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2 SABINE JANSEN AND WOLFGANG KÖNIG1.1. The model. We onsider a system x = (x1, . . . , xN ) of N partiles in a box Λ = [0, L]d withinteration given by
UN (x) = UN (x1, . . . , xN ) =

∑

1≤i<j≤N

v(|xi − xj |), (1.1)where v : [0,∞) → R ∪ {∞} is a Lennard-Jones-type potential. Our preise assumptions, whih arethe same as in [JKM11℄, are as follows.Assumption (V). The funtion v : [0,∞) → R ∪ {∞} satis�es the following.(1) v is �nite exept possibly for a hard ore: there is a rhc ≥ 0 suh that
∀r < rhc : v(r) = ∞, ∀r > rhc : v(r) ∈ R.(2) v is stable.(3) The support of v is ompat, more preisely, b := sup supp v < ∞.(4) v has an attrative tail: there is a δ > 0 suh that v(r) < 0 for all r ∈ (b − δ, b).(5) v is ontinuous in [rhc,∞) ∩ (0,∞).Throughout this paper, Assumption (V) will be in fore without further mentioning. We onsiderthe thermodynami limit N,L → ∞ suh that |Λ| = Ld = N/ρ for some partile density ρ ∈ (0,∞) atpositive and �nite inverse temperature β ∈ (0,∞). The existene of the free energy per unit volume iswell-known: there is a ρcp ∈ (0,∞], the lose-paking density, suh that for all ρ ∈ (0, ρcp), the limit

f(β, ρ) := −
1

β
lim

N,L→∞,Ld=N/ρ

1

|Λ|
log
( 1

N !

∫

ΛN

e−βUN (x) dx
)

, β ∈ (0,∞) (1.2)exists in R. In the following, we always assume that β ∈ (0,∞) and ρ ∈ (0, ρcp).Our main onern is the luster size distribution that is indued by the Gibbs measure as a randomsequene. Fix R ∈ (b,∞). For a given on�guration x = (x1, . . . , xN ) ∈ ΛN , onnet two points xi and
xj if their distane |xi − xj | is ≤ R. In this way, the on�guration splits into onneted omponents(maximal onneted subsets), whih we all lusters. Let Nk(x) be the number of k-lusters, i.e.,omponents with k partiles, and let

ρk,Λ(x) :=
Nk(x)

|Λ|be the number of k-lusters per unit volume (whih is zero for any su�iently large k, of ourse). Weonsider the luster size distribution ρΛ = (ρk,Λ)k∈N as a random variable in the set of all sequenes
ρ = (ρk)k∈N ∈ [0,∞)N, whih is naturally oneived as a produt probability spae. One of the mainresults of [JKM11℄ is the existene of a rate funtion f(β, ρ, ·) : [0,∞)N → R ∪ {∞} suh that, in theabove thermodynami limit,

−
1

β

1

|Λ|
log
( 1

N !

∫

ΛN

e−βUN (x)1l
{

ρΛ(x) ∈ ·
}

dx
)

=⇒ inf
ρ∈·

f(β, ρ,ρ), (1.3)in the sense of a large-deviation priniple. That is, the limit in (1.3) holds in the weak sense, and thelevel sets of the rate funtion f(β, ρ, ·) are ompat; in partiular, f(β, ρ, ·) is lower semi-ontinuous.Furthermore, f(β, ρ, ·) is onvex. Moreover, if f(β, ρ,ρ) is �nite, then neessarily ∑∞
k=1 kρk ≤ ρ. Atlow density ρ, the onverse is also true, i.e., f(β, ρ,ρ) < ∞ for any ρ suh that ∑∞

k=1 kρk ≤ ρ. Therelation with the free energy given in (1.2) is
f(β, ρ) = min

{

f
(

β, ρ,ρ
)

∣

∣

∣
ρ ∈ [0,∞)N,

∑

k∈N

kρk ≤ ρ
}

.Hene, the minimiser(s) of f(β, ρ, ·) play an important role as the optimal on�guration(s) of thesystem. Note that the rate funtion and all other related objets studied in the present paper dependon the parameter R, but we will not elaborate on this dependene. Note that this dependene on R



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 3vanishes in the low temperature, low density approximation that we studied in [JKM11℄, but not inthe one presented here.1.2. The ideal-mixture model. We now introdue the main objet in terms of whih we will ap-proximate the above model. The luster partition funtion of a k-luster is introdued as
Zcl

k (β) :=
1

k!

∫

(Rd)k−1

e−βUk(0,x2,...,xk)1l
{

{0, x2, . . . , xk} onneted}dx2 · · · dxk, (1.4)and the assoiated luster free energy per partile is f cl
k (β) := − 1

βk log Zcl
k (β). It is known that itsthermodynami limit,

f cl
∞(β) = lim

k→∞
f cl

k (β), (1.5)exists in R. Indeed, this was proved in [DS84℄, given that (f cl
k (β))k∈N is bounded, and the boundednessof (f cl

k (β))k∈N was derived in [DS84℄ in dimension d = 2 and d = 3 and in [JKM11, Lemma 4.3 and4.5℄ in all dimensions.For ρ = (ρk)k∈N, let
f ideal(β, ρ,ρ) :=

∑

k∈N

kρkf
cl
k (β) +

(

ρ −
∑

k∈N

kρk

)

f cl
∞(β) +

1

β

∑

k∈N

ρk(log ρk − 1). (1.6)This rate funtion desribes the large deviations of the luster size distribution in an idealised modelthat neglets the exluded-volume e�et: the �rst term desribes the internal free energy oming fromthe lusters of �nite size, the seond term the analogous ontribution from lusters of in�nite size, andthe last term desribes the entropy of plaing all these lusters into the volume, not taking are ofbeing separated from eah other. See Setion 1.5 for an integer partition model that has f ideal(β, ρ, ·)as a rate funtion.We are going to ompare f(β, ρ,ρ) with f ideal(β, ρ,ρ) for small densities ρ and low temperatures
1/β. That these two should be lose to eah other is intuitively lear, sine low temperature shouldensure that lusters assume a ompat shape, and low density should give enough spae to plae thelusters at positive mutual distane. The main purpose of this paper is to make this reasoning rigorous.1.3. Our hypotheses. We need further assumptions about ground states and the luster partitionfuntions. Roughly speaking, we need to assume some Hölder ontinuity of the energy Uk(·) lose to theground states and that the relevant lusters at zero and low temperature, respetively, have a ompatshape, i.e., oupy at most a box with volume of order of the number of partiles. These hypothesesare believed to be true for many potentials of the type in Assumption (V), and they an be seen to besatis�ed for the ground states. However, for positive temperatures, their rigorous understanding hasnot yet been ompleted.The purpose of the hypothesis of bounded density is the following. As we indiated above, thefundamental idea is to split the on�guration into its lusters and to ollet the internal free energiesof all the lusters. However, one also needs to desribe the entropy of a on�guration, that is, theombinatorial omplexity for the plaement of all the lusters into some ube. This task is very hardwithout further information. In the low-density approximation, we will solve this task by negletingthe exluded-volume e�et, whih makes it muh easier. For this, we need to know that the lustersdo not require a large diameter. Our seond hypothesis ensure this for the ground states, and the lasttwo hypotheses ensure this for positive low temperature.First we formulate our hypothesis about uniform Hölder ontinuity of the energy around the groundstates and a strong form of stability. Reall that the pair potential v is alled stable if 1

k inf
x∈(Rd)k Uk(x)is bounded from below in k, whih means that the ground states do not lump too strongly.



4 SABINE JANSEN AND WOLFGANG KÖNIGHypothesis 1. There is a rmin ∈ (rhc,∞) suh that v is uniformly Hölder ontinuous in [rmin,∞)and, for all k ∈ N, every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interpartile distanelower bounded as |xi − xj | ≥ rmin for any i 6= j.This hypothesis an be seen to be satis�ed under some mild additional assumptions on v relatingthe negative part of v to its behaviour at zero; see [CKMS10, Proof of Lemma 3.1℄ or [Th06, Lemma2.2℄. The Hölder ontinuity allows us to give low-temperature estimates of the form
−

1

βk
log

1

k!

∫

(Rd)k

e−βU(x) dx =
1

k
inf

x∈(Rd)k
U(x) + O

( log β

β

) as β → ∞,uniformly in k ∈ N.Our next hypothesis says that the minimising on�gurations (the ground states) do not oupy morespae than a box with volume of order of the number of partiles.Hypothesis 2 (Ground states have a ompat shape). There is a onstant c > 0 suh that for all
k ∈ N every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interpartile distane upper boundedby |xi − xj | ≤ ck1/d for any i 6= j.This hypothesis is known to be satis�ed for some lasses of potentials having a large intersetionwith those satisfying Assumption (V), however, only in dimension one and two. See [R81℄ and [AFS12℄.Now we proeed with two more restritive hypotheses, whose validity has atually not been lari�edfor all interesting potentials of the type that we onsider. They onern, at positive su�iently lowtemperature, the diameter of the relevant lusters.An important objet is the internal luster energy oming from a box of volume ad:

Zcl,A
k (β) :=

1

k!Ad

∫

([0,A]d)k

e−βUk(x)1l{x onneted}dx1 · · · dxk. (1.7)The reader may hek that limA→∞ Zcl,A
k (β) = Zcl

k (β) holds for every �xed k and β. The orrespondingfree energy is de�ned as f cl,A
k (β) := − 1

βk log Zcl,A
k (β). It is tempting to believe (and this is the ontentof our next hypothesis) that, at least at su�iently low temperature, a box of volume of order k shouldapture almost all the internal free energy of a luster:Hypothesis 3 (Clusters have a ompat shape). For some c ∈ (0,∞) and every su�iently large β,

lim
k→∞

1

k
log Zcl,ck1/d

k (β) = lim
k→∞

1

k
log Zcl

k (β). (1.8)However, this hypothesis has not even been proved for the relatively simple ase of the two-dimensional Ising model, see the disussion in [DS86℄. It is ommonly believed that (1.8) is truefor low temperature and wrong for high temperature, sine the luster is believed to assume a tree-likestruture and to oupy therefore a muh larger portion of spae. This phenomenon is often alleda ollapse transition: as the temperature dereases below a ritial value, the volume per partileollapses to some �nite value.The following hypothesis is in the spirit of Hypothesis 3 and goes muh beyond it: if, for large β, therelevant on�gurations for f cl
k (β) have a ompat shape, then the number of partiles that have notthe optimal number of neighbours should be of surfae order. Therefore the orretion to the large-kasymptotis should be of surfae order of a ball with volume ≈ k:Hypothesis 4. For some C > 0 and all su�iently large β,

kf cl
k (β) − kf cl

∞(β) ≥ Ck1−1/d, k ∈ N. (1.9)



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 5To the best of our knowledge, suh a deep statement has not been proved for any interesting potentialsatisfying Assumption (V). Atually for our proofs we only need a lower bound against Ckε for some
ε > 0 instead of Ck1−1/d.1.4. Our results. Our �rst main result applies to all luster size distributions ρ, not only minimisersof the rate funtions, and is therefore possibly of interest for non-equilibrium thermodynami models.Theorem 1.1 (Comparison of f(β, ρ, ·) and f ideal(β, ρ, ·)). Let the pair potential v satisfy Hypotheses1 and 2. Then there are ρ, β and C > 0 suh that for all β ∈ [β,∞), ρ ∈ (0, ρ), and K ∈ N with
K < (ρ/3)−1/(d+1), and all ρ = (ρk)k∈N ∈ [0,∞)N satisfying ∑k∈N

kρk ≤ ρ,
f ideal(β, ρ,ρ) ≤ f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) +

C

β
εK(β, ρ,ρ), (1.10)where

εK(β, ρ,ρ) = ρ
(d+2)/(d+1)
≤K + (ρ − ρ≤K) log β − m>K log m>K (1.11)and we abbreviated ρ≤K :=

∑K
k=1 kρk and m>K :=

∑∞
k=K+1 ρk. If in addition Hypothesis 3 holds, thenin (1.11) we an replae (ρ − ρ≤K) with ∑∞

k=K+1 kρk.Theorem 1.1 is proved in Setion 2. Next, we ompare the minimimum and the minimisers underthe two stronger hypotheses on the ompat shape of the relevant lusters at positive temperature andthe �nite size orretion of the luster free energy. Let
f ideal(β, ρ) := inf

{

f ideal(β, ρ,ρ)
∣

∣

∣
ρ ∈ [0,∞)N,

∑

k∈N

kρk ≤ ρ
}

. (1.12)It is not di�ult to see that there is a unique minimiser ρideal(β, ρ) = (ρideal
k (β, ρ))k∈N. We set

mideal(β, ρ) :=
∑∞

k=1 ρideal
k (β, ρ) ∈ [0, ρ].Theorem 1.2. Suppose that Hypotheses 1, 3 and 4 hold, and assume that d ≥ 2. Then there are

β, ρ,C,C ′ > 0 suh that, for all β ∈ [β,∞) and ρ ∈ (0, ρ), the following holds.(1) Free energy:
0 ≤ f(β, ρ) − f ideal(β, ρ) ≤

C

β
mideal(β, ρ)ρ1/(d+1) . (1.13)(2) Let ρ = ρ(β,ρ) = (ρk)k∈N be a minimiser of f(β, ρ, ·), and put m :=

∑

k∈N
ρk. Then

∣

∣

∣

∣

m

mideal(β, ρ)
− 1

∣

∣

∣

∣

2

≤ C ′ρ1/(d+1) and 1

2
H
( ρ

m
;

ρideal(β, ρ)

mideal(β, ρ)

)

≤ C ′ρ1/(d+1). (1.14)Here
H(a; b) =

∑

k∈N

(

bk − ak + ak log
ak

bk

)is the relative entropy between two �nite measures a and b on N, and we reall Pinsker's inequality:when a and b are probability measures, then 1
2H(a; b) ≥ ||a − b||2var. The proof of Theorem 1.2 is inSetion 3.2.As we explained in more detail in [JKM11, Setion 1.6℄, our results do not imply a transitionfrom non-existene to existene of unbounded lusters at any �xed temperature, but only indiate theourrene of suh a transition in a ertain limiting sense as the temperature and the partile densityboth vanish.



6 SABINE JANSEN AND WOLFGANG KÖNIGIf we do not assume that Hypotheses 3 and 4 are true, our rigorous bounds hold in the temperature-density plane only in a region away from the ritial line given by ρ = exp(−βν∗) with ν∗ ∈ (0,∞)de�ned as follows. Introdue the ground-state energy,
Ek := inf

x∈(Rd)k
Uk(x). (1.15)Then e∞ := limk→∞ Ek/k exists in (−∞, 0), and ν∗ := infk∈N(Ek−ke∞) is positive [CKMS10, JKM11℄;note that Assumption (V)(4) is needed for proving the positivity of ν∗.Theorem 1.3. Let v satisfy Hypotheses 1 and 2. Then, for any ε > 0 there are βε, Cε, C

′
ε > 0 suhthat for all β ∈ [βε,∞) and ρ ∈ (0,∞) satisfying −β−1 log ρ > ν∗ + ε, (1.13) and (1.14) hold with Cand C ′ replaed by Cε and C ′

ε, respetively.The proof of Theorem 1.3 is in Setion 3.3. We would like to note that our ondition R > b is neededin the preparatorial Setion 3.1.1.5. Disussion. Let us explain in more detail the signi�ane of Theorems 1.2 and 1.3, and in whihway they improve results of [JKM11℄.We start by realling the properties of the idealised problem; see also [BCP86, Set. 4℄. As mentionedabove, for all β and ρ, f ideal(β, ρ, ·) has a unique minimiser (ρideal
k (β, ρ))k∈N, whih an be haraterisedas follows. Let

ρideal
sat (β) :=

∑

k∈N

k eβk[fcl
∞

(β)−fcl
k (β)] ∈ (0,∞] (1.16)be the saturation density of the ideal mixture. If Hypothesis 4 holds (atually also under muh weakerbounds than the one in (1.9)), at low temperature, ρideal

sat (β) is �nite. In general, however, it an bein�nite. For ρ < ρideal
sat (β), let µideal(β, ρ) ∈ (−∞, f cl

∞(β)) be the unique solution of
∞
∑

k=1

k eβk[µideal(β,ρ)−fcl
k (β)] = ρ, (1.17)and for ρ ≥ ρideal

sat (β), let µideal(β, ρ) := f cl
∞(β). Then, as follows from (3.27) below, the minimiser

(ρideal
k (β, ρ))k is given by

ρideal
k (β, ρ) = eβk[µideal(β,ρ)−fcl

k (β)], (1.18)and the ideal free energy from (1.12) is given by
f ideal(β, ρ) = ρµideal(β, ρ) −

1

β
mideal(β, ρ). (1.19)Moreover, ρ 7→ f ideal(β, ρ) is analyti and stritly onvex in (0, ρideal

sat (β)), and linear with slope f cl
∞(β)in [ρideal

sat (β),∞). In partiular, the ideal mixture undergoes a phase transition as the density is variedif and only if the saturation density of the ideal mixture is �nite. The transition is from a gas phasewhere all partiles are in �nite-size lusters, to a ondensed phase where a positive fration goesinto unboundedly large lusters: for all ρ < ρideal
sat (β, ρ), we have ∑∞

k=1 kρideal
k (β, ρ) = ρ, while for

ρ > ρideal
sat (β), ∑∞

k=1 kρideal
k (β) = ρideal

sat (β) < ρ.Armed with this knowledge, we an ompare our results with those of [JKM11℄. In [JKM11℄, we ap-proximated the rate funtion f(β, ρ, ·), more preisely the funtion q = (qk)k∈N 7→ 1
ρf(β, ρ, (kqk)k∈N/ρ),with

gν(q) =
(

1 −
∞
∑

k=1

qk

)

e∞ +
∞
∑

k=1

qk
Ek − ν

k
, ν := −

1

β
log ρ. (1.20)This funtion is easier to formulate, but involves more approximations, and has some rather unphysialproperties. This approximation was proved in the so-alled Saha regime, where large β and small ρ areoupled with eah other via the equation ρ = e−βν for some parameter ν ∈ (0,∞), and the limiting



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 7rate funtion gν turned out to be pieewise linear with at least one kink, but also possibly more. Eahkink represents a phase transition, and the minimiser in the kinks is not unique. This is in strongontrast with the approximate rate funtion f ideal(β, ρ, ·) studied in this paper, whih possesses onlyone minimiser and only (at most) one phase transition. As we make expliit in the next paragraph,
f ideal(β, ρ, ·) an itself be approximated by gν , in partiular by negleting an entropy term. It is thesmoothing e�et of this term that gets lost in that approximation, and possibly a lot of new kinksappear in this way. We know that these additional kinks orrespond to ross-overs inside the gas phase,but not to sharp phase transitions (see [J11℄ for a disussion of this). Hene, the full ideal mixtureaptures the behaviour of the physial system muh better than the funtion studied in [JKM11℄.We note that both f ideal(β, ρ, ·) and gν onsidered in [CKMS10, JKM11℄ appear as exat largedeviations rate funtions for simple random partitions models. We onsider vetors (Nk)1≤k≤N ∈ N

N
0with ∑N

k=1 kNk = N as integer partitions, and look at the (not normalised) measures on partitionsgiven by
µideal

β,N,Λ({(N1, . . . , NN )}) :=

N
∏

k=1

(|Λ|Zcl
k (β))Nk

Nk!
=

(

M

N1, . . . ,NN

)

×
|Λ|M

M !

N
∏

k=1

(Zcl
k (β))Nk ,

µCKMS
β,N,Λ({N1, . . . , NN}) :=

|Λ|M

M !

N
∏

k=1

(e−βEk)Nk ,

(1.21)where M :=
∑N

k=1 Nk. In the thermodynami limit N, |Λ| → ∞ suh that N/|Λ| → ρ, under µideal
β,N,Λ, thevetor (Nk/|Λ|)k∈N satis�es a large deviations priniple with speed β|Λ| and rate funtion f ideal(β, ρ, ·).On the other hand, under µCKMS

β,N,Λ , the vetor (kNk/N)k∈N satis�es a large deviations priniple withspeed βN and rate funtion q 7→ gν(q) − 1
β

∑

k∈N

qk
k , whih di�ers from the approximate funtional

gν from [CKMS10, JKM11℄ only by a vanishing term. Hene, from (1.21) we see that gν(·) arisesfrom f ideal(β, ρ, ·) by two simpli�ations: Zcl
k (β) ≈ exp(−βEk) and the omission of the multinomialoe�ient, that is, the luster free energy is approximated by the ground state energy, and the mixingentropy is negleted.The seond main di�erene with [JKM11℄ is that our error bounds are muh better. In [JKM11℄, thefree energy per partile f(β, ρ)/ρ is approximated up to errors of the order (log β)/β. In ontrast, when

ρ = e−βν for �xed ν > 0, as β → ∞, the error in (1.13) vanishes exponentially fast in β. Moreover,(1.13) may be written as
f(β, ρ) = ρµideal(β, ρ) −

1

β
mideal(β, ρ)

(

1 + O(ρ1/(d+1))
)

.This is interesting beause for ρ > ρideal
sat (β), we have mideal(β, ρ) ≤ ρideal

sat (β). Thus the free energyequals the ideal free energy plus an error whih is small ompared to the smallest of the two termsin (1.19), 1
β mideal.For ompleteness and for the reader's onveniene, in Setion A, we provide approximations of theidealised mixture model in terms of gν in the Saha regime with exponentially small errors.2. Proof of Theorem 1.1In this setion, we prove Theorem 1.1. We will use a onvexity argument and split an arbitrary sequene

ρ into its omponents on the �rst K entries and the ones on the remainder. Hene, we onsider thesetwo parts separately.



8 SABINE JANSEN AND WOLFGANG KÖNIG2.1. Case 1: all lusters have size ≤ K. Here we onsider ρ satisfying ρk = 0 for k > K withsome K ∈ N. Reall from Assumption (V) that b is the interation range and R ∈ (b,∞) determinesthe notion of onnetedness.Lemma 2.1. Let β > 0, k ∈ N. Set C := sup|x|≤2/3 |x
−1 log(1 − x)|. Then(i) For all A > 0, f cl

k (β) ≤ f cl,A
k (β).(ii) For all A > 3kR,

f cl,A
k (β) ≤ f cl

k (β) +
CdR

βA
.Proof. (i) For all β, k,A, we have Zcl,A

k (β) ≤ Zcl
k (β). Indeed, for any x1 ∈ R

d, we obviously have
1

k!

∫

([0,A]d)k−1

e−βUk(x1,x2,...,xk)1l{(x1, x2, . . . , xk) onneted}dx2 · · · dxk ≤ Zcl
k (β).Integrating over x1 ∈ [0, a]d and dividing by ad shows that Zcl,A

k (β) ≤ Zcl
k (β). This implies that

f cl,A
k (β) ≥ f cl

k (β).(ii) Let k ∈ N and A > 2kR. Let x1 ∈ [0, A]d have distane ≥ kR to the boundary of the ube.Then, writing x = (x1, . . . , xk),
1

k!

∫

([0,A]d)k−1

e−βUk(x)1l{x onneted}dx2 · · · dxk =
1

k!

∫

(Rd)k−1

e−βUk(x)1l{x onneted}dx2 · · · dxk

= Zcl
k (β).Thus, integrating over x1 and realling the de�nition of Zcl,A

k (β) in (1.7),
Zcl,A

k (β) ≥
(A − 2kR)d

Ad
Zcl

k (β).Therefore, when A > 3kR, we take − 1
βk log and dedue

f cl,A
k (β) ≤ f cl

k (β) −
1

βk
log
[

(1 − 2kR
A )d

]

≤ f cl
k (β) + CdR

βA .

�Lemma 2.2. Fix β, ρ > 0. Let K ∈ N and A > 0 suh that (A + R)d < ρ−1. Then for all ρ suh that
∑K

k=1 kρk = ρ,
f(β, ρ,ρ) ≤

K
∑

k=1

kρkf
cl,A
k (β) +

1

β

K
∑

k=1

ρk(log ρk − 1)

+
1

β

(

K
∑

k=1

ρk

)(

− log
(

1 − (A + R)d
K
∑

k=1

ρk

)

+ log
(

1 + R
A

)d
)

.

(2.22)Proof. Let Λ = [0, L]d. For 2 ≤ k ≤ K, set Nk := ⌊|Λ|ρk⌋. Set N1 := N −
∑K

k=2 kNk, and M :=
∑K

k=1 Nk. Divide Λ into ubes of side-length A, at mutual distane R. We all these ubes �ells�. Thenumber D of ubes that an be plaed in this way is D ≥ ⌊L/(A + R)⌋d. Let
ZΛ(β,N,N1, . . . , NK) :=

1

N !

∫

ΛN

e−βUN (x)1l
{

∀k ∈ {1, . . . ,K} : Nk(x) = Nk

}

dx.We an lower bound this onstrained partition funtion by integrating only over on�gurations suhthat: (a) there is at most one luster per ell, and (b) eah luster is ontained in one of the ells. Thenumber of partitions of the partile label set {1, . . . ,N} into N1 sets of size 1, N2 sets of size 2, et.,
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∏K

k=1 k!Nk!). For a given set partition, the number of ways to assign distint ells tothe sets is D(D − 1) · · · (D − M + 1). Thus we �nd
ZΛ(β,N,N1, . . . , NK) ≥ D(D − 1) · · · (D − M + 1)

K
∏

k=1

(

AdZcl,A
k (β)

)Nk

Nk!
.We observe that

D(D − 1) · · · (D − M + 1)(Ad)M ≥
(

(

L
A+R − 1

)d
− M

)M
(Ad)M

= |Λ|M
( A

A + R

)dM(
(

1 − A+R
L

)d
− M(A+R)d

|Λ|

)M
.It follows that in the limit N,L → ∞, N/Ld → ρ, − lim inf 1

β|Λ| log ZΛ(β,N,N1, . . . ,NK) is not largerthan the right-hand side of (2.22). The proof of the lemma is then onluded as in the proof of [JKM11,Proposition 3.2℄. �Proposition 2.3. Fix β > 0, ρ ≤ (2d+1/3)1+1/d, and K ∈ N with K < ρ−1/(d+1). Then, for suitable
C ′ > 0 and all ρ with ∑K

k=1 kρk = ρ and ρk = 0 for k ≥ K + 1,
f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) + C ′ ρ

β
ρ1/(d+1).Proof. Let C > 0 be as in Lemma 2.1 and set m :=

∑K
k=1 ρk. Then by Lemmas 2.1 and 2.2,

f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤
CdR

βA
ρ +

Cm

β

(

(A + R)dm +
dR

A

)

,provided A > 3KR and (A + R)dm ≤ 2/3. Set A = ρ−1/(d+1)/(3R). Then A > 3KR beause byassumption K < ρ−1/(d+1), and (A + R)dm ≤ 2dAdρ = 2dρd/(d+1) ≤ 2/3 beause we have assumed
ρ ≤ (2d+1/3)1+1/d. Thus we have

f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤ C ′ ρ

β
ρ1/(d+1), where C ′ := C

( 2d

(3R)d
+ 6dR2

)

. �2.2. Case 2: all lusters have size ≥ K + 1.Proposition 2.4. Suppose that v satis�es Hypotheses 1 and 2. Then there are ρ, β,C ′′ > 0 suh thatfor all β ∈ [β,∞), ρ ∈ (0, ρ), for all K ∈ N0 and all ρ suh that ∑∞
k=K+1 kρk ≤ ρ and ρk = 0 for

k ≤ K,
f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) +

C ′′ρ

β
log β −

m

β
log

m

ρ e
. (2.23)If in addition Hypothesis 3 holds, we an replae ρβ−1 log β with (

∑∞
k=K+1 ρk)β

−1 log β.Proof. By [JKM11, Theorem 1.8℄, there are ρ, β,C ′′ > 0 suh that for all β ≥ β and ρ ≤ ρ ,
f(β, ρ,ρ) ≤

∞
∑

k=K+1

ρk

(

Ek +
log ρ

β

)

+
(

ρ −
∞
∑

k=K+1

kρk

)

e∞ +
C ′′ρ

β
log β. (2.24)Beause of [JKM11, Lemma 4.3℄, we an further inrease C ′′ and β so that for all k ∈ N and β ≥ β,

Ek

k
≤ f cl

k (β) +
C ′′

β
log β and e∞ ≤ f cl

∞(β) +
C ′′

β
log β.Moreover, setting m :=

∑∞
k=K+1 ρk,

∞
∑

k=K+1

ρk
log ρ

β
−

1

β

∞
∑

k=K+1

ρk(log ρk − 1) ≤
m

β

(

2 + log
ρ

m
+ log

∑∞
k=K+1 kρk

m

)

.



10 SABINE JANSEN AND WOLFGANG KÖNIGHere we have used that
−

∞
∑

k=K+1

ρk log
ρk

m
≤ m

(

1 + log

∑∞
k=K+1 kρk

m

)

,see [JKM11, Lemma 4.1℄. The inequality (2.23) follows.If in addition Hypothesis 3 holds we remark, �rst, that for all ρ ≤ 1/c and all su�iently large β,with c as in Hypothesis 3, f(β, ρ,0) ≤ f cl
∞(β) = f ideal(β, ρ,0). Beause of the onvexity of f(β, ρ, ·),

f(β, ρ,ρ) ≤

∑∞
k=1 kρk

ρ
f(β, ρ, ρ̃) +

ρ −
∑∞

k=K+1 kρk

ρ
f(β, ρ,0), ρ̃ :=

(

∑∞
k=1 kρk

ρ

)−1
ρ.We dedue that in (2.24) we an replae e∞ with f cl

∞(β), and the laim follows. �2.3. General ase.Proof of Theorem 1.1. We already know that f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ) [JKM11, Lemma 3.1℄, so weneed only prove the upper bound for f(β, ρ,ρ). Let K ∈ N and ρ suh that ∑∞
k=1 kρk ≤ ρ. The ases

∑k
k=1 kρk = ρ and = 0 were treated in Propositions 2.3 and 2.4, thus we may assume 0 <

∑K
k=1 kρk < ρ.Set ρ≤K :=

∑K
k=1 kρk. Let ρ be as in Proposition 2.4 and suppose that ρ ≤ ρ. Set

ρ :=
ρ≤K

1 − ρ≤K/ρand
ρsmallk :=

{

ρk/(1 − ρ≤K/ρ) if 1 ≤ k ≤ K,

0, if k ≥ K + 1,
and ρlargek :=

{

0 if 1 ≤ k ≤ K,

ρk/[ρ≤K/ρ], if k ≥ K + 1.It was shown in [JKM11, Setion 2.5℄ that the map (ρ,ρ) 7→ f(β, ρ,ρ) is a supremum of onvexfuntions and hene is itself onvex. Thus we an write
f(β, ρ,ρ) ≤

(

1 −
ρ≤K

ρ

)

f
(

β, ρ,ρsmall)+
ρ≤K

ρ
f
(

β, ρ,ρlarge). (2.25)Propositions 2.3 and 2.4 yield
f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤ C ′ρ≤K

β

(

K
∑

k=1

ρsmallk

)1/(d+1)
−

m≤K

β
log
(

1 −
ρ≤K

ρ

)

+
C ′′

β
(ρ − ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
,provided β ≥ β, ρ ≤ (2d+1/3)1+1/d, and K < ρ−1/(d+1). The onditions on ρ and K are ertainlysatis�ed if we assume that ρ ≤ 2

3 min(1, ρ) and K ≤ (ρ/3)−1/(d+1) . If this is the ase, we an furtherbound the right-hand side of (2.3) as
C ′31/(d+1) + C

β

(

ρ≤K

)(d+2)/(d+1)
+

C ′′

β
(ρ − ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
.Sine m>K ≤ ρ ≤ 2/3 , we an upper bound |1 + log ρ| ≤ −D(ρ) log m>K for some suitable onstant

C(ρ) > 0. We obtain the bound of Theorem 1.1. The improved bound under Hypothesis 3 is deduedfrom the orresponding statement in Proposition 2.4. �3. Proof of Theorems 1.2 and 1.3We prove Theorems 1.2 and 1.3 in Setions 3.2 and 3.3 below, respetively, after providing somepreparations in Setion 3.1.



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 113.1. Tail estimates. The main idea for the proof of Theorems 1.2 and 1.3 is to apply Theorem 1.1 tothe minimiser ρideal(β, ρ) of the ideal rate funtion. Therefore we will need estimates on the tails of theideal minimiser, see Lemmas 3.2 and 3.3 below. First we reall a statement about the low-temperaturebehaviour of the luster free energy. Reall the ground-state energy Ek de�ned in (1.15).Lemma 3.1 (Cluster free energy at low temperature). There are β0 > 0 and C > 0 suh that for
β ≥ β0,

∀k ∈ N : f cl
k (β) ≥

Ek

k
−

C

β
, and f cl

∞(β) ≥ e∞ −
C

β
.Moreover, for eah �xed k ∈ N, limβ→∞ f cl

k (β) = Ek/k. If in addition the pair potential satis�esHypothesis 1, then for β ≥ β0,
∀k ∈ N : f cl

k (β) ≤
Ek

k
+

C

β
log β, and f cl

∞(β) ≤ e∞ +
C

β
log β.and limβ→∞ f cl

∞(β) = e∞.Proof. The limit statement for f cl
k (β) as β → ∞ follows by a standard argument for exponentialintegrals. The lower bounds for f cl
k (β) and f cl

∞(β) have been proven in [JKM11, Lemma 4.3℄. Theupper bounds follow from [JKM11, Lemma 4.5℄ and the observation that for all β,A > 0 and k ∈ N,
f cl

k (β) ≤ f cl,A
k (β), see Lemma 2.1. �Note that our ondition R > b is needed in the proof of [JKM11, Lemma 4.5℄ and hene in the aboveproof.In the following, we omit the arguments (β, ρ) of the objets ρideal and mideal for brevity. Reallthat ρideal is given in (1.18) and that mideal =

∑

k∈N
ρideal

k and mideal
>K =

∑∞
k=K+1 ρideal

k .Lemma 3.2. Suppose that Hypothesis 4 is true, and assume that d ≥ 2. Then there are C, c, β > 0,
K0 ∈ N suh that for all K ≥ K0, β ∈ [β,∞), and ρ > 0,

∑

k∈N
kρideal

k
∑

k∈N
ρideal

k

≤ C, and mideal
>K

mideal
≤

∑∞
k=K+1 kρideal

k

mideal
≤ e−βcK1−1/d

. (3.26)Proof. Aording to Hypothesis 4, we an hoose c > 0, K0 ∈ N, and β suh that for β ≥ β and
K ≥ K0,

∞
∑

k=K+1

k exp(βk[f cl
∞(β) − f cl

k (β)]) ≤ e−βcK1−1/d
.Let k(ν∗) be suh that Ek(ν∗) − k(ν∗)e∞ = ν∗. Reall from (1.18) that ρideal
k (β, ρ) ≤ exp(βk[f cl

∞(β) −

f cl
k (β)]). Then, for K ≥ max{K0, k(ν∗)}, we have, also using Lemma 3.1,

∑∞
k=K+1 kρideal

k
∑∞

k=1 ρideal
k

≤
e−βcK1−1/d

ρideal
k(ν∗)

=
e−βcK1−1/d

e−β(ν∗+O(β−1 log β))
≤ e−β(cK1−1/d−2ν∗),where the last inequality holds for su�iently large β. For K su�iently large, this last expressionis smaller than e−βcK1−1/d/2. Writing c/2 instead of c, this shows the seond assertion in (3.26).Furthermore, for these K,

∑

k∈N
kρideal

k

mideal
≤

∑K
k=1 kρideal

k
∑K

k=1 ρideal
k

+ e−βcK1−1/d/2 ≤ K + 1.Using this for K = K0, this also shows the �rst assertion in (3.26). �If we do not assume that Hypothesis 4 is true, we have an analogue of Lemma 3.2 for densities muhsmaller than exp(−βν∗), valid for all d ∈ N.



12 SABINE JANSEN AND WOLFGANG KÖNIGLemma 3.3. Let v satisfy Hypothesis 1. Fix ε > 0. Then there are βε,Kε, δε > 0 suh that for all
β ∈ [βε,∞), ρ ≤ exp(−β(ν∗ + ε)) and K ≥ Kε,

ρ

mideal
≤ Cε, and mideal

>K

mideal
≤

∑∞
k=K+1 kρideal

k

mideal
≤ e−βKδε .For the proof, we give �rst a lower bound for the saturation density of the ideal mixture, whih isof interest in itself. Under additional hypotheses, a stronger statement holds, see Prop. A.1.Lemma 3.4.

lim inf
β→∞

1

β
log ρideal

sat (β) ≥ −ν∗.Proof. Let k ∈ N. We pik, as a lower bound, only the k-th summand in (1.16). Then, as β → ∞,aording to Lemma 3.1,
1

β
log ρideal

sat (β) ≥
1

β
log k + k(f cl

∞(β) − f cl
k (β)) = −(Ek − ke∞) + o(1).Letting β → ∞ and taking the supremum over k of the right-hand side yields the desired result. �Proof of Lemma 3.3. Fix ε > 0. By Lemma 3.4, there is a β0 > 0 suh that for all β ≥ β0, e−β(ν∗+ε) <

ρideal
sat (β). Thus for β ≥ β0 and ρ ≤ e−β(ν∗+ε), we have ρ < ρideal

sat (β, ρ), and µideal(β, ρ) solves (1.17).Let µε := infk∈N(Ek − ν∗ − ε)/k. Then µε < e∞. Indeed, by de�nition of ν∗, there is a k ∈ N suhthat Ek − ke∞ ≤ ν∗ + ε/2, and for this k, µε ≤ (Ek − ν∗− ε)/k ≤ e∞− ε/(2k) < e∞. Choosing k0 ∈ Nsuh that µε = (Ek0 − ν∗ − ε)/k0, we �nd
µideal(β, ρ) ≤ f cl

k0
(β) +

β−1 log ρ

k0
≤

Ek0 − (ν∗ + ε)

k0
+ O(β−1 log β) = µε + O(β−1 log β).Sine µε < e∞ and [Ek − (ν∗ + ε)]/k → e∞ as k → ∞, there are kε ∈ N, ∆ε > 0 suh that

k ≥ kε =⇒
Ek − (ν∗ + ε)

k
≥ µ(ν∗ + ε) + ∆ε.It follows that for k ≥ kε,

ρideal
k (β, ρ)

ρ
≤ exp(−βk(∆ε + O(β−1 log β))).Choose βε ≥ β0 large enough so that the O(β−1 log β) term is ≤ ∆ε/2, then we �nd for β ≥ βε and

k ≥ kε,
ρideal

k (β, ρ)

ρ
≤ exp(−βk∆ε/2).Noting that for z < 1, as K → ∞, ∑k≥K kzk = O(zK), we dedue that for su�iently large K,

∑∞
k=K+1 kρideal

k (β, ρ)

ρ
≤ exp(−βKδε).Now �x K1 ≥ Kε large enough so that exp(−βεδεK1) ≤ 1/2. Then

ρ =

K1
∑

k=1

kρideal
k +

∞
∑

k=K1+1

kρideal
k (β, ρ) ≤ K1m

ideal + ρ/2whene ρ ≤ 2K1m
ideal and, for su�iently large K,

∑∞
k=K+1 kρideal

k

mideal
≤ 2K1 exp(−βKδε). �3.2. Proof of Theorem 1.2.



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 133.2.1. Free energy f(β, ρ). By Theorem 1.1, for all β and ρ,
f(β, ρ) = inf

ρ

f(β, ρ,ρ) ≥ inf
ρ

f ideal(β, ρ,ρ) = f ideal(β, ρ).Thus we need only prove the upper bound to f(β, ρ). To this aim we note that
f(β, ρ) ≤ f(β, ρ,ρideal(β, ρ)) = f ideal(β, ρ) +

(

f(β, ρ,ρideal(β, ρ)) − f ideal(β, ρ,ρideal(β, ρ))
)

.where we reall that ρideal(β, ρ) is the unique minimiser of f ideal(β, ρ, ·). To lighten notation, we willdrop the (β, ρ)-dependene in the notation and write ρideal, mideal, instead of ρideal(β, ρ), mideal(β, ρ),et. Theorem 1.1 yields
f(β, ρ,ρideal) − f ideal(β, ρ,ρideal) ≤

C

β

(

(ρideal
≤K )(d+2)/(d+1) +

∞
∑

k=K+1

kρideal
k log β − mideal

>K log mideal
>K

)

,provided β ≥ β, ρ < ρ, and K < (ρ/3)−1/(d+1). By Lemma 3.2, if we assume β ≥ β0 and K ≥ K0, theterm in the big parenthesis is bounded above by a onstant times
mideal

(

ρ1/(d+1) + e−βcK1−1/d
log β + βcK1−1/de−βcK1−1/d

)

.Choosing K as a onstant times ρ−1/(d+1), we see that the seond and third summands are boundedby the �rst. This gives the desired bound on the free energy. �3.2.2. Minimisers. Every minimiser ρ of f(β, ρ, ·) satis�es f(β, ρ) = f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ). There-fore, aording to part (1),
0 ≤ f ideal(β, ρ,ρ) − f ideal(β, ρ) ≤ f(β, ρ) − f ideal(β, ρ) ≤

C

β
midealρ1/(d+1).Now by an expliit omputation,

βf ideal(β, ρ,ρ) − βf ideal(β, ρ) = H(ρ;ρideal) + ρ∞(f cl
∞(β) − µideal), (3.27)where ρ∞ := ρ −

∑∞
k=1 kρk. Let pk := ρk/m and pideal

k := ρideal
k /mideal. Then

H(ρ;ρideal) = midealg
(

m
mideal

)

+ mH(p;pideal),where g(x) := 1 − x + x log x. Note that g(x) ≥ 0 for all x > 0. Summarizing the last three displays,we �nd,
midealg

(

m
mideal

)

+ mH(p;pideal) + ρ∞(f cl
∞(β) − µideal) ≤ Cmidealρ1/(d+1).Sine eah of the three terms on the left-hand side is nonnegative, we obtain that eah of them is notlarger than the right-hand side, and this implies

g
(

m
mideal

)

≤ Cρ1/(d+1) and H(p;pideal) ≤ C mideal

m ρ1/(d+1).Sine g(x) → 0 implies x → 1 and g(x) ∼ (1 − x)2/2 as x → 1, we dedue that for ρ su�iently smalland some suitable onstant C ′ > 0, |1−m/mideal| ≤ C ′ρ1/(2d+2), and the orresponding bound for therelative entropy easily follows. �3.3. Proof of Theorem 1.3. The argument is exatly the same as for Theorem 1.2. In Theorem 1.1applied to ρideal, we note that for ρ ≤ ρideal
sat , we have ∑∞

1 kρideal
k = ρ; this observation replaes the useof Hypothesis 3. Later we use Lemma 3.3 instead of Lemma 3.2.



14 SABINE JANSEN AND WOLFGANG KÖNIGAppendix A. The idealised model in the Saha regimeIn this setion, we provide expliit bounds for the approximation of the minima and the minimisersof the idealised rate funtion f ideal by the ones of the funtion gν that we introdued in (1.20) andanalysed in [CKMS10℄ and [JKM11℄. We work in the Saha regime, where ρ = e−βν for some ν ∈ (0,∞).Reall that the interation potential v is always supposed to satisfy Assumption (V). Let us �rst reallthe relevant notation.The ground state energy Ek was de�ned in (1.15) and the quantities e∞ = limk→∞ Ek/k and
ν∗ = infk∈N(Ek − ke∞) were de�ned after (1.15). Set µ(ν) := infk∈N[Ek − ν]/k. From [JKM11,Lemma 1.3℄ we know that the map ν 7→ µ(ν) is pieewise a�ne. It is onstant with value µ(ν) = e∞for ν ∈ (0, ν∗], and stritly dereasing in [ν∗,∞). The set N ⊂ [ν∗,∞) of points at whih µ hangesits slope is bounded and either in�nite, with the unique aumulation point ν∗, or �nite. Furthermore,for ν ∈ (ν∗,∞) \ N , we have µ(ν) = [Ekν − ν]/kν for a unique kν ∈ N, and

∆(ν) := inf
{Ek − ν

k
− µ(ν)

∣

∣

∣
k ∈ N, k 6= kν

} (A.28)is stritly positive [JKM11, Theorem 1.8℄.A �rst quik onsisteny hek onerns the omparison of the ritial line ρ = exp(−βν∗)from [CKMS10, JKM11℄ with the saturation density of the ideal mixture; this strengthens Lemma 3.4.Proposition A.1 (Saturation density). Suppose that v satis�es Hypotheses 1, 2 and 4 and d ≥ 2.Then, as β → ∞, ρideal
sat (β) = exp(−βν∗ + O(log β)).Next, we investigate the low-temperature asymptotis of f ideal(β, ρ). Reall that the free energy is asum of two terms, see (1.19). We analyse them separately and shall see that the dominant ontributionomes from the term ρµideal(β, ρ), whih behaves like ρµ(ν). Observe that ρµ(ν) is preisely theapproximation to the free energy f(β, ρ) proven in [JKM11℄.Proposition A.2 (Chemial potential). Suppose that v satis�es Hypotheses 1 and 2. Let ν > 0 andput ρ = exp(−βν). Then, as β → ∞,

• if ν ∈ (ν∗,∞) \ N ,
µideal(β, ρ) = f cl

kν
(β) −

ν

kν
−

log kν

β
+ O(β−1e−β∆(ν)/2) = µ(ν) + O

( log β

β

)

, (A.29)
• if ν < ν∗ and v also satis�es Hypothesis 4, and d ≥ 2, then

µideal(β, ρ) = f cl
∞(β) = e∞ + O

( log β

β

)

= µ(ν) + O
( log β

β

)

. (A.30)Next we state the behaviour of mideal(β, ρ) =
∑

k∈N
ρideal

k (β, ρ), the number of lusters per unitvolume. Note that for an ideal mixture, this is essentially the same as the pressure, βpideal(β, ρ) =

mideal(β, ρ) [H56℄.Proposition A.3 (Number of lusters (pressure)). Suppose that v satis�es Hypotheses 1 and 2. Fix
ν > 0 and put ρ = exp(−βν). Then, as β → ∞,

• if ν ∈ (ν∗,∞) \ N , mideal(β, ρ) =
(

1 + O(e−β∆(ν)/2)
)

ρ/kν ,

• if ν < ν∗ and in addition v satis�es Hypothesis 4, and d ≥ 2, then mideal(β, ρ) = exp(−βν∗ +

O(log β)) = o(ρ).Finally, we analyse the behaviour of the minimiser of f ideal(β, ρ, ·).



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 15Proposition A.4 (Cluster size distribution). Suppose that v satis�es Hypotheses 1 and 2. Fix ν > 0and put ρ = exp(−βν). Then, as β → ∞,
• if ν ∈ (ν∗,∞) \ N ,

kνρ
ideal
kν

(β, ρ)

ρ
= 1 + O(e−β∆(ν)/2), (A.31)

• if ν < ν∗ and in addition v satis�es Hypothesis 4, and d ≥ 2,
∞
∑

k=1

kρideal
k (β, ρ)

ρ
= O(e−β(ν∗−ν)+O(log β))). (A.32)The interpretation of (A.31) is that all but an exponentially small fration of partiles are in lustersof size kν , while the one of (A.32) is that the fration of partile in �nite-size lusters goes to 0exponentially fast.Proof of Proposition A.1. Beause of Lemma 3.2, for suitable c > 0 and all su�iently large K ∈ Nand su�iently large β,

K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β) ≤ ρideal

sat (β) ≤
K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β) + ρideal

sat (β)e−βcK1−1/d
,whene we see that

ρideal
sat (β) =

(

1 + O(e−βcK1−1/d
)
)

K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β).The proof is onluded by hoosing K large enough so that every minimiser of Ek − ke∞ is smaller orequal to K, sine for suh a K, the sum on the right-hand side of the previous equation is exp(−βν∗ +

O(log β)). �Proof of Proposition A.2. Consider �rst the ase ν ∈ (ν∗,∞) \ N . Hene, µ(ν) = (Ekν − ν)/kν for aunique kν ∈ N and (Ek − ν)/k − µ(ν) ≥ ∆(ν) > 0 for all k 6= kν . For su�iently large β, we will have
ρ < ρideal

sat (β) and therefore the hemial potential is stritly smaller than f cl
∞(β) and is given by theunique solution of equation (1.17) whih we rewrite as

1 =

∞
∑

k=1

k zk exp

(

−βk

[

f cl
k (β) −

ν

k
− f cl

kν
(β) +

ν

kν

]) (A.33)with the auxiliary variable
z = z(β, ρ, ν) := exp(βµideal(β, ρ)) exp

(

−β
[

f cl
kν

(β) −
ν

kν

])

. (A.34)We bound the sum in equation (A.33) from below by the summand for k = kν . This gives 1 ≥ kνzkνand thus z ≤ 1. Next, we hoose β0 suh that for all β ≥ β0 and all k 6= kν , the term in square braketsin (A.33) is larger than β∆(ν)/2. Then
1 ≤ kνz

kν +
∑

k 6=kν

ke−βk∆(ν)/2 ≤ kνz
kν +

exp(−β∆(ν)/2)

(1 − exp(−β∆(ν)/2))2
.Thus we get kνz

kν = 1 + O(exp(−β∆(ν)/2)) and (A.29) follows from (A.34).Now let us ome to the ase ν < ν∗. Beause of Proposition A.1, for su�iently large β, we willhave ρ > ρideal
sat (β) and hene by de�nition µideal(β, ρ) = f cl

∞(β). Equation A.30 is then a onsequeneof Lemma 3.1. �



16 SABINE JANSEN AND WOLFGANG KÖNIGProof of Proposition A.3. First we onsider the ase ν ∈ (ν∗,∞)\N . With z = z(β, ρ, ν) from (A.34),by an argument similar to the proof of Proposition A.2, mideal(β, ρ)/ρ = zkν + O(exp(−β∆(ν)). Sinewe saw that kνz
kν = 1 + O(exp(−β∆(ν))), we are done.For the ase ν < ν∗, we note that for su�iently large β, ρ > ρideal

sat (β), hene mideal(β, ρ) =
∑∞

k=1 Zcl
k (β) exp(−βkf cl

k (β)) and the laim follows by an argument similar to the proof of Prop. A.1.
�Proof of Proposition A.4. The ase ν ∈ (ν∗,∞) \N is a onsequene of the identity kνρideal

kν
(β, ρ)/ρ =

kνzkν and the argument in the proof of Proposition A.2.In the ase ν < ν∗ we just remark that for su�iently large β, ρ > ρideal
sat (β) hene

∞
∑

k=1

kρideal
k (β, ρ)

ρ
=

ρideal
sat (β)
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