
UPPER TAILS OF SELF-INTERSECTION LOCAL TIMESOF RANDOM WALKS: SURVEY OF PROOF TECHNIQUESBy Wolfgang König1WIAS Berlin and TU Berlin10 Deember, 2010Abstrat: The asymptotis of the probability that the self-intersetion loal time of a randomwalk on Z
d exeeds its expetation by a large amount is a fasinating subjet beause of itsrelation to some models from Statistial Mehanis, to large-deviation theory and variationalanalysis and beause of the variety of the e�ets that an be observed. However, the proofof the upper bound is notoriously di�ult and requires various sophistiated tehniques. Wesurvey some heuristis and some reently elaborated tehniques and results. This is an extendedsummary of a talk held on the CIRM-onferene on Exess self-intersetion loal times, andrelated topis in Luminy, 6-10 De., 2010.
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d. This topi has been studied a lot in the last deade, sine it is a natural question, and arih phenemonology of ritial behaviours of the random walk arises, depending on the dimension, theintersetion parameter, the sale, and the type of the random proess. Furthermore, the question istehnially di�ult to handle, due to bad ontinuity and boundedness properties of the self-intersetionloal time. A ouple of di�erent tehniques for studying self-intersetions have been introdued yet,wih turned out to be more or less fruitful in various situations. It is the goal of this note to explainsome heuristis and to survey and ompare some of the most fruitful proof tehniques used in reentyears.1.1 Self-intersetion loal timeLet (Sn)n∈N0 be a disrete-time simple random walk in Z

d started from the origin. We denote by Pthe underlying probability measure and by E the orresponding expetation. The main objet of thispaper is the self-intersetion loal time of the random walk. In order to introdue this objet, we need1Tehnial University Berlin, Str. des 17. Juni 136, 10623 Berlin, and Weierstrass Institute for Applied Analysis andStohastis, Mohrenstr. 39, 10117 Berlin, Germany, koenig�wias-berlin.de



2 WOLFGANG KÖNIGthe loal times of the random walk at time n ∈ N,
ℓn(z) =

n
∑

i=0

1l{Si=z}, for z ∈ Z
d. (1.1)Fix p ∈ (1,∞) and onsider the p-norm of the loal times:

‖ℓn‖p =
(

∑

z∈Zd

ℓn(z)p
)1/p

, for n ∈ N. (1.2)If p is an integer, then, learly,
‖ℓn‖p

p =

n
∑

i1,...,ip=0

1l{Si1
=···=Sip} (1.3)is equal to the p-fold self-intersetion loal time of the walk, i.e., the number of p-fold self-intersetions.For p = 2, this is usually alled the self-intersetion loal time. For p = 1, ‖ℓn‖p

p is just the number
n + 1, and for p = 0, it is equal to #{S0, . . . , Sn}, the range of the walk. It is ertainly also of interestto study ‖ℓn‖p

p for non-integer values of p > 1, see for example [HKM06℄, where this reeived tehnialimportane. The typial behaviour of ‖ℓn‖p
p has been identi�ed as

E[‖ℓn‖p
p] ∼ Cad,p(n), where ad,p(n) =











n(p+1)/2 if d = 1,

n(log n)p−1 if d = 2,

n if d ≥ 3,

(1.4)for some C = Cd,p ∈ (0,∞); see [Ce07℄ for d = 2 and [BK09℄ for d ≥ 3. In the following, we willonentrate on d ≥ 2.1.2 The problemWe are interested in the logarithmi asymptotis of
P(‖ 1

nℓn‖p ≥ rn), n → ∞,for sale funtions (rn)n∈N satisfying (nrn)p−E[‖ℓn‖p
p] → ∞. In order to avoid trivialities and beause

‖ 1
nℓn‖p ≤ 1, we also assume that rn < 1. If even (nrn)p ≫ ad,p(n) (we write ≫ if the quotientdiverges), we speak of very large deviations, and if (nrn)p ∼ γad,p(n) with γ > C, we speak of largedeviations. In this note, we will be mainly interested in very large deviations.In other words, we would like to understand how likely it is for the path to produe many self-intersetions, and, additionally, what the typial behavior of the path is on the event {‖ 1

nℓn‖p ≥ rn}.Certainly, the answer will depend strongly on various issues, like the dimension, the deay of rn, thevalue of p et. There is a ompetition between two e�ets: lumping together on a small region andthe spread-out strength oming from the di�usion mehanism. In order to �nd the answer, we have toquantify the probabilisti ost of the lumping.1.3 Rough heuristisLet us give a rough heuristi about what to expet. We onsider the very-large deviation ase (nrn)p ≫
ad,p(n).The starting point of our heuristi is that the optimal strategy of the path to meet the event
{‖ 1

nℓn‖p ≥ rn} is that the path �lls a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval
[0, tn] with 1 ≪ tn ≤ n in order to produe the required amount (nrn)p of self-intersetions, andthat the path runs freely in the time interval [tn, n], where he produes the ordinary amount of self-intersetions, whih is negligible with respet to (nrn)p. Certainly, the short-time lumping may alsotake plae at some other time instant, e.g. in the interval [n − tn, n] or an be divided into severaltime strethes, but this should not a�et the logarithmi asymptotis. We may assume that all the



UPPER TAILS OF SELF-INTERSECTION LOCAL TIMES 3loal times ℓn(z) ≈ ℓtn(z) with z ∈ Bαn are of the same order, as non-homogeneous strategies aremore ostly. This order must be equal to tnα−d
n sine altogether tn hits are distributed on #Bαn sites.Furthermore, the p-norm of the loal times is required to equal nrn, i.e.,

(nrn)p ≍ ‖ℓn‖p
p ≈

∑

z∈Bαn

ℓtn(z)p ≍ αd
n(tnα−d

n )p = tpnαd(1−p)
n , i.e., tn ≍ nrnαd(p−1)/p

n .This requires that αn ≤ r
p

d(1−p)
n . The negative logarithm of the probabilisti ost to squeeze a tn-steprandom walk into a ball with radius αn is of order

− log P(S[0,tn] ⊂ Bαn) ≍ tn
α2

n

≍ nrnα
d
p
(p−1)−2

n , (1.5)as may be seen from a deomposition of the path into tnα−2
n equally long piees of length α2

n andinvoking the entral limit theorem. This assertion holds as long as the quantity in (1.5) diverges.Reall that we want to argue whih hoie of αn (i.e., of tn) yields the maximal probability, i.e., theminimal value in (1.5). It is obvious that this depends on the dimension. Indeed, in the subritialdimensions d < 2p
p−1 , the exponent of αn in the last term is negative and hene the optimal hoie isto pik αn (and hene tn) as large as possible. Aordingly, in the superritial dimensions d > 2p

p−1 ,they must be piked as small as possible. Beause of the restritions tn ≤ n and αn ≥ 1, this meansthat the optimal hoies are
tn ≍

{

n if d < 2p
p−1 ,

nrn if d > 2p
p−1 ,

and αn ≍







r
p

d(1−p)
n if d < 2p

p−1 ,

1 if d > 2p
p−1 .

(1.6)Note that this means that we expet a ollapse transition from small to large dimensions. Furthermore,we may expet that
− 1

n
log P(‖ 1

nℓn‖p ≥ rn) ≍ 1

n

tn
α2

n

≍ 1

α2
n

≍ r
2p

d(p−1)
∨1

n =







r
2p

d(p−1)
n if d < 2p

p−1 ,

rn if d > 2p
p−1 .

(1.7)Reall that (nrn)p ≫ ad,p(n), whih implies that rn ≫ n
1
p
−1. Hene, αn ≪ t

1/d
n . This means that therandom walk should stay within a region with volume ≪ tn until time tn, and eah loal time in thatregion should be of order tn/αd

n ≫ 1.In the ritial dimension d = 2p
p−1 , the right sale of the probability in (1.7) should be rn, but it isa priori unlear on what sale αn should run, as the two sales in (1.6) di�er (unless rn ≍ 1). SeeSetion 2.4 for some rigorous result.1.4 Preise heuristisWe now give a heuristi for a more preise version of (1.7), whih strengthens `≍' to `∼' with expliitidenti�ation of the prefator. This is based on Donsker-Varadhan large-deviation theory. We keep theassumption ad,p(n) ≪ (nrn)p (the very-large deviation ase) and assume that rn ≪ 1 and �rst turn tothe subritial dimensions d < 2p

p−1 .De�ne the saled normalized version Ln : R
d → [0,∞) of the loal times ℓn by

Ln(x) =
αd

n

n
ℓn

(

⌊xαn⌋
)

, for x ∈ R
d. (1.8)Then Ln is a random element of the set of all probability densities on R

d. In the spirit of the elebratedlarge-deviation theorem of Donsker and Varadhan, if αn satis�es 1 ≪ αd
n ≪ ad,0(n) (see (1.4)), then Ln



4 WOLFGANG KÖNIGsatis�es a weak large-deviation priniple in the weak L1-topology with speed nα−2
n and rate funtion

I : L2(Rd) → [0,∞] given by
I(f) =

{

1
2

∥

∥∇f
∥

∥

2

2
if f ∈ H1(Rd) and ‖f‖2 = 1,

∞ otherwise. (1.9)Roughly, this large-deviation priniple says that,
P(Ln ∈ · ) = exp

{

− n

α2
n

[

inf
f2∈ ·

I(f) + o(1)
]}

, (1.10)and the onvergene takes plae in the weak topology. This priniple has been partially proved in aspeial ase in [DV79℄, a proof in the general ase was given in [GKS07℄.Now note that
‖ℓn‖p =

(

∑

z∈Zd

ℓn(z)p
)1/p

= nα−d
n

(

∑

z∈Zd

Ln

(

z
αn

)p
)1/p

= nα
d(1−p)

p
n ‖Ln‖p = nrn‖Ln‖p.By our hoie of αn in (1.6) with `≍' replaed by `=', we have that

{‖ 1
nℓn‖p ≥ rn} =

{

‖Ln‖p ≥ 1
} and n

α2
n

= nr
2p

d(p−1)
n . (1.11)Using (1.10) for the set {f : ‖f2‖p ≥ 1}, we see that

lim
n→∞

r
2p

d(1−p)
n

n
log P(‖ 1

nℓn‖p ≥ rn) = −χd,p, (1.12)where
χd,p = inf

{1

2
‖∇f‖2

2 : f ∈ H1(Rd), ‖f‖2p = 1 = ‖f‖2

}

. (1.13)It turned out in [GKS07, Lemma 2.1℄ that χd,p is positive if and only if d(p− 1) ≤ 2p. Formula (1.12)is the preise version of (1.7). We see that the main ontribution to the event {‖ 1
nℓn‖p ≥ rn} omesfrom those random walk realisations that make the resaled loal times, Ln, look like the minimiser(s)

f2 of the variational formula on the right-hand side of (1.13).An analogous heuristi applies for the superritial dimensions d > 2p
p−1 . We keep the assumption

ad,p(n) ≪ (nrn)p, but drop the assumption that rn ≪ 1 and assume that r = limn→∞ rn ∈ [0, 1]exists. Pik αn = 1, and the time n must be redued to stn = snrn ≤ n, and later we optimize over
s ∈ (0, 1/r). Hene, we approximate

{‖ 1
nℓn‖p ≥ rn} ≈

{

‖ℓstn‖p ≥ nrn

}

=
{∥

∥

∥

1

stn
ℓstn

∥

∥

∥

p
≥ 1

s

}

.(The set is non-empty only for s ≥ 1, but this will ome out naturally when optimising.) This timewe use that 1
stn

ℓstn satis�es a large-deviation priniple on the set of probability measures on Z
d withsale stn. The rate funtion I (d) omes via a ontration priniple from a priniple for the empirialmeasures of Markov hains; we abstain from writing it down. Hene, we obtain

lim
n→∞

1

nrn
log P(‖ 1

nℓn‖p ≥ rn) = −χd,p, (1.14)where
χd,p = inf

s∈(0,1/r)
s inf

{

I (d)(g2) : g ∈ ℓ2(Zd), ‖g2‖p =
1

s
, ‖g‖2 = 1

}

= inf
{I (d)(g2)

‖g2‖p
: g ∈ ℓ2(Zd), ‖g‖2 = 1, ‖g2‖p ≥ r

}

.

(1.15)We see that the main ontribution to the event {‖ 1
nℓn‖p ≥ rn} omes from those random walk real-isations that make the normalized loal times 1

stn
ℓstn equal to a minimizer g2 of the formula on the



UPPER TAILS OF SELF-INTERSECTION LOCAL TIMES 5right-hand side of (1.15) inside some box of bounded radius. In partiular, the parameter s shouldbe hosen as ‖g2‖−1
p . After time stn, the random walk leaves that bounded box and runs like a freesimple random walk and produes a negligible amount of self-intersetions.1.5 Continuous-time random walksThe assertion in (1.12)-(1.13) should also be literally true for a ontinuous-time simple random walk

(St)t∈[0,∞), and also the sale in (1.14) should be the same as in the disrete-time ase. The large-deviation priniple in (1.10) was proved in [HKM06, Prop. 3.4℄.However, the rate funtion, and therefore the formula for χd,p in (1.15), is di�erent in the super-ritial dimensions: it is g2 7→ 1
2‖∇g‖2

2 = 1
2

∑

z,z′∈Zd : z∼z′(g(z) − g(z′))2, whih is the disrete-spaeversion of the priniple that Ln satis�es. Using a simple saling argument we have that (1.15) mustbe replaed here by
χd,p = inf

{ 1
2‖∇g‖2

2

‖g2‖p
: g ∈ ℓ2(Zd), ‖g‖2 = 1, ‖g2‖p ≥ r

} (1.16)whih redues in the ase rn → r = 0 to
χd,p = inf

{1

2
‖∇g‖2

2 : g ∈ ℓ2(Zd), ‖g2‖p = 1
}

. (1.17)1.6 Exponential momentsThe statement in (1.12) is in a one-to-one orrespondene with an analogous statement about theexponential moments of ‖ℓn‖p. This is a version of the well-known Gärtner-Ellis theorem (see [DZ98,Set. 4.5℄). More preisely, via the exponential Chebyshev inequality, the upper bound in (1.12) followsfrom the logarithmi asymptotis of suitable exponential moments, and the lower bound an be provedwith the help of a transformation in the spirit of the Cramér transform.More preisely, if d < 2p
p−1 , abbreviate λ = 2p+d−dp

2p ∈ (0, 1), then (1.12) follows from the assertion
1

n
log E

(

eθn‖ℓn‖p

)

∼ θ1/λ
n ρ(c)

d,p(1), n → ∞, (1.18)for (ad,p(n)1/p/n)λ/(1−λ) ≪ θn ≪ 1, where
ρ(c)

p,d(θ) = sup
{

θ‖f2‖p −
1

2
‖∇f‖2

2 : f ∈ H1(Rd), ‖f‖2 = 1
}

= θ1/λλ

(

2p

d(p − 1)
χd,p

)
λ−1

λ

, θ > 0.

(1.19)Indeed, apply the exponential Chebyshev inequality with θn = (rnλ/ρ(c)

d,p(1))
λ/(1−λ) and use the seondline of (1.19) (whih an be shown elementarily by saling arguments, see [BK10, Remark 1.3℄), toderive the upper bound in (1.12). The reason that also the lower bound an be shown with the help ofa Cramér-type transformation using (1.18) is that − 1

n log P(‖ 1
nℓn‖p ≥ rn) is asymptotially a onvexfuntion of rn (it is ∼ χd,pnr

2p

d(p−1)
n , and the power is larger than one); note that this method, theGärtner-Ellis method, produes only onvex rate funtions.In the superritial dimension, this line of arguments works as well in the ase rn ≪ 1 sine

− 1
n log P(‖ 1

nℓn‖p ≥ rn) is asymptotially linear in rn. However, in the ase rn → r ∈ (0, 1), itdoes not seem to work sine both χd,p's de�ned in (1.15) and in (1.16) depend on r, and it seems notlear whether the map r 7→ rχd,p is onvex. This is also re�eted by the fat that the logarithmi



6 WOLFGANG KÖNIGrate of the exponential moments of ‖ℓn‖p is possibly not di�erentiable, see [BK10, Theorem 1.1(i) andRemark 1.5℄, where it was shown that, for any θ > 0, for ontinuous-time random walk,
lim
t→∞

1

t
log E

(

eθ‖ℓt‖p

)

= ρ(d)

p,d(θ) = sup

{

θ‖g2‖p −
1

2
‖∇g‖2

2 : g ∈ ℓ2(Zd), g ≥ 0, ‖g‖2 = 1

}

. (1.20)Note that the right-hand side is the disrete version of ρ(c)

p,d(θ) de�ned in (1.19).1.7 Di�ultiesThere are several serious obstales to be removed when trying to turn the above heuristis into anhonest proof: (1) the large-deviation priniples only hold on ompat subsets of R
d resp. Z

d, (2) thefuntional f2 7→ ‖f2‖p is not bounded in ontinuous, nor in disrete spae, and (3) this funtional isnot ontinuous in the topology of the large-deviation priniple.Removing the obstale (1) is easy and standard (see Setion 1.8), but it is in general notoriouslydi�ult to overome the obstales (2) and (3) for related problems. In the subritial dimensions,the transition from disrete to ontinuous spae while taking the limit auses additional tehnialities.In the superritial dimensions, the redution of the time sale from n to stn is also hard to justifyrigorously. The ritial dimension d = 2p
p−1 , i.e., p = d

d−2 , is even more deliate sine the question if thedisrete or the ontinuous piture arises seems to depend on the preise hoie of rn. See Setion 2.4for a rigorous answer.These di�ulties make the proofs of (1.12) and (1.14) a demanding task.1.8 Compati�ationIn most of the proofs of upper bounds for probabilities under interest here, one of the main steps isto estimate ‖ℓn‖p ≤ ‖ℓ(R)
n ‖p, where ℓ(R)

n are the loal times of the periodized version of the walk in thebox BR = [−R,R]d ∩Z
d with R = Rn = Lαn and a large parameter L. This estimate is easily veri�edand understood: when putting the free walk onto the torus, one does not lower the number of self-intersetions, but possibly inreases them. Hene, one is left with the same task for the periodized walk,whih lives on a ompat part of the spae Z

d, whih depends on n. If one an manage the problem onthe torus BLαn up to logarithmi equivalene, one ends up with an L-dependent variational formula,whih is elementarily shown to onverge towards the orret one as L → ∞. In these notes, we willtherefore sometimes taitly impose the ondition S[0,n] ⊂ BR without mentioning that the transitionprobabilities of the walk have been slightly hanged. However, this estimate is useful only in the asesin whih the typial behavior of the path is to �ll a entred box of side length R more or less uniformly.This applies to the subritial dimensions, but rules out the superritial ones.1.9 Lower boundsAtually, the proof of the lower bounds in (1.12) and (1.14) is quite simple and is done as follows inthe subritial dimensions. Pik q > 1 suh that 1
p + 1

q = 1 and pik some ontinuous and boundedfuntion h having ompat support and satisfying ‖h‖q = 1. Then Hölder's inequality gives that
‖Ln‖p ≥ 〈h,Ln〉. Now the large-deviation priniple for Ln an safely be applied to 〈h,Ln〉, sine themap f2 7→ 〈h, f2〉 is bounded and ontinuous in the topology of the priniple. Hene, we obtain thelower bound in (1.12) with χd,p replaed by inf{I(f) : f2 ∈ Lp(Rd), 〈h, f2〉 = 1}. Optimizing over hand thereby using the duality between Lp and Lq, we see that the lower bound of (1.12) arises, afteremploying some elementary approximation arguments. A similar argument applies in the superritialdimensions. 2. Tehniques for proving upper bounds



UPPER TAILS OF SELF-INTERSECTION LOCAL TIMES 7In this setion, we survey various tehniques to prove the upper bound in the statements (1.12) and(1.14) and losely related variants of them.2.1 Triangular deomposition and smoothingIn a long series of papers, among a lot of further results on intersetions of random motions, Chen alsogives a proof of (1.12) in the most interesting ases d = 2 = p and d = 3, p = 2, see [Ch09, Theorems8.2.1 and 8.4.2℄. Atually, he admits more general random walks and muh smaller hoies of the salefuntion (rn)n∈N. He shows that (1.12) is even true for rn = 1
n(E[‖ℓn‖2

2] + nbn)1/2 with 1 ≪ bn ≪ n.Atually, he proves the exponential version (1.18).The three main ideas of the proof method he uses are a triangular deomposition of the numberof self-intersetions (this restrits the method to p = 2), a smoothing tehnique with the help ofa onvolution of a smooth approximation of the delta measure, and a series of Banah spae toolsinluding the Minkowski funtional, the Hahn-Banah theorem and Arzelá-Asoli's theorem.Indeed, he writes
‖ℓn‖2

2 =
2N
∑

j=1

η(N)

j +
N

∑

j=1

2j−1
∑

k=1

ξ(N)

j,k , (2.1)where N ∈ N is a large auxiliary parameter and
η(N)

j =
∑

(j−1)n2−N <i<i′≤jn2−N

1l{Si = Si′},

ξ(N)

j,k =
∑

(2k−2)n2−j <i≤(2k−1)n2−j

(2k−1)n2−j <i′≤(2k)n2−j

1l{Si = Si′}.
(2.2)This deomposition was already used by Le Gall [Le86℄, it an also be de�ned via an iterated bisetionof the path. Its advantage is that η(N)

1 , . . . , η(N)

2N are i.i.d. with distribution equal to the number ofself-intersetions of a random walk of length ≈ n2−N and that, for any j ∈ {1, . . . ,N}, the variables
ξ(N)

j,1 , . . . , ξ(N)

j,2j−1 are i.i.d. with distribution equal to the number of mutual intersetions of two indepen-dent random walks of length ≈ n2−j. This deomposition was already used in the 1960ies by Varadhanfor the study of the self-intersetions of two-dimensional Brownian motion.The seond idea is to onvolute the normalised and resaled loal times Ln de�ned in (1.8) with somesmooth approximation, ϕε, of the Dira delta measure as ε ↓ 0. The replaement of ‖Ln‖p
p with thesmoothed ones, ‖Ln ⋆ ϕε‖p

p, with full ontrol of the asymptotis requires some tehnial are, but anbe done using more or less standard means.The large-deviation arguments for ‖Ln ⋆ϕε‖p are easier to derive than for ‖Ln‖p, but however requiresome substantial work, see [Ch09, Set. 4.2℄. The reason is that the map Ln 7→ ‖Ln ⋆ ϕε‖p has stillbad ontinuity properties. As soon as exponential tightness is established, one an employ the large-deviation priniple of (1.10). Chen's ingenious way to solve this problem uses a ompatness riterionintrodued in [dA85℄, formulated in terms of bounds for ertain exponential integrals of the Minkowskifuntional of a onvex, positively balaned set. The way to make this riterion appliable is longand uses a series of ideas from funtional analysis, like the Arzelá-Asoli theorem, topologial dualitybetween the spaes Lp and Lq for 1
p = 1

q = 1, and the Hahn-Banah theorem.2.2 Iterated bisetionAs we mentioned in Setion 2.1, Le Gall [Le86℄ used a tehnique of suessive division of the path intoapproximately equally long piees and ontrolling the self-interation of eah piee and the mutualinteration between them. This indution proedure is equivalent to the splitting tehnique desribedin (2.1)-(2.2). A priori this method works only for p = 2. However, it has been further developed by



8 WOLFGANG KÖNIGAsselah [A10℄ to be used for any value of p ∈ (1,∞). This enables him to prove both assertions in (1.7)for both large and very large deviations. However, his approah admits only a study of dimensions
d ≥ 3, sine he uses transiene of the walk at some plae.The kernel of Asselah's bisetion tehnique for ‖ℓn‖p

p, i.e., for a sum of p-th powers of integers, is theestimate
(l1 + l2)

p ≤ lp1 + lp2 + 2p
∞

∑

i=0

bp−2
i+1 l1l21l{bi ≤ max{l1, l2} < bi+1} l1, l2 ∈ N,where 1 = b0 < b1 < b2 < . . . de�nes a suitable partitioning of [1,∞). Using this estimate iterativelyfor bisetions of the path, one obtains an upper bound for ‖ℓn‖p

p in terms of a sum of the p-norms of therespetive fragments of the path (whih are independent) plus an additional term oming from theirmutual interation. One additional ingredient of the proof is a deomposition of the spae into regionswhere the loal times are small, medium-sized or large. The event {‖ 1
nℓn‖p ≥ rn} is deomposed inseveral partial events, whose probabilities are estimated using various arguments.2.3 Surgery on iruits and lustersAs we explained in Setion 1.4, in the superritial dimension, the signi�ant ontribution to a largevalue of the intersetion loal time omes from paths that have extremely high values on a boundedregion. This intuitive piture is the leading idea in the proof given in [A09℄, where (1.14) is proved for

p = 2, d ≥ 5 and rn ≍ n−1/2, i.e., for the large-deviation regime.The main tehnial tool is an upper estimate of ‖ℓn‖2
2 − E[‖ℓn‖2

2] in terms of ‖1lΛℓs
√

n‖2
2 for manyhoies of a �nite set Λ ⊂ Z

d on the event {Ss
√

n = 0}, i.e., for a iruit. To derive this, Asselahintrodues for in�nite-time random walk, using some iterative proedure alled surgery, a map from�nite n-dependent boxes to bounded subboxes that ompares paths with high values of loal times inthe large box to those having high loal time values in the small box. Partiular attention is given tothe region where the loal times are of order √n; �nally it is shown that this set is bounded in n.The outome of this tehnique is that the existene and non-triviality of the limit in (1.14) is shown.In a seond step, its value is identi�ed as 1
2 times the onstant on the right-hand side of (2.4) bya omparison between the two problems of mutual intersetions of two independent walks and self-intersetions of one walk.2.4 Dynkin's isomorphismThe ritial hoie p = d

d−2 in dimensions d ≥ 3 is onsidered in [Ca10℄. Atually, it is shown therethat, in the ontinuous-time ase, (1.12) is true with χd,p as in (1.16), for any n
1
p
−1 ≪ rn ≪ 1.This interestingly shows that the ritial dimension d = 2p

p−1 belongs to the lower ritial ase, as itonerns the radius αn of the ball in whih the main bulk of the self-intersetions our, but to theupper ritial dimension, as it onerns the nature of the variational formula desribing the preiselogarithmi asymptotis. The proof tehnique used in [Ca10℄ was later extended in [L10a℄ and [L10b℄to proofs of (1.12) and (1.14) in all dimensions and for muh more general random walks. However, itseems as if only the very-large deviation aseanbe handled in this way yet.The main idea used in [Ca10℄ is Dynkin's isomorphism theorem [D88℄, whih says that the joint lawof the loal times of a symmetri reurrent Markov proess stopped at an independent exponentialtime is related to the law of the square of a Gaussian proess whose ovariane funtion is the Greenkernel of the stopped Markov proess. To apply this, in a �rst step, the exponential moments of ‖ℓt‖pare estimated from above against the exponential moments of ‖ℓ(R)
τ ‖p, where ℓ(R) are the loal times ofthe torus version of the walk on BR (see Setion 1.8), and τ is an independent exponential time withparameter ≍ rt. Now introdue a Gaussian proess Z = (Zx)x∈BR
with ovariane matrix equal to theGreen funtion, GR,τ , of the stopped walk (S(R)

t∧τ )t∈[0,∞) on the torus BR. Then the exponential moments
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τ ‖p an be written in terms of exponential moments of ‖Z‖2

2p with some slightly modi�ed density.The great advantage of this rewrite is that now onentration inequalities for Gaussian integrals anbe applied to the exponential moments of (‖Z‖2p−M)2, where M denotes the median of ‖Z‖2p. Theseinequalities are so preise that they prove the ruial fat that the tail behaviour of ‖Z‖2p−M is equalto that of a Gaussian variable with variane equal to sup{〈f,GR,τf〉 : f ∈ ℓ2p(Zd), ‖f‖2p = 1}. If onepiks R ≍ t1/d, then this supremum onverges towards χd,p de�ned in (1.16), and this is the kernel ofthis proof method.2.5 Polynomial momentsAnother suessful tehnique is based on an expansion of exp{θα
−[2−d+d/p]
t ‖ℓt‖p} and a preise esti-mation of the polynomial moments of ‖ℓt‖p with suitable t-dependent powers. More preisely, insubritial dimensions in the proof of [HKM06, Prop. 2.1℄ it is shown that, for any L ∈ (0,∞), in thetime-ontinuous ase,

E
(

‖ℓt‖pk
p 1l{S[0,t] ⊂ BLαt}

)

≤ kkpCkα
kp[2−d+d/p]
t , k ≥ t

α2
t

, (2.3)for some C ∈ (0,∞) and for all su�iently large t. It is easy to see that this implies that
lim sup

θ↓0
lim sup

t→∞

α2
t

t
log E

[

exp
{

θα
−[2−d+d/p]
t ‖ℓt‖p

}

1l{S[0,t] ⊂ BLαt}
]

≤ 0,whih was one of the partial goals in [HKM06℄. This statement is less than the upper bound in (1.18),but identi�es the orret sale.The proof of (2.3) onsists of a ombinatorial analysis of the polynomial moments by expliitlywriting out ℓt(z) =
∫ t
0 δz(Sr) dr and the pk-th moments and summarizing and transforming the arisingmulti-sum as far as possible. No attempt to optimize (2.3) nor to �nd the best value of C was madein [HKM06℄. The method works in any subritial dimension, but only for αt ≪ t1/(d+1), whih is asevere restrition. The kernel of the reason why this methods works is the integrability of the p-thpower of the Green funtion of Brownian motion around its singularity.This method was applied also in the superritial dimensions in [CM09℄ for the losely related problemof the mutual intersetions of p independent opies S(1), . . . , S(p) of (Sn)n∈N0 rather than the self-intersetions of one walk. Here it is possible (and the main interest of [CM09℄) to onsider theseintersetions with in�nite time horizon and to study its upper tails. Denote by

I =

∞
∑

i1,...,ip=0

1l{S(1)

i1
= · · · = S(p)

ip
}this intersetion loal time, then the main result of [CM09℄ is

lim
a→∞

a−1/p log P(I > a) = −p inf
{

‖h‖q : h ∈ ℓq(Zd), h ≥ 0, ‖Ah‖ ≥ 1
}

, (2.4)where 1
p + 1

q = 1, and the operator Ah : ℓ2(Zd) → ℓ2(Zd) is de�ned by
Ahg(x) =

√

eh(x) − 1
∑

y∈Zd

G(x, y)
√

eh(y) − 1,and G is the Green funtion of the walk. The in�mum on the right-hand side of (2.4) should be equalto χd,p de�ned in (1.15), but this has not yet been proved. For ontinuous-time simple random walk,(2.4) is shown to be true with the right-hand side replaed by −pχd,p de�ned in (1.17).



10 WOLFGANG KÖNIGThe proof of (2.4) is again based on the asymptotial analysis of high polynomial moments. It isused [KM02, Lemma 2.1℄ that, for any positive random variable X,
lim

k→∞
1

k
log E

[Xk

k!p

]

= κ ⇐⇒ lim
a→∞

a−1/p log P(X > a) = −peκ/p.For the identi�ation of the high polynomial moments of I, some ompati�ation proedure is devel-oped that is in the spirit of the periodization idea mentioned in Setion 1.8, but this time for the p-thpowers of the Green funtion of the walk instead of the p-th power of the loal times. The fat thatthis proedure gives the orret upper bound may be interpreted by saying that the main bulk of theintersetions our in some box of bounded radius, whih may be far from the origin. After a ertaintime of order a1/p, the p walks separate from eah other and vanish at in�nity in di�erent diretions.It is expeted that also the self-intersetion problem, more preisely equation (1.14) in super-ritialdimensions, an be proved using this method. Details are urrently worked out [BK11+℄.2.6 Density of loal timesThe following is restrited to ontinuous-time random walk (St)t∈[0,∞). The approah of [BK10℄ is toemploy an expliit formula for the joint density of the loal times (ℓt(z))z∈B in a �nite subset B of Z
d,whih has been derived in [BHK07℄. This makes it possible to expliitly write down a formula for theexpeted exponential moments of ‖ℓt‖p on the event {S[0,t] ⊂ B}. Even though the representation forthis density derived in [BHK07, Theorem 2.1℄ is almost impossible to penetrate, [BHK07, Theorem 3.6℄gives a handy upper bound for suh expetations.For the subritial dimension, in [BK10℄, it was obtained in this way that

1

t
log E

(

exp
{

tα−2λ
t

∥

∥

1
t ℓ

(Lαt)

t

∥

∥

p

})

≤ ρ(d)

d,p(Lαt, α
−2λ
t ) + εt, (2.5)where we reall that λ = 2p+d−dp

2p ∈ (0, 1) and
ρ(d)

d,p(R, θ) = sup
µ∈M1(BR)

[

θ‖µ‖p − ‖ (−AR)1/2 √µ‖2
2

]

,and AR is the generator of the periodized version of the random walk on the box BR, reall Setion 1.8,and εt is some expliit error term. It is required that εt ≤ exp{o(rt)
2p

d(p−1) }, and this in turn enforesthat rt ≫ (log t/t)
d(p−1)
p(d+2) and hene αt ≪ t1/(d+2), whih imposes a restrition on the validity fortehnial reasons.The main term on the right-hand side of (2.5), ρ(d)

d,p(Lαt, α
−2λ
t ) is a ompat-spae version of ρ(d)

p,d(θ)introdued in (1.20), and there is a lose onnetion to the ontinuous version de�ned in (1.19). Indeed,the main work in [BK10℄ is devoted to the proof of
lim sup

L→∞
lim sup

t→∞
α2

t ρ
(d)

d,p(Lαt, α
−2λ
t ) ≤ ρ(c)

p,d(1), (2.6)and this �nishes the proof of the upper bound in (1.18). The proof of (2.6) is in the spirit of Gamma-onvergene tehniques, some elements of �nite element theory is employed. Unfortunately, in theourse of the proof, the tehnial assumption that d < 2
p−1 must be made, whih severely restrits thevalidity in the dimension. Referenes[dA85℄ A. de Aosta, Upper bounds for large deviations of dependent random vetors, Z. Wahrsh. Verw. Gebiete69, 551-565 (1985).[A08℄ A. Asselah, Large deviations estimates for self-intersetion loal times for simple random walk in Z

3, Probab.Theory Relat. Fields 141, 19-45 (2008).
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