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Abstract: We consider the parabolic Anderson problem ∂tu = ∆u+ ξ(x)u on R+ × Z
d with

localized initial condition u(0, x) = δ0(x) and random i.i.d. potential ξ. Under the assumption

that the distribution of ξ(0) has a double-exponential, or slightly heavier, tail, we prove the

following geometric characterisation of intermittency: with probability one, as t → ∞, the

overwhelming contribution to the total mass
∑

x
u(t, x) comes from a slowly increasing number

of ‘islands’ which are located far from each other. These ‘islands’ are local regions of those

high exceedances of the field ξ in a box of side length 2t log2 t for which the (local) principal

Dirichlet eigenvalue of the random operator ∆+ξ is close to the top of the spectrum in the box.

We also prove that the shape of ξ in these regions is non-random and that u(t, ·) is close to the

corresponding positive eigenfunction. This is the geometric picture suggested by localization

theory for the Anderson Hamiltonian.
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1. Introduction and main result

1.1 Main objective

We consider the following Cauchy problem with localized initial datum:

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0,∞) × Z
d,

u(0, x) = δ0(x), x ∈ Z
d,

(1.1)

where ∆ is the lattice Laplacian on Z
d, ∆f(x) =

∑
y∼x[f(y) − f(x)], and ξ = (ξ(x))x∈Zd is a random

i.i.d. potential modelling the environment. Let Prob(·) and 〈·〉 denote the underlying probability mea-
sure and expectation, respectively. Problem (1.1) is often referred to as the parabolic Anderson problem
and appears in the description of population dynamics, catalytic reactions, etc. One interpretation
of this model is in terms of branching random walk on Z

d with constant branching rate and spatially
dependent branching mechanism governed by a typical realization of a homogeneous random field. If
ξ(z) denotes the mean offspring of a particle at site z, then the solution u(t, x) to (1.1) describes the
expected number of particles at x at time t for the given realization of the random field ξ(·). The
references [GM90], [M94] and [CM94] provide more explanations and heuristics around the parabolic
Anderson model. Recent related results are reviewed in [GK05].

The purpose of the present paper is to describe in detail the almost sure spatial structure of the
solution u(t, ·) for large t for a large class of i.i.d. potentials which are unbounded from above. This is an
attempt toward a mathematical foundation of the following descriptive manifestation of intermittency:
With probability one, as t→ ∞, the random field u(t, ·) develops high peaks on islands which are located
far from each other and which give the overwhelming contribution to the total mass

U(t) =
∑

x∈Zd

u(t, x). (1.2)

Such a picture is suggested by localization theory for the Anderson Hamiltonian H = ∆ + ξ. Indeed,
since the (upper part of the) `2-spectrum of H is a pure point spectrum, one may expand u(t, ·)
in a Fourier series with respect to the (random) eigenvalues λk and the corresponding (random)
eigenfunctions ek of H:

u(t, ·) =
∑

k

eλktek(0)ek(·). (1.3)

The exponentially localized eigenfunctions ek(·) corresponding to large eigenvalues λk are expected to
be sparsely distributed in space. Hence, for large t, the weighted superposition of only a few of them
will contribute to the total mass of the solution. In particular, relevant for the total mass U(t) are those
high peaks of the solution u(t, ·) that are caused by those local exceedances of the potential ξ(·) that
nearly maximize the corresponding principal Dirichlet eigenvalue of the Hamiltonian H. Moreover,
locally the shape of u(t, ·) should resemble the corresponding positive eigenfunction. It is this geometric
characterization of intermittency which we make precise in the present paper. For directly analysing
(1.3), it would be necessary to control ek(0). This task, however, appears difficult, since, for λk large,
the localization center of ek is far away from the origin, and ek(0) is relatively small and may even be
negative. This difficulty is due to the localised initial datum. Hence, a direct approximation of the
eigenvalues λk and the eigenfunctions ek via a resolvent cluster expansion of the same kind as that
used in localisation theory does not seem to be promising here. (Nevertheless, it may be successful
for homogeneous initial data.) Instead, we control the relative total mass of the solution u(t, ·) far
away from the localization centers in terms of suitable positive eigenfunctions, cf. Theorem 4.1 below.
Each of them corresponds to the potential peak in one of these centers after removal of all the others.
The exponential decay of these eigenfunctions is then controlled by a probabilistic cluster expansion,
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i.e., by a decomposition of the paths in the Feynman-Kac representation of the solution into segments
between successive visits to clusters of high potential peaks, cf. Proposition 6.1 below.

Intermittency is often studied by comparing the large-t asymptotics of the moments of U(t) of
successive orders. The heuristic relation to the above geometric picture of intermittency is explained
in [GM90], e.g. For various types of potentials, the second-order asymptotics, both of the moments
and in an almost sure sense, of U(t) have been investigated in several papers. In all these cases, these
asymptotics are described in terms of a variational problem, which gives some insight in the geometry
of the high peaks both of the potential and of the solution. For a large class of i.i.d. potentials bounded
from above, this has been carried out in [BK01], and for certain unbounded from above i.i.d. fields
with double-exponential tails and with heavier tails in [GM90], [GM98]. A fourth class of i.i.d. fields
has been considered in [HKM05]. There it is also shown that, under a natural regularity condition,
these are all the four universality classes that can arise for i.i.d. fields. Correlated fields [GM00] and
Gaussian and (high-peak) Poisson fields in the spatially continuous model have been looked at [GK00],
[GKM00].

One important model, which has been analysed in greater detail, is Brownian motion among Poisson
traps. In this model, the random potential ξ is equal to −∞ in neighborhoods of the points of
a homogeneous Poisson point process on R

d and 0 elsewhere. The solution u(t, x) of the spatially
continuous analog of problem (1.1) then equals the survival probability of a Brownian particle among
those traps when moving from x to 0 in time t. This model was studied in a series of papers by
Sznitman (see his monograph [S98] and the references therein). In particular, Sznitman proved the
so-called pinning effect: the optimal survival strategy of the Brownian particle is to move in short
time to one of the trap-free regions of optimal size and shape and to stay there for the remaining time.
This statement may be considered as an alternative interpretation of intermittency for this type of
potentials.

In the present paper, we continue the study of the parabolic Anderson problem (1.1) for potentials
with nearly double-exponential and heavier tails (see (1.4) below). Following [HKM05], this comprises
two of the four universality classes of asymptotic behavior for i.i.d. fields. For this class of potentials,
the quenched and annealed long-time behavior of the total mass U(t) has been studied by Gärtner
and Molchanov [GM90], [GM98]. Furthermore, the asymptotic correlation structure of u(t, ·) has been
described by Gärtner and den Hollander [GH99]. We shall be able to use a number of results from
that papers.

1.2 Assumptions

We are interested in the situation when the size of the islands of the relevant high peaks of the i.i.d.
potential ξ(·) and of the solution u(t, ·) stay bounded as t → ∞. This will turn out to happen when
the upper tail of the distribution of ξ(0) lies in the vicinity of the double-exponential distribution with
parameter % ∈ (0,∞),

Prob(ξ(0) > r) = exp
{
−er/%

}
, r ∈ R, (1.4)

as well as for heavier tails (% = ∞). In the latter case these islands are expected to shrink to single
isolated lattice sites.

To be precise, let F denote the distribution function of ξ(0). Assume that F is continuous and
F (r) < 1 for all r ∈ R (i.e., ξ is unbounded from above). Introduce the non-decreasing function

ϕ(r) = log
1

1 − F (r)
, r ∈ R. (1.5)

Then its left-continuous inverse ψ is given by

ψ(s) = min{r ∈ R : ϕ(r) ≥ s}, s > 0. (1.6)
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Note that ψ is strictly increasing with ϕ(ψ(s)) = s for all s > 0. The relevance of ψ comes from
the observation that ξ has the same distribution as ψ ◦ η, where η = (η(x))x∈Zd is an i.i.d. field of
exponentially distributed random variables with mean one.

We now formulate our main assumption.

Assumption (F). The distribution function F is continuous, F (r) < 1 for all r ∈ R, and, in

dimension d = 1,
∫ −1
−∞ log |r|F (dr) <∞. There exists % ∈ (0,∞] such that

lim
s→∞

[ψ(cs) − ψ(s)] = % log c, c ∈ (0, 1). (1.7)

If % = ∞, then ψ satisfies in addition

lim
s→∞

[ψ(s+ log s) − ψ(s)] = 0. (1.8)

This is Assumption (F) of [GM98]. The crucial supposition (1.7) specifies that the upper tail of the
distribution of ξ(0) is close to the double-exponential distribution (1.4) for % ∈ (0,∞) and is heavier
for % = ∞. Assumption (1.8) excludes too heavy tails. Note that (1.8) is fulfilled for Gaussian but
not for exponential tails. The extra assumption for d = 1 rules out screening effects coming from
extremely negative parts of the potential; these effects are not present in d ≥ 2 by percolation.

The reader easily checks that (1.7) implies that

lim
t→∞

ψ(t)

log t
= %. (1.9)

1.3 Spectral properties

Before formulating our result, we introduce further notation and recall some results of [GM98].

Let Bt = [−t, t]d ∩ Z
d be the centered cube in Z

d with side length 2t, and let

ht = max
x∈Bt

ξ(x), t > 0, (1.10)

be the height of the potential ξ in Bt. It can be easily seen [GM98, Corollary 2.7] that, under
Assumption (F), almost surely,

ht = ψ(d log t) + o(1) as t→ ∞. (1.11)

Let us remark that it is condition (1.8) which ensures that the almost sure asymptotics of ht in (1.11)
is non-random up to order o(1).

One of the main results in [GM98, Theorem 2.2] is the second-order asymptotics of the total mass
U(t) defined in (1.2). Under Assumption (F), with probability one,

1

t
logU(t) = ht − χ(%) + o(1) as t→ ∞. (1.12)

Here χ : (0,∞] → (0, 2d] is a strictly increasing and surjective function. (Note that, by duality, u(t, 0)
in [GM98] coincides with U(t) in the present paper, and χ(%) is identical to 2dχ(%) in the notation of
[GM98].)

An analytic description of χ(%) is as follows. Define L : [−∞, 0]Z
d → [0,∞] by

L(V ) =

{∑
x∈Zd eV (x)/%, if % ∈ (0,∞),

|{x ∈ Z
d : V (x) > −∞}|, if % = ∞.

(1.13)
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(We drop the dependence on % in this notation.) One should regard L as large deviation rate function
for the fields ξ − ht. Indeed, if the distribution of ξ is exactly given by (1.4), then we have

Prob
(
ξ(·) − h > V (·) in Z

d
)

= exp
{
−eh/%L(V )

}

for any V : Z
d → [−∞, 0] and any h ∈ (0,∞). For V ∈ [−∞, 0]Z

d
, let λ(V ) ∈ [−∞, 0] be the top of

the spectrum of the self-adjoint operator ∆ + V in `2 = `2(Zd) in the domain {V > −∞} with zero
boundary condition. In terms of the well-known Rayleigh-Ritz formula,

λ(V ) = sup
f∈`2(Zd) : ‖f‖2=1

〈
(∆ + V )f, f

〉
, (1.14)

where 〈·, ·〉 and ‖ · ‖2 denote the inner product and the norm in `2(Zd), respectively. Then

−χ(%) = sup{λ(V ) : V ∈ [−∞, 0]Z
d
, L(V ) ≤ 1}, (1.15)

cf. [GM98, Lemma 2.17 and Lemma 1.10]. This variational problem plays an important role in the
study of our model.

For our deeper investigations, we introduce in addition an assumption about the optimal potential
shape.

Assumption (M). Up to spatial shifts, the variational problem in (1.15) possesses a unique maxi-
mizer, which has a unique maximum.

By V% we denote the unique maximizer of (1.15) which attains its unique maximum at the origin. We
will call V% optimal potential shape. Assumption (M) is satisfied at least for large %. This fact as well
as further important properties of the variational problem (1.15) are stated in the next proposition.

Proposition 1.1. (a) For any % ∈ (0,∞], the supremum in (1.15) is attained.
(b) If % is sufficiently large, then the maximizer in (1.15) is unique modulo shifts and has a unique

maximum.
(c) If Assumption (M) is satisfied, then the optimal potential shape has the following properties.

(i) If % ∈ (0,∞), then V% = f% ⊗ · · · ⊗ f% for some f% : Z → (−∞, 0). If % = ∞, then V% is
degenerate in the sense that V%(0) = 0 and V%(x) = −∞ for x 6= 0.

(ii) The operator ∆ + V% has a unique nonnegative eigenfunction w% ∈ `2(Zd) with w%(0) = 1

corresponding to the eigenvalue λ(V%). Moreover, w% ∈ `1(Zd). If % ∈ (0,∞), then w% is

positive on Z
d, while w% = δ0 for % = ∞.

The proof of Proposition 1.1 will be given in Section 3 below. There it will be shown that the
variational problem in (1.15) is ‘dual’ to a variational problem in terms of eigenfunctions, rather than
potentials. The latter problem was studied in [GH99, Theorem 2] and reduces to finding a solution
v% : Z → (0,∞) of the one-dimensional equation

∆v% + 2%v% log v% = 0

with minimal `2-norm. For % large, v% is unique up to shifts and has a unique maximum which we
choose to be at the origin. Then the relation to our problem is given via w% = const v% ⊗ · · · ⊗ v%.

The question whether or not uniqueness in Assumption (M) is satisfied for any % is still open.
Without uniqueness, the formulation and proofs of our results would be more cumbersome.

1.4 Our result

We shall show that the main contribution to the total mass U(t) comes from a neighborhood of the
set of best local coincidences of ξ − ht with shifts of V% in the centered box of side length 2t log2 t.
These neighborhoods are widely separated from each other and hence not numerous. Furthermore,
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we show that we may further restrict ourselves to those neighborhoods in which, in addition, u(t, ·),
properly normalized, is close to w%.

Let us turn to a precise formulation. In order to include the degenerate case % = ∞ in the statement,
let

dR(f, g) = max
x∈BR

|ef(x) − eg(x)|, f, g ∈ [−∞,∞)BR .

Denote by BR(y) = y +BR the closed cube of side length 2R centered at y ∈ Z
d and write

BR(A) =
⋃

y∈A
BR(y) (1.16)

for the ‘R-cube neighborhood’ of a set A ⊂ Z
d. In particular, B0(A) = A. Let |A| denote the

cardinality of A. We furnish Z
d with the lattice norm |y| =

∑d
i=1 |yi|, where y = (y1, . . . , yd).

Let % ∈ (0,∞] be so large that Assumption (M) is satisfied. For any ε > 0, let r(%, ε) denote the
smallest r ∈ N0 such that

‖w%‖2
2

∑

x∈Zd\Br

w%(x) < ε. (1.17)

Note that r(∞, ε) = 0, due to the degeneracy of w∞.

Our main result is the following.

Theorem 1.2. Let the Assumptions (F) and (M) be satisfied. Then there exists a random t-dependent
subset Γ∗ = Γ∗

t log2 t
of Bt log2 t such that almost surely

(i) lim inf
t→∞

1

U(t)

∑

x∈Br(%,ε)(Γ∗)

u(t, x) ≥ 1 − ε, ε ∈ (0, 1); (1.18)

(ii) |Γ∗| ≤ to(1) and min
y,ey∈Γ∗ : y 6=ey

|y − ỹ| ≥ t1−o(1) as t→ ∞; (1.19)

(iii) lim
t→∞

max
y∈Γ∗

dR
(
ξ(y + ·) − ht, V%(·)

)
= 0, R > 0; (1.20)

(iv) lim
t→∞

max
y∈Γ∗

dR

(u(t, y + ·)
u(t, y)

, w%(·)
)

= 0, R > 0. (1.21)

Theorem 1.2 states that, up to an arbitrarily small relative error ε, the islands with centers in
Γ∗ and radius r(%, ε) carry the whole mass of the solution u(t, ·). Locally, in an arbitrarily fixed R-
neighborhood of each of these centers, the shapes of the potential and the normalized solution resemble
ht + V% and w%, respectively. The number of these islands increases at most as an arbitrarily small
power of t and their distance increases almost like t. Note that, for % = ∞, the set Br(%,ε)(Γ

∗) in (1.18)
is equal to Γ∗, i.e., the islands consist of single lattice sites.

In this paper we have made no attempt to choose Γ∗ as small as possible. We mention without proof
that for Weibull tails, when Prob(ξ(0) > r) = exp{−rαL(r)}) with α > 1 and L(r) slowly varying as
r → ∞, one may choose |Γ∗| = o(log1+ε t) with ε > 0 arbitrarily small. In this case it might even turn
out that |Γ∗| stays bounded in probability as t→ ∞. But this will be the subject of another analysis.

2. Strategy of the proof

Our proof relies on the Feynman-Kac representation for the solution u of (1.1),

u(t, x) = Ex exp
{∫ t

0
ξ(Xs) ds

}
δ0(Xt), (2.1)
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where (Xt)t∈[0,∞) denotes time-continuous nearest-neighbor random walk on Z
d with generator ∆,

starting at x ∈ Z
d under Px. We introduce the entrance time into a set A ⊂ Z

d,

τA = inf{t ≥ 0: Xt ∈ A} (2.2)

and write τz instead of τ{z} for z ∈ Z
d.

In our proof, we shall need a random auxiliary subset Γ = Γt log2 t of the large box Bt log2 t, which will
be introduced in Proposition 2.2 below. The set Γ∗ = Γ∗

t log2 t
of Theorem 1.2 will later be constructed

as a certain subset of Γt log2 t. Given t > 0, we split u into three terms, u = u1 + u2 + u3, where, for
s ≥ 0,

u1(s, x) = Ex exp
{∫ s

0
ξ(Xu) du

}
δ0(Xs)1l{τBc

t log2 t
≤ s}, (2.3)

u2(s, x) = Ex exp
{∫ s

0
ξ(Xu) du

}
δ0(Xs)1l{τBc

t log2 t
> s}1l{τΓt log2 t

> s}, (2.4)

u3(s, x) = Ex exp
{∫ s

0
ξ(Xu) du

}
δ0(Xs)1l{τBc

t log2 t
> s}1l{τΓt log2 t

≤ s}. (2.5)

In words, in u1 we have the contribution from the paths that reach the complement of the ‘macrobox’
Bt log2 t by time s. In u2 we consider the paths that stay inside this box, but do not enter the set

Γt log2 t up to time s. In u3 they stay inside Bt log2 t and do enter Γt log2 t. Note that u2(t, ·) = 0 on

Bc
t log2 t

∪ Γt log2 t, and u3(t, ·) = 0 on Bc
t log2 t

. The functions u1, u2 and u3 depend on t via the sets

Bt log2 t and Γt log2 t. We shall mainly be interested in the case s = t as t → ∞. Note that u1, u2 and
u3 are solutions to certain initial-boundary value problems for the parabolic differential equation in
(1.1).

The contribution to the total mass U(t) coming from u1 turns out to be negligible:

Proposition 2.1. Let Assumption (F) be satisfied. Then, with probability one,

lim
t→∞

1

U(t)

∑

x∈Zd

u1(t, x) = 0. (2.6)

Proof. This follows from (2.41) and the text below (2.42) in [GM98]. Indeed, note that the function
u in [GM98] is the solution to (1.1) with initial datum u(0, ·) = 1 instead of u(0, ·) = δ0(·). Hence,
the second line of [GM98, (2.41)] is equal to

∑
x∈Zd u1(t, x). Below (2.42) it is shown that this term

vanishes as t→ ∞,

lim
t→∞

∑

x∈Zd

u1(t, x) = 0 almost surely. (2.7)

Since U(t) → ∞ (see (1.12)), the assertion follows. �

One of the essential points in our proof of Theorem 1.2 is to construct the (random and t-dependent)
set Γ appearing in (2.4) and (2.5) in such a way that assertion (1.18) is satisfied for u3 and Γ in place
of u and Γ∗, (1.19) and (1.20) are satisfied for Γ in place of Γ∗, and u2 is asymptotically negligible.

Proposition 2.2. Let the Assumptions (F) and (M) be satisfied. Fix ε, η, γ,R > 0 and α > 0
arbitrarily. Then there exists a random t-dependent subset Γ = Γt log2 t of Bt log2 t such that, almost
surely, for t sufficiently large,

(i′)
1

U(t)

∑

x∈Bt log2 t\Br(%,ε′)(Γ)

u3(t, x) ≤ ε′ + α, ε′ ∈ (ε, 1); (2.8)

(ii′) |Γ| ≤ tηd and min
y,ey∈Γ: y 6=ey

|y − ỹ| ≥ t1−η; (2.9)

(iii′) dR
(
ξ(y + ·) − ht, V%(·)

)
< γ, y ∈ Γ; (2.10)
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furthermore,

lim
t→∞

1

U(t)

∑

x∈Bt log2 t

u2(t, x) = 0. (2.11)

The proof of this proposition will be carried out in Sections 4–7.

In the proof of our next and final proposition we shall construct the set Γ∗ of Theorem 1.2 as a
certain subset of Γ from Proposition 2.2 in such a way that the conditions (i) and (iv) of Theorem 1.2
are satisfied. (The conditions (ii) and (iii) are trivially satisfied for any subset Γ∗ of Γ.)

Proposition 2.3. Let the Assumptions (F) and (M) be satisfied. Fix ε, η, γ,R > 0 and α > 0
arbitrarily, and let Γ be the random t-dependent set constructed in the proof of Proposition 2.2. Then
there exists a random t-dependent subset Γ∗ of Γ such that, almost surely, for t sufficiently large,

(i′′)
∑

x∈Br(%,ε′)(Γ\Γ∗)

u3(t, x) ≤ t−ηd
∑

x∈Br(%,ε′)(Γ
∗)

u(t, x), ε′ ∈ (ε, 1); (2.12)

(iv′) dR

(u(t, y + ·)
u(t, y)

, w%(·)
)
< γ, y ∈ Γ∗. (2.13)

The proof of this proposition will be given in Section 8.

Let us now finish the proof of our main result subject to Propositions 2.1–2.3.

Proof of Theorem 1.2. Let εn, ηn, γn, Rn and αn be positive numbers such that εn, ηn, γn, αn → 0
and Rn → ∞ monotonically as n → ∞. Let Γn = Γn,t log2 t and Γ∗

n = Γ∗
n,t log2 t

be the random sets

of Propositions 2.2 and 2.3 for ε, η, γ,R and α replaced by εn, ηn, γn, Rn and αn, respectively. Let
u(n)

1 , u(n)

2 , u(n)

3 be the functions in (2.3)–(2.5) with Γt log2 t replaced by Γn,t log2 t. In accordance with
Propositions 2.1 and 2.2, there exist random times tn ↑ ∞ such that, almost surely, for t > tn,

1

U(t)

∑

x∈Zd

u(n)

1 (t, x) ≤ 1
n ; (2.14)

1

U(t)

∑

x∈Bt log2 t\Br(%,ε′)(Γn)

u(n)

3 (t, x) ≤ ε′ + αn, ε′ ∈ (εn, 1); (2.15)

|Γn| ≤ tηnd and min
y,ey∈Γn : y 6=ey

|y − ỹ| ≥ t1−ηn ; (2.16)

dRn

(
ξ(y + ·) − ht, V%(·)

)
< γn, y ∈ Γn; (2.17)

1

U(t)

∑

x∈Bt log2 t

u(n)

2 (t, x) ≤ 1
n . (2.18)

In accordance with Proposition 2.3, we also may assume that, for t > tn,

1

U(t)

∑

x∈Br(%,ε′)(Γn\Γ∗
n)

u(n)

3 (t, x) ≤ 1
n , ε′ ∈ (εn, 1); (2.19)

dRn

(u(t, y + ·)
u(t, y)

, w%(·)
)

< γn, y ∈ Γ∗
n. (2.20)

Now define Γ∗
t log2 t

= Γ∗
n,t log2 t

if tn ≤ t < tn+1. Combining the bounds (2.14)–(2.20), one easily

checks that Γ∗
t log2 t

satisfies the assertions (i)–(iv) of Theorem 1.2. �

The remainder of this paper is organized as follows. Section 3 provides important background
material from functional analysis for the coming developments. Our strategy for estimating the left-
hand side of (2.8) is developed in Section 4. In Section 5 we construct the set Γ of Proposition 2.2. In
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Section 6 we derive important properties of this set and of related objects. The proof of Proposition 2.2
will be completed in Section 7. Finally, in Section 8, we finish the proof of our main Theorem 1.2 by
proving Proposition 2.3.

3. Functional analytic background

In this section, we collect and prove a number of results evolving around the variational formula
in (1.15). In particular, we prove Proposition 1.1 and provide important tools for the proof of Theo-
rem 1.2. This section is purely functional analytic.

Recall that λ(V ) defined in (1.14) denotes the top of the spectrum of the operator ∆+V in `2(Zd).
Note that, if V (x) → −∞ as |x| → ∞ (which is the case, e.g., if L(V ) ≤ 1), then the operator
∆ + V has compact resolvent and λ(V ) is an isolated simple eigenvalue corresponding to a positive
eigenfunction.

Lemma 3.1. Assume that % ∈ (0,∞). Then

λ(V ) ≤ −χ(%) + % logL(V ) (3.1)

for all V ∈ [−∞,∞)Zd
.

Proof. Assume, without loss of generality, that L(V ) < ∞. Then V is bounded from above, and

L(V + c) = L(V )ec/% = 1 for c = −% logL(V ). It follows from (1.15) that

λ(V + c) ≤ −χ(%). (3.2)

Since λ(V + c) = λ(V ) + c, this implies (3.1).

�

For any nonempty set A ⊂ Z
d and any V ∈ [−∞, 0]A, define

LA(V ) =

{∑
x∈A e

V (x)/%, if % ∈ (0,∞),

|{x ∈ A : V (x) > −∞}|, if % = ∞.
(3.3)

Let λA(V ) be the principal (i.e., largest) eigenvalue of the operator ∆+V in `2(A∩{V > −∞}) with
zero boundary condition. By the Rayleigh-Ritz formula,

λA(V ) = sup
f∈`2(Zd) : supp(f)⊂A,‖f‖2=1

〈
(∆ + V )f, f

〉
. (3.4)

We define the finite-volume version of χ(%) by

−χR(%) = sup{λBR
(V ) : V ∈ [−∞, 0]BR ,LBR

(V ) ≤ 1}. (3.5)

Let M% denote the set of maximizers in (1.15). The topology of pointwise convergence on [−∞, 0]Z
d

is induced by some metric d(·, ·) and making [−∞, 0]Z
d

compact. Let argmax(V ) denote the set of
sites at which V attains its maximum.

Lemma 3.2. (i) The supremum in (1.15) is attained, i.e., M% 6= ∅. For any ε > 0,

sup{λ(V ) : V ∈ [−∞, 0]Z
d
, L(V ) ≤ 1, 0 ∈ argmax(V ), d(V,M%) ≥ ε} < −χ(%). (3.6)

(ii) If % is large enough, then the maximizer V% in (1.15) is unique up to shifts and possesses a
single-point maximum, which we assume to be at the origin. For such %, V% = f% ⊕ · · · ⊕ f% with
f% : Z → (−∞, 0) if % <∞, and f∞(0) = 0 and f∞(x) = −∞ for x 6= 0.

Proof. Since both assertions are trivial for % = ∞, we assume that % ∈ (0,∞). By ∂A we denote the
inner boundary of a set A ⊂ Z

d.

Proof of (i). Let us begin with two preliminary steps.
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STEP 1. For any V ∈ [−∞,∞)Z
d

and any R ∈ N,

λ(V ) ≤ max
{
λBR

(V + 2d1l∂BR
), λBc

R
(V + 2d1l∂Bc

R
)
}
. (3.7)

Proof. Given f ∈ `2(Zd) with ‖f‖2 = 1, define fR = f1lBR
and f c

R = f1lBc
R
. Then

〈
(∆ + V )f, f

〉
=

〈
(∆ + V )fR, fR

〉
+

〈
(∆ + V )f c

R, f
c
R

〉
+ 2〈∆fR, f c

R〉. (3.8)

One easily checks that

〈∆fR, f c
R〉 ≤ d

∑

x∈∂BR

fR(x)2 + d
∑

x∈∂Bc
R

f c
R(x)2. (3.9)

Hence, 〈
(∆ + V )f, f

〉
≤

〈
(∆ + V + 2d1l∂BR

)fR, fR
〉

+
〈
(∆ + V + 2d1l∂Bc

R
)f c
R, f

c
R

〉
. (3.10)

Now pass to the supremum over all such f and note that ‖fR‖2
2 + ‖f c

R‖2
2 = ‖f‖2

2 = 1 to arrive at

λ(V ) ≤ sup
α∈[0,1]

[
αλBR

(V + 2d1l∂BR
) + (1 − α)λBc

R
(V + 2d1l∂Bc

R
)
]
. (3.11)

This certainly implies assertion (3.7).

3

STEP 2. For any W ∈ [−∞, 0]Z
d

and any R ∈ N,

λ(W ) − λBR
(W ) ≤ (2d− λBR

(W ))2

minBc
R−1

|W | . (3.12)

Proof. Fix ε > 0 arbitrarily and pick f ∈ `2(Zd) with ‖f‖2 = 1 such that

λ(W ) − ε ≤
〈
(∆ +W )f, f

〉
. (3.13)

Combining this with (3.8) and (3.9) with V and R replaced by W and R− 1, respectively, and taking
into account that ∆ is negative definite and W ≤ 0, we see that

λ(W ) − ε ≤ − min
Bc

R−1

|W | ‖f c
R−1‖2

2 + 2d.

Hence, since λ(W ) ≥ λBR
(W ),

‖f c
R−1‖2

2 ≤ 2d+ ε− λBR
(W )

minBc
R−1

|W | (3.14)

Combining again (3.13) with (3.8) and (3.9) with V replaced by W and using the Rayleigh-Ritz
formula for the first term on the right of (3.8), we find that

λ(W ) − ε ≤ λBR
(W ) ‖fR‖2

2 + 2d‖f c
R−1‖2

2 ≤ λBR
(W ) +

(
2d− λBR

(W )
)
‖f c
R−1‖2

2. (3.15)

Substituting (3.14) into (3.15) and letting ε ↓ 0, we arrive at the desired assertion.

3

Now let (Vn)n∈N be a maximizing sequence for the variational problem in (1.15), i.e., Vn ∈ [−∞, 0]Z
d
,

L(Vn) ≤ 1 for all n, and limn→∞ λ(Vn) = −χ(%). We may assume that every Vn attains its maximum

at the origin. By compactness of [−∞, 0]Z
d
, we may also assume that Vn converges towards some

V ∈ [−∞, 0]Z
d

pointwise. Clearly, L(V ) ≤ 1. By Lemma 3.1, limn→∞L(Vn) = 1. Since λ(Vn) ≤ Vn(0),
V is not identically equal to −∞.

For proving both assertions in (i), it only remains to show that λ(V ) ≥ −χ(%). We will do this by
checking that lim supn→∞ λ(Vn) ≤ λ(V ). A preliminary step is the following.

STEP 3. limR→∞ lim supn→∞ supBc
R
Vn = −∞.
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Proof. It is clearly sufficient to prove that

lim
R→∞

lim sup
n→∞

LBc
R
(Vn) = 0. (3.16)

Fix R ∈ N. Combine Step 1 (for Vn instead of V ) and Lemma 3.1 to obtain

λ(Vn) ≤ −χ(%) + % log
[
max

{
LBR

(Vn + 2d1l∂BR
),LBc

R
(Vn + 2d1l∂Bc

R
)
}]
.

Since λ(Vn) → −χ(%), we deduce that

lim inf
n→∞

max
{
LBR

(Vn + 2d1l∂BR
),LBc

R
(Vn + 2d1l∂Bc

R
)
}
≥ 1.

We next show that, if R is large enough, then, for large n, the maximum is equal to the first of the
two terms. Indeed,

LBc
R
(Vn + 2d1l∂Bc

R
) = L(Vn) −LBR

(Vn) +
(
e2d/% − 1

) ∑

x∈∂Bc
R

eVn(x)/%

→ 1 −LBR
(V ) +

(
e2d/% − 1

) ∑

x∈∂Bc
R

eV (x)/%,

which is bounded away from 1 as R gets large.

Consequently, if R is large enough,

1 ≤ lim inf
n→∞

LBR
(Vn + 2d1l∂BR

) = lim inf
n→∞

[
L(Vn) −LBc

R
(Vn)

]
+

(
e2d/% − 1

) ∑

x∈∂BR

eV (x)/%.

Since L(Vn) → 1, we conclude that, for R large,

lim sup
n→∞

LBc
R
(Vn) ≤

(
e2d/% − 1

) ∑

x∈∂Bc
R

eV (x)/%.

Now (3.16) follows by letting R→ ∞.

3

Now use Step 2 for W = Vn and Step 3 to see that

lim
R→∞

lim sup
n→∞

[
λ(Vn) − λBR

(Vn)
]

= 0.

Since λBR
(Vn) → λBR

(V ) as n → ∞ and λBR
(V ) → λ(V ) as R → ∞, it follows that λ(V ) =

lim supn→∞ λ(Vn) = −χ(%). This finishes the proof of (i).

Proof of (ii). Let us rewrite our variational problem in (1.15) in the form

χ(%) = inf
{
−λ(V ) : L(V ) = 1

}
. (3.17)

Since the functional λ− % logL remains invariant under shifts V 7→ V + const,

χ(%) = inf
{
−λ(V ) + % logL(V ) : L(V ) <∞

}
. (3.18)

Let P denote the set of probability measures on Z
d, and introduce the functionals I, J : P → [0,∞]

by

I(p) = −
〈
∆
√
p,
√
p
〉

and J(p) = −〈p, log p〉. (3.19)

In [GH99] the variational problem

χ̃(%) = inf
P

[I + %J ] (3.20)

has been considered6 which will turn out to be ‘dual’ to the problem in (3.18). It has been shown in
[GH99, Theorem 2.II] that problem (3.20) possesses a minimizer, which is unique up to shifts and has

6We write eχ for the χ of [GH99] and omit the factor 1/2d which appeared there.
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a single-point maximum provided that % is large. Therefore, to prove the first part of assertion (ii), it
will be enough to verify the following equivalence for p∗ ∈ P:

p∗ minimizes I + %J ⇐⇒ V ∗ = % log p∗ minimizes − λ(·) under L(·) = 1. (3.21)

(Note that L(% log p∗) = 1 if and only if p∗ ∈ P.) As a first step, let us show that

χ̃(%) = χ(%). (3.22)

To this end, we remark that

%J(p) = inf
V : L(V )<∞

[
−〈V, p〉 + % logL(V )

]
, (3.23)

since the functional under the infimum is convex and attains its minimum at V = % log p. Hence,
using (3.23), a slight modification of the Rayleigh-Ritz formula (1.14) and (3.18), we obtain

χ̃(%) = inf
P

[I + %J ]

= inf
p∈P

inf
V : L(V )<∞

[〈
−∆

√
p,
√
p
〉
− 〈V, p〉 + % logL(V )

]

= inf
V : L(V )<∞

[
−λ(V ) + % logL(V )

]

= χ(%).

(3.24)

To prove ‘=⇒’ in (3.21), assume that p∗ ∈ P minimizes I + %J , and put V ∗ = % log p∗. Then, again
using the Rayleigh-Ritz formula, we find that

−λ(V ∗) ≤ −
〈
(∆ + V ∗)

√
p∗,

√
p∗

〉
= [I + %J ](p∗) = χ̃(%) = χ(%).

Hence, V ∗ minimizes −λ(·) under L(·) = 1.

Before proving the reversed implication in (3.21), let us remark that for L(V ) <∞, by perturbation
theory of linear operators, the Gateaux derivatives of V 7→ λ(V ) and of the corresponding positive

eigenfunction V 7→ vV with ‖vV ‖2 = 1 in any direction W ∈ R
Zd

with finite support, ∂Wλ(V ) and
∂W vV , exist; see [Ka80, Theorems VIII.2.6,VIII.2.9]. Since 〈vV , vV 〉 = 1, we have 〈vV , ∂W vV 〉 = 0.
Differentiating the eigenvalue equation

(
∆ + V − λ(V )

)
vV = 0

in direction W , we obtain
(
∆ + V − λ(V )

)
∂WvV =

(
∂Wλ(V ) −W

)
vV .

Taking the inner product with vV , we find that

〈∂Wλ(V ) −W, v2
V 〉 = 0,

hence ∇λ(V ) = v2
V .

Now suppose that V ∗ is a minimizer of −λ(·) under L(·) = 1, and put p∗ = eV
∗/%. Since V ∗ also

minimizes the functional −λ+ % logL, we get

0 = ∇
(
−λ+ % logL

)
(V ∗) = −v2

V ∗ + eV
∗/% = p∗ − v2

V ∗ ,

i.e., p∗ = v2
V ∗ . Hence,

[I + %J ](p∗) = −
〈
∆

√
p∗,

√
p∗

〉
− %〈log p∗, p∗〉 = 〈(−∆ − V ∗)vV ∗ , vV ∗〉 = −λ(V ∗) = χ(%) = χ̃(%).

This shows that p∗ minimizes I + %J .

If % is large, then we also know from [GH99] (see Proposition 3 and Theorem 2) that the unique
centered minimizer p∗ of (3.20) has the form p∗ = p∗0 ⊗ · · · ⊗ p∗0 for some probability measure p∗0 on Z,
which has a unique maximum at the origin. Therefore the second part of assertion (ii) follows from
this by using again the one-to-one correspondence in (3.21).
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�

Proof of Proposition 1.1. For finite %, all assertions of Proposition 1.1 are either standard or have
been proved in Lemma 3.2. For % = ∞, the problem in (1.15) is trivial since there is (up to shifts)

only one admissible element V ∈ [−∞, 0]Z
d
, i.e., only one V satisfies L(V ) ≤ 1.

�

Now we provide several finite-space approximation results for the maximizer V% in (1.15) and cor-
responding eigenfunction w% of ∆ + V%. For p ∈ {1, 2,∞} let us write ‖ · ‖p,R for the restriction of the
`p-norm ‖ · ‖p to BR.

Let w(R)
% : Z

d → [0,∞) be the positive eigenfunction of the operator ∆ + V% with zero boundary

condition in BR corresponding to the eigenvalue λBR
(V%). We norm w(R)

% such that w(R)
% (0) = 1. In

particular, w
(∞)
% = w% with obvious notation. Note that w(R)

% vanishes outside of BR.

We also need eigenvalues in dotted sets, more precisely, in boxes whose center point has been
removed. For any centered box B and any V ∈ [−∞,∞)B , we introduce the notation V̇ for the

function in [−∞,∞)B that is identical to V in B \ {0} and satisfies V̇ (0) = −∞. Then λB(V̇ ) is the
principal Dirichlet eigenvalue of ∆ + V in B \ {0}. Analogous notation is used for B = Z

d. Clearly,

λ(V̇%) < λ(V%).

Lemma 3.3. Assume that Assumptions (F) and (M) are satisfied. Then

(i) limR→∞ λBR
(V%) = λ(V%) and limR→∞ λBR

(V̇%) = λ(V̇%);
(ii) limR→∞ χR(%) = χ(%);
(iii) limR→∞ ‖w(R)

% − w%‖2 = 0 = limR→∞ ‖w(R)
% − w%‖1.

Proof. Since limx→∞ V%(x) = −∞, Assertion (i) follows by a standard compactness argument. Asser-
tion (ii) easily follows from (i) since −χ(%) = λ(V%) and since χR(%) ≥ χ(%) for any R. From [GH99,

Theorem 2I.(3)(iii)] it follows that w% lies in `1(Zd) (and hence also in `2(Zd)). The proof of the two
assertions in (iii) is hence standard.

�

In our proof of Theorem 1.2 below we shall need the following assertion. It says that optimality of
the eigenvalue λBR

(·) in a sufficiently large box BR implies closeness to V% in a given box BR. Recall

that dR is the uniform metric on [−∞,∞)BR .

Corollary 3.4. Fix γ > 0 and R ∈ (0,∞) arbitrarily. Then there exists δ0 > 0 and R0 > 0 such
that, for any R > R0, any δ ∈ (0, δ0) and any V ∈ [−∞, 0]BR satisfying 0 ∈ argmax(V ), the following
implication holds:

[
LBR

(V ) ≤ 1 and λBR
(V ) > −χR(%) − 3δ

]
=⇒ dR(V, V%) <

γ

2
. (3.25)

Proof. According to Lemma 3.2 (i), we can choose δ > 0 so small that dR(V, V%) < γ/2 for any V ∈
[−∞, 0]Z

d
satisfying 0 ∈ argmax(V ), L(V ) ≤ 1 and λ(V ) > −χ(%) − 4δ. According to Lemma 3.3 (i)

we may choose R0 > 0 so large that −χR0(%) ≥ −χ(%) − δ.

Now let R > R0 ∨R and let V be in [−∞, 0]BR with 0 ∈ argmax(V ), LBR
(V ) ≤ 1 and λBR

(V ) >

−χR(%) − 3δ. Consider Ṽ ∈ [−∞, 0]Z
d

given by Ṽ = V on BR and Ṽ = −∞ on Bc
R. Then we have

L(Ṽ ) ≤ 1, 0 ∈ argmax(Ṽ ), and λ(Ṽ ) = λBR
(V ) > −χR(%) − 3δ ≥ −χ(%) − 4δ by our choice of R0.

By our choice of δ, we may conclude that dR(V, V%) = dR(Ṽ , V%) < γ/2. Hence, δ and R0 possess the
claimed property.

�
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4. Spectral bounds

In this section we derive crucial estimates for u3 which will enable us to reduce the bound in (2.8) to
the investigation of the spectral properties of the Hamiltonian ∆+ξ. This result provides the key idea
for the construction of the random time-dependent set Γt log2 t which will be carried out in Section 5.

Randomness is of no relevance in this section. Fix a box B ⊂ Z
d containing the origin, a potential

V : B → R, and a non-empty set Γ ⊂ B arbitrarily. Given y ∈ Γ, we denote by λy and vy the principal
eigenvalue and corresponding positive eigenfunction of ∆ + V in (B \ Γ) ∪ {y} with zero boundary
condition. We assume that vy is normalized to vy(y) = 1 rather than in `2-sense.

We consider the function w given by the Feynman-Kac formula

w(t, x) = Ex exp
{∫ t

0
V (Xs) ds

}
δ0(Xt)1l{τBc > t}1l{τΓ ≤ t}, t ≥ 0, x ∈ B, (4.1)

where we recall that τA is the entrance time into a set A ⊂ Z
d.

Theorem 4.1. For any t > 0,

w(t, ·) ≤
∑

y∈Γ

w(t, y)‖vy‖2
2vy(·). (4.2)

In particular, for any r ≥ 0 and t > 0,
∑

x∈B\Br(Γ) w(t, x)
∑

x∈B w(t, x)
≤ max

y∈Γ

[
‖vy‖2

2

∑

x∈B\Br(Γ)

vy(x)
]
. (4.3)

In order to further bound the expression on the right, we may use the following probabilistic repre-
sentation of the eigenfunction vy:

vy(x) = Ex exp
{∫ τy

0
[V (Xs) − λy] ds

}
1l{τy = τΓ < τBc}, y ∈ Γ, x ∈ B. (4.4)

Expectations of this kind can be estimated with the help of the following lemma:

Lemma 4.2. For any finite set A ⊂ Z
d, any potential V : A→ R and any number γ > λ(A),

Ex exp
{∫ τAc

0
[V (X(s)) − γ] ds

}
≤ 1 + 2d

|A|
γ − λ(A)

, x ∈ A, (4.5)

where λ(A) denotes the principal Dirichlet eigenvalue of ∆ + V in A with zero boundary condition.

Later on we choose B = Bt log2 t, r as defined in (1.17), Γ the time-dependent random set Γt log2 t

constructed in Section 5, and V = ξ. Then w(t, ·) coincides with u3(t, ·) defined in (2.5). Hence,
our main task in proving the crucial estimate in (2.8) will consist in controlling the tails of the
eigenfunctions vy uniformly in y ∈ Γt log2 t. Indeed, we will show a uniform exponential decay of these
eigenfunctions away from their centers, see Proposition 6.1 below. In order to achieve this, we shall
use (4.4) and Lemma 4.2 for γ = λy and appropriate sets A. To this end, we will need lower bounds
for the ‘spectral gap’ λy − λ(A), which will be derived in Lemma 5.4.

Now we turn to the proofs of Theorem 4.1 and Lemma 4.2. In order to prove (4.2), we first need a
technical assertion.

Lemma 4.3. For 0 < s < t and any y ∈ Γ,

Ey exp
{∫ t−s

0
V (Xu) du

}
δ0(Xt−s)1l{τBc > t− s} ≤ e−λys‖vy‖2

2w(t, y). (4.6)
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Proof. We obtain a lower bound for w(t, y) by requiring that the random walker is in y at time s and
has not entered Γ \ {y} before. Using the Markov property at time s, we obtain

w(t, y) ≥ Ey exp
{∫ s

0
V (Xu) du

}
δy(Xs)1l{τBc > s}1l{τΓ\{y} > s}

× Ey exp
{∫ t−s

0
V (Xu) du

}
δ0(Xt−s)1l{τBc > t− s}.

(4.7)

Using an eigenvalue expansion for the parabolic problem in (B \ Γ) ∪ {y} representing the first factor
on the right of (4.7), one obtains the bound

Ey exp
{∫ s

0
V (Xu) du

}
δy(Xs)1l{τBc > s}1l{τΓ\{y} > s} ≥ eλys vy(y)

2

‖vy‖2
2

= eλys‖vy‖−2
2 . (4.8)

(Recall that we normed vy by vy(y) = 1 rather than in `2-sense.) Now combine the two estimates to
arrive at the assertion. �

Proof of Theorem 4.1. Clearly, (4.3) follows from (4.2) by summing over x ∈ B \ Br(Γ) and
estimating elementarily.

Let us turn to the proof of (4.2). Fix x ∈ B \ Γ. In the Feynman-Kac formula for w in (4.1), we
sum over the entrance points in Γ and use the strong Markov property at time τΓ to obtain

w(t, x) =
∑

y∈Γ

Ex exp
{∫ τΓ

0
V (Xu) du

}
1l{τBc > τΓ}1l{τΓ ≤ t}δy(XτΓ)

×
[
Ey exp

{∫ t−s

0
V (Xu) du

}
δ0(Xt−s)1l{τBc > t− s}

]
s=τΓ

.

(4.9)

Now use Lemma 4.3 and observe that we may replace τΓ by τy, the first entrance time into {y}, and
δy(XτΓ) by vy(Xτy )1l{τy < τΓ\{y}} to obtain

w(t, x) ≤
∑

y∈Γ

w(t, y)‖vy‖2
2Ex exp

{∫ τy

0
[V (Xu) − λy] du

}
vy(Xτy )1l{τy < τΓ\{y}}. (4.10)

By the eigenvalue relation at the stopping time τy, the latter expectation equals vy(x). This yields
(4.2). �

Proof of Lemma 4.2. This is essentially taken from the proof of Lemma 2.18 in [GM98]. Denote
the left hand side of (4.5) by 1 + v(x), which is finite since γ > λ(A). Then v is the solution of the
boundary value problem

[∆ + V − γ]v = γ − V

in A with zero boundary condition on Ac. Hence,

v = Rγ(V − γ),

where Rγ is the resolvent of ∆+V (·) in A with zero boundary condition. Since V −γ ≤ λ(A)+2d−γ ≤
2d on A, one derives

v(x) ≤ 2dRγ1l(x) ≤ 2d
(
Rγ1l, 1l

)
A
≤ 2d

|A|
γ − λ(A)

, x ∈ A,

where (·, ·)A denotes the inner product in `2(A), and the last estimate follows from a Fourier expansion
of the resolvent.

�
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5. Construction of Γ

In this section, we introduce the random t-dependent set Γ = Γt log2 t to which we want to apply
Theorem 4.1 and with which we shall later prove Proposition 2.2. We are going to define Γt and switch
from t to t log2 t in Section 7 only. The actual definition of Γt appears in Subsection 5.1 in (5.11).
Properties of the set Γ are derived in Subsections 5.2 and 5.3. Comments on the construction can be
found in Subsection 5.4. Finally, Subsection 5.5 contains a technical proof.

5.1 Definition of Γt

Let % ∈ (0,∞] be fixed, and let Assumptions (F) and (M) be satisfied with this %. We abbreviate
χ = χ(%) for the quantity defined in (1.15). Let furthermore a be a fixed positive number.

Recall that Bt = [−t, t]d ∩ Z
d is the centered box of side length 2t, and that ht = maxBt ξ is the

maximal value of the random field ξ in Bt. Introduce the set of high exceedances of the field ξ in Bt,

Z(t) = Z(t)(ξ) = {x ∈ Bt : ξ(x) > ht − χ− a}. (5.1)

Fix R > 0 arbitrarily. Decompose Z (t) into its 2R-connected components7 called R-islands. Denote
by Z (t)

R [z] the 2R-connected component of Z (t) that contains z. We put Z (t)

R [z] = ∅ if z is not in Z (t).

The neighborhoods BR(Z(t)

R [z]) are connected in the nearest-neighbor sense and pairwise disjoint.

According to Corollary 2.10 in [GM98], with probability one, for all sufficiently large t, each R-island
has no more than

K =
⌊
e(χ+a)/%

⌋
(5.2)

elements. Note that K does not depend on R. In each R-island we pick one site with maximal value
of the potential ξ, and we call this site the capital of the R-island. Denote by

C(t)

R = {z ∈ Z (t) : z is the capital of an R-island} (5.3)

the set of capitals.

Let us introduce the terminology of (spectral) optimality of a set. We use the abbreviation λ(t)(A) =
λA∩Bt(ξ) for the principal eigenvalue of ∆ + ξ in A ∩Bt with zero boundary condition for a finite set
A ⊂ Z

d. Given t > 0, a threshold δ > 0 and a radius R > 0, we say that a set

A ⊂ Bt is (δ,R)-optimal ⇐⇒ λ(t)(BR(A)) > ht − χ− δ. (5.4)

We denote by

C(t)

δ,R = {z ∈ C(t)

R : Z(t)

R [z] is (δ,R)-optimal} (5.5)

the set of capitals whose R-island is (δ,R)-optimal. By

Z(t)

δ,R =
⋃

z∈C(t)
δ,R

Z(t)

R [z], (5.6)

we denote the union of all (δ,R)-optimal R-islands. We next introduce the minimal distance between
these islands:

D(t)

δ,R = min
{
dist(Z (t)

R [z], Z (t)

R [z̃]) : z, z̃ ∈ C(t)

δ,R and Z (t)

R [z] 6= Z (t)

R [z̃]
}
, (5.7)

where dist refers to the lattice distance. It turns out that this distance grows rather fast:

Lemma 5.1. For any δ ∈ (0, % log 2) and any R > 0, almost surely as t→ ∞,

D(t)

δ,R ≥ d
δ
t t

−o(1), where d
δ
t = t2e

−δ/%−1. (5.8)

7Two points x, y in Z
d are called r-neighbors if y ∈ Br(x), and a subset of Z

d is called r-connected if any two points
in that set may be connected by a path of r-neighbors in that set.
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The proof will be given in Subsection 5.5 below.

Hence, the distance between (δ,R)-optimal R-islands grows like a power of t which can be made
arbitrarily close to one by choosing δ sufficiently small. Note that this growth rate does not depend
on the radius R.

We are going to define certain t-dependent large neighborhoods of the capitals of all the (δ,R)-
optimal R-islands. We abbreviate

q =
2d

2d+ a/2
∈ (0, 1) and Rt = log2 t and g0

t = t−2d. (5.9)

Then R � Rt � d
δ
t , hence the Rt-neighborhoods around the sites of C (t)

δ,R do not intersect each other

and have even a large distance to each other. (Our choice of Rt is for definiteness only; e.g., any Rt

satisfying log t = o(Rt) and Rt = to(t) would also work.) We consider the eigenvalues λ(t)(BRt(z)) with
z ∈ C(t)

δ,R. Let Igap
t be a largest subinterval of [ht − χ− δ/2, ht − χ− δ/4] that contains no eigenvalue

λ(t)(BRt(z)), z ∈ C(t)

δ,R. We shall refer to Igap
t as to the spectral gap. Let

g = gt(ξ; δ,R) = |Igap
t | (5.10)

denote its length. Now we finally define the set Γ by

Γ = Γt(ξ; δ,R) =
{
z ∈ C(t)

δ,R : λ(t)(BRt(z)) ≥ sup Igap
t

}
. (5.11)

In words, Γt is the set of capitals z of those (δ,R)-optimal R-islands Z (t)

R [z] such that the eigenvalue
λ(t)(BRt(z)) lies above the spectral gap. Two obvious properties of Γt are the following. By Lemma 5.1,

min
y,ey∈Γt : y 6=ey

|y − ỹ| ≥ D(t)

δ,R ≥ t2e
−δ/%−1−o(1) as t→ ∞. (5.12)

By construction of the spectral gap,

min
z∈Γt

λ(t)(BRt(z)) − max
z∈C(t)

δ,R\Γt

λ(t)(BRt(z)) ≥ gt. (5.13)

It turns out that g0
t = t−2d is a lower bound for the size of the spectral gap:

Lemma 5.2. Let δ, R and Rt be as above. Then, with probability one, gt ≥ g0
t for t large.

Proof. The maximal distance between adjacent eigenvalues λ(t)(BRt(z)), z ∈ C(t)

δ,R, in the interval

[ht −χ− δ/2, ht −χ− δ/4] is at least δ
4/(1 + |C(t)

δ,R|). As a consequence of Lemma 5.1, the set C (t)

δ,R has

no more than (t1+o(1)/dδt )
d elements. Hence, the assertion follows from the definition of g0

t .

�

5.2 Some properties of Γt

Our construction of Γt relies on the quantities

% ∈ (0,∞], χ ∈ (0, 2d], a > 0, K ∈ N, (5.14)

which we regard as fixed, and on the parameters

δ > 0, R > 0, t > 0, (5.15)

which will be chosen appropriately in the sequel, i.e., small enough respectively large enough, depend-
ing on the requirements of Proposition 2.2. The next lemma shows in particular that conditions (ii’)
and (iii’) of that proposition can be met.
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Lemma 5.3. (i) Let R > 0 and γ > 0 be given. Choose δ0 > 0 and R0 > 0 in accordance with
Corollary 3.4 with KR instead of R. Then, for any δ ∈ (0, δ0) and R > R0, with probability
one, for t sufficiently large, dKR(ξ(y + ·) − ht, V%(·)) < γ for any y ∈ C(t)

δ,R. In particular,

the set Γ = Γt(ξ; δ,R) satisfies condition (iii’) of Proposition 2.2 with probability one for all t
sufficiently large.

(ii) Let η > 0 be given. Then one may choose δ > 0 so small that, for any R > 0, Γ = Γt(ξ; δ,R)
satisfies condition (ii’) of Proposition 2.2 with probability one for all t sufficiently large.

(iii) For any δ > 0 one may choose R > 0 so large that, with probability one, Γ = Γt(ξ; δ,R) is not
empty for t large.

Proof. Recall from (1.11) that ht = ψ(d log t) + o(1) almost surely as t→ ∞.

(i) Put η = γ
2 ∧2δ. We know from Corollary 2.12 in [GM98] that, with probability one, for t large,

max
z∈Z(t)

δ,R

LB2KR(z)(ξ − ht − η) ≤ 1.

It follows from the definition of Z (t)

δ,R and BR(Z(t)

R [z]) that

min
z∈Z(t)

δ,R

λ(t)(B2KR(z)) − ht − η > −χ− 3δ ≥ −χ2KR − 3δ.

Hence, an application of Corollary 3.4 with KR instead of R implies that dKR(ξ(y+ ·)− ht −
η, V%(·)) < γ/2. Since η < γ/2, the assertion follows.

(ii) The first part of (2.9) follows from the second, and the second is immediate from (5.12).
(iii) According to Corollary 2.19 in [GM98] one may choose R so large that, with probability one,

for large t, there exists a (random and t-dependent) x ∈ Bt such that

λ(t)
(
BR/2(x)

)
> ht − χ−

(
a ∧ δ

4

)
.

This implies that BR/2(x) intersects Z (t) since maxBR/2(x) ξ ≥ λ(t)(BR/2(x)). Hence, there

exists a z ∈ C(t)

R such that the R-island Z (t)

R [z] intersects BR/2(x). Therefore BR(Z(t)

R [z])
contains BR/2(x) and, consequently,

λ(t)
(
BR(Z(t)

R [z])
)
> ht − χ− δ

4
.

This clearly implies that Z (t)

R [z] is (δ,R)-optimal, and λ(t)(BRt(z)) lies above the spectral gap.
Hence, z ∈ Γt, and we are done.

�

5.3 Spectral properties of Γ

The fact that also condition (i’) of Proposition 2.2 is satisfied under appropriate choice of the param-
eters, will be proved in Subsection 7.1 below. An important preparation is presented in the following
lemma. Analogously to Section 4, λy denotes the principal Dirichlet eigenvalue of ∆+ξ in (Bt\Γ)∪{y},
for y ∈ Γ. As we have indicated in Section 4, it will be crucial in Section 6 to have lower bounds for
the gaps between the eigenvalues λy with y ∈ Γ and the principal eigenvalues in certain neighborhoods

of certain islands. These bounds are provided in the following lemma. Recall that g0
t = t−2d, that

the optimal potential shape V% was introduced in Assumption (M), and that V̇% is V% dotted (i.e., put
equal to −∞) at the origin.
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Lemma 5.4. Put b = % log 8
7 if % <∞ and b = 1 if % = ∞. One may choose first R sufficiently large,

then δ > 0 sufficiently small, and afterwards R > R large enough so that the following is true with
probability one. For t sufficiently large and any y ∈ Γt,

λy − max
z∈Z(t)

δ,R

λ
(
BR(Z(t)

R [z]) \ C(t)

δ,R
)

≥ 1

4
(λ(V%) − λ(V̇%)) ∨

b

2
, (5.16)

λy − max
z∈C(t)

R \C(t)
δ,R

λ
(
BR(Z(t)

R [z])
)

≥ δ/2, (5.17)

λy − max
z∈C(t)

δ,R\Γt

λ
(
BRt(z)

)
≥ g0

t . (5.18)

Proof. Assertion (5.18) follows from (5.13) and the observation that λy ≥ λ(BRt(y)) by construction
and gt ≥ g0

t by Lemma 5.2.

To prove (5.17), observe that

λy ≥ λ
(
BRt(y)

)
≥ sup Igap

t ≥ ht − χ− δ

2
, y ∈ Γt. (5.19)

On the other hand, by definition of C (t)

δ,R and (δ,R)-optimality, we have

λ
(
BR(Z(t)

R [z])
)
≤ ht − χ− δ, z ∈ C(t)

R \ C(t)

δ,R. (5.20)

Combining the two estimates, we arrive at (5.17).

In order to derive (5.16), we choose R so large that λBR
(V%) ≥ λ(V%) − b/4. Further, we choose an

auxiliary parameter γ > 0 so small that γ < b/4 and such that the following implication holds for any
V : BKR → R:

max
BKR

|V − V%| < γ =⇒
[
|λA(V ) − λA(V%)| ≤

1

2
(λ(V%) − λ(V̇%)), for all A ⊂ BKR

]
. (5.21)

This may be achieved by using the continuity of the eigenvalue λA(·).
Next, we require that δ ∈ (0, δ0) and R > R0 where δ0,R0 are chosen in accordance with Lemma 5.3,

and δ < 1
2 [(λ(V%) − λ(V̇%)) ∧ b]. According to Lemma 5.3, we have that dR(ξ(z + ·) − ht, V%)) < γ

for any z ∈ Z (t)

δ,R, if t is sufficiently large. Now let t additionally be so large that D (t)

b,R > 2R (recall

Lemma 5.1). Pick z ∈ Z (t)

δ,R. We shall show that

λ
(
BR(Z(t)

R [z]) \ C(t)

δ,R
)
≤

{
ht − χ− b if Z (t)

R [z] ∩ C(t)

δ,R = ∅,
ht − χ− 1

2(λ(V%) − λ(V̇%)) otherwise.
(5.22)

(Certainly, (5.22) implies (5.16) because of (5.19).) First assume that the R-island Z (t)

R [z] does

not contain the capital z̃ of the R-island Z (t)

R [z], i.e., BR(Z(t)

R [z]) and BR(Z(t)

R [z̃]) are disjoint, and

BR(Z(t)

R [z]) \ C(t)

δ,R = BR(Z(t)

R [z]). We now show that the R-island Z (t)

R [z̃] is (b,R)-optimal in the sense

of definition (5.5). Then Z (t)

R [z] cannot be (b,R)-optimal as well, since the distance D (t)

b,R between

(b,R)-optimal R-islands is larger than 2R, and this implies the first line of (5.22).

To show the (b,R)-optimality of Z (t)

R [z̃], recall that dR(ξ(z̃ + ·) − ht, V%) < γ (because z̃ ∈ C(t)

δ,R) to
estimate

λ
(
BR(Z(t)

R [z̃]
)
≥ λ(BR(z̃)) ≥ ht + λBR

(V%) − γ ≥ ht + λ(V%) −
b

4
− γ ≥ ht − χ− b

2
. (5.23)

Here we have also used that λ(V%) = −χ and that γ < b/4. This shows the (b,R)-optimality of Z (t)

R [z̃]
and ends the proof of the first line of (5.22).
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Turning to the second case, we may assume that z ∈ C (t)

δ,R. Hence, BR(Z(t)

R [z]) \ C(t)

δ,R = BR(Z(t)

R [z]) \
{z}. We apply the implication in (5.21) for V = ξ(z + ·) − ht and A = [BR(Z(t)

R [z]) \ {z}] − z. (The
assumption in (5.21) is satisfied by Lemma 5.3.) This implies

λ
(
BR(Z(t)

R [z]) \ {z}
)
≤ ht + λBKR

(V̇%) +
1

2
(λ(V%) − λ(V̇%)) ≤ ht − χ− 1

2
(λ(V%) − λ(V̇%)),

where we recall that −χ = λ(V%). This implies the second line in (5.22) and ends the proof.

�

5.4 Informal description

Let us repeat in words what properties the field ξ and the set Γ = Γt(ξ; δ,R) satisfy almost surely for
large t provided that the parameters δ, R and t are chosen appropriately.

We recall that we regard the quantities in (5.14) as fixed. As in Proposition 2.2, let parameters
γ, η,R > 0 be given. We may assume that R is sufficiently large, at least as large as is required in
Lemma 5.4. Suppose that the parameters δ and R are chosen sufficiently small respectively large, in
accordance with Lemmas 5.3 and 5.4. Furthermore, pick Rt = log2 t as in (5.9). We shall assume in
addition R > 0 sufficiently large, δ sufficiently small and R > 0 sufficiently large such that certain
additional conditions be satisfied which depend on the quantities in (5.14) only.

Then the following assertions hold almost surely if t is sufficiently large. (For the sake of simplicity,
we suppress the dependence on t from the notation.)

The set of high exceedances, Z = {x ∈ B : ξ(x) > h − χ − a}, consists of R-islands which split
into R-islands. Henceforth, we call the R-islands archipelagos and the R-islands just islands. Every
archipelago has no more than K elements (and hence no more than K islands) and contains a capital
in which the potential ξ is maximal by definition.

We call
BR(ZR[z]) a big cluster, if z ∈ Z,
BR(ZR[z]) a large cluster, if z ∈ Z,

BR(z) a huge cluster, if z ∈ CR.
(5.24)

The big clusters are disjoint, and the large clusters as well. Any large cluster contains no more than K
big clusters. We call the big clusters (b,R)-optimal and the large clusters (δ,R)-optimal if the island
respectively the archipelago that forms the cluster has this property. The (b,R)-optimal big clusters

have distance ≥ t3/4−o(1), and the (δ,R)-optimal large clusters have an even much larger distance.
Since R is much smaller than the distance between (δ,R)-optimal large clusters, but much larger than
R, any huge cluster BR(z) with z ∈ Cδ,R contains precisely one (δ,R)-optimal large cluster, which is
the one that contains z. Analogously, any (δ,R)-optimal large cluster contains at most one (b,R)-
optimal big cluster, which then is the one that contains the capital of the archipelago. However, the
big, large and huge clusters may lie everywhere in the box B, and non-(δ,R)-optimal archipelagos or
non-(b,R)-optimal islands may even be neighboring; in particular, a huge cluster may contain many
(non-optimal) big and large clusters.

A site y ∈ Z belongs to Γ if and only if the potential ξ is maximal at y within the archipelago
(i.e., y is its capital), the large-cluster eigenvalue satisfies the lower bound λ(BR(ZR[y])) > h− χ− δ
(i.e., the archipelago of y is (δ,R)-optimal), and the huge-cluster eigenvalue λ(BR(y)) lies above the
spectral gap Igap. Since any huge cluster contains at most one point of the set Γ, we have the bound
λy ≥ λ(BR(y)) for any y ∈ Γ. It is worth remarking that

min
y∈Γ

λ(BR(y)) − max
z∈Cδ,R\Γ

λ(BR(z)) ≥ g ≥ g0. (5.25)
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Furthermore, by construction of the set Γ, if δ < a, we also have that

λy ≥ λ(BR(y)) ≥ h− χ− δ

2
≥ h− χ− a

2
. (5.26)

An important issue are the eigenvalues associated with the big, large and huge clusters and the gaps
in (5.16)–(5.18) between these eigenvalues and the eigenvalues λy with y ∈ Γ. The necessity of three
types of neighborhoods of points of Z is partially due to our approach in Section 6 below. It may
intuitively be explained as follows. In the big clusters around points of Γ, the potential ξ is required
to approximate the optimal shape ht +V%. The eigenvalue of the surrounding large cluster guarantees
this property via (δ,R)-optimality (see Corollary 3.4). The minimal gap between the eigenvalues of
any two (δ,R)-optimal large clusters depends on t and shrinks to 0 as t→ ∞. In order to compensate
for that, we have to introduce huge clusters whose size depends on t.

In order to successfully apply Theorem 4.1, we need to guarantee the following. For each y ∈ Γ the
positive eigenfunction vy corresponding to λy is concentrated in a neighborhood of y. Therefore one
needs to avoid ‘resonances’ between the local eigenvalues corresponding to the huge clusters around
y and all the ones corresponding to other huge clusters around (δ,R)-optimal capitals not belonging
to Γ, as well as the ones corresponding to dotted huge clusters around the other capitals of Γ. This
is expected to be satisfied provided that the distance Dδ,R between such clusters is large enough,
depending on the smallness of the spectral gap g. This will turn out to be guaranteed by the choice
Rt = log2 t, thanks to Lemmas 5.2 and 5.3.

5.5 Proof of Lemma 5.1

Fix η > 0 small and recall from (5.2) resp. (1.11) that, with probability one, if t is large enough,
|Z(t)

R [z]| ≤ K for any z ∈ C(t), and ht ≥ ψ(d log t) − η. Hence, our assertion clearly follows from the
following statement: with probability one, for any t sufficiently large, any two R-connected subsets

A, Ã of Bt having not more than K elements each and having distance larger than R to each other,

such that the eigenvalues λ(BR(A)) and λ(BR(Ã)) are both larger than ψ(d log t) − η − χ − δ, have
distance even larger than d

δ
t t

−ζ to each other. Here ζ > 0 is a small number.

In order to prove this, according to the Borel-Cantelli lemma, it suffices to show the summability
over n ∈ N of

pn = Prob
(
∃ 2R-connected sets A, Ã ⊂ B2n+1 such that R < dist(A, Ã) ≤ d

δ
2n+12

−ζ(n+1)

and |A| ∨ |Ã| ≤ K and λ(BR(A)) ∧ λ(BR(Ã)) > ψ(d log(2n)) − η − χ− δ
)
.

This is done as follows. Estimate

pn ≤
(
2n+2 + 1

)d
(2R + 1)2Kd

(
2dδ2n+12

−ζ(n+1) + 1
)d

Prob
(
λ(BKR) > ψ(d log(2n)) − χ− δ − η

)2

≤ const
(
2ndδ2n2−ζn

)d
Prob

(
λ(BKR) > ψ(d log(2n)) − χ− δ − η

)2

(5.27)

Now let us assume that % is finite. We estimate the tails of λ(BKR), with the help of the exponential
Chebyshev inequality as follows. For any γ > 0 and t > 0,

Prob
(
λ(BKR) > ψ(d log t) − χ− δ − η

)

≤ exp
{
−γ[ψ(d log t) − χ− δ − η]

}〈
eγλ(BKR)

〉
.

(5.28)
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Now we use a Fourier expansion in terms of the eigenvalues λ(k)(BKR) and the corresponding `2-
normalized eigenfunctions vk of ∆ + ξ in BKR, and Parseval’s identity to obtain

eγλ(BKR) ≤
∞∑

k=0

eγλ
(k)(BKR)

∑

x∈BKR

vk(x)
2 =

∑

x∈BKR

q(γ, x, x), (5.29)

where q(t, x, y) denotes the fundamental solution of ∂t = ∆ + ξ(·) in Z
d. Taking expectations, we

obtain, as γ → ∞, 〈
eγλ(BKR)

〉
≤ (2KR + 1)d〈q(γ, 0, 0)〉
≤ 〈eγξ(0)〉e−γχ+o(γ)

≤ exp
{
γ[ψ(γ) − χ+ % log %− %+ o(1)]

}
,

(5.30)

where the second estimate is taken from Theorem 1.2 (see Remark 1.3. a)) in [GM98] with p = 1 (recall
that our χ is identical to 2dχ(%) there), and the last estimate is taken from [GM98, Lemma 2.3].

We now use (5.30) in (5.28) and substitute γ = c
%d log t with some c > 0. For γ sufficiently large,

this gives
Prob

(
λ(BKR) > ψ(d log t) − χ− δ − η

)

≤ exp
{
−γ[ψ(d log t) − δ − η − ψ(γ) − % log %+ %− η]

}

≤ exp
{
−dc log t[− log c− δ

% + 1 − 3η
% ]

}
,

(5.31)

where we have used also that ψ(d log t)−ψ( c%d log t) = −% log c
% +o(1), in accordance with (1.7) in our

Assumption (F). Now we see that the choice c = e−δ/% is asymptotically close to optimal and yields
the upper bound

Prob
(
λ(BKR) > ψ(d log t) − χ− δ − η

)
≤ exp

{
−e−δ/%d log t+ 3η

% d log t
}

= t−d(e
−δ/%−3η/%).

Using this bound with t = 2n in (5.27), we get that

pn ≤ const
(
d
δ
2n2−ζn

)d
(2n)d[1−2e−δ/%+6η/%] = const 2−nd(6η/%−ζ).

For η sufficiently small, this is summable over n ∈ N. This ends the proof of the lemma in the case
that % ∈ (0,∞).

Let us turn to the case that % = ∞. We go back to (5.27) and estimate λ(BKR) ≤ maxBKR
ξ and

recall that χ(∞) = 2d to obtain, if δ + η < 2d,

Prob
(
λ(BKR) > ψ(d log(2n)) − χ− δ − η

)2 ≤ |BKR|2 Prob
(
ξ(0) > ψ(d log(2n)) − 4d

)2

≤ const e−2ϕ(ψ(d log(2n))−4d).
(5.32)

Here we recall that ϕ and ψ are defined in (1.5) respectively (1.6). Now we show that, because of
Assumption (F), we have

lim
h→∞

[
ϕ(h − c) − ϑϕ(h)

]
= ∞, c > 0, ϑ ∈ (0, 1). (5.33)

In order to prove (5.33), pick β ∈ (ϑ, 1) arbitrarily and note that αs = ψ(s) − ψ(βs) tends to ∞ as
s→ ∞, according to Assumption (F). Since ϕ ◦ ψ is the identity, we have, for s large,

ϕ(ψ(s) − c) − ϑϕ(ψ(s)) ≥ ϕ(ψ(s) − αs) − ϑϕ(ψ(s)) = ϕ(ψ(βs)) − ϑs = (β − ϑ)s→ ∞. (5.34)

Substituting h = ψ(s), this implies that (5.33) holds.

Now we use (5.33) in (5.32) with ϑ = 1 − ζ/4 and h = ψ(d log(2n)) and c = 4d and obtain

Prob
(
λ(BKR) > ψ(d log(2n)) − χ− δ − η

)2 ≤ const e−(1−ζ/2)ϕ(ψ(d log(2n))) ≤ const 2−nd(1−ζ/2). (5.35)

Using this in (5.27), we obtain

pn ≤ const 2nd(2−ζ)(2−nd)1−ζ/2 = const 2−ndζ/2, (5.36)
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and this is summable over n. �

6. Exponential decay of the eigenfunctions

In this section, we prove that, for the set Γ = Γt(ξ; δ,R) defined in Section 5, the eigenfunctions
vy for ∆ + ξ in (Bt \ Γt) ∪ {y} introduced in Section 4 decay exponentially away from their centers,
uniformly in y ∈ Γ and t � 1, provided that the parameters δ, R and R are chosen appropriately.
This property is fundamental for estimating the right hand side of (4.3) for our random Hamiltonian
∆ + ξ.

The main result of this section is the following. Recall the quantities in (5.14) and q = 2d/(2d +
a/2) ∈ (0, 1).

Proposition 6.1. One may choose first R sufficiently large, then δ > 0 sufficiently small, and after-
wards R large enough so that, with probability one, for all sufficiently large t,

vy(x) ≤ qc|x−y|, y ∈ Γt(ξ; δ,R), x ∈ Bt \ BR(y), (6.1)

where c > 0 is a constant that depends on the quantities in (5.14) only.

The rest of this section is devoted to the proof of Proposition 6.1. The main tools are probabilistic
cluster expansions based on a decomposition of the trajectory of the random walk X in the Feynman-
Kac representation of vy into the subpaths between different archipelagos.

In Subsection 6.1 we explain the main idea of the proof of Proposition 6.1 in words. The proof of
Proposition 6.1 is finished in Subsection 6.2, subject to three fundamental lemmas, the three types
of expansions: for big, large and huge clusters, respectively. In Subsections 6.3, 6.4 and 6.5, we
prove the three cluster expansions, respectively. Finally, in Subsection 6.6 we provide a corollary of
Proposition 6.1.

6.1 Heuristic explanation of the proof of Proposition 6.1

Let us describe the idea of the proof of Proposition 6.1 in words. For simplicity, we shall suppress
the dependence on t from the notation. Recall that X is the simple random walk on Z

d, and τA is its
entrance time into a set A, and τy = τ{y}.

Our proof relies on the following probabilistic representation for the eigenfunction vy, cf. (4.4):

vy(x) = Ex exp
{∫ τy

0
[ξ(Xs) − λy] ds

}
1l{τy = τΓ < τBc}, y ∈ Γ, x ∈ B. (6.2)

In words, the walker starts at x ∈ B, stays inside the large box B, and ends up in y without having
visited any other site of Γ before.

The main idea that leads to the exponential decay in (6.1) is that the particle has to make at
least const |x − y| steps outside the set of high exceedances, Z. But in this area, we may estimate
ξ(·) − λy ≤ h− χ− a− λy ≤ −a/2, as is seen from the bound in (5.26). Since the first jump time of

the random walk is exponentially distributed with mean 1/(2d), we have, for any z ∈ Z
d,

Ez exp
{
−a

2
inf{t > 0: Xt 6= X0}

}
=

2d

2d+ a/2
= q. (6.3)

Hence, for any step outside Z, we may estimate the contribution to the expectation in (6.2) by a factor
of q. Therefore, we obtain

Ez0 exp
{∫ τZ

0
[ξ(Xs) − λy] ds

}
1l{τZ = τz < τBc} ≤ q|z−z0|, z0 ∈ B \ Z, z ∈ Z. (6.4)
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The big technical difficulty is to control the contribution from trajectories that do not go straight
to y through B \ Z, but take a detour through one or several other archipelagos, where they might
gain a larger contribution. However, because of the far distances between the huge clusters BR(ỹ)
with ỹ ∈ Γ, it will finally turn out that the price for travelling from one to another is too high and
spoils the gain from staying inside these favorable regions.

We have to control the contribution from trajectories that visit Z \ Γ before time τΓ. We shall
distinguish three different subsets of Z \ Γ: (1) Zδ,R \ Cδ,R, the union of all islands in (δ,R)-optimal
archipelagos, after removing the capitals, (2) Z \Zδ,R, the union of all non-(δ,R)-optimal archipelagos,
and (3) Cδ,R \ Γ, the set of optimal capitals whose huge-cluster eigenvalue lies below the spectral gap.
Note that Z \ Γ is the disjoint union of these three sets.

Let us consider the walker on his way within B from x ∈ B to y ∈ Γ. We follow his path until he
first visits the set Z. The contribution of the path until τZ is controlled using (6.4). If the walker is
already at y, the journey is finished, and there is nothing to do anymore. The remaining part of the
path, i.e., the piece from Z to y, will be split into several subpaths of three different kinds, which will
be controlled by appropriate cluster expansions:

Big-cluster expansion: This expansion handles paths that start from Zδ,R \ Cδ,R and end in Z \Zδ,R
or Cδ,R without visiting the union of these two sets before.

Large-cluster expansion: This expansion handles paths that start from Z \ Zδ,R and end at their
first visit to Cδ,R.

Huge-cluster expansion: This expansion handles paths that start from Cδ,R and end at their first
visit to the final destination y.

Clearly, the paths considered in the large-cluster expansion may contain subpaths handled in the
big-cluster expansion, and the paths in the huge-cluster expansion may contain subpaths in the big-
cluster and large-cluster expansions. In all three expansions the main difficulty is to control the
contribution coming from the times the walker spends in Z. This will be done as follows. If the
walker is in z0 ∈ Zδ,R \ Cδ,R, then we control the contribution until the walker leaves the big cluster
BR(ZR[z0]) \ Cδ,R using Lemma 4.2 in combination with the big-cluster spectral gap bound (5.16).
Similarly, if the walker is in z0 ∈ Z \Zδ,R, then we control the contribution until the walker leaves the
large cluster BR(ZR[z0]) again using Lemma 4.2, together with the large-cluster spectral gap bound
(5.17). If the walker is in z0 ∈ Cδ,R then we use the huge-cluster BR(ZR[z0]) and the corresponding
spectral gap bound in (5.18). These contributions will be more than compensated by applications of
(6.4) to the path segments outside Z, whose total length dominates the cluster contributions.

6.2 Proof of Proposition 6.1

The precise formulations of the above arguments are given in Lemmas 6.4, 6.3 and 6.2. Afterwards,
we finish the proof of Proposition 6.1, subject to the three assertions.

Let us introduce some terminology. For any z ∈ Z, we call ŻR[z] = ZR[z] \ C a dotted archipelago,

i.e., we remove from the archipelago its capital. Analogously, we call ŻR[z] = ZR[z]\C a dotted island.
Denote the union of dotted (δ,R)-optimal archipelagos by

Żδ,R = Zδ,R \ Cδ,R =
⋃

z∈Cδ,R

ŻR[z]. (6.5)

For notational convenience, we shall abbreviate exp{
∫

[ξ(Xs) − λy] ds} by exp{
∫
}.

Lemma 6.2 (Big-cluster expansion). (a) One can choose δ > 0 small enough and afterwards R >

0 large enough, such that, with probability one, for any sufficiently large t, for any z0 ∈ Żδ,R
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and z ∈ Z \ Zδ,R,

Ez0 exp
{∫ τz

0

}
1l{τz = τZ\Zδ,R

< τCδ,R
∧ τBc} ≤ q|z0−z|/(8K). (6.6)

(b) There exists M > 1, depending on the quantities in (5.14) only, such that one can choose
δ > 0 small enough and afterwards R > 0 large enough such that, with probability one, for any
sufficiently large t, for any z0 ∈ Żδ,R and z ∈ Cδ,R,

Ez0 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τZ\Zδ,R
∧ τBc} ≤Mq|z0−z|/(8K). (6.7)

Lemma 6.3 (Large-cluster expansion). One can choose δ > 0 small enough and afterwards R > 0
large enough, such that, with probability one, for any sufficiently large t, for any z0 ∈ Z \ Zδ,R and
any z ∈ Cδ,R,

Ez0 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc} ≤ q|z−z0|/(256K
2). (6.8)

Lemma 6.4 (Huge-cluster expansion). One can choose δ > 0 small enough and afterwards R > 0
large enough, such that, with probability one, for any sufficiently large t, for any z0 ∈ Cδ,R \Γ and any
y ∈ Γ,

Ez0 exp
{∫ τy

0

}
1l{τy = τΓ < τBc} ≤ q|z0−y|/(4096K

2). (6.9)

The proofs of Lemmas 6.2-6.4 are given in Subsections 6.3-6.5, respectively. The proof of Lemma 6.2
is independent of the other two lemmas, while the the proof of Lemma 6.3 uses Lemma 6.2, and the
proof of Lemma 6.4 uses Lemmas 6.2 and 6.3.

Let us now finish the proof of Proposition 6.1 subject to Lemmas 6.2-6.4. Fix y ∈ Γ and x ∈
B \ BR(y). In (6.2) we use the Markov property at time τZ and apply (6.4). Distinguishing the two
cases whether or not the walker is already at the site y at time τZ , we obtain

vy(x) = Ex exp
{∫ τy

0

}
1l{τy = τΓ < τBc} ≤ q|x−y| +

∑

z0∈Z\Γ
q|x−z0|Ez0 exp

{∫ τy

0

}
1l{τy = τΓ < τBc}.

(6.10)

Now we distinguish the three cases (1) z0 ∈ Cδ,R \ Γ, (2) z0 ∈ Z \ Zδ,R and (3) z0 ∈ Żδ,R. In case (2)
we use the strong Markov property at time τCδ,R

and sum on all sites z1 ∈ [Cδ,R \ Γ] ∪ {y} the walker
can occupy at that time. In case (3) we use the strong Markov property at the entrance time to the
set [Z \Zδ,R]∪ [Cδ,R \Γ]∪ {y} and distinguish if the walker is in Z \Zδ,R or in [Cδ,R \Γ]∪ {y} at that
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time. In the first case, we use afterwards the strong Markov property at time τCδ,R
. This yields

vy(x) ≤ q|x−y| +
∑

z0∈Cδ,R\Γ
q|x−z0|Ez0 exp

{∫ τy

0

}
1l{τy = τΓ < τBc}

+
∑

z0∈Z\Zδ,R

q|x−z0|
∑

z1∈[Cδ,R\Γ]∪{y}
Ez0 exp

{∫ τz1

0

}
1l{τz1 = τCδ,R

< τΓ\{y} ∧ τBc}

× Ez1 exp
{∫ τy

0

}
1l{τy = τΓ < τBc}

+
∑

z0∈Żδ,R

q|x−z0|
[ ∑

z1∈Z\Zδ,R

Ez0 exp
{∫ τz1

0

}
1l{τz1 = τZ\Zδ,R

< τCδ,R
∧ τBc}

×
∑

z2∈[Cδ,R\Γ]∪{y}
Ez1 exp

{∫ τz2

0

}
1l{τz2 = τCδ,R

< τBc}

× Ez2 exp
{∫ τy

0

}
1l{τy = τΓ < τBc}

+
∑

z1∈[Cδ,R\Γ]∪{y}
Ez0 exp

{∫ τz1

0

}
1l{τCδ,R

< τZ\Zδ,R
∧ τBc}

× Ez1 exp
{∫ τy

0

}
1l{τy = τΓ < τBc}

]
.

(6.11)

We note that the term in the third resp. sixth resp. last line is equal to one if z1 resp. z2 is equal to y.
Now we use Lemmas 6.2-6.4 for the respective expectations on the right and obtain, for some c > 0,
depending on the quantities in (5.14) only,

vy(x) ≤ q|x−y| +
∑

z0∈Cδ,R\Γ
qc|x−z0|qc|z0−y| +

∑

z0∈Z\Zδ,R

∑

z1∈[Cδ,R\Γ]∪{y}
qc|x−z0|qc|z0−z1|qc|z1−y|

+
∑

z0∈Żδ,R

∑

z1∈Z\Zδ,R

∑

z2∈[Cδ,R\Γ]∪{y}
qc|x−z0|qc|z0−z1|qc|z1−z2|qc|z2−y|

+M
∑

z0∈Żδ,R

∑

z1∈[Cδ,R\Γ]∪{y}
qc|x−z0|qc|z0−z1|qc|z1−y|.

(6.12)

We use the triangle inequality to obtain the estimate

vy(x) ≤ q
c
4
|x−y|

[
1 +

∑

z∈Zd

q
c
4
|z| +

( ∑

z∈Zd

q
c
4
|z|

)2
+

( ∑

z∈Zd

q
c
4
|z|

)3
+M

( ∑

z∈Zd

q
c
4
|z|

)2]
. (6.13)

The quantity in the square brackets depends on the quantities in (5.14) and M only. Hence, by
choosing R large enough (recall that |x− y| ≥ R) and altering the value of c, we arrive at (6.1). This
ends the proof of Proposition 6.1.

6.3 Big-cluster expansion: Proof of Lemma 6.2

In this section, we carry out the details of the big-cluster expansion, i.e., we prove Lemma 6.2.

We introduce a large auxiliary parameter R ∈ N which we choose in accordance with Lemma 5.4
(see (6.22) below) and additionally so large that (6.28) is satisfied and such that qR/(24K) ≤ 1 −∑

|y|≥R q
|y|/(12K) holds (see the last step in (6.30)). Assertion (b) will be shown with M = CRdq−R/4,
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where C > 0 depends on the quantities in (5.14) only. The parameters δ > 0 and R > 0 are chosen in
accordance with Lemma 5.4.

First we prove (a). Fix z0 ∈ Żδ,R and z ∈ Z \Zδ,R. We shall decompose the path X into the pieces

between subsequent visits to dotted islands in Żδ,R different from the starting island. To this end, we
introduce the corresponding stopping time,

ζB = inf
{
t > 0: Xt ∈ Zδ,R \ ZR[X0]

}
. (6.14)

We repeatedly apply the strong Markov property at the time ζB and sum over the walker’s positions
at these times to obtain

l.h.s. of (6.6) =

∞∑

i=0

∑

x1,...,xi∈Żδ,R

[ i∏

k=1

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζB < τZ\Zδ,R
∧ τCδ,R

∧ τBc}
]

× Exi exp
{∫ τz

0

}
1l{τz = τZ\Zδ,R

< ζB ∧ τCδ,R
∧ τBc},

(6.15)

where x0 = z0. In the sum on x1, . . . , xi, we may and shall add the constraint that xk−1 and xk lie in
different islands for all k = 1, . . . , i, which implies that |xk−1 − xk| ≥ 2R. The summand for i = 0 is
interpreted as just the second line for i = 0.

In the following we shall bound the expectations on the right hand side of (6.15) as follows:

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζB < τZ\Zδ,R
∧ τCδ,R

∧ τBc} ≤ q|xk−1−xk|/(4K), 1 ≤ k ≤ i, (6.16)

Exi exp
{∫ τz

0

}
1l{τz = τZ\Zδ,R

< ζB ∧ τCδ,R
∧ τBc} ≤ q|xi−z|/(4K), i ≥ 0. (6.17)

In order to show (6.16)–(6.17), we need the stopping times

ηR = inf
{
t > 0: Xt /∈ BR(ZR[X0])

}
, (6.18)

σR = inf
{
t > ηR : Xt ∈ ZR[X0]

}
, (6.19)

of the first exit time from the big cluster around the starting island and the next return to the same
island. Let us consider the expectation on the left of (6.16) and expand according to the number of
times before time ζB ∧ τZ\Zδ,R

∧ τCδ,R
∧ τBc the walker leaves the big cluster around the starting island

and returns to the same island. Hence, for i ≥ 1 and k = 1, . . . , i, we have,

l.h.s. of (6.16) =

∞∑

m=0

∑

y1,...,ym∈ŻR[y0]

[ m∏

l=1

Eyl−1
exp

{∫ τyl

0

}
1l{τyl

= σR < ζB ∧ τZ\Zδ,R
∧ τCδ,R

∧ τBc}
]

× Eym exp
{∫ τxk

0

}
1l{τxk

= ζB < σR ∧ τZ\Zδ,R
∧ τCδ,R

∧ τBc},
(6.20)

where y0 = xk−1. The summand for m = 0 is interpreted as just the last line for m = 0.
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In each of the expectations on the right side of (6.20), we use the strong Markov property at time
ηR to obtain

l.h.s. of (6.16) ≤
∞∑

m=0

∑

y1,...,ym∈ŻR[y0]

[ m∏

l=1

[
Eyl−1

exp
{∫ ηR

0

}
1l{ηR < τCδ,R

∧ τBc}

× max
y′∈∂BR(ZR[y0])

Ey′ exp
{∫ τyl

0

}
1l{τyl

= τZ < τBc}
]]

× Eym exp
{∫ ηR

0

}
1l{ηR < τCδ,R

∧ τBc}

× max
y′∈∂BR(ZR[y0])

Ey′ exp
{∫ τxk

0

}
1l{τxk

= τZ < τBc}

(6.21)

(For a subset A of Z
d, we write ∂A for the external boundary of A ∩ B in B.) On the event {ηR <

τCδ,R
∧τBc}, the stopping time ηR coincides with τAc for A = BR(ZR[ym])\Cδ,R. Hence, an application

of Lemma 4.2 with γ = λy and an application of the spectral gap estimate in (5.16) of Lemma 5.4
yields that

Eyl−1
exp

{∫ ηR

0

}
1l{ηR < τCδ,R

∧ τBc} ≤ 1 + 2d
|BR(ZR[y0])|

λy − λ(BR(ZR[y0]) \ Cδ,R)

≤ 1 + 2d
K|BR|

b
2 ∨ 1

4(λ(V%) − λ(V̇%))
,

(6.22)

for any l = 1, . . . ,m+ 1. Using this for the first and third expectation on the right side of (6.21), and
using (6.4) for the second and the fourth expectation, we obtain

r.h.s. of (6.21) ≤
∞∑

m=0

∑

y1,...,ym∈ŻR[y0]

[ m∏

l=1

[(
1 + 2d

K|BR|
b
2 ∨ 1

4(λ(V%) − λ(V̇%))

)
qdist(∂BR(ZR[yl−1]),yl)

]]

×
(
1 + 2d

K|BR|
b
2 ∨ 1

4(λ(V%) − λ(V̇%))

)
qdist(∂BR(ZR[ym]),xk).

(6.23)

Clearly, since yl and yl−1 belong to the same island,

dist(∂BR(ZR[yl−1]), yl) ≥ R ≥ R

2
+

|yl−1 − yl|
4K

, l = 1, . . . ,m. (6.24)

Furthermore,

dist(∂BR(ZR[ym]), xk) ≥
|ym − xk|

2K
. (6.25)

Indeed, since xk and ym lie in different islands, and since R ≤ dist(∂BR(ZR[y0]), xk), we have

|ym − xk| ≤ KR+ dist(∂BR(ZR[y0]), xk) ≤ 2K dist(∂BR(ZR[y0]), xk). (6.26)

Combining (6.25) with dist(∂BR(ZR[ym]), xk) ≥ R, we get

dist(∂BR(ZR[ym]), xk) ≥
R

2
+

|ym − xk|
4K

. (6.27)

We substitute (6.24) and (6.27) in (6.23). Now assume that R is so large that

qR/2
(
1 + 2d

K|BR|
b
2 ∨ 1

4 (λ(V%) − λ(V̇%))

)
<

1

2K
, (6.28)



GEOMETRIC CHARACTERIZATION OF INTERMITTENCY 29

to obtain the bound

l.h.s. of (6.16) ≤
∞∑

m=0

∑

y1,...,ym∈ZR[y0]

[ m∏

l=1

( 1

2K
q|yl−1−yl|/(4K)

)] 1

2K
q|ym−xk|/(4K)

≤ 1

2
q|xk−1−xk|/(4K)

∞∑

m=0

∑

y1,...,ym∈ZR[y0]

(2K)−m ≤ q|xk−1−xk|/(4K),

(6.29)

using the triangle inequality for the sequence of points xk−1 = y0, y1, . . . , ym, xk, and noting that
|ZR[y0]| ≤ K. Hence, we have proved (6.16). The proof of (6.17) is analogous, replacing xk−1 by xi
and xk by z.

Substituting (6.16) and (6.17) into (6.15), we obtain

l.h.s. of (6.6) ≤
∞∑

i=0

∑

x1,...,xi∈Żδ,R : |xk−1−xk|≥R ∀k

[ i∏

k=1

q|xk−1−xk|/(4K)
]
q|xi−z|/(4K)

≤ q|z−z0|/(6K)
∞∑

i=0

∑

x1,...,xi∈Zd : |xk−1−xk|≥R ∀k

i∏

k=1

q|xk−1−xk|/(12K)

≤ q|z−z0|/(6K)
∞∑

i=0

( ∑

y∈Zd : |y|≥R
q|y|/(12K)

)i
≤ q|z−z0|/(8K),

(6.30)

where in the last step we used that |z − z0| ≥ R and assumed that R is sufficiently large, depending
on the quantities in (5.14) only. This ends the proof of (6.6), i.e., of assertion (a) of Lemma 6.2.

Now we turn to the proof of (6.7), i.e., of assertion (b) of Lemma 6.2. This is analogous to the
proof of (6.6). Indeed, interchange τCδ,R

and τZ\Zδ,R
in (6.15) with each other to obtain an expansion

analogous to (6.15):

l.h.s. of (6.7) =

∞∑

i=0

∑

x1,...,xi∈Żδ,R

[ i∏

k=1

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζB < τZ\Zδ,R
∧ τCδ,R

∧ τBc}
]

× Exi exp
{∫ τz

0

}
1l{τz = τCδ,R

< ζB ∧ τZ\Zδ,R
∧ τBc}.

(6.31)

Note that the first line of the right hand side of (6.31) is the same as in (6.15), hence, (6.16) can be
used for this term as well. The last expectation is equal to zero if xi does not lie in ZR[z]. Otherwise,
we estimate

Exi exp
{∫ τz

0

}
1l{τz = τCδ,R

< ζB ∧ τZ\Zδ,R
∧ τBc} ≤ C

2
Rdq−

R
4 q

|xi−z|

4K , if xi ∈ ZR[z]. (6.32)

In the same way as (6.6) follows from (6.15) in combination with (6.16)–(6.17), (6.7) follows from
(6.31) in combination with (6.32); we omit the details.

The proof of (6.32) is similar to the proof of (6.17), but requires some changes, as we explain now.
Fix z ∈ Cδ,R∩ZR[xi]. We again use an expansion as in (6.20), with xk−1 replaced by xi and xk replaced
by z. We also may apply the strong Markov property at the stopping time ηR to the expectation in
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the first line of (6.20) and Lemma 4.2 and (6.4), in the same way as in (6.21). This yields the bound

l.h.s. of (6.32) ≤
∞∑

m=0

∑

y1,...,ym∈ŻR[y0]

[ m∏

l=1

[(
1 + 2d

K|BR|
b
2 ∨ 1

4(λ(V%) − λ(V̇%))

)
qdist(∂BR(ZR[yl−1]),yl)

]]

× Eym exp
{∫ τz

0

}
1l{τz < τBR(ZR[y0])c}

≤
∞∑

m=0

∑

y1,...,ym∈ŻR[y0]

[ m∏

l=1

( 1

2K
q|yl−1−yl|/(4K)

)]
Eym exp

{∫ τz

0

}
1l{τz < τBR(ZR[y0])c},

(6.33)
where y0 = xi. Now we estimate the last expectation differently: we directly apply Lemma 4.2 with
γ = λy and A = BR(ZR[y0]) \ {z} and use the spectral gap in (5.16) to estimate

Eym exp
{∫ τz

0

}
1l{τz < τBR(ZR[y0])c} ≤ 1 + 2d

|BR(ZR[y0])|
λy − λ(BR(ZR[yl−1]) \ Cδ,R)

≤ 1 + 2d
K|BR|

b
2 ∨ 1

4(λ(V%) − λ(V̇%))
≤ C

4
Rd

(6.34)

for some suitable choice of C which depends on the quantities in (5.14) only. Since ym and z belong
to the same island, we can estimate |ym− z| ≤ RK, and hence we may continue the right hand side of

(6.34) with ≤ C
4R

dq−R/4q|ym−z|/(4K). Using this in (6.33), and arguing as above, we arrive at (6.32).

6.4 Large-cluster expansion: Proof of Lemma 6.3

In this section, we carry out the details of the large-cluster expansion, i.e., we prove Lemma 6.3. We
pick M > 1 as in Lemma 6.2(b) and assume that δ and R are chosen in accordance with Lemma 6.2.
Additionally, we require that (6.52) below holds.

Fix z0 ∈ Z \Zδ,R and z ∈ Cδ,R. We shall divide the trajectory X into the pieces between subsequent
visits to different non-(δ,R)-optimal archipelagos before time τCδ,R

∧τBc . Introduce the corresponding
stopping time,

ζL = inf
{
t > 0: Xt ∈

(
Z \ Zδ,R

)
\ ZR[X0]

}
. (6.35)

We repeatedly use the strong Markov property at the time ζL and sum on all the walker’s positions
at these times to obtain

l.h.s. of (6.8) =
∞∑

i=0

∑

x1,...,xi∈Z\Zδ,R

[ i∏

k=1

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζL < τCδ,R
∧ τBc}

]

× Exi exp
{∫ τz

0

}
1l{τz = τCδ,R

< ζL ∧ τBc},
(6.36)

where we put x0 = z0. In the sum on x1, . . . , xi, we may and shall add the constraint that xk−1 and xk
are in different archipelagos for any k = 1, . . . , i (which implies that |xk−1−xk| ≥ 2R). The summand
for i = 0 is defined to be just the term in the last line for i = 0.

We are going to further estimate the expectations on the right hand side of (6.36) as follows.

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζL < τCδ,R
∧ τBc} ≤ q|xk−1−xk|/(64K2), k = 1, . . . , i, (6.37)

Exi exp
{∫ τz

0

}
1l{τz = τCδ,R

< ζL ∧ τBc} ≤ q|xi−z|/(64K2), i ≥ 0. (6.38)
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In order to show (6.37), we expand according to the number of times the walker leaves the large
cluster BR(ZR[X0]) and revisits the starting archipelago ZR[X0]. Define

ηR = inf
{
t > 0: Xt /∈ BR(ZR[X0])

}
, (6.39)

σR = inf
{
t > ηR : Xt ∈ ZR[X0]

}
. (6.40)

We repeatedly use the strong Markov property at time σR and sum over the sites visited by the
walker at these times to obtain

l.h.s. of (6.37) =

∞∑

m=0

∑

y1,...,ym∈ZR[xk−1]

[ m∏

l=1

Eyl−1
exp

{∫ τyl

0

}
1l{τyl

= σR < ζL ∧ τCδ,R
∧ τBc}

]

× Eym exp
{∫ τxk

0

}
1l{τxk

= ζL < σR ∧ τCδ,R
∧ τBc},

(6.41)

where y0 = xk−1. The summand for m = 0 is interpreted as just the last line.

In the following we shall show that

Eyl−1
exp

{∫ τyl

0

}
1l{τyl

= σR < ζL ∧ τCδ,R
∧ τBc} ≤ 1

2K
q|yl−1−yl|/(64K2), l = 1, . . . ,m,(6.42)

Eym exp
{∫ τxk

0

}
1l{τxk

= ζL < σR ∧ τCδ,R
∧ τBc} ≤ 1

2
q|ym−xk|/(64K2), m ≥ 0. (6.43)

Substituting (6.42) and (6.43) in (6.41), we obtain

l.h.s. of (6.37) ≤
∞∑

m=0

∑

y1,...,ym∈ZR[xk−1]

[ m∏

l=1

1

2K
q|yl−1−yl|/(64K2)

]1

2
q|ym−xk|/(64K2)

≤ q|xk−1−xk|/(64K2),

(6.44)

where we used the triangle inequality for the sequence of points xk−1 = y0, y1, . . . , ym, xk, and the fact
that |ZR[xk−1]| ≤ K. Hence, we have derived (6.37).

Now we prove (6.42) and (6.43). Apply the strong Markov property at time ηR to obtain, for any
l = 1, . . . ,m,

l.h.s. of (6.42)

≤ Eyl−1
exp

{∫ ηR

0

}
1l{ηR < τBc} × max

y′∈∂BR(ZR[y0])
Ey′ exp

{∫ τyl

0

}
1l{τyl

= τZ\Zδ,R
< τCδ,R

∧ τBc}.
(6.45)

In order to further estimate the first factor on the right of (6.45), use Lemma 4.2 for γ = λy and the
set A = BR(ZR[y0]), and use the spectral gap in (5.17), to obtain

Eyl−1
exp

{∫ ηR

0

}
1l{ηR < τBc} ≤ 1 + 2d

|BR(ZR[y0])|
λy − λ(BR(ZR[y0]))

≤ 1 + 2d
K|BR|
δ/2

. (6.46)

In order to further estimate the second term on the right of (6.45), we use the Markov property at

time τZ and (6.4). Furthermore, we distinguish whether the walker is in Żδ,R at time τZ or already
at yl. (There are no other possibilities on the event {τyl

= τZ\Zδ,R
< τCδ,R

∧ τBc}.) In this way we

obtain, for any y′ ∈ ∂BR(ZR[y0]),

Ey′ exp
{∫ τyl

0

}
1l{τyl

= τZ\Zδ,R
< τCδ,R

∧ τBc}

≤
∑

z′∈Żδ,R

q|y
′−z′|

Ez′ exp
{∫ τyl

0

}
1l{τyl

= τZ\Zδ,R
< τCδ,R

∧ τBc} + q|yl−y′|.
(6.47)
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We can apply the big-cluster expansion, Lemma 6.2(a), to the expectation on the right and obtain

Ey′ exp
{∫ τyl

0

}
1l{τyl

= τZ\Zδ,R
< τCδ,R

∧ τBc}

≤
∑

z′∈Żδ,R

q|y
′−z′|q|z

′−yl|/(8K) + q|yl−y′|

≤ q|y
′−yl|/(16K)

∑

z′∈Zd

q|z
′|/(16K) + q|yl−y′|

≤ C̃q|y
′−yl|/(16K),

(6.48)

where C̃ > 0 depends on the quantities in (5.14) only. Use (6.46) and (6.48) in (6.45) to get, for any
l = 1, . . . ,m,

l.h.s. of (6.42) ≤ C̃
(
1 + 2d

K|BR|
δ/2

)
max

y′∈∂BR(ZR[y0])
q|y

′−yl|/(16K). (6.49)

In the same way, one derives

l.h.s. of (6.43) ≤ C̃
(
1 + 2d

K|BR|
δ/2

)
max

y′∈∂BR(ZR[y0])
q|y

′−xk|/(16K). (6.50)

Since yl and y0 lie in the same archipelago, we estimate the last term in (6.49) against qR/(16K).

Furthermore, since |yl−1 − yl| ≤ RK, we may further estimate qR/(16K) ≤ qR/(32K)q|yl−1−yl|/(32K2).

In (6.50), we estimate q|y
′−xk|/(16K) ≤ qR/(32K)q|ym−xk|/(64K2), where we used that |y′ − xk| ≥ R

and that xk and ym lie in different archipelagos, and we estimated

|ym − xk| ≤ KR + dist(∂BR(ZR[y0]), xk) ≤ 2K dist(∂BR(ZR[y0]), xk). (6.51)

Now we make the additional assumption that R is so large (depending only on R and δ) that

C̃M
(
1 + 2d

K|BR|
δ/2

)
qR/(32K) <

1

2K
, (6.52)

where M > 1 is as in Lemma 6.2(b). Then (6.42) and (6.43) easily follow from (6.49) and (6.50),
respectively, in combination with the bounds given below (6.50). As remarked earlier, this finishes
the proof of (6.37). The proof of (6.38) is analogous, the main difference being that in the expansion
analogous to (6.47) (where τCδ,R

and τZ\Zδ,R
are interchanged), we apply Lemma 6.2(b) rather than

(a). (The factor of M in (6.52) is needed only here.)

Now we substitute (6.37)-(6.38) in (6.36) to obtain

Ez0 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc}

≤
∞∑

i=0

∑

x1,...,xi∈Z\Zδ,R : |xk−1−xk|≥R∀k

[ i∏

k=1

q|xk−1−xk|/(64K2)
]
q|xi−z|/(64K2)

≤ q|z0−z|/(128K
2)

∞∑

i=0

∑

x1,...,xi∈Zd : |xk−1−xk|≥R∀k

i∏

k=1

q|xk−1−xk|/(128K2)

≤ q|z0−z|/(128K
2)

∞∑

i=0

( ∑

y∈Zd : |y|≥R
q|y|/(128K

2)
)i

≤ q|z0−z|/(256K
2),

(6.53)
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if R is sufficiently large (recall that |z0 − z| ≥ R). This implies the assertion in (6.8) and ends the
proof of Lemma 6.3.

6.5 Huge-cluster expansion: Proof of Lemma 6.4

In this section, we carry out the details of the huge-cluster expansion, i.e., we prove Lemma 6.4. We
pick M > 1 as in Lemma 6.2(b) and assume that δ and R are chosen in accordance with Lemmas 6.2
and 6.3.

We shall divide the path X into the pieces between visits to different sites in Cδ,R \ Γ. Introduce
the corresponding stopping time,

ζH = inf
{
t > 0: Xt ∈

(
Cδ,R \ Γ

)
\ {X0}

}
. (6.54)

Fix z0 ∈ Cδ,R \ Γ and y ∈ Γ. We repeatedly use the strong Markov property at time ζH and sum over
the sites visited at these times, to obtain

l.h.s. of (6.9) =

∞∑

i=0

∑

x1,...,xi∈Cδ,R\Γ

[ i∏

k=1

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζH < τΓ ∧ τBc}
]

× Exi exp
{∫ τy

0

}
1l{τy = τΓ < ζH ∧ τBc},

(6.55)

where x0 = z0. The summand for i = 0 is interpreted as just the last line with i = 0. In the sum
on x1, . . . , xi we may add the constraint xk−1 6= xk for all k = 1, . . . , i. Recall that the huge clusters
around the sites in Cδ,R are disjoint for t large, since R = Rt = log2 t� dδt . Hence, we may and shall
assume that |xk−1 − xk| ≥ R for all k = 1, . . . , i.

We shall show the following estimates for the expectations on the right of (6.55):

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζH < τΓ ∧ τBc} ≤ q|xk−1−xk|/(2048K2), k = 1, . . . , i, (6.56)

Exi exp
{∫ τy

0

}
1l{τy = τΓ < ζH ∧ τBc} ≤ q|xi−y|/(2048K2), i ≥ 0. (6.57)

We shall prove (6.56) only, the proof of (6.57) is identical.

In order to derive (6.56), we expand according to the number of times the walker leaves the huge
cluster around its starting point and returns to the starting point before τxk

. Denote by

ηR = inf
{
t > 0: Xt /∈ BR(X0)

}
, (6.58)

σR = inf
{
t > ηR : Xt = X0

}
, (6.59)

the exit time from the huge cluster BR(X0) and the next return time to X0. Use the strong Markov
property repeatedly at time σR to get, for k = 1, . . . , i,

Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζH < τΓ ∧ τBc}
]

=
∞∑

m=0

[
Exk−1

exp
{∫ σR

0

}
1l{σR < ζH ∧ τΓ ∧ τBc}

]m

× Exk−1
exp

{∫ τxk

0

}
1l{τxk

= ζH < σR ∧ τΓ ∧ τBc}

=
Exk−1

exp
{∫ τxk

0

}
1l{τxk

= ζH < σR ∧ τΓ ∧ τBc}

1 − Exk−1
exp

{∫ σR

0

}
1l{σR < ζH ∧ τΓ ∧ τBc}

.

(6.60)
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The expectation in the denominator of the right side of (6.60) is estimated by using the strong
Markov property at time ηR as follows.

Exk−1
exp

{∫ σR

0

}
1l{σR < ζH ∧ τΓ ∧ τBc}

≤ Exk−1
exp

{∫ ηR

0

}
1l{ηR < τBc} × max

z′∈∂BR(xk−1)
Ez′ exp

{∫ τxk−1

0

}
1l{τxk−1

= τCδ,R
< τBc}.

(6.61)

The numerator on the right of (6.60) is estimated in the same way:

Exk−1
exp

{∫ ζH

0

}
1l{τxk

= ζH < σR ∧ τΓ ∧ τBc}

≤ Exk−1
exp

{∫ ηR

0

}
1l{ηR < τBc} × max

z′∈∂BR(xk−1)
Ez′ exp

{∫ τxk

0

}
1l{τxk

= τCδ,R
< τBc}.

(6.62)

Using Lemma 4.2 for γ = λy and A = BR(xk−1), and using the spectral gap estimate in (5.18), we
further estimate the first term on the right from above by

Exk−1
exp

{∫ ηR

0

}
1l{ηR < τBc} ≤ 1 + 2d

|BR|
λy − λ(BR(xk−1))

≤ 1 + 2d
|BR|
g0

. (6.63)

In order to handle the expectations on the right sides of (6.61) and (6.62) simultaneously, we shall
prove the following.

Lemma 6.5. For any x ∈ B and any z ∈ Cδ,R

Ex exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc} ≤ C ′q|x−z|/(512K
2), (6.64)

where the constant C ′ > 0 depends on the quantities in (5.14) only.

Proof. This proof is a simple variant of the completion of the proof of Proposition 6.1 at the end of
Subsection 6.2.

We apply the strong Markov property at time τZ and the estimate in (6.4). Furthermore, we
distinguish the two cases that, at time τZ , the walker is already at z and that he is in the set Z \ Cδ,R.
This gives

Ex exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc}

≤ q|x−z| +
∑

z0∈Z\Cδ,R

q|x−z0|Ez0 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc}.
(6.65)

In the sum over z0 we distinguish the two cases (1) z0 ∈ Z \ Zδ,R and (2) z0 ∈ Żδ,R. In the second
case, we distinguish the two cases τZ\Zδ,R

< τCδ,R
and τCδ,R

< τZ\Zδ,R
, and in the first case we apply
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the strong Markov property at time τZ\Zδ,R
. This yields

l.h.s. of (6.65) ≤ q|x−z| +
∑

z0∈Z\Zδ,R

q|x−z0|Ez0 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc}

+
∑

z0∈Żδ,R

q|x−z0|
[ ∑

z1∈Z\Zδ,R

Ez0 exp
{∫ τz1

0

}
1l{τz1 = τZ\Zδ,R

< τCδ,R
∧ τBc}

× Ez1 exp
{∫ τz

0

}
1l{τz = τCδ,R

< τBc}

+ Ez0 exp
{∫ τz1

0

}
1l{τz1τCδ,R

< τZ\Zδ,R
∧ τBc}

]
.

(6.66)
Now we apply Lemma 6.3 respectively Lemma 6.2 to the expectations on the right to obtain

l.h.s. of (6.65) ≤ q|x−z| +
∑

z0∈Z\Zδ,R

q|x−z0|q|z0−z|/(256K
2)

+
∑

z0∈Żδ,R

q|x−z0|
[ ∑

z1∈Z\Zδ,R

q|z0−z1|/(8K)q|z1−z|/(256K
2) +Mq|z0−z|/(8K)

]

≤ C ′q|x−z|/(512K
2)

(6.67)

for some C ′ > 0, depending only on the quantities in (5.14), and on the constant M > 1 of
Lemma 6.2(b). This ends the proof of the lemma.

�

With the help of Lemma 6.5, we may continue (6.61) (using also (6.63)) and (6.62) as follows.

l.h.s. of (6.61) ≤ C ′
(
1 + 2d

|BR|
g0

)
max

z′∈∂BR(xk−1)
q|z

′−xk−1|/(512K2), (6.68)

l.h.s. of (6.62) ≤ C ′
(
1 + 2d

|BR|
g0

)
max

z′∈∂BR(xk−1)
q|z

′−xk|/(512K2). (6.69)

On the right side of (6.68), we estimate the last factor from above against qR/(1024K2). The last

factor on the right side of (6.69) is estimated from above against qR/(1024K2)q|z
′−xk|/(1024K2). Since

R ≤ |z′ − xk|, we may bound |xk−1 − xk| ≤ R + |z′ − xk| ≤ 2|z′ − xk| and hence |z′ − xk|/(1024K2) ≥
|xk−1 − xk|/(2048K2).

Now we recall that R = Rt = log2 t and assume t so large that

qR/(1024K2)C ′
(
1 + 2d

|BR|
g0

)
<

1

2
. (6.70)

Hence we obtain that the right hand side of (6.68) is not larger than 1
2 , and that the right hand side

of (6.69) is not larger than 1
2q

|xk−1−xk|/(2048K2). Substituting these two bounds on the right side of
(6.60), we obtain that (6.56) holds.
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Substituting (6.56) and (6.57) in (6.55), we obtain

l.h.s. of (6.9) ≤
∞∑

i=0

∑

x1,...,xi∈Cδ,R\Γ: |xk−xk−1|≥R∀k

[ i∏

k=1

q|xk−xk−1|/(2048K2)
]
q|xi−y|/(2048K2)

≤ q|z0−y|/(3072K
2)

∞∑

i=0

( ∑

|x|≥R

q|x|/(6144K
2)

)i

≤ 2q|z0−y|/(3072K
2) ≤ q|z0−y|/(4096K

2),

(6.71)

if R is sufficiently large. This ends the proof of (6.9) and finishes the proof of Lemma 6.4.

6.6 A corollary

We add a technical result, which is a corollary of Proposition 6.1. For y ∈ Γ, we write λ̇(R)
y for the

principal eigenvalue λBR(y)(ξ̇) of ∆ + ξ in the dotted set BR(y) \ {y}. Furthermore, for y ∈ Γ let

v(R)
y : Z

d → [0,∞) denote the principal `2(Zd)-eigenfunction of ∆ + ξ with zero boundary condition in

BR(y), normalized by v(R)
y (y) = 1. Note that v(R)

y vanishes outside BR(y). The constant c > 0 was
introduced in Proposition 6.1.

Corollary 6.6. For the choices of the parameters in Proposition 6.1, for any y ∈ Γ and x ∈ BR(y),

vy(x) ≤ v(R)
y (x) + qcR

(
1 + 2d

|BR|
λ(R)
y − λ̇(R)

y

)
. (6.72)

Proof. We go back to the representation of vy(x) in (6.2) and distinguish the two contributions from

paths that stay in BR(y) by time τy and the remaining one. In the first term, we estimate λy ≥ λ(R)
y ,

in the second term we use the strong strong Markov property at time τBR(y)c . This yields

vy(x) ≤ Ex exp
{∫ τy

0
[ξ(Xs) − λ(R)

y ] ds
}

1l{τy < τBR(y)c}

+ Ex exp
{∫ τBR(y)c

0
[ξ(Xs) − λy] ds

}
1l{τBR(y)c < τΓ ∧ τBc}vy(XτBR(y)c

).

(6.73)

The first expectation on the right side is equal to v(R)
y (x), analogously to (6.2). Use (6.1) for the last

factor on the right side and note that |XτBR(y)c
− y| ≥ R. Then we obtain

vy(x) ≤ v(R)
y (x) + qcREx exp

{∫ τBR(y)c

0
[ξ(Xs) − λ(R)

y ] ds
}

1l{τBR(y)c < τΓ ∧ τBc}. (6.74)

Now use Lemma 4.2 for γ = λ(R)
y and A = BR(y) \ {y} to finish the proof.

�

7. Localization and shape of potential

In this section, we prove that the set Γ = Γt log2 t(ξ; δ,R) defined in Section 5 satisfies all the asser-

tions (2.8)–(2.11) of Proposition 2.2, provided that the parameters δ and R are chosen appropriately.
As in the preceding sections, we consider the quantities in (5.14) as fixed. Recall that q = 2d/(2d+a/2).

Let ε > 0 and η > 0 be given and pick r = r(%, ε) ∈ N0 as in (1.17) and Rt = log2 t as in (5.9).
Furthermore, let γ > 0 and R > 0 be given. Note that assertion (2.10) gets stronger if R is picked
larger or γ > 0 smaller, respectively, and that the other three claims, (2.8), (2.9) and (2.11), do not
depend on γ nor on R. Hence, we are allowed to choose R as large as we want and γ as small as we
want.
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Let the random set Γ = Γt log2 t be constructed (with t replaced by t log2 t) as in Subsection 5.1,

with parameters δ and R. From Lemma 5.3 we already know that the conditions (2.9) and (2.10)
are satisfied almost surely for sufficiently large t if R is large enough, δ small enough and R large
enough. Hence, it only remains to show that (2.8) and (2.11) are satisfied, after possibly making the
parameters R, δ,R and t even larger respectively smaller. This will be carried out in Subsections 7.1
resp. 7.2 below. We assume that R, δ,R and t are chosen so large resp. small that all the conclusions
of Lemmas 5.3 and 5.4 and Proposition 6.1 hold. In addition, assume that δ is so small that δ < a/2

and 2e−δ/% − 1 > 1 − η.

7.1 Proof of (2.8)

Let α > 0 be given. Because of (1.17), we may choose ε̃ ∈ (0, 1) (depending on α only) such that
(
4ε̃+ ‖w%‖2

)2
(
4ε̃+

∑

x∈Zd\Br′

w%(x)
)
< ε′ + α, ε′ ∈ (ε, 1), (7.1)

where r′ = r(%, ε′).

Now we assume R so large (depending on ε̃ only) that additionally all the following conditions are
satisfied (cf. Lemma 3.3):

‖w% − w(R)
% ‖2 < ε̃ and ‖w% − w(R)

% ‖1 < ε̃, (7.2)

|λ(V%) − λBR
(V%)| ∨ |λ(V̇%) − λBR

(V̇%)| <
1

8
|λ(V%) − λ(V̇%)|, (7.3)

qcR
(
1 + 2d

|BR|
1
2 [λ(V%) − λ(V̇%)]

)
<

ε̃

|BR|
, (7.4)

∑

x∈Zd : |x|>R
qc|x| < ε̃2, (7.5)

where the constant c > 0 in (7.4) and (7.5) was introduced in Proposition 6.1.

Furthermore, we require that γ is so small (depending on R and ε̃ only) that, for any V : BR → R

satisfying dR(V, V%) < γ, the following four bounds hold:

|λBR
(V ) − λBR

(V%)| <
1

8
|λ(V%) − λ(V̇%)| and |λBR

(V̇ ) − λBR
(V̇%)| <

1

8
|λ(V%) − λ(V̇%)| (7.6)

and

‖v − w(R)
% ‖2,R < ε̃ and ‖v − w(R)

% ‖1,R < ε̃, (7.7)

where v is the principal Dirichlet eigenfunction of ∆+V in BR satisfying 0 ∈ argmax(v) and v(0) = 1.
(Here we have used that the principal eigenvalue and corresponding eigenfunction of ∆ + V depend
continuously on the potential V on BR.)

Lemma 5.3 implies that, with probability one, the set Γt log2 t satisfies (2.10), if t is sufficiently large.
This means that

Vy,t = ξ(y + ·) − ht log2 t satisfies dR(Vy,t, V%) < γ, y ∈ Γt log2 t. (7.8)

Now we apply Theorem 4.1 to see that the term on the left hand side of (2.8) may be bounded as
follows.

1

U(t)

∑

x∈Bt log2 t\Br′(Γt log2 t)

u3(t, x) ≤ max
y∈Γt log2 t

[
‖vy‖2

2

∑

x∈Bt log2 t\Br′ (Γt log2 t)

vy(x)
]
. (7.9)

Here vy is the positive eigenfunction of ∆+ ξ with zero boundary condition in (Bt log2 t \Γt log2 t)∪{y}.
The corresponding eigenvalue is denoted by λy.
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According to our choice of ε̃ in (7.1), the only two things left to be proved are the following. With
probability one, if t is large enough, for any y ∈ Γt log2 t,

∑

x∈Bt log2 t\Br′(Γt log2 t)

vy(x) < 4ε̃+
∑

x∈Zd\Br′

w%(x), (7.10)

‖vy‖2 < 4ε̃+ ‖w%‖2. (7.11)

This is done as follows. We use the triangle inequality to estimate, for x ∈ Z
d,

vy(y + x) ≤ w%(x) + |w%(x) − w(R)
% (x)| + |w(R)

% (x) − v(R)
y (y + x)| + |vy(y + x) − v(R)

y (y + x)|. (7.12)

The last term is further estimated from above using Corollary 6.6 (using obvious notation):

0 ≤ vy(y + x) − v(R)
y (y + x) ≤ qcR

(
1 + 2d

|BR|
λ(R)
y − λ̇(R)

y

)
, x ∈ BR. (7.13)

In order to estimate the denominator from below, use the triangle inequality to obtain

λ(R)
y − λ̇(R)

y = λBR(y)(ξ − ht log2 t) − λBR(y)(ξ̇ − ht log2 t)

≥ −|λBR(y)(ξ − ht log2 t) − λBR
(V%)| − |λBR

(V%) − λ(V%)| + λ(V%) − λ(V̇%)

− |λ(V̇%) − λBR
(V̇%)| − |λBR

(V̇%) − λBR(y)(ξ̇ − ht log2 t)|.
(7.14)

(Here we used the notation ξ̇ for the field ξ dotted in y.) Use (7.3) to see that the second and the

fourth of the terms on the r.h.s. are each not smaller than − 1
8(λ(V%) − λ(V̇%)). In order to see that

also the first and the fifth of these terms are each not smaller than the same quantity, we recall that
our requirement (7.6) applies to v = Vy,t because of (7.8).

Hence, we obtain that λ(R)
y − λ̇(R)

y ≥ 1
2(λ(V%) − λ(V̇%)). Substituting this in (7.13), we obtain

vy(y + x) − v(R)
y (y + x) ≤ qcR

(
1 + 2d

|BR|
1
2 [λ(V%) − λ(V̇%)]

)
≤ ε̃

|BR|
, x ∈ BR, (7.15)

according to (7.4).

For x /∈ BR, the last term in (7.12) is estimated by recalling that v (R)
y (y + x) = 0 and by using

Proposition 6.1 which implies that

0 ≤ vy(y + x) ≤ qc|x|, y ∈ Γt log2 t, x ∈ Z
d \ BR. (7.16)

In order to prove (7.10), sum (7.12) over x ∈ Bt log2 t \ Br′(Γt log2 t) to obtain

l.h.s. of (7.10) ≤
∑

x∈Zd\Br′

w%(x) + ‖w% − w(R)
% ‖1

+ ‖w(R)
% − v(R)

y (y + ·)‖1 +
∑

x∈BR

|vy(y + x) − v(R)
y (y + x)| +

∑

x∈Zd\BR

vy(y + x).

(7.17)
The second and the third term on the r.h.s. do both not exceed ε̃ by (7.2) respectively (7.7) (recall
(7.8)). The fourth term is not larger than ε̃ by (7.15), and the last one as well by (7.16) and (7.5).
This shows that (7.10) is indeed satisfied.

In order to prove (7.11), use the triangle inequality for ‖ · ‖2 as in (7.12) and split the last norm
into the contributions from BR and Z

d \BR, and apply (7.15) and (7.16), respectively. This gives

‖vy‖2 ≤ ‖w%‖2 + ‖w% − w(R)
% ‖2 + ‖w(R)

% − v(R)
y (y + ·)‖2 +

√
|BR|

ε̃

|BR|
+

√ ∑

x∈Zd\BR

q2c|x|. (7.18)
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Now the same arguments below (7.17) apply to show that (7.11) is satisfied. This ends the proof of
(2.8).

7.2 Proof of (2.11)

We borrow an important technical tool from [BK01, Lemma 4.6], which gives an estimate of the
principal eigenvalue in large boxes in terms of the maximal principal eigenvalue in small subboxes:

Lemma 7.1. There is a constant C > 0 such that, for any large centered box B ⊂ Z
d, any potential

V : B → R ∪ {−∞} and any n > 0,

λB(V ) ≤ C

n2
+ max

x∈B
λBn(x)∩B(V ). (7.19)

Now we turn to the proof of (2.11) for % < ∞ (the case % = ∞ may be done in the same way
and is even simpler). Assume that all the parameters are chosen as in the preceding subsection. We
additionally require that the parameter δ is so small that % log(1 − e−(χ(%)+a)/%) < −δ/4. And we
assume that R is chosen so large that 4C/R2 < δ/8, where C is as in Lemma 7.1. Let us abbreviate
B = Bt log2 t and h = ht log2 t and so on.

By time reversion, we deduce from the definition of u2 in (2.4) that

∑

x∈B
u2(t, x) = E0 exp

{∫ t

0
ξ(Xu) du

}
1l{τBc > t}1l{τΓ > t}. (7.20)

From Schwarz’ inequality and a Fourier expansion with respect to the eigenfunctions of ∆+ ξ in B \Γ
with zero boundary condition, also using Parseval’s identity, one concludes that, for any t > 0,

∑

x∈B
u2(t, x) ≤

√
|B|

∥∥u2(t, ·)
∥∥

2
=

√
|B|etλB\Γ(ξ)‖δ0‖2 =

√
|B|etλB\Γ(ξ). (7.21)

Recall from (1.12) that, almost surely, U(t) ≥ ethe−t[χ(%)+o(1)] as t→ ∞. Hence, for proving (2.11), it
suffices to show that

lim sup
t→∞

λB\Γ(ξ − h) < −χ(%) a.s. (7.22)

Define ξΓ = ξ−∞1lΓ, then it is clear that λB\Γ(ξ− h) = λB(ξΓ − h). We apply Lemma 7.1 with B as
above, V = ξΓ − h, and n = R/2 to obtain that

λB\Γ(ξ − h) = λB(ξΓ − h) ≤ 4C

R2
+ max

x∈B
λBR/2(x)(ξΓ − h). (7.23)

Recall that 4C/R2 < δ/8. Hence, for proving (7.22), it suffices to show that

lim sup
t→∞

max
x∈B

λBR/2(x)(ξΓ − h) ≤ −χ(%) − δ

4
a.s. (7.24)

Let x ∈ B and recall the definition of the set Z in (5.1). We distinguish the three cases BR/2(x)∩Z =
∅, BR/2(x) ∩ Γ 6= ∅, and BR/2(x) ∩ Γ = ∅, but BR/2(x) ∩ Z 6= ∅.

In the first case we have ξΓ − h ≤ −χ(%) − a in BR/2(x), which implies that λBR/2(x)(ξΓ − h) ≤
−χ(%) − a ≤ −χ(%) − δ/4.

For handling the second case, we recall the definition of the finite-space version of L in (3.3).
According to Corollary 2.12 in [GM98], we have, almost surely,

max
x∈B

LBKR(x)(ξ − h) ≤ 1 + o(1) as t→ ∞, (7.25)

and, consequently, uniformly in x ∈ B,

LBR/2(x)(ξΓ − h) ≤ LBKR(x)(ξ − h) − e−minZ(ξ−h)/% ≤ 1 + o(1) − e−(χ(%)+a)/%.
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Using Lemma 3.1, we therefore obtain, almost surely,

λBR/2(x)(ξΓ − h) ≤ −χ(%) + % log(1 + o(1) − e−(χ(%)+a)/%) ≤ −χ(%) − δ/4 + o(1) as t→ ∞,

uniformly in x ∈ B, according to our additional requirement on δ.

In the third case, BR/2(x) is contained in some large cluster B ′
R = BR(ZR[z′]), where z′ is its

capital. If λB′
R

(ξ) < h− χ(%) − δ/4, then we just estimate λBR/2(x)(ξΓ − h) ≤ λB′
R

(ξ − h) ≤ −χ(%) −
δ/4. Otherwise, the large cluster B ′

R is (δ,R)-optimal and the huge-cluster eigenvalue λBR(z′)(ξ) lies

above the spectral gap. Hence, by the definition of Γ, z ′ ∈ Γ. Now we argue as above to see that
LBKR(z′)(ξΓ − h) ≤ 1 + o(1) − e−(χ(%)+a)/%. Since BR/2(x) is contained in BKR(z′), we may estimate
λBR/2(x)(ξΓ − h) ≤ λBKR(z′)(ξΓ − h) ≤ −χ(%) − δ/4 + o(1). This completes the proof of (7.24). �

8. Shape of the solution

In this section, we prove Proposition 2.3. We define a certain subset Γ∗ of the set Γ defined in the
proof of Proposition 2.2 such that (2.12) and (2.13) in Proposition 2.3 are satisfied.

Recall that the quantities in (5.14) are fixed. Let positive parameters ε, η, γ,R be given. As in the
proof of Proposition 2.2, we note that γ may be made as small as we want and R as large as we want.
We shall pick the parameters R, γ, δ and R as in the proof of Proposition 2.2 in Section 7.1. Later we
shall assume δ even smaller and R even larger in order that (2.12) and (2.13) can be deduced. Let
Rt = log2 t, and let Γ = Γt log2 t be defined as in Section 5.1.

Introduce

Γ∗
t log2 t

=
{
y ∈ Γt log2 t : u(t, y) ≥ t−3ηd max

z∈Γt log2 t

u(t, z)
}
. (8.1)

For any s > 0, choose y∗(s) ∈ Γ such that

u(s, y∗(s)) = max
z∈Γt log2 t

u(s, z). (8.2)

Certainly, y∗(t) lies in Γ∗
t log2 t

.

Recall from (7.11) that, for t large,

max
z∈Γt log2 t

‖vz‖2
2 ≤ C, (8.3)

where the constant C > 1 depends on the quantities in (5.14) only.

Let us now show that both (2.12) and (2.13) are satisfied.

8.1 Proof of (2.12)

Fix ε > 0 and ε′ ∈ (0, ε). We use the split u = u1 + u2 + u3 with u1, u2 and u3 as in (2.3)–(2.5) with
the set Γ = Γt log2 t as defined in Section 5.1.

Apply (4.2) for Γ = Γt log2 t and w = u3 to estimate, for any y ∈ Γt log2 t \ Γ∗
t log2 t

and any x ∈
Br(%,ε′)(y),

u3(t, x) ≤ ‖vy‖2
2vy(x)u(t, y) +

∑

z∈Γt log2 t\{y}
‖vz‖2

2vz(x)u(t, y
∗(t)). (8.4)

Apply (8.3) to estimate the norm on the right side of (8.4). We also estimate vy(x) ≤ C1/2 ≤ C on the

right side of (8.4). Use that y is not in Γ∗
t log2 t

to estimate u(t, y) ≤ t−3ηdu(t, y∗(t)). By Proposition 6.1,

vz(x) decays exponentially in the distance between x and z. For z ∈ Γt log2 t \ {y} and x ∈ Br(%,ε′)(y),
since Γt log2 t is spread out, |x − z| is not smaller than a positive power of t. Hence, we may roughly
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estimate vz(x) ≤ t−4ηd for large t in the second term on the right side of (8.4). Furthermore, recall
that |Γt log2 t| ≤ tηd as t→ ∞. Hence, for large t, we can continue (8.4) with

u3(t, x) ≤ C2t−3ηdu(t, y∗(t)) +
∑

z∈Γt log2 t\{y}
Ct−4ηdu(t, y∗(t))

≤
(
C2t−3ηd + |Γt log2 t|Ct−4ηd

)
u(t, y∗(t))

≤ 2C2t−3ηdu(t, y∗(t)).

(8.5)

This implies, for large t, the estimate
∑

x∈Br(%,ε′)(Γt log2 t\Γ∗
t log2 t

)

u3(t, x) ≤ |Γt log2 t| |Br(%,ε′)|2C2t−3ηdu(t, y∗(t))

≤ t−ηd
∑

x∈Br(%,ε′)(Γ
∗
t log2 t

)

u(t, x).
(8.6)

Hence, we have derived (2.12).

8.2 Proof of (2.13)

We shall prove (2.13) with the metric dR replaced by ‖ · ‖∞,R, the supremum norm on BR. We
introduce large auxiliary parameters R and T > 0. Fix y ∈ Γ∗

t log2 t
. We write τR for the exit time from

BR(y). Use the strong Markov property at time T ∧ τR to obtain that u = uI + uII where, for any
x ∈ Z

d, and any t > T,

uI(t, x) = Ex exp
{∫

T

0
ξ(Xs) ds

}
u(t− T, XT)1l{τR > T}, (8.7)

uII(t, x) = Ex exp
{∫ τR

0
ξ(Xs) ds

}
u(t− τR, XτR)1l{τR ≤ T}. (8.8)

In the following, we shall show that uI gives the main contribution to u in BR(y) and that uII is
negligible with respect to uI in BR(y), provided that T and R are chosen large enough, δ small enough
and afterwards R large enough.

We write (·, ·)y,2,R and ‖ · ‖y,2,R for the `2-inner product and the corresponding norm in BR(y),
respectively. Denote the Dirichlet eigenvalue and eigenfunction pairs of ∆ + ξ in BR(y) by (λk(R), e

R

k)
for k ∈ N0, such that λ0(R) > λ1(R) ≥ . . . and such that (eRk)k∈N0 is an orthonormal basis of `2(BR(y)).
A Fourier expansion yields that, for x ∈ BR(y) and any t > T,

uI(t, x) = eTλ0(R)
(
u(t− T, ·), eR0(·)

)
y,2,R

eR0(x) +
∑

k∈N

eTλk(R)
(
u(t− T, ·), eRk(·)

)
y,2,R

eRk(x). (8.9)

Applications of the Cauchy-Schwarz inequality and Parseval’s identity yield that the second term is
bounded in absolute value by

eTλ1(R)
∑

k∈N0

∣∣∣
(
u(t− T, ·), eRk(·)

)
y,2,R

eRk(x)
∣∣∣

≤ eTλ1(R)

√ ∑

k∈N0

(
u(t− T, ·), eRk(·)

)2

y,2,R

√ ∑

k∈N0

(
eRk(·), δx

)2

y,2,R

= eTλ1(R)
∥∥u(t− T, ·)

∥∥
y,2,R

.

(8.10)



42 JÜRGEN GÄRTNER, WOLFGANG KÖNIG AND STANISLAV MOLCHANOV

Hence, we may summarize (8.9) by writing

uI(t, y + x) = F (t, R, T, y)w%(x)
[
1 + f(t, R, T, y, x)

]
, x ∈ BR, (8.11)

where

F (t, R, T, y) = eTλ0(R)
(
u(t− T, ·), eR0(·)

)
y,2,R

1

‖w%‖2
, (8.12)

|f(t, R, T, y, x)| ≤
∣∣w%(x) − eR0(y + x)‖w%‖2

∣∣
w%(x)

+
eT(λ1(R)−λ0(R))

w%(x)/‖w%‖2

∥∥u(t− T, ·)
∥∥
y,2,R(

u(t− T, ·), eR0(·)
)
y,2,R

. (8.13)

If R < R, this implies that (recall that w% is maximal at 0 with value 1)

∥∥∥
u(t, y + ·)
u(t, y)

− w%(·)
∥∥∥
∞,R

≤ max
x∈BR

∣∣∣
f(t, R, T, y, x) − f(t, R, T, y, 0)

1 + f(t, R, T, y, 0)

∣∣∣ + max
x∈BR

uII(t, y + x)

u(t, y)
. (8.14)

Hence, in order to finish the proof of (2.13), it suffices to show that

lim sup
t→∞

max
y∈Γ∗

t log2 t

max
x∈BR

|f(t, R, T, y, x)| ≤ γ

8
, (8.15)

lim sup
t→∞

max
y∈Γ∗

t log2 t

max
x∈BR

uII(t, y + x)

u(t, y)
≤ γ

2
, (8.16)

for T and R sufficiently large, if δ is small enough and R large enough.

Let us first determine how to choose the parameters T and R. Recall the optimal potential shape V%
in Assumption (M), and let λ0 > λ1 denote the two leading eigenvalues of ∆+V% in Z

d. Furthermore,
recall that w% is the positive eigenfunction to the eigenvalue λ0 satisfying w%(0) = 1. We first pick T

so large that

e−T(λ0−λ1)/212C3 <
γ

32
inf
x∈BR

w%(x), (8.17)

with C > 1 as in (8.3). It follows from [GM98, Lemma 2.5a)] that Px(τR ≤ T) ≤ 2d+1e
1
2
R− 1

2
R log(R/(2dT)) ,

for any x ∈ BR/2(y). Hence, it is possible to choose R > 2R so large that R > r(%, ε) and

4C3e2dT|BR/2| max
x∈BR/2(y)

Px(τR ≤ T) <
γ

64
, (8.18)

C3e2dT
∑

x∈Zd\BR/2

w%(x) <
1

64
. (8.19)

Recall the notation from the beginning of Section 6.6. Observe that v (R)
y (·) = eR0(·)/eR0(0) and compare

(7.2) and (7.7). Replacing R in Section 7.1 by R, we see that it is possible to choose the parameters
δ and R so small respectively large that, almost surely, if t is large enough, for any ỹ ∈ Γt log2 t, the

potential ξ(ỹ + ·) − h is sufficiently close to V% in BR such that

λ0(R) − λ1(R) >
1

2
(λ0 − λ1), (8.20)

max
x∈BR

∣∣w%(x) − eR0(y + x)‖w%‖2

∣∣ <
γ

16
inf
x∈BR

w%(x), (8.21)

max
x∈BR

∣∣vey(ỹ + x) − w%(x)
∣∣ ≤ 1

2
inf
x∈BR

w%(x). (8.22)

(For (8.22), see (7.12) and the arguments below (7.12).) In particular, we may estimate vey(ỹ+ x) ≤ 2
since w% is maximal at zero with value one.

As a preparation for the proof of (8.15)–(8.16), we now present a number of lemmas.
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Lemma 8.1. Almost surely, for t large, for any y ∈ Γ∗
t log2 t

, x ∈ BR(y) and s ∈ [0, T],

u3(t− s, x) ≤ 2C2e−λysu3(t, y)vy(x), (8.23)

where C is as in (8.3).

Proof. Fix y ∈ Γ∗
t log2 t

. Use (4.2) for t− s instead of t and recall (8.3) to obtain, for x ∈ BR(y) and t

large,

u3(t− s, x) ≤ ‖vy‖2
2u3(t− s, y)vy(x) +

∑

ey∈Γt log2 t\{y}
‖vey‖2

2u3(t− s, ỹ)vey(x)

≤ Cu3(t− s, y)vy(x) + |Γt log2 t|C max
ey∈Γt log2 t

u3(t− s, ỹ)e−
√
t,

(8.24)

where we estimated, according to Proposition 6.1, vey(x) ≤ qc|x−ey| and used that |x− ỹ| ≥ |y − ỹ| − R

is not smaller than a power of t that is close to one. Use Lemma 4.3 and again (8.3) to bound

u3(t− s, ỹ) ≤ Ce−λeysu3(t, ỹ), ỹ ∈ Γt log2 t. (8.25)

Because y ∈ Γ∗
t log2 t

, we have

u3(t, ỹ) ≤ u(t, ỹ) ≤ u(t, y∗(t)) ≤ t3ηdu(t, y), ỹ ∈ Γt log2 t. (8.26)

Substituting (8.26) in (8.25) and (8.25) in the second term of (8.24), and recalling (5.19) and that
|Γt log2 t| ≤ tηd, we obtain, for t large,

u3(t− s, x) ≤ Cu3(t− s, y)vy(x) + t5ηde−
√
te(−λy+χ+δ/2)su(t, y). (8.27)

Now use (8.25) for ỹ = y to estimate the first term on the right side of (8.27). Bound the second,
for t large, as follows: u(t, y) = u1(t, y) + u3(t, y) ≤ Cu3(t, y) (recall (2.7)). This gives, uniformly in
y ∈ Γt log2 t and x ∈ BR(y),

u3(t− s, x) ≤ e−λysu3(t, y)vy(x)
[
C2 + o(1)

1

infBR(y) vy

]
. (8.28)

Now use (8.22) to obtain (8.23).

�

Lemma 8.2. As t→ ∞,

min
y∈Γ∗

t log2 t

u(t, y) ≥ exp
{
t(ht log2 t − χ(%) − o(1))

}
. (8.29)

Proof. Recall that
∑

z∈Zd u(t, z) = et(ht log2 t−χ(%)+o(1)) as t → ∞ almost surely, and put r = r(%, ε).
From (2.12), we therefore have that

et(ht log2 t−χ(%)−o(1)) =
∑

ey∈Γ∗
t log2 t

∑

x∈Br(ey)
u3(t, x). (8.30)

Use Lemma 8.1 for s = 0 and recall (8.3) to see that u3(t, x) ≤ 2C3u3(t, ỹ) for x ∈ Br(ỹ) and
ỹ ∈ Γ∗

t log2 t
. In addition, use (8.26) in (8.30) to estimate, for any y ∈ Γ∗

t log2 t
and t large,

et(ht log2 t−χ(%)−o(1)) ≤ 2C3t3ηd|Γ∗
t log2 t

| |Br|u(t, y) ≤ t5ηdu(t, y). (8.31)

This implies the assertion, noting that the term t5ηd may be absorbed in the term eo(t) on the left
side. �



44 JÜRGEN GÄRTNER, WOLFGANG KÖNIG AND STANISLAV MOLCHANOV

Recall from Section 7.2 that, if R is large enough (depending on δ only), for t large, and any
s ∈ [0, T],

∑

x∈Bt log2 t

u2(t− s, x) ≤
√
|Bt log2 t|e−(t−s)(ht log2 t−χ(%)+o(1)−δ/8) ≤ e−(t−s)(ht log2 t−χ(%)−δ/16). (8.32)

Lemma 8.3. Almost surely, for t large, the following holds. For any y ∈ Γ∗
t log2 t

, any x ∈ BR,

uII(t, y + x) ≤ u(t, y)
[
o(1) + 2C3e2dTPx(τR ≤ T)

]
, (8.33)

where o(1) is uniform in y and x.

Proof. We again split u = u1+u2+u3 on the right side of (8.8), which yields a sum of three terms. The
first one is estimated as follows. On {τR ≤ T} we estimate u1(t− τR, XτR) ≤

∑
z∈Zd u1(t− τR, z) ≤ o(1)

(see (2.7)). Furthermore, we bound ξ(Xs) ≤ ht log2 t in the exponent. Thus, the first summand is not

larger than o(1)eTht log2 t , which is o(1)u(t, y), in accordance with Lemma 8.2.

In the second summand, we bound, with the help of (8.32), u2(t−τR, XτR) ≤ e(t−τR)(ht log2 t−χ(%)−δ/16)

and again bound ξ(Xs) ≤ ht log2 t in the exponent. Thus, the second summand is, for t large, not larger
than

Exe
R τR
0 ht log2 t dse(t−τR)(ht log2 t−χ(%)−δ/16)1l{τR ≤ T} ≤ et(ht log2 t−χ(%)−δ/16)eT(χ(%)+δ/16)

≤ u(t, y)e−tδ/32,
(8.34)

where we again used Lemma 8.2.

In the third and last summand, we use Lemma 8.1 for bounding the u3-term. Hence, the third
summand is not larger than

Exe
R τR
0
ξ(Xs) ds2C3u(t, y)e−λyτRvy(XτR)1l{τR ≤ T} ≤ 2C3u(t, y)Exe

R τR
0

[ξ(Xs)−λ0(R)] ds1l{τR ≤ T}, (8.35)

where we used (8.3) and that λy ≥ λ0(R). Now estimate ξ(Xs) − λ0(R) ≤ 2d in the exponent and

summarize to obtain the upper bound 2C3e2dTPx(τR ≤ T). Collecting the upper bounds for the other
two terms, we arrive at the assertion.

�

Let us now finish the proof of (8.15)–(8.16). The estimate in (8.16) is now immediate from
Lemma 8.3 in combination with (8.18) (recall that R/2 > R).

We turn to the proof of (8.15). We shall show the following bounds for t large:
∥∥u(t− T, ·)

∥∥
y,2,R

≤ 3C3e−λ0(R)Tu(t, y), (8.36)

(
u(t− T, ·), eR0

)
y,2,R

≥ 1

4‖w%‖2
e−λ0(R)Tu(t, y). (8.37)

Combining (8.36) and (8.37), we see that the last quotient on the right side of (8.13) is bounded by
12C3‖w%‖2 for t sufficiently large. Using (8.20)–(8.21) and (8.17), we see that (8.15) is indeed satisfied.
This ends the proof of (8.15), subject to (8.36) and (8.37).

Let us now derive (8.36). Apply the triangle inequality to bound
∥∥u(t− T, ·)

∥∥
y,2,R

≤
∥∥u1(t− T, ·)

∥∥
y,2,R

+
∥∥u2(t− T, ·)

∥∥
y,2,R

+
∥∥u3(t− T, ·)

∥∥
y,2,R

. (8.38)

Recall (2.7). Since in particular lim inf t→∞ miny∈Γ∗
t log2 t

u(t, y) = ∞ by Lemma 8.2, it is clear that, as

t→ ∞, ∥∥u1(t− T, ·)
∥∥
y,2,R

≤
∑

x∈Zd

u1(t− T, x) ≤ o(1) ≤ o(1)e−λ0(R)Tu(t, y), (8.39)

where o(1) is uniform in y ∈ Γ∗
t log2 t

.
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With the help of (8.32), we estimate the second summand on the right side of (8.38) as follows. For
t large and any s ∈ [0, T],

∥∥u2(t− s, ·)
∥∥
y,2,R

≤
∑

x∈Bt log2 t

u2(t− s, x) ≤ e(t−s)(ht log2 t−χ−δ/16) ≤ o(1)e−λ0(R)Tu(t, y), (8.40)

where we used that λ0(R) ≤ ht log2 t ≤ o(t), and o(1) is uniform in y ∈ Γ∗
t log2 t

, according to Lemma 8.2.

In order to bound the third term on the right of (8.38), use Lemma 8.1 to estimate
∥∥u3(t− T, ·)

∥∥
y,2,R

≤ 2C2e−λyTu3(t, y)‖vy‖2 ≤ 2C3e−λ0(R)Tu(t, y), (8.41)

where we recall (8.3). Now substitute (8.39), (8.40) and (8.41) in (8.38) to see that (8.36) holds.

Now we prove (8.37). Recall u = uI + uII (see (8.7)–(8.8)) and the Fourier expansion in (8.9) for
uI. Multiply (8.9) with eR0 and sum over x ∈ BR(y), and use that (eRk)k∈N0 is an orthonormal basis, to
obtain (

u(t, ·), eR0
)
y,2,R

=
(
uI(t, ·), eR0

)
y,2,R

+
(
uII(t, ·), eR0

)
y,2,R

= eλ0(R)T
(
u(t− T, ·), eR0

)
y,2,R

+
(
uII(t, ·), eR0

)
y,2,R

.
(8.42)

Hence, (
u(t− T, ·), eR0

)
y,2,R

= e−λ0(R)T
[(
u(t, ·), eR0

)
y,2,R

−
(
uII(t, ·), eR0

)
y,2,R

]

≥ e−λ0(R)T
[
u(t, y)eR0(y) −

(
uII(t, ·), eR0

)
y,2,R

]
.

(8.43)

Recall from (8.21) that eR0(y) ≥ 1/(2‖w%‖2). We use now Lemma 8.3 in order to show that the last
term in (8.43) is not larger than u(t, y)/(4‖w%‖2). Indeed, use (8.33) to obtain

(
uII(t, ·), eR0

)
y,2,R

≤ u(t, y)2C3e2dT
∑

x∈BR(y)

Px(τR ≤ T)eR0(x) + o(1)u(t, y). (8.44)

Now split the sums in the sum over x ∈ BR/2(y) and over x ∈ BR(y)\BR/2(y). In the first sum, estimate

eR0(x) ≤ 2/‖w%‖2 (recall (8.21)) and use (8.18), to see that this sum is not larger than u(t, y)/(16‖w%‖2).
In the second sum, estimate Px(τR ≤ T) ≤ 1 and eR0(x) ≤ 2w%(x)/‖w%‖2 (see (8.21)) to obtain the
upper bound

u(t, y)2C3e2dT
∑

x∈BR(y)\BR/2(y)

Px(τR ≤ T)eR0(x) ≤ u(t, y)
4

‖w%‖2
C3e2dT

∑

x∈Zd\BR/2

w%(x) <
1

16‖w%‖2
u(t, y),

(8.45)
according to (8.19). Hence, we have obtained that

(
uII(t, ·), eR0

)
y,2,R

≤ 1

4‖w%‖2
u(t, y). (8.46)

Using (8.46) in (8.43) and recalling that eR0(y) ≥ 1/(2‖w%‖2), we see that (8.37) is satisfied.
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[GH99] J. Gärtner and F. den Hollander, Correlation structure of intermittency in the parabolic Anderson model.

Probab. Theory Relat. Fields 114, 1–54, 1999.
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