
THE LONGEST EXCURSIONOF A RANDOM INTERACTING POLYMERJanine Köher1 and Wolfgang König1,2(1 Marh, 2011)Abstrat: We onsider a random N -step polymer under the in�uene of an at-trative interation with the origin and derive a limit law � after suitable shiftingand norming � for the length of the longest exursion towards the Gumbel distri-bution. The embodied law of large numbers in partiular implies that the longestexursion is of order log N long. The main tools are taken from extreme valuetheory and renewal theory.MSC 2010. 60F05, 82D60.Keywords and phrases. Free energy, interating polymer, longest exursion, extreme value theory,renewal theory. 1. Introdution and main resultsLet (Sn)n∈N0 be a random walk on the lattie Z
d starting at the origin and having steps of meanzero. By P and E we denote the orresponding probability and expetation, respetively. Weoneive the walk (n, Sn)n=0,...,N as an N -step polymer in the (d + 1)-dimensional spae. Weintrodue an attrative interation with the origin by introduing the Gibbs measure Pβ,N viathe density

dPβ,N

dP
=

eβLN

Zβ,N
with Zβ,N = E

[
eβLN

]
, (1.1)where β ∈ (0,∞) is a parameter and

LN = |{k ∈ {1, . . . ,N} : Sk = 0}| (1.2)denotes the walker's loal time at the origin, i.e., the number of returns to the origin. Theproperties of the polymer under Pβ,N have been studied a lot [dH09, G07℄. In partiular, thefree energy
F (β) = lim

N→∞

1

N
log Zβ,N ∈ (0, β) (1.3)has been shown to exist and to be positive and stritly inreasing in β. Furthermore, it hasbeen shown that the polymer is loalised in the sense that LN is of order N under Pβ,N , and1Institute for Mathematis, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany, JanineKoeher�aol.omand koenig�math.tu-berlin.de2Weierstrass Institute Berlin, Mohrenstr. 39, 10117 Berlin, koenig�wias-berlin.de



2 JANINE KÖCHER AND WOLFGANG KÖNIGthe density of the set of hits of the origin has been haraterised. In partiular, the onstrainedversion, i.e., the polymer under
P

(c)

β,N (·) =
1

Z(c)

β,N

E
[
eβLN 1l{ · }1l{SN = 0}

]
, where Z(c)

β,N = E
[
eβLN 1l{SN = 0}

]
, (1.4)has been studied.In this paper, we onsider the length of the longest exursion of the polymer under P

(c)

β,N . Tointrodue this objet, we denote by τ = {τi : i ∈ N0} the set of return times to the origin, where
τ0 = 0 and, indutively, τi+1 = inf{n > τi : Sn = 0}, i ∈ N0. (1.5)Then P

(c)

β,N is the onditional distribution of the polymer given {N ∈ τ}. The length of thelongest exursion is now given as
maxexcN = max{τi − τi−1 : i ∈ N, τi ≤ N}. (1.6)Aording to [dH09, Theorem 7.3℄, maxexcN is of order log N under P

(c)

β,N , in the sense thatthe distribution of maxexcN/ log N under P
(c)

β,N is tight in N . The proof gives the upper bound
2/F (β), whih is not sharp, as we will see below. It is the main goal of this note to derive notonly the law of large numbers for maxexcN , but also a non-trivial limit law for maxexcN aftersuitable shifting, in the spirit of extreme value theory.To formulate our main result, we need to �x our assumptions �rst.Assumption (τ ). There are D ∈ (0,∞) and α ∈ (1,∞) suh that

K(n) := P(τ1 = n) ∼ Dn−α, n → ∞.This assumption is ful�lled for most of the aperiodi random walks (Sn)n∈N0 under onsid-eration in the literature. For random walks with period p ∈ N, one has to work with K(pn)instead of K(n) and with pN -step polymers and obtains analogous results. Assumption (τ) anbe relaxed with the help of slowly varying funtions, on ost of a more umbersome formulationand proof of the main result.The main result of this paper is the following.Theorem 1.1. Suppose that Assumption (τ) is satis�ed, and �x β ∈ (0,∞). Then, as N → ∞,the distribution of
F (β)maxexcN − log

N

µβ
+ α log log

N

µβ
− C (1.7)under P

(c)

β,N weakly onverges towards the standard Gumbel distribution, where
µβ = eβ

∑

n∈N

nK(n)e−nF (β) and C = log
(
F (β)αD

eβ−F (β)

1 − e−F (β)

)
. (1.8)Expliitly, it is stated that, for any x ∈ R,

lim
N→∞

P
(c)

β,N

(
maxexcN ≤ γx(N/µβ)

)
= e−e−x

, where γx(N) =
x + C + log N − α log log N

F (β)
.(1.9)In partiular, we have the law of large numbers: maxexcN/ log N → 1/F (β) in P

(c)

β,N -probabilityas N → ∞.



THE LONGEST EXCURSION OF A RANDOM INTERACTING POLYMER 32. The proofIt is well-known that the free energy F (β) is haraterised by the equation
eβ =

∑

n∈N

K(n)e−nF (β), (2.1)and that it atually holds that Z(c)

β,N ∼ eNF (β) 1
µβ

as N → ∞. In partiular, F (β) is also theexponential rate of Z(c)

β,N . The �rst step, whih is basi to all investigations of the polymer, isa hange of measure to the measure Qβ, under whih the exursion lengths Tk = τk+1 − τk, arei.i.d. in k ∈ N0 with distribution
Qβ(T1 = n) = e−βK(n)e−nF (β), n ∈ N.Sine maxexcN is measurable with respet to the family of the Tk's, it is easy to see from thetehnique explained in [G07, p. 9℄ that

P
(c)

β,N (maxexcN ≤ γN ) ∼ µβQβ(maxexcN ≤ γN ,N ∈ τ), N → ∞, (2.2)for any hoie of the sequene (γN )N∈N, where µβ =
∑

n∈N
nQβ(T1 = n) ∈ [1,∞) is the expe-tation of the length of the �rst exursion under Qβ. Introduing

Mn =
n

max
k=1

Tk and σN = inf{k ∈ N : τk ≥ N}, (2.3)we see that maxexcN = MσN
on {N ∈ τ} for any N ∈ N. (Note that σN = LN on the event

{N ∈ τ}.) Hene, Theorem 1.1 is equivalent to
lim

N→∞
Qβ(MσN

≤ γx(N/µβ),N ∈ τ) =
1

µβ
e−e−x

, x ∈ R. (2.4)The proof of this onsist of a ombination of three fundamental ingredients:(1) an extreme value theorem for Mn under Qβ,(2) a law of large numbers for σN under Qβ,(3) a renewal theorem for τ under Qβ.Items (2) and (3) are immediate: We have from renewal theory that σN/N → 1/µβ in Qβ-probability and limN→∞ Qβ(N ∈ τ) = 1/µβ . The �rst item needs a bit more are:Lemma 2.1.
lim

N→∞
Qβ(MN ≤ γx(N)) = e−e−x

, x ∈ R.Proof. Note that MN is the maximum of N independent random variables with the samedistribution as T1 = τ1 under Qβ. Observe that the tails of this distribution are given by
Qβ(τ1 > k) = eβ

∑

n>k

K(n)e−nF (β) ∼ eβD
∑

n>k

n−αe−nF (β)

= eβDe−kF (β)k−α
∑

n∈N

(1 + n
k )−αe−nF (β)

∼ e−kF (β)k−αD
eβ−F (β)

1 − e−F (β)
, k → ∞,



4 JANINE KÖCHER AND WOLFGANG KÖNIGwhere in the last step we used the monotonous onvergene theorem and the geometri series.Hene, replaing k by γx(N), we see that, as N → ∞,
Qβ(τ1 > γx(N)) ∼ e−γx(N)F (β)γx(N)−αD

eβ−F (β)

1 − e−F (β)

=
1

N
e−C−x(log N)α

(x + C + log N − α log log N

F (β)

)−α
eCF (β)−α

∼
e−x

N
.From this the assertion easily follows. �Hene, Theorem 1.1 is easily seen to follow from the above three ingredients, as soon as oneshows that σN may asymptotially be replaed by N/µβ and that the two events in (2.4) areasymptotially independent. This is what we show now. First we show that MσN

and MN/µβhave the same limiting distribution.Lemma 2.2.
lim

N→∞
Qβ(MσN

≤ γx(N/µβ)) = e−e−x

, x ∈ R.Proof. The upper bound is proved as follows. Fix a small ε > 0, then we have, as N → ∞,
Qβ(MσN

≤ γx(N/µβ)) ≤ Qβ

(
MσN

≤ γx(N/µβ), σN ≥
N

µβ + ε

)
+ Qβ

(
σN <

N

µβ + ε

)

≤ Qβ

(
MN/(µβ+ε) ≤ γx(N/µβ)

)
+ o(1).

(2.5)Observe that, as N → ∞,
γx(N/µβ) − γx(N/(µβ + ε)) =

1

F (β)
log(1 + ε

µβ
) +

α

F (β)
log

log N − log(µβ + ε)

log N − log µβ

=
1

F (β)
log(1 + ε

µβ
) + o(1).Hene, we may replae, as an upper bound, γx(N/µβ) on the right of (2.5) by γx+Bε(N/(µβ +ε))for some suitable B ∈ R, use Lemma 2.1 for N replaed by N/(µβ + ε) and x replaed by x+Bεand make ε ↓ 0 in the end. This shows that the upper bound of the assertion holds. The lowerbound is proved in the same way. �Proof of Theorem 1.1. It is onvenient to introdue a Markov hain (Yn)n∈N0 with

Yn =
(
Y (1)

n , Y (2)
n

)
=

(
Tσn , τσn − n

)on the state spae I = {(i, j) ∈ N × N0 : j ≤ i}, where we reall (2.3). In words, the �rstomponent is the size of the step over n, and the last is the size of the overshoot. This Markovhain is ergodi and positiv reurrent with invariant distribution π(i, j) = Qβ(τ1 = i)/µβ for
(i, j) ∈ I. We denote by Q̃i,j the distribution of this hain given that it starts in Y0 = (i, j); notethat Qβ = Q̃i,0 with an unspei�ed value of i, whih we put equal to 1 by default. The event
{N ∈ τ} is idential to {Y (2)

N = 0} = {YN ∈ N × {0}}; by ergodiity, its probability under Q̃i,jonverges, as N → ∞, to π(N × {0}) = 1
µβ
, for any (i, j) ∈ I, whih is one way to prove therenewal theorem.Now let ε > 0 be given. Pik Kε ∈ N so large that π(Ic

Kε
) < ε/2, where Ik = {(i, j) ∈ I : i ≤ k}for any k ∈ N. Furthermore, pik Rε ∈ N with Rε > Kε so large that Q̃i,j(Rε ∈ τ) ≤ 1

µβ
+ ε for



THE LONGEST EXCURSION OF A RANDOM INTERACTING POLYMER 5any (i, j) ∈ IKε . Now pik Nε ∈ N so large that Nε > Rε and Q̃1,0(YN−Rε ∈ Ic
Kε

) < π(Ic
Kε

)+ ε/2for any N ≥ Nε. The latter is possible, sine Q̃1,0(YN−Rε ∈ Ic
Kε

) = 1 − Q̃1,0(YN−Rε ∈ IKε)onverges towards 1 − π(IKε) = π(Ic
Kε

) as N → ∞ by ergodiity.Reall that we only have to prove (2.4). We alulate, with the help of the Markov propertyat time N − Rε, for N > Nε,
Qβ(MσN

≤ γx(N/µβ), N ∈ τ) = Q̃1,0

(
N

max
k=1

Y (1)

k ≤ γx(N/µβ), Y (2)

N = 0
)

≤ Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε ∈ IKε , Y
(2)

N = 0
)

+ Q̃1,0(YN−Rε ∈ Ic
Kε

)

≤
∑

(i,j)∈IKε

Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε = (i, j)
)

Q̃i,j(Y
(2)

Rε
= 0) + π(Ic

Kε
) + ε/2

≤ Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε

≤ Qβ

(
MσN−Rε

≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε.Now apply Lemma 2.2 for N replaed by N −Rε and observe that limN→∞(γx(N/µβ)−γx((N −

Rε)/µβ)) = 0. Afterwards letting ε ↓ 0 shows that the upper bound in (2.4) holds. The proof ofthe orresponding lower bound is similar, and we omit it. �Referenes[G07℄ G. Giaomin, Random Polymer Models, Imperial College Press (2007).[dH09℄ F. den Hollander, Random Polymers, Springer (2009).


