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Abstract: We study the transformed path measure arising from the self-interaction of a

three-dimensional Brownian motion via an exponential tilt with the Coulomb energy of the

occupation measures of the motion by time t. The logarithmic asymptotics of the partition

function were identified in the 1980s by Donsker and Varadhan [DV83-P] in terms of a vari-

ational formula. Recently [MV14] a new technique for studying the path measure itself was

introduced, which allows for proving that the normalized occupation measure asymptotically

concentrates around the set of all maximizers of the formula. In the present paper, we show

that likewise the Coulomb functional of the occupation measure concentrates around the set

of corresponding Coulomb functionals of the maximizers in the uniform topology. This is

a decisive step on the way to a rigorous proof of the convergence of the normalized occu-

pation measures towards an explicit mixture of the maximizers, which will be carried out

elsewhere. Our methods rely on deriving Hölder-continuity of the Coulomb functional of the

occupation measure with exponentially small deviation probabilities and invoking the large-

deviation theory developed in [MV14] to a certain shift-invariant functional of the occupation

measures.

1. Introduction and main results

In this paper, we study a transformed path measure that arises from a mean-field type interaction of a
three dimensional Brownian motion in a Coulomb potential. Under the influence of such a transformed
measure, the large-t behavior of the normalized occupation measures, denoted by Lt, is of high interest.
This is intimately connected to the well-known polaron problem from statistical mechanics and a full
understanding of the behavior of Lt under the aforementioned transformation is crucial for the analysis
of the polaron path measure under ‘strong coupling’ , its effective mass and justification of mean-field
approximations. For physical relevance of this model, we refer to the article of Spohn (see [S86]). Some
mathematically rigorous research in this direction began in the 1980s with the analysis of the partition
function of Donsker and Varadhan ([DV83-P]), but it was not until recently that a new technique was
developed [MV14] for handling the actual path measures, which promises to make amenable a deeper
analysis and a full identification of the limiting distribution of Lt. The present paper makes decisive
steps towards this goal, which are also interesting on their own.

We start with developing the mathematical layout of the model in Section 1.1, remind on earlier
results in Section 1.2, present our new progress in Section 1.3, report on the achievements of [MV14]
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in Section 1.4 and give in Section 1.5 a quick outlook on how the results of this paper will be utilized
in future work.

1.1 The transformed path measure.

We start with the Wiener measure P on Ω = C([0,∞),R3) corresponding to a 3-dimensional Brownian
motion W = (Wt)t≥0 starting from the origin. We are interested in the transformed path measure

P̂t(dω) =
1

Zt
exp

{
1

t

∫ t

0

∫ t

0
dσds

1∣∣ωσ − ωs∣∣
}
P(dω) ω ∈ Ω, (1.1)

with the normalizing constant, the partition function,

Zt = E
[

exp

{
1

t

∫ t

0

∫ t

0
dσds

1∣∣Wσ −Ws

∣∣
}]
. (1.2)

We remark that the asymptotic behavior of P̂t is determined by those influential paths which make
|Wσ −Ws| small, i.e., the interaction is self-attractive.

Let

Lt =
1

t

∫ t

0
ds δWs (1.3)

be the normalized occupation measure of W until time t. This is a random element of M1(R3), the

space of probability measures on R3. Then the path measure P̂t can be written as

P̂t(A) =
1

Zt
E
[
1lA exp

{
tH(Lt)

}]
A ⊂ Ω,

where

H(µ) =

∫
R3

∫
R3

µ(dx)µ(dy)

|x− y|
, µ ∈M1(R3), (1.4)

denotes the Coulomb potential energy functional of µ. Hence, P̂t is an exponential tilt of the Coulomb
energy function of Lt with parameter t. It is the goal of this paper to make a contribution to a rigorous

understanding of the behavior of Lt under P̂t.

For any µ ∈M1(R3), we define the function

(
Λµ
)
(x) =

(
µ ?

1

| · |

)
(x) =

∫
R3

µ(dy)

|x− y|
,

which is also sometimes called its Coulomb potential energy functional. In order to avoid misunder-
standings, we will call H(µ) the Coulomb energy and Λ(µ) the Coulomb functional of µ. Note that
H(µ) =

〈
µ,Λµ

〉
=
∫

(Λµ)(x)µ(dx). We remark that the Coulomb energy of the Brownian occupation
measure,

Λt(x) =
(
ΛLt

)
(x) =

∫
R3

Lt(dy)

|x− y|
=

1

t

∫ t

0

ds

|Ws − x|
, (1.5)

is almost surely finite in R3.
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1.2 Existing results.

Donsker and Varadhan [DV83-P] studied the asymptotic behavior of Zt resulting in the variational
formula

lim
t→∞

1

t
logZt = sup

µ∈M1(R3)

{
H(µ)− I(µ)

}

= sup
ψ∈H1(R3)
‖ψ‖2=1

{∫
R3

∫
R3

dxdy
ψ2(x)ψ2(y)

|x− y|
− 1

2

∥∥∇ψ∥∥2
2

}
= ρ,

(1.6)

with H1(R3) denoting the usual Sobolev space of square integrable functions with square integrable
gradient. Furthermore, we put

I(µ) =
1

2
‖∇ψ‖22 (1.7)

if µ has a density ψ2 with ψ ∈ H1(R3), and I(µ) = ∞ otherwise. Note that both H and I are
shift-invariant functionals, i.e., H(µ) = H(µ ? δx) and I(µ) = I(µ ? δx) for any x ∈ R3.

The above result is a consequence of a large deviation principle (LDP) for Lt under P in M1(R3),
developed by Donsker and Varadhan ([DV75-83]). This means, when M1(R3) is equipped with the
usual weak topology, for every open set G ⊂M1(R3),

lim inf
t→∞

1

t
logP

(
Lt ∈ G

)
≥ − inf

µ∈G
I(µ), (1.8)

and for any compact set K ⊂M1(R3),

lim sup
t→∞

1

t
logP

(
Lt ∈ K

)
≤ − inf

µ∈K
I(µ). (1.9)

The above statement is also called a weak large deviation principle since the upper bound (1.9) holds
only for compact subsets. We say that a family of probability distributions satisfies a strong large
deviation principle if, along with the lower bound (1.8), the upper bound (1.9) holds also for all closed
sets.

The variational formula (1.6) has been analyzed by Lieb ([L76]). It turns out that there is a smooth,
rotationally symmetric and centered maximizer ψ0 which is unique except for spatial translations. In
other words, if m denotes the set of maximizing densities, then

m =
{
µ0 ? δx : x ∈ R3

}
, (1.10)

where µ0 is a probability measure with a density ψ2
0 so that ψ0 maximizes the variational problem

(1.6). We will often write µx = µ0 ? δx and write ψ2
x for its density.

Given (1.6) and (1.10), we expect the distribution of Lt under the transformed measure P̂t to
concentrate around m and, even more, to converge towards a mixture of spatial shifts of µ0. Such a

precise analysis was carried out by Bolthausen and Schmock [BS97] for a spatially discrete version of P̂t,
i.e., for the continuous-time simple random walk on Zd instead of Brownian motion and an interaction
potential v : Zd → [0,∞) with finite support instead of the singular Coulomb potential x 7→ 1/|x|. A
first key step in [BS97] was to show that, under the transformed measure, the probability of the local
times falling outside any neighborhood of the maximizers decays exponentially. For its proof, the lack
of a strong LDP for the local times was handled by an extended version of a standard periodization
procedure by folding the random walk into some large torus. Combined with this, an explicit tightness
property of the distributions of the local times led to an identification of the limiting distribution.
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However, in the context of the continuous setting with a singular Coulomb interaction, the afore-
mentioned periodization technique or any standard compactification procedure does not work well to

circumvent the lack of a strong LDP. An investigation of P̂t ◦ L−1t , the distribution of Lt under P̂t,
remained open until a recent result [MV14] rigorously justified the above heuristics, leading to the
statement

lim sup
t→∞

1

t
log P̂t

{
Lt /∈ U(m)

}
< 0, (1.11)

where U(m) is any neighborhood of m in the weak topology induced by the Prohorov metric, the
metric that is induced by all the integrals against continuous bounded test functions. Hence, (1.11)

implies that the distribution of Lt under P̂t is asymptotically concentrated around m. Since a one-
dimensional picture of m is an infinite line, its neighborhood resembles an infinite tube. Therefore,
assertions similar to (1.11) are sometimes called a tube property.

It is worth pointing out that although (1.11) requires only the weak topology in the statement, its

proof is crucially based on a robust theory of compactification X̃ of the quotient space

M̃1(Rd) ↪→ X̃

of orbits µ̃ = {µ ? δx : x ∈ R3} of probability measures µ on Rd under translations and a full LDP for

the distributions of L̃t ∈ M̃1(Rd) embedded in the compactification. In particular, this is based on

a topology induced by a different metric in the compactfication X̃ , see Section 1.4 for details and its
consequences in the present context.

1.3 Our results: uniform tube property and regularity of Λ(Lt)

Let us turn to our main results. Roughly speaking, we will show that Λ(Lt) converges to Λ(m) in

the uniform metric under P̂t and that Λ(Lt) possesses a certain uniform Hölder continuity property
with exponential error bounds. These results will make determinant contribution to the the full

identification of the limiting distribution of Lt under P̂t. We refer the reader to Section 1.5 for a
heuristic explanation as to why the present results are crucial in this respect and turn to the statements
of our main results.

Let us write Λ(ψ2)(x) =
∫

dy ψ2(y)
|x−y| for functions ψ2, and recall that ψ2

w = ψ2
0 ? δw denotes the shift

of the maximizer ψ2
0 of the second variational formula (1.6) by w ∈ R3. Here is the statement of our

first main result.

Theorem 1.1. For any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ > ε

}
< 0. (1.12)

This is a tube property for Λt in the uniform metric, since the ε-neighbourhood of Λ(m) =
{Λ(ψ2

w) : w ∈ R3} can be visualized as a tube around the ‘line’ m. The proof of Theorem 1.1 is
given in Section 3.

As a consequence of Theorem 1.1, the Hamiltonian H(Lt) = 〈Lt,ΛLt〉 converges in distribution
towards the common Coulomb energy of any member of m and we state this fact as

Corollary 1.2. Under P̂t, the distributions of H(Lt) converge weakly to the Dirac measure at

H(ψ2
0) =

∫ ∫
R3×R3

ψ2
0(x)ψ2

0(y)

|x− y|
dxdy.
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Let us highlight the core of the proof of Theorem 1.1. An important technical hindrance in the
proof of Theorem 1.1 stems from the singularity of the Coulomb potential x 7→ 1/|x|, which does not
fit within the set up of standard large deviation theory. This problem was encountered also in [MV14]
for deriving (1.11). As it concerns Lt, this turned out to be a mild technical issue. Indeed, a simple

truncation argument with replacing 1/|x| by its regularized version 1/
√
|x|2 + δ2 sufficed to carry

over the theory developed in [MV14] to this singular potential. However, as it now concerns Λ(Lt)
in the uniform metric, the singularity of 1/| · | turns out be a more serious problem, since a standard
contraction principle combined with the truncation argument does not work well here. We need a
strategy that extracts some approximate cancellation in the difference of terms Λt(x1) and Λt(x2)
when two Coulomb singularities x1 and x2 come close to each other, and we need this cancellation
‘exponentially fast’ in t. In other words, we need some ‘exponential regularity’ of the random map
x 7→ Λt(x) and inspired by an earlier work of Donsker and Varadhan for one dimensional Brownian
local times [DV77], we are led to proving the following super exponential estimate and this is our
second main result.

Theorem 1.3. For every b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b} = −∞. (1.13)

In Section 2, we prove Theorem 1.3. It is a crucial step in the proof of Theorem 1.1, but also rather
interesting on its own sake. Note that Theorem 1.3 implies in particular some Hölder continuity
property of Λt, which we do not explore further here. In fact, in the course of the proof of Theorem
1.3, we identify a polynomial gauge function for the supremum in (1.13).

Let us state the following useful corollary to Theorem 1.3, which is also of independent interest.

Corollary 1.4. For any b > 0,

lim sup
t→∞

1

t
logP

{
‖Λt‖∞ > b

}
< 0.

The proof of this corollary is deferred to Section 3.

1.4 Review: compactness and large deviations for Λt

Let us turn to the second main ingredient in the proof of Theorem 1.1 besides Theorem 1.3. This was
derived in [MV14], and we provide and explain it here for future reference.

Let M̃1(Rd) = {µ̃ : µ ∈ M1(Rd)} be the quotient space of orbits µ̃ = {µ ? δx : x ∈ Rd} of M1(Rd)
under translations. When endowed with the weak topology, M1(Rd) as well as M̃1(Rd) fail to be
compact. Let

X̃ =
{
ξ = (α̃j)j∈J : J at most countable, αj ∈M≤1(Rd)∀j ∈ J

}
be the space of collections of orbits of sub-probability measures. Then we have a natural embedding

M̃1(Rd) ↪→ X̃ .

There is a metric D on X̃ so that M̃1(Rd) is dense in (X̃ ,D) and any sequence (µ̃n)n in M̃1(Rd)
finds a subsequence which converges in the metric D to some element ξ ∈ X̃ . In other words, X̃ is

the compactification of M̃1(Rd) and also the completion under the metric D of the totally bounded

space M̃1(Rd). Furthermore, the distribution of the orbits L̃t embedded in X̃ satisfy a strong LDP in
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the compact metric space X̃ with the rate function

J̃(ξ) =
∑
j∈J

I(α̃j) =
∑
j∈J

I(αj), ξ = (α̃j)j∈J ∈ X̃ ,

where we recall that I(·) is defined in (1.7) and is shift-invariant and for any α ∈ M≤1(Rd), I(α)
is a function only of the orbit α̃, which we call I(α̃). Furthermore, by Varadhan’s lemma, for any

continuous functional H̃ : X̃ → R,

lim
t→∞

1

t
logE

{
etH̃(L̃t)

}
= sup

ξ∈X̃

{
H̃(ξ)− J̃(ξ)

}
.

For applications, the underlying novelty of the above theory lies in the wide range of choice for

functionals H̃ which are inherently shift-invariant. For deriving (1.11), we plugged in (ignoring the
singularity which was tamed down by the aforementioned truncation argument)

H(Lt) = H(Lt ? δx) = H̃(L̃t).

In the present context of the functional ‖Λt‖∞, we take note of the following simple fact: For any
x ∈ R3,

‖Λt‖∞ = sup
y∈R3

(∫
R3

Lt(dz)

|z − y|

)
= sup

y∈R3

(∫
R3

(
Lt ? δx

)
(dz)

|z − y|

)
= ‖Λt ? δx‖∞.

This simple shift-invariance of the norm allows a free passage to the orbits Λ̃t = {Λt ? δx : x ∈ R3}
enabling us to invoke the strong large deviation principle for L̃t in X̃ and forms the second main
ingredient for the proof of Theorem 1.1, see the proof of (3.9) in Section 3.

1.5 Outlook: convergence of P̂t ◦ L−1
t

We explain here how the novel result of the present paper, Theorem 1.1, will be instrumental in

proving convergence of the distribution of Lt under P̂t. The statement in (1.11) implies that with

high P̂t-probability, Lt stays in a neighborhood of m. This suggests that under P̂t, Lt should look
like some shift µXt of the maximizer µ0 of the variational formula in (1.6), where Xt is some random
t-dependent location in R3. The next decisive step must be to prove that Xt is tight as t → ∞.

This implies tightness of P̂t ◦ L−1t as t → ∞. The last task to be done is then to identify a limiting

distribution of Xt and therefore establish convergence of P̂t ◦ L−1t , but we will not elaborate on this
here.

For showing tightness of Xt, we need to justify that Lt can not build up its mass over a long time
around some maximizer µx ∈ m if x is far away from the origin. To show this, we emulate a strategy
similar to [BS97] and show that the ratio

P̂t(Lt ≈ µx)

P̂t(Lt ≈ µ0)
=

E
[

exp{tH(Lt)} 1l{Lt≈µx}
]

E
[

exp{tH(Lt)} 1l{Lt≈µ0}
] (1.14)

is small for large t if |x| gets large. It is reasonable to argue that if |x| is large, for {Lt ≈ µx} to
happen, the path starting from the origin has to reach a neighborhood of x relatively quickly, say after
time t0 � t and concentrate in that neighborhood for the remaining time t − t0. Then we can split
the occupation measure

Lt =
t0
t
Lt0 +

t− t0
t

Lt0,t

where Lt0,t denotes the normalized occupation measure of the path from t0 to t. Then, with high
probability, on {Lt ≈ µx}, we expect that Lt0,t ≈ µx, and Lt0 is the normalized occupation times of a
path that runs relatively quickly from the origin to x.
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Using that the Hamiltonian is quadratic, we accordingly obtain

tH(Lt) =
t20
t
H(Lt0) +

(t− t0)2

t
H(Lt0,t) + 2

t0(t− t0)
t

〈
Lt0 ,Λt0,t

〉
, (1.15)

where Λt0,t(x) =
∫
R3

Lt0,t(dy)

|x−y| is the Coulomb functional of Lt0,t. Since t0 � t, the first term on the

right-hand side can be shown to be negligible. In the second term, we note that the main bulk of
the path Lt0,t stays close to x. Hence to compare this part to a path which typically stays close to 0
after time t0 instead of x, we can just shift the path close to x by −x. Note that this shifting does
not cost anything to the bulk of the path since H(Lt0,t) is shift-invariant. Finally, the third term
in (1.15) makes the difference between numerator (large |x|) and denominator (x = 0) on the event
{Lt ≈ µx}. Indeed, thanks to Theorem 1.1, we will see that Λt0,t ≈ Λ(µx), which is concentrated
around x and therefore will have only vanishing interaction with Lt0 in the numerator, as |x| is large.
On the contrary, for x = 0, we expect that, for large t0, we will have Lt0 ≈ µ0 and therefore, Λt0,t
(which is also ≈ µ0) will have a non-trivial interaction with Lt0 .

Summarizing, the ratio (1.14) gets small for large t, as |x| gets large and implies that under P̂t, Lt
must have its main weight, up to a small factor, close to its starting point. Justifying the above heuris-
tics goes beyond the scope of the present article and will appear in a forthcoming paper ([BKM15]).

2. Super-exponential estimate: Proof of Theorem 1.3

We will prove Theorem 1.3 in a succession of five lemmas. For any x ∈ R3 we will denote by Px the
Wiener measure for the Brownian motion W = (Wt)t≥0 starting at x and by Ex the corresponding
expectation and we continue to write P0 = P and E0 = E.

For any x1, x2 ∈ R3 satisfying |x1 − x2| ≤ 1 and for y ∈ R3, let us define the function

V (y) = Vx1,x2(y) =

(
1

|y − x1|
− 1

|y − x2|

)
1l{∣∣y−x1+x2

2

∣∣≤h}, where h =
∣∣x1 − x2∣∣1/2. (2.1)

We will later approximate Λ1(x1)−Λ1(x2) by
∫ 1
0 V (Ws) ds. Therefore, we need to control exponential

moments of
∫ 1
0 V (Ws) ds. We begin with controlling high polynomial moments.

Lemma 2.1. For every ε ∈ (0, 12) there exists a constant C = Cε > 0 such that, for any k ∈ N and

any x1, x2 ∈ R3 satisfying |x1 − x2| ≤ 1,

sup
x1,x2∈R3 :
|x1−x2|≤1

sup
x∈R3

Ex
{(∫ 1

0
V (Ws) ds

)2k}
≤ Ck h4k(1−2ε) (2k)!

Γ(1 + 2kε)
. (2.2)

where Γ(t) =
∫∞
0 dx e−xxt−1 denotes the usual Gamma function.

Lemma 2.1 has an important consequence in the present context which we formulate as

Lemma 2.2. For any ε ∈ (0, 12), abbreviate a = 1− 2ε and ρ = 1
1−ε > 1. Then, for some β1 > 0,

K1 = sup
x1,x2∈R3 : |x1−x2|≤1

sup
x∈R3

Ex
{

eβ1
∣∣h−2a

∫ 1
0 V (Ws) ds

∣∣ρ}
<∞.
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Proof. We can estimate the left hand side as

Ex
{

eβ1
∣∣h−2a

∫ 1
0 V (Ws) ds

∣∣ρ}
=
∞∑
k=0

βk1
k!
h−2akρ Ex

{∣∣∣ ∫ 1

0
V (Ws) ds

∣∣∣ρk}

≤
∞∑
k=0

βk1
k!
h−2akρ Ex

{(∫ 1

0
V (Ws) ds

)2dρk/2e}ρk/2dρk/2e
≤
∞∑
k=0

βk1
k!
h−2akρCkh4aρk

(
(2dρk/2e)!

Γ(1 + 2dρk/2eε)

)ρk/2dρk/2e
,

where we used Jensens inequality in the first estimate and (2.2) in the second (with a possibly different

value of C). Since, by Stirlings formula, up to a factor of eO(k),

1

k!

(
(2dρk/2e)!

Γ(1 + 2dρk/2eε)

)ρk/2dρk/2e
≈ 1

k!

(
(2dρk/2e)!
(2εdρk/2e)!

)ρk/2dρk/2e
≈ kkρ

kk kkερ
≈ kk(−1+ρ−ρε),

and −1 + ρ− ρε = 0, we can choose β1 > 0 small enough to make the above sum convergent. �

We turn to the proof of Lemma 2.1.

Proof of Lemma 2.1. We compute the moments in the left hand side of (2.2) as

Ex
{(∫ 1

0
ds V (Ws) ds

)2k}
= (2k)!

∫
(R3)2k

2k∏
j=1

(
dyjV (yj)

) ∫
0≤s1<···<s2k≤1

ds1 . . . ds2k

2k∏
j=1

psj−sj−1(yj−1, yj),

(2.3)

where pt(x, y) is the standard Gaussian kernel with variance t, and we put y0 = x. We estimate this
kernel as follows: For any ε > 0, there is a Cε > 0 such that, for any t > 0 and any y ∈ R3,

pt(0, y) =
1

(2π)3/2
1

t1−ε

{
|y|1+2ε

t
1+2ε

2

exp

(
− |y|

2

2t

)}
1

|y|1+2ε
≤ Cε

1

t1−ε
1

|y|1+2ε
,

since the map (0,∞) 3 x 7→ x
1
2
+εe−x is bounded. We use this simple bound to estimate the right

hand side of (2.3) and conclude

Ex
{(∫ 1

0
ds V (Ws) ds

)2k}
≤ (2k)!C2k

ε

∫
0≤s1<···<s2k≤1

2k∏
j=1

(
dsj

1

(sj − sj−1)1−ε

)

×
∫
(R3)2k

2k∏
j=1

(
dyj

|V (yj)|
|yj − yj−1|1+2ε

)
.

A simple computation using iterated Euler beta integral and its identification in terms of the Gamma
function shows that∫

0≤s1<···<s2k≤1

2k∏
j=1

(
dsj

1

(sj − sj−1)1−ε

)
=

2k∏
j=1

Γ(ε)Γ(1 + (j − 1)ε)

Γ(1 + jε)
=

Γ(ε)2k

Γ(1 + 2kε)
.

Let us abbreviate I(z) =
∫

dy |V (y)| |y − z|−1−2ε, then Lemma 2.1 will follow from the estimate

I(z) ≤ C̃h2−4ε for any z ∈ R3 and any x1, x2 ∈ R3 satisfying h =
√
|x1 − x2| ≤ 1, for some suitable
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constant C̃. Let us prove that. We recall the definition of V = Vx1,x2 from (2.1). Then the reversed
triangle inequality implies that

|V (y)| = |Vx1,x2(y)| ≤ h2 1

|y − x1|
1

|y − x2|
1l{∣∣y−x1+x2

2

∣∣≤h}.
Hence

I(z) ≤ h2
∫
Bh(

x1+x2
2

)
dy

1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε
. (2.4)

Depending on the location of the point z in the ball Bh(x1+x22 ), we distinguish two cases.

Case 1: Suppose z ∈ Bh2/4(x1) or z ∈ Bh2/4(x2). By symmetry, it is sufficient to handle only
z ∈ Bh2/4(x1). We decompose

Bh

(
x1 + x2

2

)
= Bh2/2(x1) ∪Bh2/2(x2) ∪

(
Bh

(
x1 + x2

2

)
\
(
Bh2/2(x1) ∪Bh2/2(x2)

))
. (2.5)

For y ∈ Bh2/2(x1), we can estimate |y − x2| ≥ |x1 − x2| − h2/2 = h2/2 and therefore∫
Bh2/2(x1)

dy
1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε

≤ 2h−2
∫
Bh2/2(x1)

dy
1

|y − x1|
1

|y − z|1+2ε

≤ 2h−2
(∫

Bh2/2(x1)
dy

1

|y − x1|p

)1/p (∫
Bh2/2(x1)

dy
1

|y − z|q(1+2ε)

)1/q

,

by Hölder’s inequality for any p, q ≥ 1 and 1/p+ 1/q = 1. Since ε < 1
2 , it is possible to choose p and q

in such a way that p < 3 and q < 3/(1 + 2ε). Then both integrals on the right-hand side are finite and
can be easily and explicitly calculated using the shift and rotation invariance of the integrand. This
gives, for some constant C = C(p, q, ε),∫

Bh2/2(x1)
dy

1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε
≤ Ch−2 × h

2(3−p)
p × h

2(3−q(1+2ε))
q = Ch−4ε. (2.6)

Similarly, ∫
Bh2/2(x2)

dy
1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε
≤ Ch−4ε. (2.7)

Also, the remaining integral is estimated by Hölder’s inequality as∫
Bh

(
x1+x2

2

)
\
(
Bh2/2(x1)∪Bh2/2(x2)

) dy
1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε

≤
{∫

Bh(
x1+x2

2
)\Bh2/2(x1)

dy
1

|y − x1|2+δ

}1/(2+δ)

×
{∫

Bh(
x1+x2

2
)\Bh2/2(x2)

dy
1

|y − x2|2+δ

}1/(2+δ)

×
{∫

Bh(
x1+x2

2
)\Bh2/4(z)

dy
1

|y − z|(1+2ε)( 2+δ
δ

)

}δ/(2+δ)
,
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for any δ > 0, where we recall that z ∈ Bh2/4(x1). If we choose δ ∈ (1, 1+2ε
1−ε ), then a similar

computation as above shows that, for some C = C(ε, δ),∫
Bh

(
x1+x2

2

)
\
(
Bh2/2(x1)∪Bh2/2(x2)

) dy
1

|y − x1|
1

|y − x2|
1

|y − z|1+2ε
≤ Ch−4ε. (2.8)

We combine (2.6), (2.7) and (2.8) with the decomposition (2.5) and (2.4) to conclude that or goal
I(z) ≤ Ch2−4ε holds for any z ∈ Bh2/4(x1), by symmetry also for any z ∈ Bh2/4(x2).

Case 2: Suppose z ∈ Bh(x1+x22 ) \
(
Bh2/4(x1) ∪Bh2/4(x2)

)
.

In this case, we decompose the integration area into

Bh

(
x1 + x2

2

)
= Bh2/8(x1) ∪Bh2/8(x2) ∪

(
Bh

(
x1 + x2

2

)
\
(
Bh2/8(x1) ∪Bh2/8(x2)

))
and repeat the estimates of Case 1 to conclude that I(z) ≤ Ch2−4ε holds true in this case too. To
avoid repetitions we drop the details. This proves Lemma 2.1. �

Lemma 2.3. Let ε ∈ [1− 1/
√

2, 12), and abbreviate a = 1− 2ε and ρ = 1
1−ε as in Lemma 2.2. Then

there is a constant β2 = β2(ε) > 0 such that

K2 = sup
x1,x2∈R3
|x1−x2|≤1

sup
x∈R3

Ex
[

exp

{
β2

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}]
<∞.

Proof. We approach the difference quotient of Λ1 with h−2a
∫ 1
0 V (Ws) ds with V as in (2.1) and

decompose the expectation in the left hand side as

Ex
[

exp

{
β2

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}]
≤ Ex

[
exp

{
β22

ρ

{∣∣∣∣ 1

h2a

∫ 1

0
V (Ws) ds

∣∣∣∣ρ +

∣∣∣∣Λ1(x1)− Λ1(x2)

|x1 − x2|a
−
∫ 1
0 V (Ws)ds

h2a

∣∣∣∣ρ}}].
(2.9)

We claim that for some β3 > 0,

sup
x1,x2∈R3 :
|x1−x2|≤1

sup
x∈R3

Ex
[

exp

{
β3

∣∣∣∣Λ1(x1)− Λ1(x2)

|x1 − x2|a
−
∫ 1
0 V (Ws)ds

h2a

∣∣∣∣ρ}] <∞. (2.10)

Then Hölder’s inequality, applied to the right-hand side of (2.9), together with Lemma 2.2 imply
Lemma 2.3. We turn to the proof of (2.10). Recall that Bh = Bh

(
x1+x2

2

)
denotes the ball of radius

h = |x1 − x2|1/2 around (x1 + x2)/2. Note that∣∣∣∣Λ1(x1)− Λ1(x2)

|x1 − x2|a
−
∫ 1
0 V (Ws) ds

h2a

∣∣∣∣ρ ≤ h−2aρ∣∣∣∣ ∫ 1

0
ds
∣∣∣ 1

|Ws − x1|
− 1

|Ws − x2|

∣∣∣ 1l{|Ws−x1+x22
>h
}∣∣∣∣ρ

≤ h−2aρ
∫
Bc
h

L1(dz)
∣∣∣f(z − x1 − x2

2

)
− f

(
z − x1 + x2

2

)∣∣∣ρ,
(2.11)

where the second inequality above follows from Jensen’s inequality applied to the probability measure

L1(dz) =
∫ 1
0 ds δWs(dz), and we wrote f(z) = |z − x1+x2

2 |−1.
We choose a ball Br = Br(

x1+x2
2 ) of radius r = |x1 − x2|η with some η ∈ (0, 1/2). Then Bc

r ⊂ Bc
h

and we decompose the integral on the right-hand side of (2.11) into the integral over Bc
r and Bc

h \Bc
r .
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Note that |∇f(z)| = |z − x1+x2
2 |−2. By the mean value theorem,∣∣∣∣f(z − x1 − x2

2

)
− f

(
z − x1 + x2

2

)∣∣∣∣ ≤ |x1 − x2| ∣∣∇f(ξ)
∣∣ = |x1 − x2|

∣∣∣ξ − x1 + x2
2

∣∣∣−2,
for some ξ = ξz ∈ R3 lying on the straight line between x− x1−x2

2 and x+ x1+x2
2 , i.e.,

ξz = λ

(
z − x1 − x2

2

)
+ (1− λ)

(
z − x1 + x2

2

)
for some λ ∈ [0, 1]. (2.12)

Let us now estimate the integral in the right hand side of (2.11) over Bc
r . A simple geometric argument

shows that

inf
z∈Bc

r

∣∣∣∣ξz − x1 + x2
2

∣∣∣∣ ≥ inf
z : |z−x1+x2

2
|>r

∣∣z − x2∣∣ ≥ r − |x1 − x2|
2

.

Since r = |x1 − x2|η ≥ |x1 − x2| for |x1 − x2| ≤ 1, the integral over Br in the right hand side of (2.11)
can be estimated as∫

Bc
r

L1(dz)

∣∣∣∣f(z − x1 − x2
2

)
− f

(
z − x1 + x2

2

)∣∣∣∣ρ ≤ [|x1 − x2| (r − |x1 − x2|2

)−2]ρ
L1(B

c
r)

≤ C|x1 − x2|ρ(1−2η),
(2.13)

for some C > 0, not depending on |x1 − x2|. Similarly, the integral over Bc
h \ Bc

r = Br \ Bh on the

right-hand side of (2.11) can be estimated as (recall that h = |x1 − x2|1/2 ≥ |x1 − x2|),∫
Br\Bh

L1(dz)

∣∣∣∣f(z − x1 − x2
2

)
− f

(
z − x1 + x2

2

)∣∣∣∣ρ ≤ [|x1 − x2| (h− |x1 − x2|2

)−2]ρ
L1(Br \Bh)

≤ CL1(Br),
(2.14)

for some constant C > 0, not depending on h. The last two estimates, combined with (2.11), imply
that, for any x, x1, x2 such that |x1 − x2| ≤ 1,

Ex
[

exp

{
β3

∣∣∣∣Λ1(x1)− Λ1(x2)

|x1 − x2|a
−
∫ 1
0 V (Ws) ds

h2a

∣∣∣∣}] ≤ eβ3 |x1−x2|
ρ(1−a−2η)

Ex
{

eCβ3|x1−x2|
−aρL1(Br)

}
.

(2.15)
Let us handle the expectation in the right-hand side above as follows. Note that it is maximal for x
equal to the centre point, (x1+x2)/2, of Br. Hence, it suffices to handle only the case x = x1+x2 = 0.
Here we have, for some constants c, c2 that depend only on the dimension,

E
(
L1(Br)) =

∫ 1

0
P(Ws ∈ Br) ds ≤ c

∫
Br

dz

|z|
= c2r

2 = c2|x1 − x2|2η.

We now assume that 2η ≥ aρ. Then, for β3 > 0 small enough and all x1, x2 ∈ R3 such that |x1−x2| ≤ 1,

E
{
Cβ3|x1 − x2|−aρL1(Br)

}
≤ c2Cβ3|x1 − x2|−aρ+2η ≤ 1

2
.

Hence by Portenko’s lemma (see [P76]),

E
{

eCβ3|x1−x2|
−aρL1(Br)

}
≤ 1

1− c2Cβ3|x1 − x2|−aρ+2η
≤ 2. (2.16)

Then (2.15) and (2.16) imply that, for the choice

η ≥ aρ

2
and ρ(1− a− 2η) ≥ 0
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i.e, for η ∈ [ 1−2ε
2(1−ε) , ε], (2.10) holds. This interval is non-empty if the condition 1− 2ε ≤ 2ε(1− 2ε) is

satisfied, which is equivalent to 2ε2 − 4ε+ 1 ≤ 0, i.e., to

ε ∈
[
1− 1√

2
, 1 +

1√
2

]
.

Recalling that ε < 1/2, this is the requirement of Lemma 2.3, which is proved now. �

Lemma 2.4. Fix ε ∈ (13 ,
1
2) and let a = 1 − 2ε and ρ = 1

1−ε as in Lemma 2.3. Then there exists a

constant β4 = β4(ε) > 0 such that the random variable

M =

∫
R3

dx1

∫
R3

dx2 1l{|x1 − x2| ≤ 1}
[

exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
(2.17)

has a finite expectation under P0.

Proof. We note that the interval (13 ,
1
2) is contained in [1− 1/

√
2, 12 ] and hence we can apply Lemma

2.3. By Fubini’s theorem, it suffices to show that∫ ∫
|x1−x2|≤1

dx1dx2 E
[

exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
<∞. (2.18)

We decompose R3 ⊂
⋃∞
n=0

{
x ∈ R3 : n ≤ |x| < n + 1

}
and put τn = inf{t > 0: |Wt| > n− nα} for

some α ∈ (0, 1). Then∫ ∫
|x1−x2|≤1

dx1dx2 E
[

exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
≤
∞∑
n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2

[
E
{

1l{τn>1}

(
exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

)}

+ E
{

1l{τn≤1}

(
exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

})]
.

(2.19)

The first expectation inside the integrals is handled as follows. We note that, with |x1| ∈ [n, n + 1)
and x2 ∈ B1(x1), if τn > 1, then |Ws − x1| > nα and |Ws − x2| > nα − 1 for any s ∈ [0, 1]. Hence, for
any n ∈ N, on the event {τn > 1},∣∣Λ1(x1)− Λ1(x2)

∣∣
|x1 − x2|a

≤ |x1 − x2|
|x1 − x2|1−2ε

∫ 1

0

ds

|Ws − x1||Ws − x2|
≤ c1|x1 − x2|2εn−2α ≤ c1n−2α.

Hence,

∞∑
n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2 E
{

1l{τn>1}

(
exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

)}

≤
∞∑
n=0

(
eβ4c

ρ
1n
−2αρ − 1

)
Leb

{
x1 ∈ R3 : |x1| ∈ [n, n+ 1)

}
Leb(B1(0)).

(2.20)

Since the first term is of size O(n−2αρ) and the first Lebesgue measure is of size O(n2), the above sum
is finite for α > 3

2ρ . Since we chose ε > 1
3 and hence ρ = 1

1−ε >
3
2 , we can choose some α ∈ (0, 1) so

that α > 3
2ρ , as desired.



MEAN-FIELD INTERACTION OF BROWNIAN OCCUPATION MEASURES, I 13

Let us now handle the second expectation in (2.19). By the Cauchy-Schwarz inequality and Lemma
2.3, if β4 is small enough, for any x1, x2 ∈ R3 such that |x1 − x2| ≤ 1,

E
[
1l{τn≤1}

{
exp

{
β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

}]
≤ P

(
τn ≤ 1

) 1
2 E
[

exp

{
2β4

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}] 1
2

≤ CP
(

max
[0,1]

W > n− nα
) 1

2

,

where C does not depend on x1, x2. Since the last probability is of order e−cn
2
, the second sum on

n in (2.19) is obviously finite. This, combined with the finiteness of the sum in (2.20), proves (2.18)
and hence finishes the proof of Lemma 2.4. �

For the proof of Theorem 1.3 we will use the following (multidimensional) estimate of Garsia-
Rodemich-Rumsey [SV79, p. 60].

Lemma 2.5. Let p(·) and Ψ(·) be strictly increasing continuous functions on [0,∞) so that p(0) =
Ψ(0) = 0 and limt↑∞Ψ(t) =∞. If f : Rd → R is continuous on the closure of the ball B2r(z) for some

z ∈ Rd and r > 0, then the bound∫
Br(z)

dx

∫
Br(z)

dy Ψ

(
|f(x)− f(y)|
p(|x− y|)

)
≤M <∞, (2.21)

implies that ∣∣f(x)− f(y)
∣∣ ≤ 8

∫ 2|x−y|

0
Ψ−1

(
M

γu2d

)
p(du), x, y ∈ Br(z), (2.22)

for some constant γ that depends only on d.

Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The Brownian scaling property implies that

Λt(x) =
1

t

∫ t

0

1

|Ws − x|
ds =

∫ 1

0

1

|W (ts)− x|
ds
D
=

∫ 1

0

1

|
√
tW (s)− x|

ds = t−1/2Λ1(xt
−1/2),

where
D
= denotes equality in distribution. Hence, the claim of Theorem 1.3 is equivalent to

lim
δ→0

lim sup
t→∞

1

t
logP

{
sup

x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣Λ1(x1)− Λ1(x2)
∣∣ ≥ bt1/2} = −∞, b > 0. (2.23)

Now we would like to apply Lemma 2.5. We pick ε ∈ (13 ,
1
2) and a = 1− 2ε and ρ = 1

1−ε and β = β4
as in Lemma 2.4 and choose

Ψ(x) = eβ|x|
ρ − 1, p(x) = |x|a = |x|1−2ε, f(x) = Λ1(x). (2.24)

Then Ψ(·), p(·) and f(·) all satisfy the requirements of Lemma 2.5. Furthermore, Lemma 2.4 implies
that hypothesis (2.21) is satisfied if |x1−x2| ≤ δ and δ > 0 is chosen small enough, where the random

variable M is given in (2.17). Hence, (2.22) implies that for |x1 − x2| ≤ δt−1/2 and all t ≥ 1,∣∣Λ1(x1)−Λ1(x2)
∣∣ ≤ 8

∫ δt−1/2

0
Ψ−1

(
M

γu6

)
p(du) = 8

1− 2ε

β1/ρ

∫ δt−1/2

0
log

(
1 +

M

γu6

)1/ρ

u−2ε du. (2.25)
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For u ∈ (0, δt−1/2] and all sufficiently large t, we estimate

8
1− 2ε

β1/ρ
log

(
1 +

M

γu6

)1/ρ

≤ C
(

(log(M ∨ 1))1/ρ + (log 1
u)1/ρ

)
,

for some constant C that does not depend on t if t is sufficiently large. Hence, the right-hand side of
(2.25) is not larger than

Cδ(log(M ∨ 1))1/ρtε−1/2 + Cδ(log t)ctε−1/2

for some Cδ, c, not depending on t. Substituting this in (2.25) and recalling that ρ = 1
1−ε , we obtain

P
{

sup
x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣Λ1(x1)− Λ1(x2)
∣∣ ≥ bt1/2} ≤ P

{
(log(M ∨ 1))1/ρ + (log t)c ≥ b

Cδ
t1−ε

}
≤ P

{
log(M ∨ 1) ≥ C1b

ρt− C2(log t)cρ)

}
≤ E(M ∨ 1)e−C1bρt+C2(log t)cρ .

(2.26)
Recall that by Lemma 2.4, E(M ∨1) <∞. Hence, the above estimate now implies (2.23) and therefore
Theorem 1.3. �

Corollary 2.6. For any b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P̂t

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b} = −∞.

Proof. Let us denote by At,δ the above event inside the probability. Then the Cauchy-Schwarz in-
equality gives that

1

t
log P̂t

{
At,δ

}
=

1

2t
logE

{
e2tH(Lt)

}
− 1

t
logE

{
etH(Lt)

}
+

1

2

1

t
logP

{
At,δ

}
.

While the first two terms have finite large-t limits, by Theorem 1.3 the large-t limit of the third term
tends to −∞ as δ → 0. This proves the corollary. �

3. LDP for Λt in the uniform metric: Proof of Theorem 1.1

Recall that we need to show, for any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ ≥ ε

}
< 0. (3.1)

We approximate the sup-norm inside the probability via a coarse graining argument as follows. For
any δ ∈ (0, 1), we can estimate

inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ = inf

w∈R3
sup
x∈R3

∣∣Λt(x)−
(
Λψ2

w)(x)
∣∣

≤ sup
x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣

+ inf
w∈R3

sup
z∈δZ3

[∣∣Λt(z)− (Λψ2
w)(z)

∣∣+ sup
z̃∈Bδ(z)

∣∣(Λψ2
w

)
(z̃)−

(
Λψ2

w

)
(z)
∣∣].

(3.2)

Note that, for any w ∈ R3 the deterministic function Λψ2
w is uniformly continuous on R3 and hence

lim
δ↓0

sup
z∈δZ3

sup
z̃∈Bδ(z)

∣∣(Λψ2
w

)
(z̃)−

(
Λψ2

w

)
(z)
∣∣ = 0.
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Since ε > 0 is arbitrary, the above fact and Corollary 2.6 imply that, to deduce (3.1), it suffices to
prove, for any ε, δ > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

sup
z∈δZ3

∣∣Λt(z)− (Λψ2
w)(z)

∣∣ ≥ ε} < 0. (3.3)

For any z ∈ δZ3, w ∈ R3 and any η > 0, we can estimate∣∣Λt(z)− (Λψ2
w)(z)

∣∣ ≤ ∫
Bη(z)

ψ2
w(y)

|y − z|
dy +

∫
Bη(z)

Lt(dy)

|y − z|
+

∣∣∣∣ ∫
R3

1l{|y − z| ≥ η}
|y − z|

(
Lt(dy)− ψ2

w(y)dy

)∣∣∣∣.
(3.4)

The first term can be handled easily. Note that, for any w ∈ R3, ψw is radially symmetric and
‖ψw‖2 = 1. Hence using polar coordinates and invoking the dominated convergence theorem we can
argue that

lim
η→0

sup
z∈δZ3

∫
Bη(z)

ψ2
w(y)

|y − z|
dy = 0. (3.5)

Let us turn to the second term in (3.4). We claim that, for any δ > 0 and η > 0 small enough,

lim sup
t→∞

1

t
log P̂t

{
sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε
}
< 0. (3.6)

Let us first handle the above event with the Wiener measure P replacing P̂t. Then we can estimate

P
{

sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
> ε

}
≤
∑
z∈δZ3
|z|≤t2

P
{∫

Bη(z)

Lt(dy)

|y − z|
≥ ε/2

}
+ P

{
sup
z∈δZ3
|z|>t2

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε/2

}
.

(3.7)
The second term can be estimated by the probability that the Brownian path, starting at origin,
travels a distance t2 − ε by time t. This probability is of order exp{−ct3} and can be ignored. For
the first term we note that a box of size t2 in R3 can be covered by O(t6) sub-boxes of side length
δ and that the probability is maximal for z = 0. Hence, we can estimate, with the help of Markov’s
inequality, for any β > 0,∑

z∈δZ3
|z|≤t2

P
{∫

Bη(z)

Lt(dy)

|y − z|
> ε/2

}
≤ Ct6 P

{
β

∫ t

0
Vη(Ws)ds > tβε/2

}
≤ Ct6e−

ε
2
tβ E

{
eβ

∫ t
0 Vη(Ws) ds

}
,

(3.8)
where Vη(x) = 1l{|x|≤η}

1
|x| . Note that, for any β > 0 and some constants c1, c2 independent of η,

sup
y∈R3

Ey
{
β

∫ 1

0
Vη(Ws) ds

}
≤ β

∫
Bη(0)

dx

|x|

∫ 1

0
ps(0, x) ds ≤ βc1

∫
Bη(0)

dx

|x|2
= c2ηβ.

For any fixed β > 0 and η small enough, this is not larger than 1/2, and by Portenko’s lemma ([P76]),
successive conditioning and the Markov property,

E
{

eβ
∫ t
0 Vη(Ws)ds

}
≤ 2dte.

Then (3.8) and (3.7) imply, for any β > 0,

lim sup
t→∞

1

t
logP

{
sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε
}
≤ −εβ/2 + log 2.

From this we can deduce (3.6) by choosing β > 0 large enough and invoking Hölder’s inequality as in
the proof of Corollary 2.6. We drop the details to avoid repetition.
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Let us turn to the third term on the right hand side of (3.4). Then by (3.5) and (3.6), it suffices to
prove that, for every η, ε > 0,

lim sup
t→∞

1

t
log P̂t

{
Lt ∈ Fη

}
< 0, (3.9)

where

Fη =

{
µ ∈M1(R3) : ∀w ∈ R3 sup

z∈R3

∣∣∣∣ ∫ ( 1

|y − z|
∧ 1

η

)(
µ(dy)− ψ2

w(y)dy

)∣∣∣∣ ≥ ε}.
We claim that for each η > 0, Fη is a closed set in the weak topology in M1(R3). Indeed, for each
η > 0, we set

fz,η(y) =

(
1

|y − z|
∧ 1

η

)
1l{|z−y|≥η}.

Then the family Aη = {fz,η : z ∈ Rd} is equicontinuous and uniformly bounded. Hence, for any η > 0,
the set

Gη,w =

{
µ ∈M1(R3) : sup

f∈Aη

∣∣〈f, µ− ψ2
w

〉∣∣ < ε

}
is weakly open and hence

Fη =
⋂
w∈Rd

Gc
η,w

is weakly closed.

Furthermore, we note that Fη is shift-invariant, i.e., if µ ∈ Fη, then µ ? δx ∈ Fη for any x ∈ R3. In
other words,

P̂t
{
Lt ∈ Fη

}
= P̂t

{
L̃t ∈ F̃η

}
where F̃η = {µ̃ : µ ∈ Fη}, the set of orbits µ̃ = {µ ? δx : x ∈ R3} of members of Fη, is a closed set in

M̃1(R3) ↪→ X̃ , recall Section 1.4. Then [MV14, Theorem 5.3] implies

lim sup
t→∞

1

t
log P̂t

{
L̃t ∈ F̃η

}
≤ − inf

ξ∈F̃η
J̃(ξ),

and [MV14, Lemma 5.4] implies

inf
ξ∈F̃η

J̃(ξ) > 0.

These two facts imply (3.9) and hence Theorem 1.1. �

We end this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. The proof is straightforward and similar to the last line of arguments.
Indeed, we note that for any δ > 0,

P
{
‖Λt‖∞ > b

}
≤ P

{
sup

|x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b/2}+ P

{
sup
x∈δZ3

Λt(x) ≥ b/2
}

≤ P
{

sup
|x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b/2}+ P

{
sup
x∈δZ3
|x|≤t2

Λt(x) ≥ b/2
}

+ P
{

sup
x∈δZ3
|x|>t2

Λt(x) ≥ b/2
}
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By Theorem 1.3, the first term has a strictly negative exponential rate. The third term can again be
neglected since this is of order exp{−ct3}. Also for the second term, the box of size t2 can be covered
by O(t6) sub-boxes of side length δ. Therefore,

P
{

sup
x∈δZ3
|x|≤t2

Λt(x) ≥ b/2
}
≤ Ct6P

{
Λt(0) > b/2

}
.

For any κ > 0,

P
{

Λt(0) > b/2

}
≤ e−κbt/2 E

{
exp

{
κ

∫ t

0

ds

|Ws|

}}
.

We choose t > u� 1 and κ > 0 small enough so that
√
uκ� 1 and

α = sup
x∈R3

Ex
{
κ

∫ u

0

ds

|Ws|

}
= E0

{
κ

∫ u

0

ds

|Ws|

}
= 2κ

√
uE
(

1

|W1|

)
� 1.

Then by Portenko’s lemma [P76],

sup
x∈R3

Ex
{

exp

{
κ

∫ u

0

ds

|Ws|

}}
≤ 1

1− α
,

and by successive conditioning and the Markov property,

E
{

exp

{
κ

∫ t

0

ds

|Ws|

}}
≤
(

1

1− α

)t/u
.

Since log(1 + α) ≈ α as α→ 0, for any b > 0 and κ > 0 suitably chosen and u large enough,

P
{

Λt(0) > b/2

}
≤ exp

{
− κbt

2
+
t

u
log(1− α)

}
≤ exp

[
− tκ

{
b

2
− 1√

u
c

}]
≤ exp

{
− tκC̃

}
for some C̃ = C̃(u, a, c) > 0. This proves the corollary. �

Acknowledgment. The second author would like to thank Erwin Bolthausen (Zurich) for sug-
gesting this interesting problem and numerous useful discussions on the model.

References

[BKM15] E. Bolthausen, W. König and C. Mukherjee, Mean-field interaction of Brownian
occupation measures, II: Tightness and identification of the limit, in preparation, 2015.

[BS97] E. Bolthausen and U. Schmock, On self-attracting d-dimensional random walks, Ann.
Prob. 25, 531-572 (1997).

[DV75-83] M.D. Donsker und S.R.S. Varadhan, Asymptotic evaluation of certain Markov process
expectations for large time, I–IV, Comm. Pure Appl. Math. 28, 1–47, 279–301 (1975), 29,
389–461 (1979), 36, 183–212 (1983).

[DV77] M.D. Donsker and S.R.S. Varadhan, On laws of iterated logarithm for local times,
Comm. Pure Appl. Math., Vol XXX, 707-753 (1977).

[DV83-P] M.D. Donsker and S.R.S. Varadhan, Asymptotics for the Polaron, Comm. Pure
Appl. Math. 505-528 (1983).
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