(x, y) = x, then the field lines of the field (v1, v2)
satisfy the equation x − yy′ = 0. A general solution is the solution to x2 − y2 = C, the ellipses.
The equation of the orthogonal trajectories is y + xy ′ = 0 and has the general solution y = C

x ,
the hyperbolas. 3

Example 1.3.4. The equation
x2

C2
+

y2

C2 − 1
= 1

describes for C2 < 1 a family of hyperbolas with focusses in (−1, 0) and in (−1, 0), and for C 2 > 1
it describes a family of ellipses with the same focusses. These two families are orthogonal to
each other as we want to show now in two different ways.

First, we calculate the differential equations of the two curves. Fix C 2
1 > 1 and C2

2 < 1
and let yC1 and yC2 denote the corresponding ellipse respectively hyperbola. The two curves
intersect each other in the point x∗ = C2

1C2
2 with value yC1(x

∗) = yC2(x
∗) =

√
C2

1 − 1
√

1 − C2
2 .

The differential equations for the curves are eeasily calculated as

y′C1
(x) = ∓C2

1 − 1

C2
1

x

yC1(x)
and y′C2

(x) = ±1 − C2
2

C2
2

x

yC2(x)
. (1.3.4)

Hence, we easily see that

y′C1
(x∗)y′C2

(x∗) = −C2
1 − 1

C2
1

x∗

yC1(x
∗)

1 − C2
2

C2
2

x∗

yC2(x
∗)

= − C2
1C2

2

(C2
1 − 1)(1 − C2

2 )

C2
1 − 1

C2
1

1 − C2
2

C2
2

= −1.

Hence, the two curves are orthogonal in their intersection point x∗.

The second way to see this fact is to consider the curves x 7→
( x
yC1

(x)

)
and x 7→

( x
yC2

(x)

)
and

to show that its derivatives,
( 1
y′

C1
(x)

)
and

( 1
y′

C2
(x)

)
, are orthogonal in their intersection point x∗.

This amounts to showing that 0 = 1 + y′
C1

(x∗)y′C2
(x∗), which we have derived already. 3



Chapter 2

Elementary ODEs

In this chapter, we present a couple of well-known elementary ODEs whose general solution may
be found eplicitly by standard methods.

2.1 Exact differential equations

This type of ODEs arises from an equation of the form

U(x, y) = C (2.1.1)

by differentiation. They have the form

Ux(x, y) + Uy(x, y) y′ = 0, (2.1.2)

where Ux = ∂
∂xU and Uy = ∂

∂yU , as usual, are the partial derivatives.1 If the function U were
known, then one could go back from (2.1.2) to (2.1.1) by integration and would be left to solve
the equation U(x, y) = C (which is not a differential equation, by the way!). However, the main
work consists in finding the function U from a given ODE and to bring this ODE in the form
(2.1.2).

An open set G ⊂ R
2 is called connected if any two points z1, z2 ∈ G may be joined with a

continuous function f : [0, 1] → G satisfying f(0) = z1 and f(1) = z2.

Definition 2.1.1. Let G ⊂ R
2 be an open connected set and A,B : G → R two continuous

functions. The differential equation

A(x, y) + B(x, y) y′ = 0 (2.1.3)

is called exact if there is a continuously differentiable function U : G → R such that

Ux =
∂U

∂x
= A, and Uy =

∂U

∂y
= B in G.

In this case, we call U a primitive of the ODE in (2.1.3).

1We derived (2.1.2) from (2.1.1) by taking y = y(x) as a function of x and differentiating with respect to x;
we also used the general differentiation rule d

dx
U(f(x), g(x)) = f ′(x)Ux(f(x), g(x)) + g′(x)Uy(f(x), g(x)).

7



8 CHAPTER 2. ELEMENTARY ODES

We now state the connection between (2.1.2) and (2.1.1) and provide an abstract criterion
for local uniqueness and existence of a solution.

Lemma 2.1.2 (Existence and uniqueness for exact ODEs). Let G ⊂ R
2 be an open

connected set, A,B : G → R two continuous functions, and U a primitive of (2.1.3).

(a) A function y : I → R (where I is an interval such that (x, y(x)) ∈ G for any x ∈ I) is a
solution to (2.1.3) if and only if the map x 7→ U(x, y(x)) is constant on I.

(b) For any (x0, y0) ∈ G such that B(x0, y0) 6= 0, the IVP

A(x, y) + B(x, y) y′ = 0, y(x0) = y0, (2.1.4)

is locally uniquely solvable. The curve of the solution is contained in {(x, y) : U(x, y) =
U(x0, y0))}.

Proof. (a) Let I be an interval and y : I → R such that (x, y(x)) ∈ G for any x ∈ I. According
to the chain rule for derivatives, y is a solution of (2.1.3) on I if and only if

0 = A(x, y(x)) + B(x, y(x)) y′(x) =
d

dx
U(x, y(x)) for any x ∈ I,

i.e., if and only if U(x, y(x)) = c for some c ∈ R and all x ∈ I.

(b) Assume that Uy(x0, y0) = B(x0, y0) 6= 0. Then, according to the implicit function
theorem, there is a neighborhood of x0 in which precisely one function y may be defined that
solves the equation U(x, y(x)) = U(x0, y0). According to assertion (a), the proof is finished.

Now we give a criterion for exactness, which will be of practical importance for solving an
exact ODE. An open set G ⊂ R

2 is called simply connected if it is connected, but does not have
‘holes’, i.e., the complement of G in R

2∪{∞} is also connected. Here ∞ is the north pole if one
would wrap the plane R

2 around a ball. For example, the infinite strip {(x, y) ∈ R
2 : |x| < 1}

is simply connected: the two points (1, 0) and (−1, 0), e.g., can be joined together outside the
strip by a line that goes through ∞.

Lemma 2.1.3 (Test on exactness). Let G ⊂ R
2 be an open simply connected set and

A,B : G → R two continuously differentiable functions. Then the differential equation (2.1.3) is
exact if and only if the integrability condition Ay = Bx, i.e.,

∂

∂y
A(x, y) =

∂

∂x
B(x, y), for any (x, y) ∈ G, (2.1.5)

is satisfied.

Sketch of proof. If (2.1.3) is exact, then U is twice continuously differentiable, and Schwarz’s
theorem states that Uxy = Uyx, i.e., the order of the two derivatives may be interchanged. This
is the same as Ay = Bx.

On the contrary, in the case that Ay = Bx is satisfied, one constructs the function U as the
line integral

U(x, y) =

∫ (x,y)

(x0,y0)

(
A(x, y) dx + B(x, y) dy

)
, (x, y) ∈ G,
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where (x0, y0) ∈ G is fixed. The domain of integration is some curve in G from (x0, y0) to (x, y).
Since G is simply connected and A and B continuously differentiable, the function U can be
shown to be well-defined and not to depend on the chosen curve. In particular, we can take a
polygon line whose segments are parallel to the axes. Then one can differentiate U and derive
that indeed Ux = A and Uy = B hold. The details are involved.

Example 2.1.4. The equation 2x +3 cos y +(2y − 3x sin y)y ′ = 0 is exact, as is seen by picking
A(x, y) = 2x + 3 cos y and B(x, y) = 2y − 3x sin y: we have Ay = Bx. 3

Example 2.1.5. The equation (y2−x)+(x2−y)y′ = 0 is not exact, since ∂
∂y (y2−x) 6= ∂

∂x(x2−y)
for all x 6= y. 3

Now we give a general recipe:

Solving the exact ODE (2.1.3).

(a) Check that Ay = Bx holds.

(b) Solve Ux = A by integrating A with respect to x:

U(x, y) =

∫
A(x, y) dx + c(y). (2.1.6)

(c) Differentiate (2.1.6) with respect to y and make the ansatz Uy = B:

B(x, y) = Uy(x, y) =
∂

∂y

∫
A(x, y) dx + c′(y). (2.1.7)

(d) Find c(y) by integrating (2.1.7) with respect to y. Via (2.1.6), this gives U .

The point is that the integration constant c that arises in (2.1.6) depends on y (but not on
x, though). Alternately to the above recipe, one can also start with solving the equation Uy = B
by integrating with respect to y.

Once one has U , one can try to solve the equation U(x, y) = C, which is NOT a differential
equation. This task may be nasty to solve, since one has to find all constants C for which there
is a solution, and then one has to determine the domain of the solution. If there is some initial
value (x0, y0) given, then one has to put C = U(x0, y0). It may be possible that the solution to
the equation U(x, y) = C is not the graph of a function y = y(x), but the graph of a function
x = x(y). It may also be possible that the solution set {(x, y) : U(x, y) = C} is the union of
several such graphs.

Example 2.1.6. We want to solve the IVP

2xy + (2y + x2) y′ = 0, y(0) = 1.

Hence A(x, y) = 2xy and B(x, y) = 2y + x2.

(a) This ODE is exact in G = R
2, since Ay = 2x = Bx.

(b) U(x, y) =
∫

A(x, y) dx + c(y) =
∫

2xy dx + c(y) = x2y + c(y).

(c) 2y + x2 = ∂
∂y

∫
A(x, y) dx + c′(y) = x2 + c′(y), i.e., c′(y) = 2y.
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(d) c(y) = y2 by integration. (We may forget about an integration constant, since we add
that later.)

Hence, U(x, y) = x2y + y2. The equation U(x, y) = C is a quadratic equation in y; an
explicit solution is easily found. If, e.g., the initial value (0, 1) is given, then the solution is

y(x) =
1

2

(√
x4 + 4 − x2

)
, x ∈ R.

3

Example 2.1.7. We want to solve the IVP

− y

x2 + y2
+

x

x2 + y2
y′ = 0, y(1) = 1.

Hence, A(x, y) = − y
x2+y2 and B(x, y) = x

x2+y2 .

(a) We have Ay = Bx = y2−x2

(x2+y2)2
in the set G = R

2 \{(0, 0)}, which is not simply connected.

Nevertheless, we follow the recipe.

(b) U(x, y) = − arctan x
y + c(y).

(c) x
x2+y2 = B(x, y) = x

x2+y2 + c′(y), i.e., c′(y) = 0.

(d) c is constant.

Hence, U(x, y) = − arctan x
y . A general solution of U = C is y(x) = Kx with some

appropriate K, if C ∈ (−π
2 , π

2 ), since the range of arctan is equal to this interval.

The initial value U(1, 1) is arctan 1 = π
4 . Hence, we have to solve the equation − arctan x

y =
π
4 , which has the solution y(x) = −x. However, the domain of this solution is only x ∈ (0,∞),
since the ODE is not defined in (x, y) = (0, 0). 3

Example 2.1.8. We want to solve the ODE

2x + 3 cos y + (2y − 3x sin y) y′ = 0,

i.e., A(x, y) = 2x + 3 cos y and B(x, y) = 2y − 3x sin y.

(a) This equation is exact.

(b) U(x, y) = x2 + 3x cos y + c(y).

(c) 2y − 3x sin y = B(x, y) = −3x sin y + c′(y), i.e., c′(y) = 2y.

(d) c(y) = y2.

Hence, U(x, y) = x2 + 3x cos y + y2. The equation U = C can be solved for x only; this is a
quadratic equation. 3

Later we will look at ODEs of the form (2.1.3) which are NOT exact, but turn into an exact
ODE after multiplication with a suitable function m(x, y), the so-called integrating factor.

2.2 Separable ODEs

A separable ODE has the form

y′ = f(x)g(y), (2.2.1)
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where f and g are two continuous functions that are defined on intervals I respectively J . If
eta ∈ J is a zero of g, then the constant function y ≡ η is obviously a particular solution. On
the other hand, if g(y) 6= 0 for all y ∈ J , then we can turn (2.2.1) into an exact ODE:

f(x) − 1

g(y)
y′ = 0,

and a primitive is easily seen to be given by

U(x, y) =

∫
f(x) dx −

∫
1

g(y)
dy.

Hence, in this case, the local existence and uniqueness result for exact ODEs in Lemma 2.1.2
also applies to separable equations. This result may be applied to any restriction of J to some
subinterval in which g has no zero, tyically the oopern intervals between the zeros of g.

We give now a general recipe how to solve separable ODEs:

Solving the separable ODE (2.2.1).

(a) Find all zeros η ∈ J of g. Then y ≡ η is a particular solution.

(b) Consider an interval J ′ ⊂ J with g(y) 6= 0 for all y ∈ J ′. Bring all x-terms to one side of
the equation, and all y-terms to the other:

1

g(y)
dy = f(x) dx.

(c) Integrate each side w.r.t. x resp. y:

G(y) :=

∫
1

g(y)
dy, F (x) :=

∫
f(x) dx.

The general implicit solution is G(y) = F (x) + C for some integration constant C ∈ R.

We now would like to solve the equation G(y) = F (x) + C for y. This is possible if G is
bijective, i.e., if it is strictly increasing or strictly decreasing. Since G ′ = 1/g is either positive
throughout J ′ or negative throughout J ′, it indeed is invertible, i.e., the inverse G−1 of G exists.
However, the set of x for which G−1(F (x) + C) is meaningful heavily depends on C, which has
to be determined on a case-by-case basis.

If one is interested in solving the IVP (2.2.1), together with the condition y(x0) = y0 for
some x0 ∈ I, y0 ∈ J , then one has to put C = G(y0)−F (x0) in the case g(y0) 6= 0. (In the case
g(y0) = 0, y ≡ y0 is solution.)

Example 2.2.1. We want to solve the ODE y ′ = y2, i.e., f(x) = 1 and g(y) = y2 on the real
line, i.e., I = J = R.

(a) y ≡ 0 is a particular solution.

(b) For y > 0 or for y < 0, we transform into y−2 dy = dx.

(c) Clearly, G(y) = −y−1 and F (x) = x.

The equation −y−1 = x + C can be solved for all x ∈ R \ {−C}, which is the union of the
two intervals (−∞,−C) and (−C,∞). The solution is y(x) = − 1

x+C .
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If the IVP y(x0) = y0 > 0 is given, then we have to pick C = −x0 − 1
y0

, and we obtain the
solution

y(x) =
y0

1 − y0(x − x0)
, x ∈

(
−∞, x0 +

1

y0

)
.

3

Example 2.2.2. Consider y′ = 1 + y2. Hence f(x) = 1 and g(y) = 1 + y2 on the real line, i.e.,
I = J = R.

(a) There are no zeros of g.

(b) We transform into dy
1+y2 = dx.

(c) Integration gives G(y) = arctan y and F (x) = x.

We have obtained the equation arctan y = x+C. Clearly, arctan : R → (− π
2 , π

2 ) is bijective.
Hence, in order to solve for y, the argument x + C must lie in that interval. Consequently, the
solution y(x) = tan(x + C) is defined only in the interval x ∈ (− π

2 − C, π
2 − C). 3

Example 2.2.3. We consider y′ = 1−y2

x with f(x) = 1
x on I = R \ {0} and g(y) = 1 − y2 on

J = R.

(a) The particular solutions are y(x) ≡ 1 and −1.

(b) Outside the zeros −1 and 1, we transform into dy
1−y2 = dx

x .

(c) Integration gives G(y) = log
√
|1+y
1−y | and F (x) = log |x|.

The resulting equation is | 1+y
1−y | = Kx2 (after substituting K = eC2

). This is equivalent to
1+y
1−y = K̃x2, where K̃ may have both signs.

Now let the IVP y(x0) = y0 be given. In order to solve this, we have to distinguish
cases: If y0 = 1, then the solution is y(x) ≡ 1. If y0 6= 1 and x0 6= 0, then we see that
K̃ = ±e(G(y0)−F (x0))2 = 1+y0

(1−y0)x2
0
, and we can solve the equation 1+y

1−y = K̃x2 to the effect that

y(x) =
eKx2−1
eKx2+1

. The domain is equal to the whole line R if K̃ > 0, i.e., if y0 < 1. Otherwise, the

domain consists of the two intervals left and right of the zero of the denominator, 1/
√

−K̃. 3

2.3 First-order linear differential equations

These are ODEs of the form

y′ + a(x)y = f(x), (2.3.1)

where f, a : I → R are two functions on an interval I, and a is called the coefficient function.
The equation is called homogeneous if f ≡ 0, and inhomogeneous otherwise. The equation

y′ + a(x)y = 0 (2.3.2)

is the homogeneous equation associated with (2.3.1). For continuous a, this is very easily solved:
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Lemma 2.3.1 (Existence and uniqueness of (2.3.2)). If a is continuous, then the linear
homogenous equation (2.3.2) has the general complete solution

yh(x) = Ce−A(x), A(x) =

∫
a(x) dx, (2.3.3)

and C ∈ R is the integration constant.

Proof. (2.3.2) is a separable equation whose solution for y 6= 0 is given by dy
y = −a(x) dx, i.e.,

log |y| = −
∫

a(x) dx + C1 = −A(x) + C1. With C = ±eC1 , (2.3.3) follows. The case y ≡ 0 is
included with C = 0.

Remark 2.3.2. Linear differential equations are often used to describe growth of a population
as a function of time. If x(t) denotes the size at time t, then the equation x′(t) = −a(t)x(t)
describes a situation in which the change of the population size in infinitesimal time intervals is
proportional to the size itself, with a proportional factor, −a(t), that depends on the time. For
the inhomogeneous equation, x′(t) = −a(t)x(t)+f(t), the increase or decrease of the population
size is additionally influenced by a ‘controlling function’ f . 3

Example 2.3.3. If the coefficient function a(x) = a is constant, then the solution to (2.3.2) is
just the exponential function yh(x) = Ce−ax. As x → ∞, we have an exponential decay to zero
if a > 0 and an exponential increase if a < 0. 3

The general and complete solution of the inhomogeneous equation (2.3.1) can also be found
easily, although it is not an exact equation. We offer two independent proofs, the first of which
describes an important solution algorithm, called the variation of constants.

Lemma 2.3.4 (General solution of (2.3.1)). If a and f are continuous functions on an
interval I, then the general and complete solution to (2.3.1) is given by

y(x) = e−A(x)
(∫ x

x0

eA(z)f(z) dz + C
)
, where A(x) =

∫
a(x) dx, (2.3.4)

and x0 ∈ I and C ∈ R are arbitrary.

First proof: variation of constants. Let yh with C = 1 in (2.3.3) be the solution to the
homogeneous equation (2.3.2), then we make the ansatz

y(x) = C(x)yh(x). (2.3.5)

In other words, we treat the integration constant C in (2.3.3) as a function of x, and we want
to derive what this function is. In order to see that, we just substitute in (2.3.1) and obtain,
with the help of y′

h + ayh = 0,

f(x) = y′(x) + a(x)y(x) = C ′(x)yh(x) + C(x)y′h(x) + a(x)C(x)yh(x) = C ′(x)yh(x).
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This can easily be solved to the effect that

C(x) =

∫ x

x0

1

yh(z)
f(z) dz + c. (2.3.6)

Since yh(x) = e−A(x), the result follows.

Second proof: making (2.3.1) exact. The equation (2.3.1) is not exact. However, after
multiplication with eA(x), we see that it is equivalent to the exact equation

[
eA(x)a(x)y − eA(x)f(x)

]
+ eA(x)y′ = 0. (2.3.7)

Now our solution algorithm for exact equations derives (2.3.4). Indeed, we first obtain

U(x, y) = y

∫
eA(x)a(x) dx −

∫
eA(x)f(x) dx + c(y) = yeA(x) −

∫
eA(x)f(x) dx + c(y).

and then we see that c′(y) = eA(x)−eA(x) = 0, i.e., we may put U(x, y) = yeA(x)−
∫

eA(x)f(x) dx.
The equation U(x, y) = c is obviously equivalent to (2.3.4).

Hence, linear ODEs even admit global solutions, i.e., solutions that are defined on the whole
real line and satisfy (2.3.1) everywhere:

Corollary 2.3.5. Let a and f be continuous functions on an interval I, and let x0 ∈ I and
y0 ∈ R be arbitrary. Then the solution of the IVP (2.3.1), together with y(x0) = y0, is uniquely
given by (2.3.4) with c = y0. 3

Remark 2.3.6. The general and complete solution of the inhomogeneous equation in (2.3.1) is
given as

y(x) = yp(x) + yh(x) = yp(x) + ce−A(x), c ∈ R. (2.3.8)

Here yp is an arbitrary particular solution of (2.3.1), and yh is the homogeneous solution from
Lemma 2.3.1. 3

Remark 2.3.7 (Principle of super position). If yi is a solution of (2.3.1) with f replaced
by fi for i = 1, 2, then αy1 + βf2 is a solution of (2.3.1) with f replaced by αf1 + βf2, for
any α, β ∈ R. This observation may be helpful when the right-hand side f is a sum of several
functions of different type. In this case, we may split the task into smaller subtasks. 3

Remark 2.3.8 (‘Ansatz of type of the right-hand side’). If the coefficient function a(x) ≡
a is constant and if the right-hand side f(x) is of one of the forms

p(x), q(x)ekx, p(x) sin(kx) + q(x) cos(kx), p, q polynomials, k ∈ R, (2.3.9)

then an ansatz of type of this respective function often leads quickly to a particular solution.

More precisely, we make the ansatz that yp(x) is an arbitrary polynomial of the same degree
of p resp. q times the exponential, resp. a combination of such polynomial with the sine and
cosine functions with the same value of k. The idea is that, for any yp(x) of this form, the
left-hand side, y′

p + ayp, is again of the same type, and we only have to compare the coeffients
of the polynomials in order to systematically find what yp(x) is. Note that it is important to
take an arbitrary polynomial of the same degree, even if not all lower-oder coefficients of p or q
are non-zero.

For example, if f(x) = x2e2x, then an appropriate ansatz is yp(x) = (ax2 + bx + c)e2x. The
unknown values of a, b and c are derived by a comparison of the coefficients after substituting
yp in (2.3.1). 3
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The general algorithm for finding the solution of (2.3.1) is now clear from the preceding:
Find the primitive A(x) of a, provide the homogeneous solution yh in (2.3.3), find a particular
solution yp by the method of variation of constants or (if a(x) is constant and f is of the type
in (2.3.9)) by an ansatz of this type, and obtain the general complete solution yp + yh. An
associated IVP is solved by deriving the integration constant c from the equation y(x0) = y0.

Example 2.3.9. We want to solve y′ + 1
xy = x3 for x > 0. Hence, a(x) = 1

x and therefore
A(x) = log x. Hence, the homogeneous solution is yh(x) = ce− log x = c

x . In order to find a
particular solution, we use variation of the constants and make the ansatz y(x) = c(x) 1

x ; see
(2.3.5). Substituting this in (2.3.1), we arrive at (see (2.3.6))

c(x) =

∫
x3 · xdx =

1

5
x5 + c, i.e., yp(x) =

1

5
x4.

Hence, the general complete solution is y(x) = c 1
x + 1

5x4. 3

Example 2.3.10. We want to solve y′ + 2y = 3e5x + x3 − 1. It is clear that yh(x) = ce−2x with
some c ∈ R. We use the transposition principle and solve first the equation y ′ + 2y = 3e5x with
the ansatz y1(x) = c1e

5x. Substituting this in y′+2y = 3e5x easily yields that y1(x) = 3
7e5x. In a

second step, we solve y′+2y = x3−1 with the ansatz y2(x) = d3x
3+d2x

2+d1x+d0. Substituting
this in y′+2y = x3−1, we find, after some elementary calculation, that y2(x) = 1

2x3− 3
4x2+ 3

4x− 7
8 .

Then yp = y1 +y2 is a particular solution of y′ +2y = 3e5x +x3−1. Hence, the general complete
solution is y(x) = ce−2x + 3

7e5x + 1
2x3 − 3

4x2 + 3
4x − 7

8 . 3

Example 2.3.11 (Electric circuit). The current I(t) at time t satisfies

LI ′(t) + RI(t) = U(t), t ∈ [0,∞),

where L,R > 0 are parameters. The solution, Ih(t) = ce−
R
L

t, of the homogeneous equation,
LI ′(t) + RI(t) = 0, describes the exponential decay of the current after switching off the source
of the voltage. In the case of direct current, we have a constant right-hand side, U(t) = U0. A
particular solution is Ip(t) = U0

R . This yields the general solution

I(t) =
U0

R
−

(U0

R
− I0

)
e−

R
L

t,

where I0 = I(0) is the initial value of the current. Independently of I0, the current approaches
the value U0

R at large times with an exponential speed.

In the case of alternating current, we have U(t) = U0 cos(ωt) for some U0, ω > 0. We make
the ansatz Ip(t) = c1 cos(ωt) + c2 sin(ωt) and substitute in the ODE, to get

(Rc1 + ωLc2) cos(ωt) + (Rc2 − ωLc1) sin(ωt) = U0 cos(ωt).

The comparison of the coefficients, i.e., Rc1 +ωLc2 = U0 and Rc2 −ωLc1 = 0, yields, also using
the well-known addition theorems for the cosine of a sum of the arguments,

Ip(t) =
U0

R2 + ω2L2

(
R cos(ωt) + ωL sin(ωt)

)
=

U0√
R2 + ω2L2

cos(ωt − δ),

where δ = arctan ωL
R . Hence,

I(t) = ce−
R
L

t +
U0√

R2 + ω2L2
cos(ωt − δ).

For large times, I(t) is rather close to the phase-shifted alternating current. 3
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2.4 Integrating factors

I our second proof of Lemma 2.3.4, we saw an interesting idea: we succeeded in turning a non-
exact equation into an exact one. Even better, the two equations are obviously equivalent since
they differ by multiplication with a function that is positive everywhere. In this section, we
systematically investigate this idea. Let the (non-exact, in general) equation

A(x, y) + B(x, y) y′ = 0 in G ⊂ R
2, (2.4.1)

be given. A function M : G → R \ {0} is called an integrating factor or an Euler multiplicator
if the equation

M(x, y)A(x, y) + M(x, y)B(x, y) y′ = 0 in G ⊂ R
2, (2.4.2)

is exact. Since we required M(x, y) 6= 0 for all (x, y), the solutions to (2.4.1) and (2.4.2) are
obviously identical.

Example 2.4.1. The family of straight lines through the origin is given by the equation
Φ(x, y) = C, where C is a constant, and Φ(x, y) = x

y for (x, y) ∈ G = R × (0,∞). They

satisfy the exact equation 0 = Φx + Φy y′ = 1
y − x

y2 y′. By multiplication with the nasty denom-

inator, we obtain the equation 0 = y − x y ′, which looks much nicer, but is not exact. Hence,
M(x, y) = 1

y2 is an integrating factor for 0 = y − x y ′. 3

Assume that A and B are continuously differentiable on G, and G is a simply connected
open set in R

2. Then M is an integrating factor if and only if

∂

∂y

[
M(x, y)A(x, y)

]
=

∂

∂x

[
M(x, y)B(x, y)

]
in G. (2.4.3)

This is equivalent to the partial differential equation

B Mx − AMy = (Ay − Bx)M. (2.4.4)

In this lecture, we will not study general methods to solve this partial differential equation
systematically. Instead, we will look at some particular cases in which we are lucky enough to
find the integrating factor explicitly.

Let us look at cases where an ansatz of the form M(x, y) = m(u(x, y)) is successful, i.e.,
where the integrating factor is a function m of some simple function u(x, y) of x and y. (Examples
for u that appear frequently are u(x, y) = x + y or xy or just x.) Using the chain rule, we see
that (2.4.4) is equivalent to

Ay(x, y) − Bx(x, y)

B(x, y)ux(x, y) − A(x, y)uy(x, y)
=

m′(u(x, y))

m(u(x, y))
. (2.4.5)

We will also not study all the cases of possible functions u and m that realize this equation, but
we want to point out that, given an explicit choice of u(x, y) (given or guessed), we just have to
check whether or not the left hand side of (2.4.5) is equal to a function of u(x, y), say it is equal to
h(u(x, y)). In this (lucky) case, we just find m via the equation h = m′

m and find m(u) = e
R

h(u) du.

Therefore, we have found the Euler multiplicator M(x, y) = m(u(x, y)) = e
R

h(u) du |u=u(x,y).
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It should be stressed that the above method is not systematic and leads to a success only
in rather limited cases. Nevertheless, here is a list of standard ansatzes for u(x, y) that one can
try:

u(x, y) = x, y, x + y, x − y, xy, x2 + y2, x2 − y2. (2.4.6)

We summarize:

Solving (2.4.1).

(i) If Ay = Bx then proceed with the recipe in Section 2.1.

(ii) Otherwise, try step by step the functions u in (2.4.6) and calculate H(x, y) =
Ay−Bx

B ux−A uy
.

If H(x, y) = h(u(x, y)) for some h, then go to Step (iii), otherwise choose a new u(x, y) or
give up.

iii) With the function h from Step (ii), calculate M(x, y) = m(u(x, y)) = e
R

h(u) du |u=u(x,y).
Then (2.4.2) is exact. Apply the recipe in Section 2.1.

Example 2.4.2. Consider y + x(2xy − 1) y ′ = 0, i.e., A(x, y) = y and (B(x, y) = x(2xy − 1).

(i) This is not exact since Ay − Bx = 1 − 4xy + 1 = 2 − 4xy 6= 0.

(ii) We try u(x, y) = x and have to look at H(x, y) =
Ay−Bx

B = − 2
x , which is fine, since it is

h(u(x, y)) with h(u) = − 2
u .

(iii) We find the Euler multiplicator M(x, y) = m(x) = e−
R

2/x dx = 1
x2 . The exact version

of y + x(2xy − 1) y′ = 0 is

y

x2
+

2xy − 1

x
y′ = 0.

It has the general implicit solution y2 − y
x = C for CinR.

3

Example 2.4.3. Consider (x2y3 + y) + (x3y2 −x) y′ = 0, i.e., A(x, y) = x2y3 + y and B(x, y) =
x3y2 − x.

(i) This equation is not exact since Ay − Bx = 3y2x2 + 1 − 3x2y2 + 1 = 2 6= 0.

(ii) As an example, u(x, y) = x does not yield an Euler multiplicator since
Ay−Bx

B = 2
x3y2−x

is not a function of u(x, y) = x. However, with u(x, y) = xy, we are successful since
Ay−Bx

yB−xA =
2

−2xy = h(u(x, y)) with h(u) = − 1
u .

(iii) We find m(u) = e
R

h(u) du = 1
u and hence M(x, y) = 1

xy . Hence, we arrive at the exact
equation

(
xy2 +

1

x

)
+

(
x2y − 1

y

)
y′ = 0, in G = (0,∞)2, say.

The general implicit solution is x2y2 + log x2

y2 = C for some c ∈ R. 3
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2.5 Substitution

2.5.1 y′ = f(ax + by + c), where b 6= 0

In this case, we certainly substitute v(x) = ax+ by(x)+ c. Using that v ′ = a+ by′, the equation
is turned into the separable equation

v′ = a + bf(v).

Example 2.5.1. Consider y′ = (x + y + 1)3. We put v = x + y + 1 and obtain v′ = 1 + v3,
which has the general implicit solution

1

6
log

(1 + v)2

1 − v + v2
+

1√
3

arctan
2v − 1√

3
= x + c.

Re-substitution of v = x + y + 1 gives the general implicit solution in x and y. 3

2.5.2 Similarity equations

If x and y appear only in the form y/x, we have an equation of the form

y′ = f
(y

x

)
, x 6= 0, (2.5.1)

for some function f of one variable. This equation is called a similarity equation since it is
invariant under the map (x, y) 7→ (αx, αy) for any α 6= 0. This map is called a similarity
transformation, and this explains the name. This means that, if y is a solution, also the map
x 7→ 1

αy(αx) is. In particular, taking α = −1, if we have a solution y on the positive axis only,
then x 7→ −y(−x) is a solution on the negative axis.

In order to solve (2.5.1), we substitute v(x) = y(x)
x and obtain the separable equation

v′ =
1

x
(f(v) − v), x 6= 0. (2.5.2)

In particular, for any zero η of f , a particular solution of (2.5.1) is y(x) = ηx. Once one has
found the general solution v(x) of (2.5.2), we know that y(x) = xv(|x|) is the general solution
of (2.5.1) on (−∞, 0) and on (0,∞).

Example 2.5.2. Consider y′ = y
x −

√
1 − y

x , where x 6= 0 and y
x ≤ 1. We may assume for a

while that x > 0. Clearly, f(η) = η − √
1 − η, whose only zero is η = 1. Hence, y(x) = x is a

particular solution.

The substitution v(x) = y(x)/x turns the equation into

− dv√
1 − v

=
dx

x
,

which has the solution 2
√

1 − v = C + log x, i.e., v(x) = 1 − 1
4(C + log x)2 for x > 0.

Hence, y(x) = x(1 − 1
4 (C + log |x|)2) is the general solution for x > 0 and for x < 0. Note

that this solution is not complete since the particular solution y(x) = x does not belong to this

family. Furthermore, the (quite special) IVP y ′ = y
x −

√
1 − y

x with y(x0) = x0 is not uniquely

solvable, since y(x) = x and y(x) = x(1− 1
4(C0 + log |x|)2) with C0 = − log |x0| are solutions. 3
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2.5.3 Bernoulli equation

The Bernoulli differential equation is of the form

y′ + a(x)y = b(x)yα, (2.5.3)

where a and b are continuous functions and α ∈ R \ {0, 1} is a parameter. (The cases α = 0
or α = 1 are just linear equations of type (2.3.1).) We multiply (2.5.3) with (1 − α)y−α and
substitute

η(x) = y(x)1−α.

Then we have η′(x) = (1 − α)y−αy′, and hence (2.5.3) turns into the linear equation

η′ + (1 − α)a(x)η = (1 − α)b(x).

Now (2.5.3) is easily solved by solving this equation and re-substituting y(x) = η(x)
1

1−α .

Example 2.5.3 (Harmonic oscillator with air resistance). We look at a movement x =
x(t) with air resistance, i.e., the acceleration is proportional to the square of the velocity:

x′′ + ω2x + rx′|x′| = 0. (2.5.4)

where ω2 and r are two positive parameters. For the velocity, we make the ansatz as a function of
the place: x′(t) = v(x(t)). Then, according to the chain rule, x′′(t) = v′(x(t))x′(t) = v′(x)v(x).
Hence, (2.5.4) is equivalent to v′v + ω2x + rv|v| = 0, i.e., after dividing by v,

v′ + σrv = −ω2xv−1, (2.5.5)

where σ = |v|/v. (Observe that σ is just the sign of v.) Now, (2.5.5) is a Bernoulli equation
with α = −1 and a(x) = σr and b(x) = −ω2x. The substitution η(x) = v(x)2 leads to the linear
equation η′ + 2σrη = −2ω2x, whose general solution is

η(x) = −ω2

σr
x +

ω2

2r2
+ ce−2rσx.

The phase curves, i.e., the curves t 7→
(x(t)
x′(t)

)
, are spirals. Indeed, re-substituting v =

√
η, we see

that

x′(t) = v(x(t)) =
√

η(x(t)) =





√
c1e−2rx − ω2

r x + ω2

2r2 if v > 0,√
c2e2rx + ω2

r x + ω2

2r2 if v < 0.

We obtain the spiral by concatenating the respective pieces at the times at which v(x(t)) = 0.
3

2.5.4 The Riccati equation

This is an equation of the type

y′ = a(x)y + b(x)y2 + f(x). (2.5.6)

This type appears in the description of growth models with an external influence (via f). (In
the special case a > 0 and b < 0, we mentioned this equation in Example 1.1.2 as a model for
growth in a bounded region.)
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In general, there is no systematic explicit method to solve (2.5.6). However, if a particular
solution y0 is known, then the substitution

v(x) =
1

y(x) − y0(x)
, i.e., y(x) = y0(x) +

1

v(x)
,

turns (2.5.6) into the linear equation

v′ +
(
a(x) + 2y0(x)b(x)

)
v + b(x) = 0. (2.5.7)

Hence, for v the general solution to (2.5.7), the general solution to (2.5.6) is given as y = y0 + 1
v .

Example 2.5.4. y′ = 4x2y − xy2 + 4 possesses the particular solution y0(x) = 4x. For v(x) =
1/(y(x) − 4x), we obtain v′ − 4x2v = x. Using the methods from Section 2.3, we easily obtain
that

v(x) = e
4
3
x3

(∫ x

x0

e−
4
3
ζ3

ζ dζ + C
)
.

The general solution to y′ = 4x2y − xy2 + 4 is hence y(x) = 4x + 1
v(x) . 3

Example 2.5.5. x′ = x − x2 + t2 − t − 1 has the particular solution x(t) = 1 − t. Substituting
v(t) = 1/(x(t)+ t−1), we obtain the linear equation v ′+(2t−1)v−1 = 0, which has the general
solution

v(t) = et−t2
( ∫ t

t0

eτ2−τ dτ + C
)
.

Hence, the general solution is x(t) = 1 − t + 1
v(t) . 3

2.6 Solution by inversion of y′

Consider a general first-order ODE, F (x, y, y ′) = 0. If it is not possible to find a one-parameter
family y = yc(x) of solutions, and if also a representation as level lines, U(x, y) = C, fails, then
one could try to represent a solution in the form of a parameter description x = x(p), y = y(p),
where p is a new parameter. Here we want to consider only the case where y ′ is throughout
positive in the interval considered, such that we can choose p = y ′. This may be conceived as
inversion of the map x 7→ y′(x), by writing x = x(y′) = x(p). Then y is also a function of p,
since y = y(x) = y(x(p)), which means that we have a parameter description as desired.

After substituting

p = y′, x = x(y′) = x(p), y = y(x(p)),

we obtain the equation F (x(p), y(p), p) = 0, for a range of parameter values of p. Writing
ẋ = d

dpx, we have to find the two functions x(p) and y(p) from the equations

0 = Fxẋ + Fy ẏ + Fp, ẏ = pẋ, (2.6.1)

where the first equation comes from differentiating F (x(p), y(p), p) = 0 with respect to p, and
the last equation comes from the chain rule: ẏ = d

dpy(x(p)) = ẏ(p)ẋ(p) = pẋ. We can easily
solve (2.6.1) to the effect that

ẋ = − Fp

Fx + pFy
, ẏ = − pFp

Fx + pFy
. (2.6.2)
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Once we have found the solution curves x(p) and y(p) via (2.6.2), we can try to eliminate the
auxiliary parameter p by a combination of the two equations for x(p) and y(p) and obtain
(hopefully) an equation for y in terms of x.

However, (2.6.2) can be solved only in certain cases. We want to discuss three particular
ones, in which x and y appear only linearly.

2.6.1 x = f(y′)

In this case, F (x, y, y′) = f(y′)−x, and we have ẋ = − Fp

Fx+pFy
= Fp = ḟ(p) and ẏ = − pFp

Fx+pFy
=

pḟ(p) from (2.6.2). Intergration gives x(p) = f(p) and y(p) =
∫

pḟ(p) dp.

Example 2.6.1. Consider x(1 + (y′)2) = 1. Since the term in the outer brackets is larger than
1, we have solutions only in x ∈ (0, 1]. With p = y ′ we obtain the solution curves

x(p) =
1

1 + p2
, y(p) =

∫
pẋ(p) dp = px(p) −

∫
1

1 + p2
dp =

p

1 + p2
− arctan p + C.

We can express p in terms of x as p = ±
√

(1 − x)/x and have therefore

y(x) = C ±
(√

x(1 − x) − arctan

√
1 − x

x

)
, x ∈ (0, 1].

3

2.6.2 y = f(y′)

Here we obtain from (2.6.2) that x(p) =
∫ f ′(p)

p dp and y(p) = f(p).

2.6.3 d’Alembert’s equation, y = xf(y′) + g(y′)

Hence, F (x, y, p) = xf(p) + g(p) − y. If f(p) is not the identical function, i.e., f(p) 6≡ p, then
the first equation in (2.6.2) gives the linear first-order equation

(f(p) − p)ẋ + f ′x = −g′.

In the other case, i.e., f(p) ≡ p, we have the Clairaut differential equation, y = xy ′ + g(y′).
A general solution to this equation is the family of straight lines y(x) = cx + g(c) with c ∈ R.
A singular solution, which satisfies F (x(p), y(p), p) = 0, is given by

x(p) = −g′(p), y(p) = −pg′(p) + g(p).

This solution is in many cases equal to the enveloping curve of the above straight lines (see, e.g.,
Example 1.1.12).

Example 2.6.2. Consider y = (x + 1)(y ′)2, which is of d’Alembert type. It has the singular

solution y = 0. The first equation in (2.6.2) is the linear equation ẋ(p) = 2x(p)+2
1−p , which has the

general solution x(p) = −1 + C(1− p)−2. This we can easily solve for y′ = p = 1±
√

C/(x + 1).
(In the case C > 0 only for x > −1, and in the case C < 0 only for x < −1.) We obtain
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explicitly y(x) = x+1± 2
√

C(x + 1) +C2 for some integration constant C2. Checking with the
equation y = (x + 1)(y′)2 shows that C2 = 0, since

(x + 1)(y′)2 = (1 + x)
(
1 ±

√
C

1 + x

)2
= 1 + x ± 2

√
C(1 + x).

Hence, the explicit general solution is y(x) = x + 1 ± 2
√

C(x + 1). This solution may also be
expressed implicitly by the equation

(x + 1 − y − C)2 = 4Cy,

as is shows with the help of y′ = p = 1±
√

C/(x + 1) and y = (x+1)(y′)2. This is the family of
parabolas which touch the straight lines y = 0 and x = −1 and are opened in the

(1
1

)
resp.

(−1
−1

)

direction. 3
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Linear second-order ODEs

This type of differential equations appears in the description of mechanical and electrical oscil-
lations:

y′′ + ay′ + by = f(x), (3.0.1)

where a, b ∈ R are constants, and f is a continuous function. (The case of non-constant coefficient
functions a(x), b(x) is much more difficult and will not be considered in this lecture.) As in the
case of linear first-order equations in Section 2.3, we call (3.0.1) homogeneous if f ≡ 0 and
inhomogeneous otherwise. There are some aspects that are the same as in the first-order case,
some are analogous, and some aspects will be new.

3.1 Solution of the homogeneous equation

Remark 3.1.1 (Principle of super position). This principle is the same as in the first-order
case, see Remark 2.3.7. Indeed, if y1, y2 are solutions of y′′

i + ay′i + byi = fi for two functions
f1 resp. f2, then y = αy1 + βf2 is a solution of y′′ + ay′ + by = αf1 + βf2, for any α, β ∈ R.
We already know that this observation may be helpful when the right-hand side f is a sum of
several functions of different type. 3

We can also use the principle of super position to find the general structure of the set of
solutions to the homogeneous equation. In order to express it properly, we need some few notions
from Linear Algebra.

Definition 3.1.2 (Linear independence). A set of n functions, {y1, . . . , yn}, is called lin-
early independent over an interval I ⊂ R if for any λ1, . . . , λn ∈ R the following implication
holds:

n∑

i=1

λiyi = 0 =⇒ λ1 = · · · = λn = 0.

(Here we mean by
∑n

i=1 λiyi = 0 that
∑n

i=1 λiyi(x) = 0 for any x ∈ I.) Hence, the only
way to express the function that is identical to zero as a linear combination of the y1, . . . , yn is
the trivial one. Two functions y1, y2 are obviously linearly independent if it is not possible to
write y1 as a constant times y2 or vice versa.

23
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Lemma 3.1.3 (Solution of a homogeneous 2nd order linear ODE). For a, b ∈ R, the
general and complete solution of the homogeneous 2nd order linear ODE y ′′ + ay′ + by = 0 is
always of the form λ1y1 + λ2y2, where y1, y2 are any two linearly independent solutions of this
equation.

In other words, it is always possible to find two linearly independent solutions, and every
solution is then a linear combination of these two. Even better, for any pair of linearly inde-
pendent solutions, every solution is a linear combination of these two. In the language of Linear
Algebra, the set of solutions is a two-dimensional vector space,and for any two solutions y1, y2,
the set {y1, y2} is a basis of this set. In the following we give a proof which also explains how
to find linearly independent solutions (see (3.1.2)–(3.1.4)) and what cases may occur.

Sketch of proof of Lemma 3.1.3. As in Section 2.3, we write yh for the solution of the
homogeneous equation y′′ + ay′ + by = 0. We will explain how to find two linearly independent
solutions. The proof that this is the complete solution requires some means from the theory of
n-th order systems of differential equations which we do not treat here.

We make an exponential ansatz, i.e., yh(x) = eλx. Then

y′′h(x) + ay′h(x) + byh(x) =
(
λ2 + aλ + b

)
eλx.

This is obviously identical to zero if and only if the

characteristic equation λ2 + aλ + b = 0 (3.1.1)

is satisfied, i.e., λ = − a
2 ± 1

2

√
a2 − 4b. We distinguish three cases.

1st case: a2 > 4b. Then we have found two real solutions λ1 6= λ2 and have therefore two
solutions

yh1(x) = eλ1x and yh2(x) = eλ2x. (3.1.2)

It is easy to see that these two are linearly independent.

2nd case: a2 = 4b. Here we have just one solution, λ = − a
2 , which is a double zero.

Certainly, yh1(x) = eλx is a solution, but we need a second one. This is provided by the method
of variation of constants: We make the ansatz y(x) = c(x)yh1(x) and go into y′′ + ay′ + by = 0
to obtain, using that y′′

h1 + ay′h1 + byh1 = 0, that

0 = (cyh1)
′′ + a(cyh1)

′ + bcyh1 = c′′yh1 + 2c′y′h1 + cy′′h1 + a(c′yh1 + cy′h1) + bcyh1 = (c′′ + ac′)yh1 + 2c′y′h1

= c′′yh1,

where we also used that λ = − a
2 . Since yh1 is never zero, we have that c′′ ≡ 0, and hence c is a

polynomial of first order. This means that we may put yh2(x) = xyh1(x) = xeλx. Hence,

yh1(x) = e−
a
2
x and yh2(x) = xe−

a
2
x (3.1.3)

are two linearly independent solutions.

3rd case: a2 < 4b. Here we do not have any real solution, but only two complex solutions,
λ1 = −a

2 + i12
√
|a2 − 4b| and λ1 = −a

2 − i12
√

|a2 − 4b|, which are conjugate to each other. Now
we use the complex exponential function, more precisely the famous Euler formula, to write

yhi(x) = eλix = e−
a
2
x e±i 1

2

√
|a2−4b|x = e−

a
2
x
[
cos

(1

2

√
|a2 − 4b| x

)
± sin

(1

2

√
|a2 − 4b| x

)]
.
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One can easily check that both, real part and imaginary part, are solutions to y ′′ +ay′ + by = 0,
and that they are indeed linearly independent. Hence, we have found the two solutions

yh1(x) = e−
a
2
x cos

(1

2

√
|a2 − 4b| x

)
and yh2(x) = e−

a
2
x sin

(1

2

√
|a2 − 4b|x

)
. (3.1.4)

Example 3.1.4. y′′ − 6y′ + 5y = 0. The characteristic equation is λ2 − 6λ + 5 = 0, which has
the two zeros λ1 = 1 and λ2 = 5. According to (3.1.2), a solution basis is formed by y1(x) = ex

and y2(x) = e5x. 3

Example 3.1.5. y′′− 6y′ +34y = 0. The characteristic equation is λ2 − 6λ+34 = 0, which has
the two zeros λ1 = 3 + 5i and λ2 = 3 − 5i. According to (3.1.4), a solution basis is formed by
y1(x) = e3x cos(5x) and y2(x) = e3x sin(5x). 3

3.2 Solution of the inhomogeneous equation

Now we turn to the inhomogeneous equation in (3.0.1). With the help of Lemma 3.1.3, it is easy
to find the structure of its general complete solution:

Lemma 3.2.1 (Complete solution of (3.0.1)). The general complete solution to the linear
second-order equation (3.0.1) is y = yp + c1yh1 + c2yh2, where yp is any particular solution,
and yh1 and yh2 are any two linearly independent solutions to the homogeneous equation y ′′ +
ay′ + by = 0, and c1, c2 ∈ R.

Proof. According to the principle of superposition in Remark 3.1.1, any such function y =
yp + c1yh1 + c2yh2 is a solution to (3.0.1). On the other hand, if y is a solution, then y − yp is
a solution of the homogeneous equation and therefore, according to Lemma 3.1.3, of the form
c1yh1 + c2yh2.

Certainly, we want to know how to derive a particular solution, yp, of (3.0.1). In general, this
is much more difficult than finding the homogeneous solutions, but there are some systematic
methods that one can try. We assume that {y1, y2}, a basis of the solutions to y′′ +ay′ + by = 0,
is already known.

First method: variation of the constants. With two auxiliary functions c1, c2, we make the
ansatz y(x) = c1(x)y1(x) + c2(x)y2(x). Using that y1 and y2 solve the homogeneous equation,
and adding the auxiliary equation c′1y1 + c′2y2 = 0, we arrive at the system

c′1(x)y1(x) + c′2(x)y2(x) = 0, (3.2.1)

c′1(x)y′1(x) + c′2(x)y′2(x) = f(x). (3.2.2)

This is a linear 2 × 2-system and can easily be solved:

c′1(x) = −y2(x)f(x)

W (x)
, c′2(x) =

y1(x)f(x)

W (x)
, where W = y1y

′
2 − y2y

′
1. (3.2.3)

Now a direct integration yields c1 and c2, and we obtain y = c1y1 + c2y2. 3
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Second method: ansatz of the type of the right-hand side. If f(x) is of the form
f(x) = pm(x)ewx, where w ∈ R, and pm is a polynomial of order m, then one can skip some of
the calculations that are necessary in the method of variation of the constants by making the
following ansatz. We call χ(λ) = λ2 + aλ + b the characteristic polynomial. We put

yp(x) =





Pm(x)ewx if χ(w) 6= 0,

xPm(x)ewx if χ(w) = 0, χ′(w) 6= 0,

x2Pm(x)ewx if χ(w) = χ′(w) = 0,

(3.2.4)

where Pm(x) is a polynomial of order m. In the first case, x 7→ ewx is not a homogeneous
solution, in the second it is, but χ possesses two different zeros (case 1, see (3.1.2)), and in the
third it is, and w is a zero of multiplicity two of χ (case 2, see (3.1.3)).

Analogously, if f(x) = pm(x) cos(wx) or f(x) = pm(x) sin(wx), where w ∈ R, and pm is
a polynomial of order m, then the ansatz is yp(x) = xkPm(x)(A cos(wx) + B sin(wx)), where
k ∈ N0 is the multiplicity of the zero iw (note the i!) of χ. (Here we say that iw has multiplicity
zero if χ(iw) 6= 0.) The same ansatz may be used if f is a sum of two such functions, i.e.,
f(x) = pm(x) cos(wx) + qm(x) sin(wx) with polynomials pm(x) and qm(x). 3

Third method: power series. We assume that the right-hand side admits a power series
expansion f(x) =

∑∞
n=0 cn(x − x0)

n which converges locally uniformly in a neighborhood of
some x0. Then we make the ansatz that also the solution, y(x) =

∑∞
n=0 dn(x − x0)

n, is a
power series in that neighborhood. Clearly, y ′(x) =

∑∞
n=0(n + 1)dn+1(x − x0)

n and y′′(x) =∑∞
n=0(n+2)(n+1)dn+2(x−x0)

n. Substituting all these series in the equation f(x) = y ′′+ay′+by,
we obtain

∞∑

n=0

cn(x − x0)
n =

∞∑

n=0

[
bdn + a(n + 1)dn+1 + (n + 2)(n + 1)dn+2

]
(x − x0)

n.

A comparison of the coefficients yields the infinite system of linear equations

for all n ∈ N0 : cn = bdn + a(n + 1)dn+1 + (n + 2)(n + 1)dn+2. (3.2.5)

The first of these equations is c0 = bd0 + ad1 + 2d2, the second is c1 = bd1 + 2ad2 + 6d3 and so
on. One can choose two initial values for d0 and d1 and calculate iteratively d2 from the first
equation, d3 from the second and so on. In lucky cases, one is able to systematically determine
a solution d0, d1, d2, . . . from this system of equations, and in even more lucky cases, one can
identify also the solution, y(x) =

∑∞
n=0 dn(x − x0)

n, for these values of the dn. 3

Fourth method: Laplace transform. See Section 3.4. 3

3.3 Examples

Example 3.3.1. Consider y′′ − 4y′ + 4y = 7. The characteristic equation, λ2 − 4λ + 4λ = 0,
has a two-fold solution, λ = 2. Hence, the general solution of the homogeneous equation is
(c1 + c2x)e2x with c1, c2 ∈ R. For finding the solution of the inhomogeneous equation, we make
the ansatz of the type of the right-hand side: yp(x) = c. Substituting this, we obtain c = 7

4 .
Hence, the general and complete solution is y(x) = 7

4 + (c1 + c2x)e2x.
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For the sake of comparison, we solve the inhomogeneous equation once more from scratch
with the method of variation of constants. The ansatz is then

c′1(x)e2x + c′2(x)xe2x = 0, c′1(x)2e2x + c′2(x)(1 + 2x)e2x = 7.

From the first of the two equations, we get c′1(x) = −xc′2(x). Using this in the second, we
see that c′2(x) = 7e−2x, i.e., c2(x) = −7

2e−2x. This in turn gives that c′1(x) = 7
2xe−2x, i.e.,

c1(x) = 7
2xe−2x + 7

4e−2x. Hence, the particular solution is yp(x) = c1(x)e2x + c2(x)xe2x = 7
4 . 3

Example 3.3.2. We search for all periodic solutions to the equation y ′′ − 7y′ + 6y = sinx. The
characteristic equation, λ2 − 7λ + 6 = 0, has the solutions 6 and 1. Hence, all the homogeneous
solutions, e6x and ex, are not periodic. We will obtain a particular solution using the ansatz of
the type of the right-hand side: yp(x) = A cos x + B sinx. Substituting this in the equation, we
obtain

sinx =
(
− A − 7B + 6A

)
cos x +

(
− B + 7A + 6B

)
sinx.

It is clear that the two functions cos and sin are linearly independent, since none can be written as
a constant multiple of the other. Hence, a comparison of the two coefficients gives −A−7B+6A =
0 and −B+7A+6B = 1, which enforces that A = 7/74 and B = 5/74. Hence, the only periodic
solution is y(x) = 1

74 (7 cos x + 5 sin x). 3

Example 3.3.3. Consider y′′ + 4y = x2 + 5 cos(2x). The characteristic equation, λ2 + 4λ = 0,
has no real solution, but only the solution ±2i. Hence, cos(2x) and sin(2x) form a basis of the
homogeneous solution space. To solve the equation, we use the super position principle and split
the tasks into two.

First the equation y′′ + 4y = x2. The correct ansatz of the type of the right-hand side is
yp1(x) = a + bx + cx2. Substituting this, we obtain x2 = 2c +4(a + bx + cx2), and a comparison
of the coefficients yields 2c + 4a = 0, 4b = 0 and 4c = 1, i.e., yp1(x) = −1

8 + 1
4x2.

Now the equation y′′ + 4y = 5 cos(2x). The right-hand side is one of the basis solutions,
in other words, we are in the case of the second line of (3.2.4). Hence, the ansatz is yp2(x) =
x(A sin(2x)+B cos(2x)). Substituting this and y ′′

p2(x) = 4(A−Bx) cos(2x)− 4(B +4A) sin(2x)

into the equation, we get 5 cos(2x) = 4A cos(2x)−4B sin(2x) and hence B = 0 and A = 5
4 . This

gives yp2(x) = 5
4x sin(2x).

Summarizing, the general and complete solution of y ′′ + 4y = x2 + 5 cos(2x) is y(x) =
−1

8 + 1
4x2 + 5

4x sin(2x) + c1 cos(2x) + c2 sin(2x). 3

Example 3.3.4. Consider the IVP

y′′ − 4y′ + 5y = e2x tan x, y(0) = 0, y′(0) = 0.

The characteristic equation, λ2 − 4λ + 5 = 0, has the two solutions 2 ± i. Hence, a basis of the
homogeneous equation is given by y1(x) = e2x cos x and y2(x) = e2x sinx. We use the method
of variation of the constants to solve the inhomogeneous equation. The ansatz is

c′1(x)e2x cos x + c′2(x)e2x sinx = 0,

c′1(x)(2 cos x − sinx)e2x + c′2(x)(2 sin x + cos x)e2x = e2x tanx.

From the first equation, we get c′1(x) = −c′2(x) tan x. Substituting this in the second and using

that sin2 +cos2 = 1, we obtain c′2(x) = sinx, i.e., c2(x) = − cos x. This gives that c′1(x) = − sin2 x
cos x
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and therefore, making the substitution u = sinx,

c1(x) =

∫ (
cos x − 1

cos x

)
dx = sinx −

∫
du

1 − u2
= sinx − 1

2
log

1 + sinx

1 − sinx
.

This means that the general solution is

y(x) =
(

sinx − 1

2
log

1 + sinx

1 − sinx

)
e2x cos x − cosxe2x sinx + c1e

2x cos x + c2e
2x sinx. (3.3.1)

We want to determine c1, c2 ∈ R such that y(0) = 0 and y′(0) = 0. It is clear that the first
equation means that c1 = 0. The second equation leads to

0 =
d

dx

∣∣∣
x=0

(
sinx − 1

2
log

1 + sinx

1 − sinx

)
− 1 + c2 = −1

2

d

dx

∣∣∣
x=0

log
1 + sinx

1 − sinx
+ c2 = 1 − c2.

Hence, the solution is the function y(x) in (3.3.1) with c1 = 0 and c2 = 1. 3

Example 3.3.5. Consider x′′(t) + 2αx′(t) + ω2
0x(t) = cos(ωt), where α, ω0, ω ∈ R \ {0} are

parameters satisfying α2 < ω2
0 and ω 6= 0. We are in case (3) and easily see that two basis

solutions of the homogeneous equation are given by t 7→ cos(ω1t) and t 7→ sin(ω1t), where
ω2

1 = ω2
0 − α2. To solve the inhomogeneous equation, we make the ansatz of the type of the

right hand side,
xp(t) = A cos(ωt) + B sin(ωt),

and substitute this in the equation, to obtain

cos(ωt) =
(
− Aω2 + 2αBω + Aω2

0

)
cos(ωt) +

(
− Bω2 − 2αAω + Bω2

0

)
sin(ωt).

A comparison of the coefficients gives the two equations

−Aω2 + 2αBω + Aω2
0 = 1 and − Bω2 − 2αAω + Bω2

0 = 0,

which is easily solved to the effect that

A = V 2
(
ω2

0 − ω2
)

and B = V 22αω, where V =
(
4α2ω2 + (ω2

0 − ω2)2
)−1/2

.

Using the addition theorems for cosine, we obtain the solution

xp(t) = V 2
((

ω2
0 − ω2

)
cos(ωt) + 2αω sin(ωt)

)
= V cos(ωt + ϕ), where ϕ = arctan

2αω

ω2
0 − ω2

.

3

Example 3.3.6 (Damped oscillation). A spring is stimulated by an external force F (t),
which creates a movement x = x(t). We assume that the force that brings the spring into its
original form is proportional to the distance x(t), and the damping is proportional to the velocity
x′(t). Then the movement is described by the equation

x′′(t) + 2αx′(t) + ω2
0x(t) = F (t), t ∈ [0,∞),

where α ≥ 0 is a damping coefficient describing the elasticity of the spring, and ω0 > 0 is a
parameter. If the system oscillates freely, then we have the homogeneous equation with F ≡ 0,
i.e., we consider the eigen oscillations of the spring. We have the three cases appearing in the
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proof of Lemma 3.1.3: If α2 > ω2
0, then we have a very strong damping. The general solution,

xh(t) = c1e
(−α+β)t + c2e

(−α−β)t (where β =
√

α2 − ω2
0), decays exponentially to zero at late

times, and the movement crosses the x-axis only once. In the second case β = 0, the solution
has the form xh(t) = (c1 +c2t)e

−αt, and the qualitative behavior is basically the same. However,
in the case of weak damping, α2 < ω2

0, we have periodic oscillations with the eigen frequency of
the spring, ω2

1 = ω2
0 −α2, and the solutions may be written (using the addition theorems for the

cosine of a sum of angles)

xh(t) = e−αt
(
c1 cos(ω1t) + c2 sin(ω1t)

)
= Ce−αt cos(ω1t − δ),

where C, δ ∈ R are suitable coefficients. The amplitude is damped by the leading term, e−αt,
which lets the solution decay to zero exponentially if α > 0, but in an periodically oscillating
way. For zero damping, α = 0, there is even no decay, and we just have harmonic oscillations,
the system oscillates back and forth for ever.

Now we consider a particular type of oscillation with external force: the case of F (t) =
cos(ωt), where ω ∈ R \ {0}. As is explained in Example 3.3.5, we have the particular solution

xp(t) = V (ω) cos(ωt − ϕ), where V (ω) =
(
(ω2

0 − ω2)2 + 4α2ω2
)−1/2

, ϕ = arctan
2αω

ω2
0 − ω2

.

This oscillation has the same frequency as the external force, but is in a different phase, if α > 0.
The amplitude, V (ω), depends on ω and vanishes if the frequency ω gets large. It is maximal
for the so-called resonance frequency, ω = ω∗ =

√
ω2

0 − 2α2 =
√

ω2
1 − α2, which can be reached

only for sufficiently small damping, more precisely, only for α < ω0/
√

2. Then the amplitude
is V (ω∗) = 1/(2αω1). If the damping α is small, then the resonance frequency is close to the
eigen frequency of the spring, and the resulting amplitude is large. This effect is sometimes very
welcome for reinforcing reasons, but may result in the famous resonance catastrophy. 3

Example 3.3.7 (Laguerre equation). With some parameter m ∈ R, we consider

xy′′ + (1 − x)y′ + my = 0.

Even if the coefficients are not constant, we make the power series ansatz, y(x) =
∑∞

n=0 dn(x −
x0)

n, and substitute y′(x) =
∑∞

n=1 ndn(x−x0)
n−1 and y′′(x) =

∑∞
n=2 n(n− 1)dn(x−x0)

n−2, to
obtain

0 = md0 + d1 +

∞∑

n=1

[
m − ndn + (n + 1)2dn+1

]
xn.

Hence, all the coefficients on the right-hand side must be equal to zero. We may choose d0 ∈ R

freely, say d0 = 1. Iteratively, we obtain the solution

dn = (−1)n

(
m

n

)
1

n!
, where

(
m

n

)
=

m(m − 1)(m − 2) · · · (m − n + 1)

n!
.

It is easy to see that the series y(x) =
∑∞

n=0(−1)n
(m

n

)
xn

n! converges for any x ∈ R. This gives a
one-parameter family of solutions, cy with c ∈ R. If m ∈ N, then the series stops at n = m, and
we obtain a polynomial, the so-called Laguerre polynomial, Lm(x). It is known that

Lm(x) =
ex

m!

dm

dxm

(
xme−x

)
and

∫ ∞

0
Ln(x)Lm(x)e−x dx = δnm.
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One may wonder why we only have a one-parameter family, even though it is an equation of
second order. The reason is that the power-series ansatz is good only for solutions that are
power series around the origin. In fact, there is a second solution which is not regular at zero.
3

Example 3.3.8 (Failure of power series ansatz). If we want to expand the solution of

x2y′′ + (x2 − x)y′ + 2y = 0

into a power series around zero, then we only obtain the trivial solution y ≡ 0, since one can
iteratively derive that all the derivatives of y at zero are zero. This means that y ≡ 0 is the only
solution that is regular at the origin. 3

3.4 Laplace transform

In this section we introduce and apply a certain integral transform that maps a function
f : R → R on a transformed function Lf : R → R. The advantages of this transform will
be the following: (1) the transform Lf is explicitly known for many important special choices
of f , (2) the transform of f ′ is a simple function of Lf , and ODEs look easier after applying the
transform, (3) the function f can (at least theoretically) be derived from Lf . We will use these
nice properties for solving ODEs by first transforming the ODE, solving it for the transforms,
and transforming back. For technical reasons, we will first restrict to functions on the domain
[0,∞) instead of R.

3.4.1 Definition and basic properties

Definition 3.4.1. The Laplace transform of a function f : [0,∞) → R is the function

Lf(s) =

∫ ∞

0
e−stf(t) dt, s ∈ R,

for any s such that the integral converges.

Certainly, the Laplace transform does not exist for general functions, but in many important
cases:

Example 3.4.2. (a) The Laplace transform of the exponential function, f(t) = eαt for α ∈ R

is

Lf(s) =

∫ ∞

0
e−steαt dt =

∫ ∞

0
e−(s−α)t dt =

1

s − α
, s > α.

This transform exists only on the interval (α,∞).

(b) The transform of f(t) = cos(ωt) is Lf(s) = s
s2+ω2 for s > 0, and the one of f(t) = sin(ωt)

is Lf(s) = ω
s2+ω2 for s > 0. This is most elegantly seen as follows. We use the above

calculation for α ∈ C and obtain that
∫ ∞
0 e−steαt dt = 1

s−α for any s ∈ C satisfying

<(s−α) > 0. Now we use this for α = iω and note that eiωt = cos(ωt)+i sin(ωt). Certainly,
also the Laplace transform splits in real and imaginary part, and a little calculation shows
that

1

s − iω
=

s

s2 + ω2
+ i

ω

s2 + ω2
.



3.4. LAPLACE TRANSFORM 31

Hence, the real part, s
s2+ω2 is the transform of the real part of eiωt, and the same is true

for the imaginary part.

3

Here is a general criterion for finiteness of the Laplace transform. Its proof is clear.

Lemma 3.4.3. If f : [0,∞) → R is integrable over any compact set and if there exist constants
M,k ∈ R such that |f(t)| ≤ Mekt for any t > 0, then the Laplace transform Lf(s) exists for
any s > k.

Hence, any polynomial and any exponential function and their linear combinations possess
a Laplace transform, but not the function t 7→ et2 , e.g. A property of the Laplace transform
that will be very important for our applications is the following.

Theorem 3.4.4 (Laplace inversion). If f : [0,∞) → R possesses a Laplace transform Lf(s)
on a non-trivial interval, then the function f is uniquely determined by Lf , up to finitely many
points.

Unfortunately, our means are not sufficient to prove this statement, and it would take too
much time to provide them here. Theorem 3.4.4 says that, modulo just finitely many exceptions,
any Laplace transformable function and its Laplace transform are uniquely determined by each
other. This means that we may, at least theoretically, derive f almost uniquely from its transform
Lf , i.e., we can obtain by re-transforming Lf . However, solving this re-transformation explicitly
is difficult for most functions Lf , and we will content ourselves with a long list of examples of
explicit functions whose re-transform we register.

Lemma 3.4.5 (Basic properties of the Laplace transform). Let f, g : [0,∞) → R be
functions such that their Laplace transforms F resp. G exist on some common domain. We also
assume that f possesses all properties necessary for stating the following rules (i.e., sufficient
differentiability resp. integrability). Then the following Laplace transforms exist on this domain,
and the following formulas hold.

(i) For any α, β ∈ R, we have L(αf + βg) = αF + βG (linearity of the Laplace transform).

(ii) For any c > 0, the transform of the map t 7→ f(ct) is the map s 7→ 1
cF ( s

c ).

(iii) L(f ′)(s) = sF (s) − f(0+), where f(0+) = limt↓0 f(t).

(iv) For any n ∈ N, L(f (n))(s) = snF (s) − sn−1f(0+) − sn−2f ′(0+) − · · · − f (n−1)(0+).

(v) The Laplace transform of the primitive of f , i.e., of t 7→
∫ t
0 f(x) dx, is the map s 7→ 1

sF (s).

(vi) For any n ∈ N, the Laplace transform of t 7→ tnf(t) is (−1)nF (n).

(vii) The Laplace transform of t 7→ 1
t f(t) is the map s 7→

∫ ∞
s F (u) du.

Proof. (i): clear. (ii): easy

(iii): A partial integration yields that

∫ ∞

0
e−stf ′(t) dt = e−stf(t)

∣∣∣
∞

0
+ s

∫ ∞

0
e−stf ′(t) dt = 0 − lim

t↓0
f(t) + sF (s) = sF (s) − f(0+).
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(iv) is derived with the help of (iii) using an induction.

(v) We have

∫ ∞

0
e−st

∫ t

0
f(u) dudt =

∫ ∞

0
du f(u)

∫ ∞

u
dt e−st =

∫ ∞

0
du f(u)

(
− 1

s
e−st

)∣∣∣
t=∞

t=u

=

∫ ∞

0
du f(u)

1

s
e−us =

1

s
F (s).

(vi): It suffices to do this for n = 1 only, the general case is done via a simple induction.
It suffices to show that, if t 7→ tf(t)e−st is integrable, then F is differentiable with F ′(s) =

−
∫ ∞
0 tf(t)e−st dt. It is clear that d

dse
−st = limn→∞ gn(s, t), where gn(s, t) = n(e−(s+ 1

n
)t − e−st).

Furthermore, for any n ∈ N, we have the bound |gn(s, t)| ≤ | d
dse

−st| = te−st, by the convexity
of the map s 7→ e−st. By assumption, the function t 7→ tf(t)e−st is integrable. According to
Lebesgue’s theorem1, we have

F ′(s) = lim
n→∞

n
(
F (s + 1

n) − F (s)
)

= lim
n→∞

∫ ∞

0
f(t)gn(s, t) dt

=

∫ ∞

0
f(t) lim

n→∞
gn(s, t) dt =

∫ ∞

0
f(t)

d

ds
e−st dt = −

∫ ∞

0
tf(t)e−st dt.

(vii): We invert the assertion (vi): Let H be the Laplace transform of t 7→ 1
t f(t), then (vi)

says that the one of f is equal to −H ′. Hence, F = −H ′, i.e., H(s) =
∫ s0

s F (u) du + c for some
s0, c. Putting s = s0, we obtain that c = H(s0) =

∫ ∞
0

1
t f(t)e−st dt, which converges to zero as

s0 → ∞. Hence, we may put c = 0 and s0 = ∞.

With the help of Lemma 3.4.5, we have already a long list of examples:

Example 3.4.6. (a) the Laplace transform of the polynomial t 7→ tn is s 7→ n!
sn+1 .

(b) The Laplace transform of t 7→ cosh(ωt) = 1
2(eωt + e−ωt) is s 7→ 1

2
1

s−ω + 1
2

1
s+ω = s

s2−ω2 .

(c) The Laplace transform of t 7→ et + 2e3t is s 7→ 1
s−1 + 2

s−3
3s−5

s2−4s+3
.

(d) The Laplace transform of t 7→ t sin(ωt) is s 7→ − d
dsL(sin(ωt))(s) = 2ωs

(s2+ω2)2
.

(e) The Laplace transform of t 7→ te2t is s 7→ − d
ds

1
s−2 = − 1

(s−2)2
.

(f) The Laplace transform of t 7→ 1
t sin(ωt) is s 7→

∫ ∞
s

ω
u2+ω2 du = π

2 − arctan s
ω = arctan ω

s .

(g) The Laplace transform of t 7→ 1 − cos(at) is s 7→ 1
s − s

s2+a2 = a2

s(s2+a2) .

(h) L(sinh)(s) = 1
s2−1

.

(i) The Laplace transform of t 7→ e−at cos(bt)) is s 7→ s+a
(s2+a2)+b2 .

3

1Lebesgue’s theorem says that, if limn→∞ gn(t) = g(t) for any t and if there is an integrable function h such
that |gn(t)| ≤ h(t) for any t and any n ∈ N, then limn→∞

R

gn(t) dt =
R

g(t) dt.
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3.4.2 Application to 2nd order ODES

Important conclusions from Lemma 3.4.5 are the rules (iii) and (iv), which relate the Laplace
transform to the derivative. Taking derivatives is equivalent to an elementary multiplication
with a certain polynomial and subtraction of certain limiting values of f at zero. This will be
used now for solving the 2nd order ODE of (3.0.1), y ′′ + ay′ + by = f(x). More precisely, we
look at the IVP

y′′ + ay′ + by = f(x), y(0) = y0, y′(0) = y1. (3.4.1)

Let Y = Ly denote the Laplace transform of y and F the one of f . With the help of
Lemma 3.4.5(iii) and (iv), we can transform this ODE into

(s2Y (s) − sy0 − y1) + a(sY (s) − y0) + bY (s) = F (s).

Noet that the initial values have been already incorporated in this equation. This equation is
indeed very simple to solve, and we obtain the explicit solution

Y (s) =
F (s)

s2 + as + b
+ y0

s + a

s2 + as + b
+ y1

1

s2 + as + b
. (3.4.2)

Observe that the latter two functions correspond to the fundamental solutions of the homo-
geneous equation, actually, they are their Laplace transforms. Furthermore, note that the
denominator is equal to the characteristic polynomial of the ODE y ′′ + ay′ + by = f(x), and it
is clear that the re-transform of the latter two terms crucially depends on the structure of the
zeros of this polynomial.

Now we have to derive the target function y from Y . This is theoretically possible by
the virtue of Theorem 3.4.4, but in general a difficult task if one wants to have an explicit
expression for y. Usually, one uses a table of explicit functions whose Laplace transforms are
explicitly known.

If one has to solve, instead of the IVP in (3.4.1), just some 2nd order ODE y ′′ + ay′ + by =
f(x), then one makes the ansatz of an IVP with initial values y(0) = c1 and y′(0) = c2 for
constants c1, c2 ∈ R and obtains a general solution with two parameters.

Example 3.4.7. We search for the general solution to y ′′ + 4y = sin(ωx). Recall from Exam-
ple 3.4.2 that the Laplace transform of x 7→ sin(ωx) is F (s) = ω

s2+ω2 . We can immediately go
into (3.4.2) with general initial values c1 = y0 and c2 = y1 and obtain, for the Laplace transform
Y of y,

Y (s) =
1

s2 + 4

( ω

s2 + ω2
+ sc1 + c2

)
=

ω

(s2 + ω2)(s2 + 4)
+ c1

s

s2 + ω2
+ c2

1

s2 + ω2
.

We know from Example 3.4.2 that the re-transforms of the latter two terms are x 7→ c1 cos(2x)
and x 7→ c2

2 sin(2x), respectively. Hence, we recover the fundamental solution of the homoge-
neous equation in the present case, where the characteristic polynomial has two purely imaginary
roots. In order to find the re-transform of the first term, we have to distinguish the cases ω2 6= 4
and ω2 = 4. In the first case, we write ω

(s2+ω2)(s2+4) as A
s2+ω2 − A

s2+4 with an appropriate constant

A, and in the second case, we write it in terms of 1
s times the derivative of s 7→ (s2 + ω2)−1

(which is − 2s
(s2+ω2)2

), and use Lemma 3.4.5.
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Summarizing, with the help of an appropriate table, or with repeated applications of the
rules in Lemma 3.4.5, or just by checking, one obtains that the first term is the Laplace transform
of the function

x 7→
{

1
2(ω2−4)

(ω sin(2x) − 2 sin(ωx)), if ω2 6= 4,
1
8(sin(2x) − 2x cos(2x)) otherwise.

Hence, the general solution to y′′ + 4y = sin(ωx) is the sum of this function with c1 cos(2x) and
c2
2 sin(2x) for c1, c2 ∈ R. 3

Example 3.4.8. The Laplace transform even enables us to solve some 2nd order ODEs with
non-constant coefficients, if these are just monomials, say. E.g., if we look for the general
solution to the equation xy′′(x)− y′(x) = 0, then the Laplace transform yields, with the help of
Lemma 3.4.5 (where we again write Y = L(y)):

0 = − d

ds
L(y′′)(s) −L(y′)(s) = − d

ds

(
s2Y (s) − sy(0) − y′(0)

)
−

(
sY (s) − y(0)

)

= −2sY (s) − s2Y ′(s) + y(0) − sY (s) + y(0) = −3sY (s) − s2Y ′(s) + 2y(0).

Hence, we obtain a linear first-order equation, which is easily solved: Y (s) = y(0)
s + c

s3 , for some
c ∈ R. Transforming back yields that y(x) = y(0) + c

2x2. 3



Chapter 4

Existence and uniqueness theorems

In this part, we present general existence and uniqueness results for first-order ODEs. Their
proofs will provide us in particular with an explicit approximative construction scheme, which
is of practical interest. We first have to provide some basics about metric spaces.

4.1 Metric spaces

We summarize the most important facts and assertions about metric spaces, some of which are
already known from basic calculus.

Definition 4.1.1 (Metric space). Let X be a non-empty set, and d: X×X → [0,∞) a metric
on X, i.e., a symmetric function that satisfies the triangle inequality d(x, y) + d(y, z) ≤ d(x, z)
for any x, y, z ∈ X and satisfies d(x, y) = 0 only for x = y. Then we call the pair (X,d) a
metric space.

A standard example of a metric space is R
n with the metric d(x, y) = ‖x − y‖ coming from

any norm ‖ · ‖ on R
n. In the connection with ODEs, we will be mostly concerned with C(U),

the set of continuous functions U → R, where U ⊂ R
n is a compact domain, i.e., bounded and

closed. The natural metric on C(U) is the supremum metric, d∞(f, g) = supx∈U |f(x) − g(x)|.
Certainly, the supremum is a maximum by compactness of U .

An important question is whether or not every Cauchy sequences possesses a limit.

Definition 4.1.2 (Convergence, Cauchy sequences, completeness). Let (X,d) be a met-
ric space.

(i) We say, a sequence (xn)n∈N in X converges towards x ∈ X, if, for any ε > 0, there is
N ∈ N such that d(xn, x) < ε for any n ∈ N satisfying n ≥ N .

(ii) A Cauchy sequence is a sequence (xn)n∈N in X such that, for any ε > 0, there is N ∈ N

such that d(xn, xm) < ε for any n,m ∈ N satisfying n,m ≥ N .

(iii) If any Cauchy sequence in X possesses a limit in X, then (X,d) (or just X) is called
complete.

It is well-known that R
n is complete with the standard norm and with the p-norm for any

p ∈ [1,∞). It is also widely known that C(U) is complete with the supremum metric. This will

35
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be important for us when constructing sequences of functions whose limit (if it exists) satisfies
some limiting equation, but only its Cauchy sequence property can be proven a priori. The base
for arguments like that is the following famous fixed point theorem. A fixed point a of a map
A : X → X is a point x∗ ∈ X satisfying A(x∗) = x∗.

Theorem 4.1.3 (Banach’s fixed point theorem). Let (X,d) be a complete metric space,
and let A : X → X be a contraction, i.e., there is q ∈ (0, 1) such that d(A(x), A(y)) ≤ qd(x, y)
for any x, y ∈ X. Then A possesses a unique fixed point x∗ in X. Furthermore, for any initial
value x0 ∈ X, the iterating sequence (xn)n∈N0 , defined by xn+1 = A(xn), converges towards x∗.
We even have the error estimate d(x∗, xn) ≤ qn

1−qd(x0, x1) for any n ∈ N.

Proof. The sequence (xn)n∈N0 is a Cauchy sequence, since we have, for any n < m,

d(xn, xm) ≤
m−n∑

i=1

d(xn+i−1, xn+i) =

m−n∑

i=1

d(A(xn+i−2), A(xn+i−1)) ≤ q

m−n∑

i=1

d(xn+i−2, xn+i−1)

≤ · · · ≤
m−n∑

i=1

qn+i−1d(x0, x1) ≤
qn

1 − q
d(x0, x1).

(4.1.1)
By completeness of X, there is a limiting point x∗ of (xn)n∈N0 . Since d is a continuous map and
A as well, we then have

d(x∗, A(x∗)) = lim
n→∞

d(xn, A(xn)) ≤ lim
n→∞

d(xn, xn+1) ≤ lim
n→∞

qn

1 − q
d(x0, x1) = 0. (4.1.2)

Hence, x∗ is a fixed point of A. The error estimate now follows from (4.1.1) after letting m → ∞.
The uniqueness of the fixed point is shown in a similar way as in (4.1.2) (exercise).

Remark 4.1.4 (Possible improvement). The proof of Banach’s fixed point theorem may be
improved to obtain stronger a stronger assertion. E.g., A does not have to be a contraction, but
it is sufficient to have an estimate of the form

d(An(y1), A
n(y2)) ≤ αnd(y1, y2), y1, y2 ∈ X,n ∈ N,

where An is the n-th iterate of A (i.e., A1 = A and An+1 = A ◦ An), and
∑

n∈N
αn < ∞. 3

4.2 Picard iteration

We want to apply Banach’s fixed point theorem to the IVP

y′ = f(x, y), y(x0) = y0, (4.2.1)

where f : R → R is a continuous function on the rectangle R = {(x, y) ∈ R
2 : |x − x0| ≤

a, |y − y0| ≤ b}, and x0, y0 ∈ R and a, b > 0. However, (4.2.1) is not a fixed point equation,
but after some elementary transformation, it is turned into such an equation. The proof of the
following lemma is clear.
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Lemma 4.2.1. The IVP in (4.2.1) is equivalent to the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt. (4.2.2)

Hence, if we define a map

A : C([x0 − a, x0 + a]) → C([x0 − a, x0 + a]), A(y)(t) = y0 +

∫ x

x0

f(t, y(t)) dt, (4.2.3)

then (4.2.2) is the fixed point equation y = A(y) in the space C([x0 − a, x0 + a]), more precisely
in the space C0,b, the space of those functions y in C([x0 − a, x0 + a]) that satisfy y(x0) = y0 and
y(t) ∈ [y0 − b, y0 + b] for any t ∈ [x0 − a, x0 + a]. (The latter condition in the definition of C0,b is
necessary in order that f(t, y(t)) is well-defined.) It turns out later that we will have to restrict
the domain [x0 − a, x0 + a] to some smaller interval [x0 − a1, x0 + a1] such that A : C0,b → C0,b

is well-defined and such that A is even a contraction.

In order to apply Banach’s fixed point theorem to A, we have to find conditions on f such
that A becomes a contraction. A useful concept for this is a certain continuity property:

Definition 4.2.2 (Lipschitz continuity). Let G ⊂ R
2 be a domain (i.e., an open and con-

nected set) and f : G → R a function.

(i) We say that f satisfies a Lipschitz condition or that f is Lipschitz continuous with respect
to y in G if there exists a constant L ≥ 0 (a Lipschitz constant) such that

∣∣f(x, y1) − f(x, y2)
∣∣ ≤ L|y1 − y2| (x, y1), (x, y2) ∈ G.

(ii) We say that f satisfies a local Lipschitz condition or that f is locally Lipschitz continuous
with respect to y in G if for any point in G there is a neighborhood U of the point in which
f is Lipschitz continuous (with Lipschitz constant depending on U).

Lipschitz continuity is a stronger property than continuity, but weaker than differentiability.
A Lipschitz continuous function has local slopes of bounded size everywhere.

Example 4.2.3. (i) f(x, y) = |y| satisfies a Lipschitz condition everywhere with Lipschitz
constant L = 1.

(ii) f(x, y) = y2 satisfies a local Lipschitz condition in R
2, but not a global one, since

∣∣∣
f(x, y1) − f(x, y2)

y1 − y2

∣∣∣ = |y1 + y2|.

(iii) f(x, y) =
√
|y| is not Lipschitz continuous in any interval containing 0, since

∣∣∣
f(0, y) − f(0, 0)

y − 0

∣∣∣ =
1√
|y|

.

3
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In particular, all continuously differentiable functions are Lipschitz continuous:

Lemma 4.2.4. Let G ⊂ R
2 and f : G → R continuously differentiable with respect to y (i.e.,

the map (x, y) 7→ fy(x, y) is continuous in G). Then f satisfies a local Lipschitz condition in G.

Proof. Let (x0, y0) ∈ G and let a, b > 0 be so small that the rectangle R = [x0 − a, x0 +
a] × [y0 − b, y0 + b] lies in G. According to the mean value theorem, for (x, y1), (x, y2) ∈ R,
there is an η between y1 and y2 such that |f(x, y1) − f(x, y2)| ≤ |fy(x, η)| |y1 − y2|. Since
(x, y) 7→ fy(x, y) is continuous in the bounded and closed set R, this map is also bounded, say
by L = max(x,y)∈R |fy(x, η)|. Hence, f satisfies a Lipschitz condition in R.

Now we can give sufficient criteria for the map A in (4.2.3) being a contraction. We always
consider the supremum metric on the set of continuous functions. By C0,b = C0,b([x0−a1, x0+a1])
we denote the set of continuous functions [x0 − a1, x0 + a1] → [y0 − b, y0 + b] having value y0 at
x0.

Lemma 4.2.5. Let x0, y0 ∈ R, a, b > 0 and R = {(x, y) ∈ R
2 : |x − x0| ≤ a, |y − y0| ≤ b} a

rectangle, and let f : R → R be continuous. Put M = maxR |f | and assume that f is Lipschitz
continuous in y with Lipschitz constant L > 0. Then, for any 0 < a1 < min{a, b

M , 1
L}, the map

A defined in (4.2.3) is a contraction on the set C0,b([x0 − a1, x0 + a1]) (after properly restricting
the definition in (4.2.3) to the smaller domain [x0 − a1, x0 + a1] instead of [x0 − a, x0 + a]).

Proof. First we show that A is indeed a map from C0,b into itself. It is clear that, for y ∈ C0,b,
the map A(y) : [x0 − a1, x0 + a1] → R is continuous with value y0 in x0. Hence, we have to show
that |A(y)(x) − y0| ≤ b for any x ∈ [x0 − a1, x0 + a1]. This is clear from

|A(y)(x) − y0| ≤
∫ x

x0

∣∣f(t, y(t))|dt ≤ a1 max
R

|f | = a1M ≤ b,

by our choice of a1.

Now we show that A is a contraction. For any y1, y2 ∈ C0,b, we have

d∞(A(y1), A(y2)) = sup
x∈[x0−a1,x0+a1]

∣∣A(y1)(x) − A(y2)(x)
∣∣

≤ sup
x∈[x0−a1,x0+a1]

∫ x

x0

∣∣f(t, y1(t)) − f(t, y2(t))
∣∣ dt

≤ L

∫ x

x0

sup
t∈[x0−a1,x0+a1]

|y1(t) − y2(t)|dt ≤ La1d∞(y1, y2).

By our assumption on a1, the contraction coefficient q = La1 is smaller than one, and this shows
that A is a contraction.

Now we apply Banach’s fixed point theorem to the map A defined in (4.2.3) and obtain
that there is a unique solution y to the integral equation in (4.2.2) (which is equivalent to the
IVP in (4.2.1) by Lemma 4.2.1). Even better, we also obtain an explicit iteration method that
approaches the solution uniformly (i.e., in supremum metric). This method is often also called
the method of successive approximation.
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Theorem 4.2.6 (Picard Iteration). Let x0, y0 ∈ R, a, b > 0 and R = {(x, y) ∈ R
2 : |x−x0| ≤

a, |y−y0| ≤ b} a rectangle, and let f : R → R be continuous. Put M = maxR |f | and assume that
f is Lipschitz continuous in y with Lipschitz constant L > 0. Fix any a1 ∈ (0,min{a, b

M , 1
L}).

Then, for an arbitrary initial function y1 ∈ C0,b([x0 − a1, x0 + a1]), the sequence of functions
y1, y2, y3, . . . defined by

yn+1(x) = A(yn)(x) = y0 +

∫ x

x0

f(t, yn(t)) dt, n ∈ N, x ∈ [x0 − a1, x0 + a1], (4.2.4)

converges uniformly on [x0 − a1, x0 + a1] towards the unique solution to the IVP in (4.2.1).

Remark 4.2.7 (Possible improvement). Using the fixed point theorem of Remark 4.1.4, it
is possible to slightly improve Theorem 4.2.6. Indeed, it turns out that one does not have to
assume that a1 < 1

L . This simplification makes the interval on which we can prove the existence
and uniqueness of the solution independent of the Lipschitz constant of f . 3

In the following examples of applications of Theorem 4.2.6, we do not care about the precise
domain [x0 − a1, x0 + a1] on which we construct a solution. The restriction of a1 due to the
Lipschitz constant of f is purely technical (see Remark 4.2.7), and the others (due to the domain
and maximal size of f) max be chosen arbitrarily in our examples, since f is continuously
differentiable and therefore Lipschitz continuous on any bounded set. However, once we have
found the successive approximations (yn)n∈N, we do register on what intervals they converge
uniformly to the solution.

Example 4.2.8. We apply the Picard iteration to the equation y ′ = xy with initial value
y(0) = 1. Hence, f(x, y) = xy, x0 = 0 and y0 = 1. We begin with y0(x) = 1. Then we have

y1(x) = 1 +

∫ x

0
ty0(t) dt = 1 +

1

2
x2, y2(x) = 1 +

1

2
x2 +

1

8
x4,

and we wonder what the general building principle of the sequence (yn)n is. The answer is given
by the formula

yn(x) =
n∑

k=0

x2k

2kk!
,

which is easily verified using an induction. Obviously, this sequence converges uniformly on any
bounded interval to the function y(x) = e

1
2
x2

, which is obviously the unique solution. 3

Example 4.2.9. We apply the Picard iteration to the equation y ′ = 2 + 3y with initial value
y(0) = 1

2 . We begin with the constant function y0(x) = 2 and obtain

y1(x) =
1

2
+

∫ x

0
(2 + 3y0(t)) dt =

1

2
+

7

2
x, y2(x) =

1

2
+

∫ x

0
(3y1(t) + 2) dt =

1

2
+

7

2
x +

21

4
x2.

In order to find the general structure of this iteration scheme, we note that the iterating rule is

yn+1(x) =
1

2
+ 2x + 3

∫ x

0
yn(t) dt, n ∈ N0.
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Hence, it is clear that yn is a polynomial of degree precisely n. Therefore we make the ansatz
yn(x) =

∑n
k=0 α(n)

k xk and substitute in the iterating rule. After a small calculation and a
comparison of the coefficients, we obtain, for any n ∈ N0,

α(n+1)

0 =
1

2
, α(n+1)

1 = 2 + 3α(n)

0 =
7

2
, α(n+1)

k =
3

k
α(n)

k−1, k ∈ {2, . . . , n + 1}.

Hence, α(n)

k = 7
2

3k−1

k! for k ∈ {2, . . . , n}. Hence,

yn(x) =
1

2
+

7

2
x +

7

2

n∑

k=2

3k−1

k!
xk = −2

3
+

7

6

n∑

k=0

(3x)k

k!
.

Obviously, this converges towards y(x) = − 2
3 + 7

6e3x, which is certainly the unique solution of
the IVP y′ = 2 + 3y with initial value y(0) = 1

2 . 3

Example 4.2.10. We apply the Picard iteration to the equation y ′ = y + x with initial value
y(0) = y0. Then the general rule of the successive approximations is

yn+1(x) = y0 +
x2

2
+

∫ x

0
yn(t) dt, n ∈ N.

This gives y0(x) = y0, y1(x) = y0 + x2

2 + xy0, y2(x) = y0(1 + x + x2

2 ) + x2

2 + x3

3! and so on. This
leads us to the conjecture that

yn(x) = y0

n∑

k=0

xk

k!
+

n∑

k=2

xk

k!
, n ∈ N,

which we easily verify using the above recursive rule. Hence, it is clear that limn→∞ yn(x) =
y0e

x + ex − x − 1, which is also obviously the unique solution to the IVP y ′ = y + x, y(0) = y0.
We note that the convergence is uniform on any bounded subset of R. Theorem 4.2.6 only tells
us that the convergence is uniform on any closed subinterval of (−1, 1) since L = 1 is the best
Lipschitz constant of f(x, y) = x + y. However, this restriction is dropped in the improvement
remarked in Remark 4.2.7, and actually, it is much less than the truth. 3

4.3 Peano’s existence theorem

In this section, we present another existence result for the IVP in (4.2.1), which is famous and
fundamental. It does not require f to be Lipschitz continuous, but the construction of the
solution (which is again approximative) is less suitable for explicit use.

Theorem 4.3.1 (Peano). Let x0, y0 ∈ R, a, b > 0 and R = {(x, y) ∈ R
2 : |x−x0| ≤ a, |y−y0| ≤

b} a rectangle, and let f : R → R be continuous. Then the IVP

y′ = f(x, y), y(x0) = y0, (4.3.1)

admits at least one solution that extends to the boundary of R.
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To be sure, we do not require that the solution is a map [x0−a, x0 +a] → [y0−b, y0 +b], but
a map [x0 − a1, x0 + a2] → [y0 − b, y0 + b], where a1, a2 ∈ (0, a] are maximal, i.e., the solution is
at the boundary y0± b in x0−a1 and in x0 +a2. The proof shows that we may take a1 = a2 = a
if max(x,y)∈R |f(x, y)| ≤ b

a .

Sketch of proof. Of course, we may and shall assume that x0 = y0 = 0. Abbreviate M =
max |f | = max(x,y)∈R |f(x, y)|. Furthermore, we also may assume that f ≥ 0, since we otherwise
substitute u(x) = y(x) + Mx, which solves the IVP u′ = f(x, u − Mx) + M ≡ g(x, u) with
u(0) = 0 and g ≥ 0.

For technical reasons, we extend f continuously to the infinite strip [−a, a] × R by putting
f(x, y) = f(x, b) for y > b and f(x, y) = f(x,−b) for y < −b, i.e., outside the rectangle R we
put f equal to the value at the boundary of R.

Now we decompose the right half of the strip [−a, a]×R, i.e., the set [0, a]×R, into disjoint
small rectangles

R(n)

k,l =
[
a
k

n
, a

k + 1

n

)
×

[ l

2n
,
l + 1

2n

)
, k ∈ {0, . . . , n − 1}, l ∈ Z,

where n ∈ N is a parameter which will eventually be sent to ∞. For any n ∈ N, we denote by
yn : [0, a] → R the continuous polygon line with yn(0) = 0 that is a straight line within every
sub-rectangle R(n)

k,l that it hits and has slope

m(n)

k,l = min
(x,y)∈R

(n)
k,l

f(x, y)

within that rectangle. This construction is done step by step, starting with the first rectangle,
R(n)

0,0 = [0, a 1
n ] × [0, 2−n], where yn is the straight line from yn(0) = 0 with slope m(n)

0,0. If this

slope is small enough, then the graph of yn in R(n)

0,0 does not leave this rectangle, but ends at

yn(a 1
n) = a 1

nm(n)

0,0. Then we proceed in the right-neighboring rectangle, R(n)

1,0, by adding a piece

with slope m(n)

1,0 until it leaves also R(n)

1,0, and so on. Otherwise, the graph of yn leaves R(n)

0,0

somewhere in (0, a 1
n ), and it is extended to the upper-neighboring rectangle, R(n)

0,1, with slope

m(n)

0,1 until it leaves that rectangle. In this way, we proceed.

The function yn is a discrete approximation to a function that solves the ODE y ′ = f(x, y),
since it solves, by construction, a discrete version of that ODE. It is not too difficult to see that
yn(x) ≤ yn+1(x) ≤ Mx ≤ Ma for any n ∈ N and any x ∈ [0, a]. Hence, the sequence (yn(x))n∈N

posseses a limit y(x) for any x ∈ [0, a]. In this way, we have constructed a function y : [0, a] → R.
In the same way, we construct a function y : [−a, 0] → R. Putting these two functions together,
we obtain a function y : [−a, a] → R. Now the main work of the proof (which we will omit)
consists of showing that y is differentiable in [−a, a], solves the ODE y ′ = f(x, y) and satisfies
y(x) ∈ [0, b] for any x ∈ [−a, a].

Note that Peano’s Theorem gives only the existence of a solution of the IVP in (4.2.1), not
its uniqueness. As a trivial example, the IVP y ′ = 2

√
|y|, y(0) = 0, has more than one solution,

the function identical to zero and the function x 7→ x2 sign(x).

4.4 Further uniqueness theorems

We recall from Lemma 4.2.1 that the IVP in (4.2.1), which is the object of our interest, is
equivalent to the integral equation in (4.2.2). Based on this equivalence, we present another
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uniqueness result for (4.2.1), which is based on Lipschitz continuity and the following important
tool.

Lemma 4.4.1 (Gronwall’s Lemma). Let ϕ : [a, b] → R be continuous, and fix L ≥ 0. If, for
some C > 0,

0 ≤ ϕ(x) ≤ C + L

∫ x

a
ϕ(t) dt, x ∈ [a, b],

then ϕ satisfies the bound ϕ(x) ≤ CeL(x−a) for any x ∈ [a, b].

Proof. Since ϕ ≥ 0, L ≥ 0 and C > 0, also f(y) ≡ C + L
∫ y
a ϕ(t) dt is positive. Observe that

from the assumption we have that

f ′(y)

f(y)
=

Lϕ(y)

C + L
∫ y
a ϕ(t) dt

≤ L, y ∈ [a, b].

Now integrate the left hand side, f ′(y)/f(y), from y = a to y = x, to obtain

log
(
C + L

∫ x

a
ϕ(t) dt

)
= log f(x) = log f

∣∣∣
x

a
+ log f(a) =

∫ x

a

f ′(y)

f(y)
dy + log C

≤ L(x − a) + log C.

Applying the exponential function and using once more that ϕ ≤ f , we arrive at the assertion.

Applying Gronwall’s lemma to arbitrarily small C > 0, we obtain the following strong
assertion:

Corollary 4.4.2. In particular, if ϕ satisfies the bound 0 ≤ ϕ(x) ≤ L
∫ x
a ϕ(t) dt for any x ∈

[a, b], then ϕ is the function identically equal to zero.

Now it is easy to obtain a uniqueness result for the integral equation in (4.2.2):

Lemma 4.4.3. Let f be continuous and satisfy a Lipschitz condition on the domain G. Assume
that there is a non-trivial interval I such that there are two solutions y1, y2 : I → R of the integral
equation in (4.2.2). Then y1(x) = y2(x) for any x ∈ I.

Proof. We consider ϕ = y1 − y2. Then we have from (4.2.2) that ϕ(x) =
∫ x
x0

(f(t, y1(t)) −
f(t, y2(t))) dt for any x ∈ I. We may assume that I is bounded and closed, hence f satisfies
a Lipschitz condition in any compact neighborhood K of the curves of y1 and y2. This is
seen via a standard compactness argument as follows. By assumption, for any z ∈ K, there
is some neighborhood Uz of z in which f satisfies a Lipschitz condition with constant Lz. By
compactness of K, there are n ∈ N and z1, . . . , zn ∈ K such that K is covered by Uz1 , . . . , Uzn .
Then f is Lipschitz continuous in K with Lipschitz constant L = maxn

i=1 Lzi
, as one can show

with some bit of work.

Using the Lipschitz continuity in K, we obtain that

|ϕ(x)| ≤
∫ x

x0

∣∣f(t, y1(t)) − f(t, y2(t))
∣∣ dt ≤

∫ x

x0

L|y1(t) − y2(t)|dt ≤ L

∫ x

x0

|ϕ(t)|dt.
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Now Corollary 4.4.2 yields that ϕ = 0, i.e., y1 = y2.

Summarizing Theorem 4.3.1, and Lemmas 4.2.1 and 4.4.3, we arrive at the announced
uniqueness result:

Theorem 4.4.4 (Existence and uniqueness for (4.2.1)). Let G ⊂ R
2 be a domain, and let

f : G → R satisfy a local Lipschitz condition. Then, for any (x0, y0) ∈ G, there is a unique
solution y for the IVP

y′ = f(x, y), y(x0) = y0, (4.4.1)

whose graph extends from the left boundary of G to the right boundary of G.

Corollary 4.4.5. Let a < b and f : [a, b]×R → R be continuous satisfying a Lipschitz condition
in y. Then, for any (x0, y0) ∈ [a, b] × R, there is precisely one solution of the IVP y ′ = f(x, y),
y(x0) = y0.

Example 4.4.6. The IVP y′ = sin y, y(x0) = y0, possesses a unique solution on R. The
function f(x, y) = sin y satisfies a Lipschitz condition with respect to y on R with Lipschitz
constant L = 1. The solutions are the constant functions x 7→ kπ with k ∈ Z and the implicit
solution tan y

2 = ex−c with c ∈ R. 3

Example 4.4.7. The IVP y′ = y2, y(0) = y0 > 0, possesses the solution y(x) = y0

1−y0x , which is

defined only in the interval (− 1
y0

, 1
y0

). The function f(x, y) = y2 satisfies a Lipschitz condition
on any bounded subinterval w.r.t. y, but in no infinite stripe. 3

4.5 Continuous dependence of the solution

We can generalize the question of uniqueness of the solution to (4.2.1) to the question if two
solutions will be ‘close’ together if their initial values are. Under the assumption of Lipschitz
continuity, this question is easily answered in the affirmative:

Lemma 4.5.1. Let G ⊂ R
2 be a domain and f : G → R continuous satisfying a Lipschitz

condition in G with Lipschitz constant L. Then, for any two solutions y1, y2 of the equation
y′ = f(x, y) and for any x0 ∈ G(1) ≡ {x : ∃y ∈ R : (x, y) ∈ G},

|y1(x) − y2(x)| ≤ |y1(x0) − y2(x0)|eL|x−x0|, x ∈ G(1).

Proof. It is sufficient to consider the case x > x0. Put ϕ(x) = |y1(x) − y2(x)|, then

0 ≤ ϕ(x) =
∣∣∣
∫ x

x0

[
f(t, y1(t)) − f(t, y2(t))

]
dt + y1(x0) − y2(x0)

∣∣∣

≤ |y1(x0) − y2(x0)| + L

∫ x

x0

ϕ(t) dt

Now the assertion follows from Gronwalls Lemma.

A similar question is whether or not two solutions for different functions f and f ∗ will be
close to each other if f and f ∗ are close to each other. Also this may be answered positively:
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Lemma 4.5.2. Let G ⊂ R
2 be a domain and f : G → R continuous satisfying a Lipschitz

condition in G with Lipschitz constant L. Furthermore, let f ∗ : G → R be a function that differs
from f only by ε > 0, i.e., |f(x, y) − f ∗(x, y)| ≤ ε for any (x, y) ∈ G. Let (x0, y0) ∈ G, and
let y and y∗ be the solutions of y′ = f(x, y) resp. (y∗)′ = f∗(x, y∗) in G with the same initial
condition y(x0) = y∗(x0) = y0. Then, for any sufficiently small δ > 0,

|y(x) − y∗(x)| ≤ εδeL(x−x0), x ∈ [x0, x0 + δ].

Proof. We use that y and y∗ satisfy the corresponding integral equations (recall Lemma 4.2.1)
and see that

|y(x) − y∗(x)| ≤
∫ x

x0

∣∣f(t, y(t)) − f(t, y∗(t)) + f(t, y∗(t)) − f ∗(t, y∗(t))
∣∣ dt

≤
∫ x

x0

∣∣f(t, y(t)) − f(t, y∗(t))
∣∣ dt +

∫ x

x0

∣∣f(t, y∗(t)) − f ∗(t, y∗(t))
∣∣ dt

≤ L

∫ x

x0

|y(t) − y∗(t)|dt + εδ.

Now Gronwall’s Lemma implies the assertion.

Example 4.5.3. The function f(x, y) = x + sin y differs in G = (− π
2 , π

2 ) ×R from the function

f∗(x, y) = x + 2
πy by less than ε = 0.211. The function y∗(x) = −π

2x + π2

4 (e2x/π − 1) solves
the IVP (y∗)′ = f∗(x, y∗), y∗(0) = 0. The function f(x, y) = x + sin y has Lipschitz constant
L = 1. According to Lemma 4.5.2, for any sufficiently small δ > 0, the solution y(x) of the IVP
y′ = f(x, y), y(0) = 0, differs from y∗(x) in the interval x ∈ [0, δ] by no more than 0.211 δex. 3



Chapter 5

ODE systems

In this chapter, we extend our study of ODEs for single functions to systems of ODEs for several
functions, which are also of importance in applications. In particular, we will see that higher-
order ODEs may be seen as special cases of ODE systems. This will enable us to give existence
and uniqueness results for higher-order ODEs, which we postponed in Chapter 2.

5.1 Basics

Consider a function F : D → R
n on a (n + 1)-dimensional domain D ⊂ R

n+1 giving a vec-
tor of n values, F (x, y1, y2, . . . , yn) = (F1(x, y1, . . . , yn), . . . , Fn(x, y1, . . . , yn)). Sometimes F =
(F1, . . . , Fn) is called a vector field. Then the system of n equations,

y′i = Fi

(
x, y1(x), . . . , yn(x)

)
, i = 1, . . . , n, (5.1.1)

will be conceived as one n-dimensional ODE system of first order. It may be abbreviated

y′ = F (x, y), y = (y1, . . . , yn). (5.1.2)

In analogy with the notions introduced at the beginning of Chapter 1, we call y a solution to
(5.1.1) if, for some interval I, there is a function y : I → R

n such that (x, y(x)) ∈ D for any x ∈ I
an such that (5.1.1) is satisfied for x ∈ I. If this curve runs through a given point (x0, y0) ∈ D,
then we say that the initial-value problem (IVP) y ′ = F (x, y), y(x0) = y0, is solved by y. We
speak of a general solution if there are n free parameters, and we call the solution complete if all
the solutions are comprised. We can conceive y as a curve in the n-dimensional space, indexed
by ‘time’ x ∈ I.

Example 5.1.1 (Predator-prey model). Let y1(t) and y2(t) denote the number of predators
respectively preys at time t ≥ 0. The death-rate of the predators is −(α − βy2(t))y1(t), where
α, β > 0, decays without prey and increases linearly with the amount of available prey. The
growth rate of the prey, (γ − δy1(t))y2(t), where γ, δ > 0, is positive without predators and
decreases linearly with the presence of predators. Hence, the vector y = (y1, y2) of the two
functions satisfies the system

y′1(t) = −(α − βy2(t))y1(t),
y′2(t) = (γ − δy1(t))y2(t).

45
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(Remark: With an appropriate choice of the parameters, one could argue why after The Great
War much more sharks were caught in the Mediterranian Sea and much less eatable fish than
in the years before 1914, even though during The Great War fishing was severely restricted.) 3

It is important to note that certain higher-order ODEs are special cases of systems of ODEs:

Remark 5.1.2. Consider an explicit n-th order ODE

y(n) = f(x, y, y′, y′′, . . . , y(n−1)). (5.1.3)

Putting y1 = y, y2 = y′1 = y′, y3 = y′′, . . . , yn = y(n−1) = y′n−1, then (5.1.3) is equivalent to the
following ODE system:

y′i = yi+1, for i = 1, . . . , n − 1, y′
n = f(x, y1, y2, . . . , yn). (5.1.4)

Hence, y is a solution of (5.1.3) if and only if (y, y ′, y′′, . . . , y(n−1)) is a solution of (5.1.4). 3

It is often a good idea to turn a first-order ODE system into a higher-order ODE by differ-
entiation and elimination:

Example 5.1.3. With real coefficients a1, a2, a3 and b1, b2, b3 and ω, we look at the transfor-
mator equations,

I ′′1 = a1I1 + a2I2 + a3 cos(ωt),
I ′′2 = b1I1 + b2I2 + b3 cos(ωt).

Differentiating the first equation twice gives

I(4)

1 = a1I
′′
1 + a2I

′′
2 − ω2a3 cos(ωt).

Now substitute the second equation for I ′′
2 and use the first equation to substitute I2 (here we

assume that a2 6= 0), then we obtain, for some coefficients c1, c2, c3,

I(4)

1 = c1I
′′
1 + +c2I1 = c3 cos(ωt),

which is a fourth-order ODE for I1. An analogous equation may be derived for I2. 3

5.2 Existence and uniqueness

The results of Chapter 4 may be extended to systems of ODEs with almost no changes. We
summarize the most important facts.

The n-dimensional version of Peano’s Theorem says that the IVP

y′ = F (x, y), y(x0) = y0, (5.2.1)

for any x0 ∈ R and y0 ∈ R
n admits at least one solution y in a given neighborhood of x0 if the

function F is a continuous vector field such that the graph of y is contained in the domain of F .

We denote by |x| = (x2
1 + · · · + x2

n)
1
2 the Euclidean norm of the vector x = (x1, . . . , xn).

We say that f : D ⊂ R
n+1 → R

n satisfies a Lipschitz condition w.r.t. y in the domain D with
Lipschitz constant L > 0 if |f(x, y1) − f(x, y2)| ≤ L |y1 − y2| for any (x, y1), (x, y2) ∈ D. We
say that f satisfies a local Lipschitz condition if for any point in D there is a neighborhood
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in which f satisfies a Lipschitz condition, with Lipschitz constant possibly depending on the
neighborhood. It is clear from Lemma 4.2.4 that a vector field F = (F1, . . . , Fn) satisfies a local
Lipschitz condition if it is continuously partially differentiable w.r.t. y. It is also clear from
the triangle inequality that f = (f1, . . . , fn) is Lipschitz continuous if and only if every single
component f1, . . . , fn is.

An n-dimensional version of the existence and uniqueness result of Lemma 4.4.3 says that, if
F is continuously partially differentiable w.r.t. y in some domain D ⊂ R

n+1, the IVP in (5.2.1)
possesses precisely one maximal solution on any interval such that the solution curve x 7→ y(x)
lies entirely in D. Here we call the solution maximal if it cannot be extended to any larger
interval.

We also note that continuity results like in Lemmas 4.5.1 and 4.5.2 are valid in the n-
dimensional setting.

5.3 Linear systems

The simplest nontrivial ODE systems are linear, i.e., of the form

y′(t) = A(t) y(t) + b(t), t ∈ I ⊂ R, y : I → R
n, (5.3.1)

with a coefficient matrix A(t) = (ai,j(t))i,j=1,...,n ∈ R
n×n and a vector b(t) = (b1(t), . . . , bn(t))T ∈

R
n, for t ∈ I. We call (5.3.1) homogeneous if b(t) = 0 for any t ∈ I, and inhomogeneous otherwise.

Example 5.3.1. The system

y′1(t) = 3y1(t) + 2y2(t) + t2y3(t) + cos(ωt),
y′2(t) = (sin t)y1(t) + 5y3(t),

y′3(t) = ty1(t) + t2y2(t) + t3y3(t) +
√

t,

is equivalent to (5.3.1), where

A(t) =




3 2 t2

sin t 0 5
t t2 t3


 , b(t) =




cos(ωt)
0√
t


 .

3

Remark 5.3.2 (Superposition principle). Clearly, also a linear system satisfies the su-
perposition principle: if y and z are solutions to the systems y ′ = A(t)y + b(t) respectively
z′ = A(t)z + c(t), then w = αy + βz is a solution to the equation w ′ = A(t) + (αb(t) + βc(t)). 3

The theory of the structure of the set of the solutions to (5.3.1) is reminiscent of the results
of Chapter 2 on ODEs of second order, but there are some features that were hidden there
because of the low-dimensionality. We are going to present now the general principle. In
particular, we will finally give the proof of the fact that the solutions of the homogeneous
equation y′′ + ay′ + by = 0 which we constructed in the proof of Lemma 3.1.3 are indeed
complete. We will have to rely on some notions and facts from Linear Algebra.

We recall the important notion of linear independence of Definition 3.1.2. Recall that a
subset V of a vector space X is itself a vector space, a linear subspace, if and only if it is closed
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against taking linear combinations. The dimension of a vector space is the smallest number of
vectors that span this vector space, i.e., such that every element of this space is an appropriate
linear combination of these vectors. Equivalently, the dimension is the largest number of linearly
independent elements of the space. The vector space X we will be working with is the space of
all functions I → R

n, where I is the interval of (5.3.1).

Definition 5.3.3 (Wronski determinant). Let I ⊂ R be an interval, y1, . . . , yn : I → R
n

functions and Y = (y1, . . . , yn) the corresponding vector field. We consider t 7→ Y (t) ∈ R
n×n as

a continuous, matrix-valued map. Then we call W (t) = det(Y (t)) the Wronski determinant of
y1, . . . , yn.

It is easy to see that

W (t0) 6= 0 for some t0 ∈ I =⇒ y1, . . . , yn are linearly independent.

Indeed, if
∑n

i=1 aiyi = 0 for some a1, . . . , an ∈ R, then, in particular, 0 =
∑n

i=1 aiyi(t0) = Y (t0)a,
where a = (a1, . . . , an)T. By assumption, Y (t0) is a regular matrix, and therefore we have a = 0.
This implies that y1, . . . , yn are linearly independent.

Our next goal is to strengthen this criterion under the assumption that y1, . . . , yn are
solutions of the homogeneous equation. We recall the trace Tr(A) =

∑n
i=1 ai,i of a matrix

A = (ai,j)i,j=1,...,n, the sum of the diagonal elements of A.

Lemma 5.3.4 (Liouville formula). Let I ⊂ R be an interval and A : I → R
n×n a continuous

matrix-valued mapping. Let y1, . . . , yn be n solutions (not necessarily linearly independent) to
the homogeneous equation y′(t) = A(t) y(t). By W (t) = det(Y (t)) we denote the Wronski
determinant of y1, . . . , yn. Then, for any t, t0 ∈ I,

W (t) = W (t0) exp
( ∫ t

t0

Tr(A(s)) ds
)
. (5.3.2)

Proof. With the help of multidimensional calculus, we are going to derive that W satisfies the
equation W ′(t) = W (t)Tr(A(t)), which implies the result. To this aim, we use the multilinearity
of the determinant in the columns to obtain

W ′(t) = det
(
y′1(t), y2(t), . . . , yn(t)

)
+ det

(
y1(t), y

′
2(t), y3(t) . . . , yn(t)

)
+ . . .

+ det
(
y1(t), . . . , yn−1(t), y

′
n(t)

)

= det
(
A(t)y1(t), y2(t), . . . , yn(t)

)
+ · · · + det

(
y1(t), . . . , yn−1(t), A(t)yn(t)

)

=

n∑

i,j=1

ai,j(t) det
i,j

(
Y (t)

)
,

where deti,j(Y (t)) is the determinant of Y (t), after replacing in the i-th column yi by the j-th,
yj. Hence, for i 6= j, deti,j(Y (t)) is the determinant of a matrix having two equal columns and
is therefore equal to zero. Therefore, only the sum over the diagonal survives, i.e., W ′(t) =∑n

i=1 ai,i(t) det(Y (t)) = W (t)Tr(A(t)), where we also used that deti,i = det.

This nice formula, together with (5.3.2), gives us a nice simple criterion for linear indepen-
dence of solutions y1, . . . , yn of the homogeneous equation y′(t) = A(t) y(t):

Corollary 5.3.5. In the situation of Lemma 5.3.4, if W (t0) 6= 0 for some t0 ∈ I, then W (t) 6= 0
for all t ∈ I. In particular, the functions y1, . . . , yn are linearly independent over I.
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Example 5.3.6. Consider A(t) = 1
t

(
1 2t2

0 1

)
for I = (0,∞). Then we have two solutions,

y1(t) =
(t
0

)
and y2(t) =

(t3

t

)
. Furthermore, W (t) = t2 6= 0 in I. On the other hand, one could

have derived this fact using that Tr(A(t)) = 2
t and W (1) = 1. 3

Theorem 5.3.7 (Solutions of a linear ODE system). Let I ⊂ R be an interval and
A : I → R

n×n a continuous matrix-valued mapping. Furthermore, let b : I → R
n be a continuous

vector-valued mapping.

(i) The set of solutions y of the homogeneous equation,

L = {y : I → R
n | y′(t) = A(t) y(t)∀t ∈ I}

is a vector space of dimension equal to n.

(ii) The general solution of the linear equation y ′ = A(t) y + b(t) is of the form yp(t) + yh(t),
where yp is a particular solution, and yh ∈ L.

Proof. It is clear that the set L is a vector space. It is also clear from the superposition principle
that any solution of the inhomogeneous equation is a sum of a particular solution and a solution
to the homogeneous equation. It is left to show that L is not empty, and we have to identify its
dimension.

Since the map t 7→ ai,j(t) is continuous for any i, j ∈ {1, . . . , n}, it is also bounded on any
bounded subinterval of I. Hence, the map (t, y) 7→ A(t)y is Lipschitz continuous with respect
to y on any bounded subset of I ×R

n. According to the general existence and uniqueness result
for first-order ODE systems mentioned in Section 5.1, there is precisely one solution to the IVP
y′ = A(t) y, y(t0) = y0, for any t0 ∈ I and any y0 ∈ R

n. Hence, L is not empty.

We apply this to y0 = ei, the i-th unit vector: for i = 1, . . . , n, there is precisely one
solution yi to the IVP y′i = A(t) yi, yi(t0) = ei. Since the matrix (y1(t0), . . . , yn(t0)) is the
identity matrix, it is regular, and W (t0) = 1 6= 0. By Corollary 5.3.5, the functions y1, . . . , yn

are linearly independent. In particular, we have found n linearly independent elements of L,
and hence its dimensions is at least n.

By the superposition principle, for any a = (a1, . . . , an) ∈ R
n, the IVP y′ = A(t) y + b(t),

y(t0) = a, possesses the unique solution
∑n

i=1 aiyi. Hence, every element in L may be written
as a linear combination of y1, . . . , yn, which shows that the dimension of L is at most n. This
finishes the proof.

Combining this result with Remark 5.1.2, we have now a proof for the fact mentioned in
Lemma 3.1.3 that the two solutions which we constructed in that proof form indeed a basis of
the solution set.
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Corollary 5.3.8. In the situation of Theorem 5.3.7, if y1, . . . , yn are any solutions of the
homogeneous equation y′ = A(t) y satisfying W (t0) 6= 0 for at least one t0 ∈ I, then the
general solution of the equation y′ = A(t) y + b(t) is of the form yp +

∑n
i=1 αiyi, where yp

is a particular solution, and α1, . . . , αn ∈ R. Any set of such functions y1, . . . , yn is called a
fundamental system or a solution basis of y ′ = A(t) y.

Remark 5.3.9 (Fundamental matrix). If y1, . . . , yn are n linearly independent solutions to
y′ = A(t) y, then the matrix-valued map t 7→ Y (t) = (y1(t), . . . , yn(t)) is called a fundamental
matrix. Since the Wronski determinant does not vanish in I, Y (t) is regular for any t ∈ I.
Hence, the general solution of y′ = A(t) y may be compactly written as Y (t)a =

∑n
i=1 aiyi(t),

for a vector a ∈ R
n. In other words, the solution of the IVP y ′ = A(t) y, y(t0) = y0, may be

written as

Y (t)Y (t0)
−1y0. (5.3.3)

3

Let us remark here that the explicit systematic computation of the fundamental matrix is
messy and often even not possible.

Example 5.3.10. The ODE system

y′ =

(
2t −3t2

3t2 2t

)
y (5.3.4)

possesses the fundamental matrix

Y (t) = et2
(

cos t3 sin t3

− sin t3 cos t3

)
.

As we saw in the proof of Lemma 5.3.4, the Wronski determinant, W (t) = e2t2 , is a solution
to W ′(t) = 4tW (t). Using (5.3.3), we find the solution of the IVP in (5.3.4), together with
y(t0) = y0, as

y(t) = et2−t20

(
cos(t3 − t30) sin(t3 − t30)
− sin(t3 − t30) cos(t3 − t30)

)
y0.

3

Remark 5.3.11 (Variation of constants). The n-dimensional version of this method is easy
to explain. As in Section 3.2, we have already a fundamental matrix Y (t) for the homogeneous
equation y′(t) = A(t) y(t) and want to derive a particular solution yp for the inhomogeneous
equation y′(t) = A(t) y(t) + b(t). The ansatz is yp(t) = Y (t)c(t) for some vector-valued function
t 7→ c(t) ∈ R

n, which replaces the constant vector c of the homogeneous solution. Since y ′ = Ay
and y′p = Y ′c + Y c′, this ansatz is equivalent to b(t) = Y (t)c′(t), and we obtain

c(t) =

∫
Y (t)−1b(t) dt,

where the integral is meant componentwise. Now we can summarize:
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General solution of a linear first order ODE system. The general solution y of y ′(t) =
A(t) y(t) + b(t) is given by

Y (t)
[ ∫ t

t0

Y (s)−1b(s) ds + c
]
, c ∈ R

n, (5.3.5)

where Y (t) is a fundamental matrix of y ′(t) = A(t) y(t), and t0 ∈ I. The unique solution of
the IVP y′(t) = A(t) y(t) + b(t) with y(t0) = y0 is obtained for choosing c = Y (t0)

−1y0.

3

Example 5.3.12. The IVP

y′(t) =
1

t

(
1 −2t2

0 1

)
y + t3

(
3

0

)
, (t > 0), y(1) =

(
2

1

)
,

possesses the fundamental matrix Y (t) =

(
t t3

0 t

)
. The inverse is Y (t)−1 = 1

t

(
1 −t2

0 1

)
.

Hence, (5.3.5) implies that the unique solution of the IVP is given by

y∗(t) =

(
t t3

0 t

) [∫ t

1

1

s

(
1 −s2

0 1

)
s3

(
3

0

)
ds +

(
1 −1
0 1

)(
2

1

)]

=

(
t t3

0 t

) (
t3

1

)
=

(
t4 + t3

t

)
.

3

We already mentioned that, in general, a fundamental matrix cannot be found systemati-
cally. The situation is much better when the coefficient matrix is constant, i.e., does not depend
on t. The following remark is a very short summary of the technique one applies in that case.

Remark 5.3.13 (ODE systems with constant coefficients). If the coefficient matrix A
does not depend on t, then (at least, theoretically) one can use basic knowledge in Linear Algebra
to systematically find a fundamental matrix, which we want to indicate here.

The main idea is that, in the special case where A is a diagonal matrix, the system y ′ = Ay
splits into n independent equations for the functions y1, . . . , yn, without any coupling between
them. Hence, it is easy to find a fundamental matrix here. The next step is that, in the
special case where A can be transformed into a diagonal matrix, i.e., where SAS−1 is a diagonal
matrix D for some suitable invertibel matrix S, then the system y ′ = Ay is transformed into
the decoupled system z ′ = Dz for z = Sy. Hence, also this case is easy. We note that this case
applies to any normal matrix A, i.e., for any matrix A satisfying AA∗ = A∗A. In the general
case, A can be transformed only into a Jordan normal form, which differs from a diagonal matrix
by a number of ones on the next-to-main diagonal. In this case, the transformed system is not
really decoupled, but only weakly coupled since in each of the equations, only at most two of
the functions yi appear. 3

In Remark 5.1.2 we already explained that linear ODEs of higher order may be seen as a
special case of ODE systems. This we want to make more explicit now.
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Remark 5.3.14 (Linear ODEs of order n). We consider a general n-th order linear ODE
of the form (Lϕ)(t) = f(t), where the operator L is given by

(Lϕ)(t) = ϕ(n)(t) + an−1(t)ϕ
(n−1)(t) + · · · + a1(t)ϕ

′(t) + a0(t)ϕ(t), (5.3.6)

with continuous functions ai, b : I → R on an interval I. According to Remark 5.1.2, the equation
(Lϕ)(t) = b(t) is equivalent to the first-order linear ODE system y ′(t) = A(t) y(t) + f(t), where
y = (ϕ,ϕ′, ϕ′′, . . . , ϕ(n−1))T and

A(t) =




0 1 0 . . . 0 0
0 0 1 0 0
...

... 0
. . .

...
...

...
...

...
. . . 1 0

0 0 0 0 1
−a0(t) −a1(t) −a2(t) . . . −an−2(t) −an−1(t)




and f(t) =




0
...
0
(t)


 .

Let us consider the homogeneous equation (Lϕ)(t) = 0, i.e., y ′(t) = A(t) y(t). A set of n solutions
y1, . . . , yn : I → R

n to y′(t) = A(t) y(t) corresponds to a set of n solutions ϕ1, . . . , ϕn : I → R to
the equation Lϕ = 0. They are linearly independent if and only if the vectors (ϕi, ϕ

′
i, ϕ

′′
i , . . . , ϕ

(n−1)

i )
for i = 1, . . . , n are, i.e., if and only if the Wronski determinant

W (t) = det Φ(t), where Φ(t) =




ϕ1(t) ϕ2(t) . . . ϕn(t)
ϕ′

1(t) ϕ′
2(t) . . . ϕ′

n(t)
...

...
. . .

...

ϕ(n−1)

1 (t) ϕ(n−1)

2 (t) . . . ϕ(n−1)
n (t)


 (5.3.7)

does not vanish in I. Hence, as a corollary of Theorem 5.3.7, we obtain the following statements.

Theorem 5.3.15 (Solution of a linear ODE of order n). Let L be as in (5.3.6).

1. The solutions of the homogeneous equation Lϕ = 0 form a vector space of dimension equal
to n.

2. For any (y0,1, y0,2, . . . , y0,n) ∈ R
n and any t0 ∈ I, the IVP Lϕ = 0, ϕ(k)(t0) = y0,k+1,

k = 0, . . . , n − 1, possesses precisely one solution.

3. A set of n solutions ϕ1, . . . , ϕn : I → R of Lϕ = 0 is a basis of the solution space if and
only if the Wronski determinant in (5.3.7) does not vanish for some (and then for all)
t ∈ I.

3

The Liouville formula of Lemma 5.3.4 reads for the Wronskian in (5.3.7) as follows:

W (t) = W (t0) exp
(
−

∫ t

t0

an−1(s) ds
)
. (5.3.8)

Example 5.3.16 (Legendre equation). One solution of the Legendre ODE

(1 − t2)ϕ′′ − 2tϕ′ + 2ϕ = 0
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is ϕ1(t) = t. Dividing by (1− t2), we have that a1(t) = − 2t
1−t2

and a0(t) = 2
1−t2

. If ϕ2 is another
solution, linearly independent of ϕ1, then W = ϕ1ϕ

′
2 − ϕ2ϕ

′
1. With the help of the Liouville

formula in (5.3.8), we obtain the condition

tϕ2(t) − ϕ(t) = W (t) = W (0) exp
(∫ t

0

2s

1 − s2
ds

)
= W (0)

1

1 − t2
.

Hence,

ϕ2(t) = e
R

1
t

dt
(
C +

∫ t

1
e−

R
1
s

ds 1

s(1 − s2)
ds

)
= t

(
C +

∫ t

1

1

(1 − s2)s2
ds

)

= t
(
C +

1

2
log

1 + t

1 − t
− 1

t

)
,

as is seen with the help of 1
(1−s2)s2 = 1

s2 + 1
1−s2 . This implies that the general solution of the

Legendre equation is

ϕ(t) = c1t + c2

( t

2
log

1 + t

1 − t
− 1

)
,

for constants c1, c2 ∈ R. 3

Remark 5.3.17 (Reduction of the order). If one solution ϕ : I → R of the n-th order linear
ODE Lϕ = 0 is known, then the ansatz y(x) = c(x)ϕ(x) transforms Lϕ = 0 into a linear
homogeneous ODE of order n− 1 for the function c′ (i.e., we have reduced the order by one). 3

Example 5.3.18. The homogeneous linear ODE ϕ′′ − xϕ′ + ϕ = 0 possesses the solution
ϕ1(x) = x. The ansatz ϕ(x) = xc(x) (hence ϕ′(x) = c′(x)x + c(x) and ϕ′′(x) = c′′(x)x + 2c′(x))
turns ϕ′′−xϕ′+ϕ = 0 into the equation xc′′(x)+(2−x2)c′(x) = 0. This is a separable first-order
ODE for c′ and has the solution

c′(x) =
d

x2
e

1
2
x2

, for some d ∈ R.

Hence, we obtain a second solution (which is linearly independent of ϕ1(x) = x) as

ϕ2(x) = x

∫ x

x0

1

s2
e

1
2
s2

ds.

3

Remark 5.3.19 (Variation of constants for n-th order equations). Consider the inho-
mogeneous equation Lϕ(t) = b(t) with some continuous map t 7→ b(t) ∈ R and L as in (5.3.6).
We want to assume that we have a fundamental system ϕ1, . . . , ϕn of the homogeneous equation
Lϕ = 0, and we want to derive some particular solution ϕp using the method of variation of
constants. The ansatz for that is ϕp(t) =

∑n
i=1 ci(t)ϕi(t), where we additionally require that

0 =
∑n

i=1 c′i(t)ϕ
(j)

i (t) for j = 0, . . . , n− 2. The we have ϕ′
p =

∑n
i=1(c

′
iϕi + ciϕ

′
i) =

∑n
i=1 ciϕ

′
i and

hence ϕ′′
p =

∑n
i=1(c

′
iϕ

′
i + ciϕ

′′
i ) =

∑n
i=1 ciϕ

′′
i and so on. Hence, our ansatz may be summarized

as

yp(t) =




ϕp(t)
ϕ′

p(t)
...

ϕ(n−1)
p (t)


 = Φ(t)




c1(t)
...

cn(t)


 ,
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where we used the notation of Remark 5.3.14. Observe that y ′ = Φ′c + Φc′ = A(t)yp + Φc′.
Hence, we have to solve the equation

Φ(t)




c′1(t)
...

c′n(t)


 =




0
...
0

b(t)


 , i.e., yp(t) = Φ(t)

∫ t

t0

Φ−1(s)




0
...
0

b(s)


 ds.

We proceed now with n = 2, where the formulas are not so cumbersome. Here one can use the

formula

(
a b
c d

)−1

= 1
ad−bc

(
d −b
−c a

)
and obtains the following

Formula for a particular solution of ϕ′′ + a1(t)ϕ
′ + a0(t)ϕ = b(t).

ϕp(t) = −ϕ1(t)

∫ t

t0

ϕ2(s)

W (s)
b(s) ds + ϕ2(t)

∫ t

t0

ϕ1(s)

W (s)
b(s) ds,

where W = ϕ1ϕ
′
2 − ϕ2ϕ

′
1 is the Wronski determinant.

Tis is obviously an extension of the results of Section 3.2. 3

Example 5.3.20. Consider t2ϕ′′ − 2tϕ′ + 2ϕ = t3. We are so lucky to have seen that ϕ1(t) = t
and ϕ2(t) = t2 are two solutions to the homogeneous equation, and they are obviously linearly
independent.

The variation ansatz is ϕp(t) = tc1(t) + t2c2(t), i.e.,

(
t t2

1 2t

)(
c′1(t)
c′2(t)

)
=

(
0
t

)
.

Hence c′1(t) = −t and c′2(t) = 1, i.e., a particular solution is ϕp(t) = −1
2 t3 + t3 = 1

2 t3. The
complete solution of t2ϕ′′ − 2tϕ′ + 2ϕ = t3 therefore is 1

2 t3 + c1t + c2t
2. 3


