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2 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGbe necessary, and this may easily lead to situations of overloads in peak times. This is why mobilead-hoc networks are increasingly in the discussion for various applications, like telecommunication,car-to-car applications for the distribution of information about the tra�c situation, downloading oflarge data packages, and more [CBD02, CPS09, R11]. However, before one can seriously think about anintroduction of a mobile ad-hoc system, one needs to know how reliable it is and how much informationit can reliably transmit and how well the participants of the system are connected.The mathematical analysis of the connectivity properties of a mobile ad-hoc network (usually referredto in the literature as MANET), is the purpose of the present paper. We discuss a natural probabilisticmodel and derive rigorous results about the quality of the connection in this system. Roughly speaking,in our model, a large number N of participants randomly and independently move around in a givendomain D ⊂ Rd with d ≥ 2. The movement scheme considered is quite general, but later we willdiscuss the prime example, the random waypoint model (RWP), in detail. Each of the participantscarries a device that possesses a �xed communication radius 2R (the same for everybody). The domainis so large that the individuals are distributed according to a spatial density that is of �nite order, butmay depend on the details of the domain (this models subareas with more or less frequent visits, likeforests, lakes or public places). We assume that messages are transmitted instantly, i.e., without lossof time. Then we ask, for two �xed given participants, how large, during a given time interval [0, T ],the amount of time is during which they are connected, their connection time τ (N)

T . This is one of themost decisive quantities in such a system, since it measures the quality of the entire system by meansof two sample participants.The regime in which we will be working is the limit of a large number of participants, coupledwith the limit of a large region such that the population density (number of participants per areaunit) is of �nite positive order. In the language of statistical mechanics, this is the thermodynamiclimit. We will condition on the two sample trajectories. The connection time is obviously a complexfunction of the entire system, but we will be able to quantify the in�uence of the large number of theparticipants on the connectivity of the two sample participants in terms of a simple function. Thisfunction is known from the theory of continuum percolation, which studies connectivity through a unionof randomly distributed balls. It turns out that the limiting connection time has a global, deterministicpart and a local, probabilistic part, the latter of which is described in terms of the mentioned function.Furthermore, it also turns out that this limit is deterministic, given the two sample participants. Thisis due to one of our assumptions on the movement scheme, which requires that knowledge about thewalker's location at a later time point does not �x the current location with positive probability. Thisassumption implies a certain independence of the locations of the totality of the walkers at any twogiven times and leads to a deterministic limit. This is presented in Sections 1.2 and 1.3.From the practical point of view, a very large value of the connection time is highly desirable. Thiscan be guaranteed by a large value of the communication radius 2R. However, one also would like tohave rules at hand that tell how large this radius must be picked in order that the connection timeexceeds a certain threshold. Some general answer to this question is given in Section 1.3. We explainthere that, under natural conditions, the main e�ect that may damage the connection are time lagsthat any of the two sample participants spend close to the boundary of the domain D, while, in theinterior of D, the local connection quality of the system super-exponentially fast tends to the optimumfor R→∞, depending on the local user density only.Furthermore, another important question that we address is about the long-time behaviour of theconnection time. More precisely, we identify the limiting fraction of the connection time by means ofan ergodic theorem and estimate the probability of the unwanted event that the connection time coversonly an untypically low portion of the time interval. This is an event of a downward large deviation, andwe will show that its probability decays exponentially fast as T →∞, and we quantify an upper bound



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 3of the decay rate. For this question, we restrict to the RWP and derive some recurrence propertiesthat may be useful also for further investigations; see Section 1.4.The model that we consider is sometimes called a dynamic geometric random graph. Such modelswere analysed in a series of papers by Peres and co-workers, see [PSSS11, PSSS13], e.g. However, incontrast to our setting, they do not consider the thermodynamic limit, study di�erent questions relatedto the large-time limit, and take Brownian motion or random walks as the underlying movement scheme.Our purpose is to study a more realistic model for the random movement of people.The authors would like to thank an anonymous referee for his/her careful reading and the valuablecomments to improve the quality of this article.1.2. Connection time of two participants in the thermodynamic limit. Let us introduce themodel; our main result here is Theorem 1.2.We consider a system of N particles (the participants of the mobile ad-hoc network), which randomlymove with time horizon [0, T ] within a given bounded regular domain D in Rd. The N movementsare independent and identically distributed, and the common movement scheme (path distribution)does not have to be Markovian; more precise assumptions follow below. The underlying probabilitymeasure and expectation are denoted by P and E.Later (see Section 1.4) we will be mostly interested in a particular movement scheme, namely therandom waypoint model (RWP). This motion dynamic is considered in information science as a realisticmodel for the random movement of a human being, e.g., a participant of a telecommunication system[R11, L04, BHPC04, LV06]. A brief de�nition of the model is as follows. The walker starts fromsome point, picks a random velocity and a random site (the �rst waypoint) and then moves with thisconstant velocity on a straight line to that waypoint. Having arrived there, he picks the next randomvelocity and random waypoint and moves there on a straight line with the second velocity. This isiterated. All the waypoints are independent and identically distributed, and the velocities as well, andthe waypoints are independent from the velocities. This model is a natural extension of the classicalRWP, as we admit general distributions of the waypoints and the velocities. On the other hand, wedo not admit pause times that the walker spends at waypoints.Let us proceed with a general movement scheme. We equip every walker with a �xed communicationradius 2R ∈ (0,∞). That is, there is a direct connection between any two of them if their distance isat most 2R. Two of the N participants, located at x and y, say, are (indirectly) connected if and onlyif there is a sequence x1, . . . , xm of m other participants such that all the distances between xi and
xi−1 are at most 2R for any i = 1, . . . ,m+ 1, where we put x0 = x and xm+1 = y. In other words, the
m+ 2 balls around x0, . . . , xm+1 with radius R have pairwise a nontrivial intersection along the chain
x0, . . . , xm+1; in particular, there is a continuous path from x to y within their union. This is ful�lledif and only if x and y lie in the same connected component of the union of the balls of radius R centredat the N participants. In this way, we see that our model is a dynamic continuum percolation process.It is our goal to study the thermodynamic limit of this system, i.e., we think of the volume of thedomain being of order N , the number of participants, and we assume that the trajectories are coupledwith N in an accordingly rescaled way. That is, the length scale is N1/d, and the density of participants(their number per unit volume) is of �nite positive order. Then it is clear that a rescaled version ofthis picture is better suitable for a mathematical analysis. Hence, we consider instead the equivalentsituation of a �xed domain D and a �xed movement scheme (both not depending on N), and we putthe communication radius equal to 2RN−1/d. We do not rescale the time interval [0, T ] by N1/d, asthis is a trivial change.By X(i) = (X(i)

s )s∈[0,T ] we denote the (random) trajectory of the i-th participant, i.e., a randomvariable taking values in the set of functions [0, T ] → D. We assume that (making the underlying



4 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGprobability space Ω explicit) the map (s, ω) 7→ X(i)
s (ω) is measurable from [0, T ] × Ω into D. Let

B(x, r) denote the open ball around x with radius r > 0. Then the set
D(N)

s = D ∩
N⋃

i=1

B
(
X(i)

s , RN−1/d
)is the communication zone at time s. We introduce the notion of connectivity at time s: for x, y ∈ Dwe write

x
N
←→

s
y ⇐⇒ x and y lie in the same component of D(N)

s . (1.1)We will use this notion only for x = X(1)
s and y = X(2)

s . Hence, the two participants X(1),X(2)are connected at time s if there is a polygon line from X(1)
s to X(2)

s consisting of line segments oflengths at most 2RN−1/d with the vertices being the locations of other participants at time s. Hence,
X(1)

s
N
←→

s
X(2)

s if and only if these two can exchange a message at time s. Note that the indicatorfunction 1l{X(1)
s (ω)

N
←→

s
X(2)

s (ω)} is jointly measurable in s and ω, since it is a polynomial function ofthe indicators 1l{|X(i)
s (ω) −X(j)

s (ω)| ≤ RN−1/d} with i, j ∈ {1, . . . , N}, which are jointly measurablein s and ω.The main object is the connection time
τ (N)

T :=
∣∣{s ∈ [0, T ] : X(1)

s
N
←→

s
X(2)

s

}∣∣ =

∫ T

0
ds 1l{X(1)

s
N
←→

s
X(2)

s }, (1.2)the amount of time during which these two participants are connected up to T . By the above mentionedjoint measurability of the integrand, is well-de�ned and measurable. We will analyse the connectiontime in the limit N →∞.Let us state our assumptions on the random movement of the N walkers. We write {f > r} forshort for the set {x ∈ D : f(x) > r} and use analogous notation for similarly de�ned sets.Assumption 1.1 (The movement scheme). The distribution of the random path X = (Xs)s∈[0,T ] in
D satis�es the following.(i) For any s ∈ (0, T ], the location Xs possesses a continuous Lebesgue density fs : D → [0,∞).(ii) For any x, y ∈ D and s, s̃ ∈ (0, T ] satisfying s < s̃, we have P(Xs = x | X

es = y) = 0.Su�cient for Assumption 1.1 is the existence of a jointly continuous Lebesgue density of Xs and X
esfor any 0 < s < s̃ ≤ T . Condition (ii) is needed for the asymptotic independence of the clusters attime s from the clusters at time s̃; it allows us to neglect those walkers that de�ne both clusters andto deal only with disjoint sets of participants that form the two clusters, see the proof of Lemma 2.3.The reason why it is stated for s < s̃ is that it makes the proof of Lemma 2.3 simpler to understand.It is however possible to adapt it with the same assumption for s > s̃. We leave the details of this tothe reader.We also remark that the map (s, x) 7→ fs(x) is measurable. Indeed, by measurability of the map

(s, ω) 7→ Xs(ω), the indicator 1l{|Xs(ω) − x| ≤ ε} is (ω, s, x)-measurable for any ε > 0. Therefore,by Fubini's theorem, its expectation is (s, x)-measurable, and by continuity of fs, we have fs(x) =

limε↓0 P(|Xs − x| ≤ ε)/(Cεd), C being the volume of the unit ball in Rd, i.e., fs(x) is a limit of
(s, x)-measurable functions.doubt that such questions would be of great interest, they would however require another approachand are not the subject of our article.Note that we do not require the continuity of the trajectories; regularity is only required for thedistributions at �xed times. Assumption 1.1 is satis�ed for many di�usions in D and also for many



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 5continuous-time random walks in D. For practical reasons, we are mainly interested in the randomwaypoint model, see below.We need to introduce some standard objects from (static, homogeneous) continuum percolation; see[MR96] and Section 2.1 below for general background. Let (Zi)i∈N be a standard Poisson point processon Rd with intensity λ ∈ (0,∞). We de�ne the percolation probability θ(λ,R) as the probability thatthere is a path from B(0, R) to in�nity that never leaves the set UR =
⋃

i∈N
B(Zi, R). In other words,

θ(λ,R) is the probability that UR has a connected component with in�nite Lebesgue measure thatintersects B(0, R). Connected components will be also called clusters in the sequel. By rescaling, it iseasy to see that θ(λ,R) = θ(λRd, 1). Furthermore, it is known that the map λ 7→ θ(λ,R) is increasingand that there is a λc(R) > 0 such that θ(λ,R) = 0 for λ < λc(R) and θ(λ,R) > 0 for λ > λc(R). Itis known that θ(·, R) is continuous outside the critical point λc(R); the continuity in this point is notknown, but strongly expected. Again by rescaling, λc(R) = R−dλc(1).The function θ will play a crucial rôle in the asymptotic description of our model. As we will seebelow, the number θ(λ,R) describes, in our spatially rescaled picture, the probability that, locally, agiven participant belongs to the in�nitely large cluster and has therefore connection over a macroscopicpart of the space.We introduce two notions of (non-random) connectedness in the domain D as follows. By `path'we mean a continuous polygon line in D with �nitely many edges, whose vertices lie in D ∩ Qd (withpossible exception of the �rst and last one). For � ∈ {≥, >} and x, y ∈ D, we write
x

�
←→

s
y ⇐⇒ there exists a path from x to y within {fs � λc(R)} .Note that the map (x, y, s) 7→ 1l{x

�
←→

s
y} is measurable, as (s, x) 7→ fs(x) is and the notion of a pathinvolves only countably many operations; recall that we assumed D to be regular.Furthermore, we introduce two versions of a limiting value of τ (N)

T . For � ∈ {≥, >}, de�ne
τ (�)

T (X(1),X(2)) =

∫ T

0
ds 1l{X(1)

s
�
←→

s
X(2)

s }θ
(�)(

fs(X
(1)
s ), R

)
θ

(�)(
fs(X

(2)
s ), R

)
, (1.3)where θ(>)

(λ,R) = θ(λ−, R) = lims↑λ θ(s,R) and θ(≥)
(λ,R) = θ(λ+, R) = lims↓λ θ(s,R) are the left-and right-continuous versions of θ. Recall that these two functions coincide at least everywhere outsidethe critical value λc(R). Note that τ (�)

T (X(1),X(2)) is well-de�ned and measurable by the measurabilityof all the θ-functions, the joint measurabilities of fs(x) in s and x and of X(i)
s (ω) in s and ω and of

1l{x
�
←→

s
y} in x, y and s.Our main result is the following.Theorem 1.2. Fix T > 0 and R > 0, and assume that the distributions of the N i.i.d. randommovements X(1), . . . ,X(N) satisfy Assumption 1.1. Then, for almost every paths X(1),X(2), we have,in probability with respect to P(· | X(1),X(2)),

τ (>)

T (X(1),X(2)) ≤ lim inf
N→∞

τ (N)

T ≤ lim sup
N→∞

τ (N)

T ≤ τ (≥)

T (X(1),X(2)). (1.4)For a proof of Theorem 1.2 see Section 2; for a discussion about whether or not the limit in (1.4)exists and how it behaves for large R, see Section 1.3.The assertion in (1.4) shows that the connectivity of the medium that is built out of
X(1),X(2), . . . ,X(N) is fully determined by just two e�ects: a global, deterministic one (expressedby the indicator on the event {X(1)

s
�
←→

s
X(2)

s } in (1.3)) and a local, stochastic one (expressed by thetwo θ-terms). Indeed, the two walkers at time s are connected if and only if
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• their positions x = X(1)

s and y = X(2)
s are connected by a deterministic path within thesupercritical region, i.e., the set {fs � λc(R)} (with � =≥ for an upper bound and � => for alower bound) and

• both x and y belong locally to the giant component of the static continuum percolation processwith density fs(x) and fs(y), respectively, and ball radius RN−1/d (note that these two eventsare asymptotically independent).earlier time.1.3. Discussion.1.3.1. Does the limit in (1.4) exist? Certainly, one expects that, in many cases, τ (≥)

T and τ (>)

T shouldcoincide almost surely and in (1.4) one should have a limit. This is certainly true under many additionalabstract conditions. However, it is di�cult to give a satisfactory su�cient condition that is bothreasonably general and reasonably explicit, and therefore we abstained from that. Let us indicatewhere the di�culties lie.In order to ensure coincidence of τ (≥)

T and τ (>)

T , one needs a condition that ensures that connectionwithin {fs ≥ λc(R)} implies connection within {fs > λc(R)} (at least for the sites X(1)
s and X(2)

s foralmost all s) and another condition that ensures that the θ-terms in (1.3) coincide for � => and � =≥,at least for almost all s.Some su�cient conditions of the �rst type are certainly easy to check in many explicit situations,where the structure of the connectivity landscape given by the density fs is easy to control. Ingeneral, di�culties can arise if, for s in some set with positive Lebesgue measure, some components of
{fs > λc(R)} are separated from each other by a component of {fs = λc(R)} that has a complicatedlocal structure. In dimension d = 2, e.g., a line with some fractal structure would pose such a question.In this case, it is unclear what local properties of the separation set would imply what connectivityprobabilities of the corresponding percolation process. Finding clear criteria seems to be an openproblem in the study of continuum percolation. We believe that, for related reasons, one can constructsituations in which τ (≥)

T and τ (>)

T do not coincide, the limit in (1.4) does not exist or is random.Su�cient conditions of the second type are, in a sense, much easier to formulate, as the function
θ(·, R) is known to be continuous outside the critical point λc(R), [MR96, Theorem 3.9], and thereforeonly times s have to be considered such that both X(1)

s and X(2)
s lie in the set {fs = λc(R)}. In fact, indimension d = 2, continuity is also known in the critical point [MR96, Theorem 4.5], such that here the

θ-terms do coincide for any s. But in general dimension, continuity in the critical point is unknown.Hence, in cases where the set {fs = λc(R)} has a positive Lebesgue measure (which can happen onlyfor countably many values of R), there is a positive probability that one of the two walkers belongs toits interior for a positive portion of the time, and then the θ-terms may substantially di�er.1.3.2. Behaviour of the limit in (1.4) for R→∞. From a practical point of view, installing a MANETmakes sense only if the degree of connectivity in the system can be guaranteed to be extremely high, atleast with high probability. Hence, it is a major goal to �nd su�cient conditions for a large value (i.e.,close to T ) of the communication time. Making the communication radius R large is certainly sucha criterion, but it is also important to know how strongly this parameter in�uences the connectivity.Based on Theorem 1.2, we want to illustrate some partial answer to this question, i.e., we want tocomment on the behaviour of the asymptotic lower bound for the connection time, τ (>)

T .This lower bound consists, for any time s ∈ [0, T ], of two components: The values of θ in thetwo locations of the sample trajectories, and the decision whether or not they are globally connectedthrough the super-critical area {fs > R−dλc(1)}. An important fact (see [P91], Corollary of Theorem



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 73) is that θ(λ,R) converges super-exponentially quickly towards 1 for R→∞, more precisely, for any
ε > 0 and some Cε > 0,

θ(λ,R) ≥ 1− e−λRd|B(0,2)|(1−ε), λRd ≥ Cε. (1.5)This shows that the `bad' event of being not connected at a given time s does predominantly notcome from the θ-term, but from the non-connectivity, i.e., from the indicator on the counterevent of
{X(1)

s
>
←→

s
X(2)

s }. It is a natural assumption that the density fs is, for every s ∈ [0, T ], bounded awayfrom zero in most of the domain D, except possibly close to the boundary of D and that fs decayspolynomially towards the boundary of D. Then the di�erence T − τ (>)

T can be upper bounded by somepolynomially decaying term, which depends on the time that at least one of the two walkers spendspolynomially close to the boundary, and some term of the form e−CRd for the remaining time. Butthe time that one of the walkers spends close to the boundary of D is polynomially small in R inprobability, since the density is small there. The conclusion is that bad connectivity properties of thesystem predominantly come from the time that the users spend close to the boundary of D, at least ifthe domain is homogeneously �lled with users.1.4. Further investigations for the random waypoint model. Let us now concentrate on therandom waypoint model, which was introduced at the beginning of Section 1.2. Below we show that,under suitable conditions, the RWP is amenable to Theorem 1.2, and we study the large-T average ofthe connection time and long-time deviations from the mean in terms of large-deviation estimates.We have to introduce some notation. We assume that the domain D is compact and convex. Let
(Wi)i∈N be a sequence of i.i.d. points in D, drawn from a distribution W on D, the waypoint measure.Furthermore, let (Vi)i∈N be an i.i.d. sequence of velocities drawn from some distribution V on (0,∞),the velocity measure. The walker starts from an initial location X0 ∈ D, heading with constant initialvelocity V1 towards the waypoint W1 on a straight line. Having arrived at W1, the walker immediatelymoves along the straight line from W1 to W2 with velocity V2 and so on.This is an extension of the classical RWP, as we admit D as any convex compact domain, W as anydistribution on D, and V as any distribution on (0,∞). On the other hand, we do not admit pausetimes that the walker spends at waypoints, as this would destroy the validity of Assumption 1.1(ii); infact, also the statement of Theorem 1.2 would have to be altered.We denote by Un = |Wn+1 −Wn|/Vn+1 the time that it takes the walker to go from the n-th to the
(n+1)-th waypoint. Then Tn = U0 +U1+ · · ·+Un−1 is the time at which the walker arrives at the n-thwaypoint, Wn. We put T0 = 0. Introduce the time-change N(t) = inf{n ∈ N : Tn > t}, then WN(t)is the waypoint that the walker is heading to at time t, VN(t) is his current velocity, and TN(t) − t isthe time di�erence after which he arrives there. The position of the walker at time t is denoted by Xt.Then

Xt = WN(t) +
WN(t)−1 −WN(t)

|WN(t)−1 −WN(t)|
VN(t)(TN(t) − t). (1.6)We de�ne all these processes as right-continuous. Note that the location process X = (Xt)t∈[0,∞) isnot Markov, but the process

Y = (Yt)t∈[0,∞) =
(
Xt,WN(t), VN(t)

)
t∈[0,∞)

(1.7)is a continuous-time Markov process on the state space D = D ×D × [v−, v+].We need to assume some regularity. Throughout the paper, we assume that the waypoint measure
W and the velocity measure V possess continuous Lebesgue densities on D and on some interval
[v−, v+] ⊂ (0,∞), respectively. In particular, the velocities are bounded away from 0 and from ∞.We now check that we can apply Theorem 1.2 to the RWP.



8 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGLemma 1.3 (The RWP satis�es Assumption 1.1). We initialise the RWP by drawing W0 ∈ D anda velocity V0 from some distributions on D respectively on [v−, v+] having continuous densities, suchthat all the random variables W0,W1, V0 are independent, and put X0 = W0 and Xt as in (1.6). Thenthe RWP satis�es Assumption 1.1.Proof. We �rst show that Assumption 1.1(i) is satis�ed. Indeed, �x s ∈ (0,∞) and note that, on theevent {s ≤ T1},
Xs = X0 + sV1

W1 −W0

|W1 −W0|
,which has obviously a continuous density, since W0, V1 and W1 have and are independent. On theevent {Tj < s ≤ Tj+1} with j ∈ N, we represent

Xs = Wj + (s− Tj)Vj+1
Wj+1 −Wj

|Wj+1 −Wj |
,which also has a continuous density, since Wj, Vj+1 and Wj+1 have and are independent (and Tj isa continuous function of them). Hence, Xs1l{Tj < s ≤ Tj+1} has a continuous density. Summing on

j ∈ N0, we also see by use of Dini's theorem that also Xs has a continuous density.Let us now verify Assumption 1.1(ii). For any x ∈ D, P(Xs = x|X
es = y) = 0 is clear on the event⋃

j∈N
{s ≤ Tj < s̃}, since there was a change of direction between time s and s̃. On the counterevent,⋃

j∈N0
{Tj < s < s̃ ≤ Tj+1}, we have

P(Xs = x|X
es = y) = P

(
Vj+1 =

|X
es − x|

s̃− s
,
Wj+1 −Wj

|Wj+1 −Wj|
=

X
es − x

|X
es − x|

∣∣∣X
es = y

)

≤ P

(
Vj+1 =

|y − x|

s̃− s

∣∣∣X
es = y

)
= 0because the speed is independent from the location and has a continuous density. �1.4.1. Long-time limit. Let us consider the long-time behaviour of τ (�)

T = τ (�)

T (X(1),X(2)) de�ned in(1.3) for � ∈ {>,≥} for the RWP. We will show in Section 3.1 that the RWP is Harris ergodic and inparticular possesses an invariant distribution, towards which it converges as the time grows to in�nity.In particular, the distribution of the location of the RWP, Xt, converges in total variation sense towardsa probability measure µ∗ on D, and it has a continuous Lebesgue density f∗ : D → [0,∞). However, itis not so easy to deduce convergence of 1
T τ

(�)

T from this, and we are not able to do so in all cases. For
� ∈ {>,≥}, introduce

p(�)
∗ =

∫

D
µ∗(dx)

∫

D
µ∗(dy) 1l{x

�
←→
∗

y}θ
(�)

(f∗(x), R)θ
(�)

(f∗(y), R) ∈ [0, 1], (1.8)where �
←→
∗

denotes connectedness within the set {f∗ �λc(R)}. Then p(�)
∗ is a measure for connectednessof two independent sites in D drawn from the limiting distribution of Xt. Furthermore, introduce

τ (�,∗)

T =

∫ T

0
ds 1l{X(1)

s
�
←→
∗

X(2)
s }θ

(�)(
f∗(X

(1)
s ), R

)
θ

(�)(
f∗(X

(2)
s ), R

)
, (1.9)the special case of τ (�)

T for all the random waypoint walkers starting in the invariant distribution.Lemma 1.4 (Ergodic limit). Let X(1) and X(2) be two independent copies of X. Then for � ∈ {>,≥},
lim

T→∞

1

T
τ (�,∗)

T (X(1),X(2)) = p(�)
∗ , almost surely and in L1(P), (1.10)We will give a proof of this lemma in Section 3.3; it is based on a time-discrete Markov chain thatis introduced in Section 1.4.2.



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 9Remark 1.5. The previous result is stated with the trajectories of the walkers started from the invariantstate. In general, it is not clear if 1
T τ

(�)

T converges towards p(�)
∗ . Indeed, the critical point is theconvergence of 1l{x

�
←→

s
y} towards 1l{x

�
←→
∗

y} for x, y ∈ D as s → ∞, which is not true in manycounterexamples, as one can easily �nd. However one can check that, under the additional assumptionthat fs → f∗ as s→∞ uniformly in D, then, in probability,
lim sup
T→∞

1

T
τ (≥)

T (X(1),X(2)) ≤ p(≥)
∗ , and lim inf

T→∞

1

T
τ (>)

T (X(1),X(2)) ≥ p(>)
∗ . (1.11)We remark here that, in cases where the limit in (1.4) exists, we expect that the limits T →∞ and

N →∞ can also be interchanged without changing the value, i.e.,
p(>)
∗ = lim

N→∞
lim

T→∞

1

T
τ (N)

T .Indeed, in the limit T → ∞, the ergodic theorem leads to the average connection probability for twoout of N i.i.d. sites drawn from the invariant distribution, and then the identi�cation of the limit
N → ∞ follows from Theorem 1.2, applied to the RWP starting in the invariant distribution. Wedecided to leave the details of the proof to the reader.1.4.2. Large-T deviations. In our next result, we describe the downward deviations of τ (>,∗)

T (X(1),X(2)),more precisely, the probability of the event {τ (>,∗)

T ≤ Tp} for p ∈ (0, p(>)
∗ ), in the limit T → ∞. Thisis certainly an interesting question, since one would like to e�ectively bound the probability of theunwanted event of being connected over less than the average portion in the long-time limit. We showthat this probability decays even exponentially fast, and we give an explicit bound for the decay rate.Because of (1.4), such a bound for τ (>,∗)

T (rather than for τ (≥,∗)

T ) gives a useful upper deviation boundfor τ (N)

T . We write P∗ for the probability measure of the RWP if both copies Y (1) and Y (2) start fromthe invariant distribution.Theorem 1.6. For any p ∈ (0, p(>)
∗ ),
lim sup
T→∞

1

T
log P∗(τ

(>,∗)

T ≤ Tp) < 0. (1.12)The proof of Theorem 1.6 is in Section 3.4. It describes an explicit upper bound for the left-handside of (1.12) in terms of a variational problem. The main novelty lies in the proof, which describesthe probability in question in terms of an interesting Markov chain with nice properties, such thatthe theory of large deviations may be applied in a standard way. This Markov chain is an object ofindependent interest, as it may serve also for other long-time investigations of the model, as well asfor computer simulations. 2. Proof of Theorem 1.2In this section, we prove our �rst main result, Theorem 1.2. As a preparation, we �rst summarise inSection 2.1 all relevant available information about continuum percolation. In Section 2.2 we �nd thelimit of the expectation of the connection time, and in Section 2.3 we �nish the proof.2.1. Static continuum percolation. Let us collect some facts from (static) continuum percolation,see [MR96] or [P03]. Throughout the paper we assume that d ≥ 2. Let (Zi)i∈N be a Poisson pointprocess in Rd with intensity λ > 0. Fix a radius R > 0 and consider the union UR of the balls
B(Zi, R) over i ∈ N. We say that two sites x, y ∈ Rd are connected if they belong to the sameconnected component of UR. Connected components of UR are called clusters. By C(x) we denotethe cluster that contains x ∈ Rd. The percolation probability θ(λ,R) is de�ned as the probabilitythat C(0) has in�nite Lebesgue measure, which we phrase that 0 is connected with ∞. By scaling,
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θ(λ,R) = θ(λRd, 1). There is a critical threshold λc(R) = R−dλc(1), de�ned by θ(λ,R) being 0 for
λ < λc(R) and positive for λ > λc(R). Another characterisation of the critical threshold is that
|C(0)| = ∞ with positive probability for λ > λc(R) and |C(0)| < ∞ with probability 1 for λ < λc(R).In the supercritical case, there exists, with probability one, a unique cluster with in�nite Lebesguemeasure, which we call C∞. In the subcritical case, there is no cluster with in�nite Lebesgue measure,almost surely, and the random variable |C(0)| has �nite exponential moments. The map λ 7→ θ(λ,R) iscontinuous in any point, with a possible exception at the critical point, λc(R) [S97, Theorem 1.1]. Thecontinuity at the critical point is an open question, but is widely conjectured to be true. For numericalestimations we refer to [QZ07].Actually, it is not θ that we will work with in our model, for the following reason. Certainly, thepoints Zi play the rôle of the locations of the participants in our telecommunication system. It willturn out that a given participant located at Zi is well connected with the main part of the system if
B(Zi, R) has a non-trivial intersection with C∞; it is not necessary that Zi itself belongs to C∞. Hence,we will be working with a slightly di�erent notion of percolation: De�ne θ(λ,R) as the probability thatthe ball B(0, R) is connected with ∞, i.e., has a non-trivial intersection with C∞. Obviously, θ ≤ θ,and θ shares the above mentioned properties with θ, however with possibly di�erent numerical values.In particular, θ possesses the same scaling properties, and is an increasing function of λ, and is positiveabove some threshold and zero below. One can also easily check that the percolation threshold is thesame for the two de�nitions, and that the proof of the continuity for the usual de�nition extends tothis de�nition.2.2. Limiting expectation of the connection time. We �x T > 0 for the remainder of the section.In the following, we abbreviate

P1,2(·) = P
(
· |X(1),X(2)

) and E1,2[ · ] = E
[
· |X(1),X(2)

]
.Use (1.2) and Fubini's theorem to see that

E1,2[τ
(N)

T ] =

∫ T

0
dsP1,2

(
X(1)

s
N
←→

s
X(2)

s

)
.We are going to approximate the event {X(1)

s
N
←→

s
X(2)

s } by the event that X(1)
s and X(2)

s are separatedfrom each other, but connected through either {fs > λc(R)} or through {fs ≥ λc(R)} and belonglocally to the macroscopic part of the communication zone. More precisely, for s ∈ [0, T ], δ > 0 and
N ∈ N, we introduce the events

G(i)

N,s,δ =
{
X(i)

s
N
←→

s
∂
[
X(i)

s + (−δ/2, δ/2)d
]}
, i ∈ {1, 2},that X(i)

s and at least some point of the boundary of the δ/2-box around X(i)
s lie in the same connectedcomponent of the union of the RN−1/d-balls around X(1)

s , . . . ,X(N)
s .Note that G(i)

N,s,δ only depends on the walkers within the δ-box around X(i)
s .We will give bounds for the connection time τ (N)

T in terms of
τ (N,δ,�)

T (X(1),X(2)) =

∫ T

0
ds

2∏

i=1

1l
G

(i)
N,s,δ

1l{|X(1)
s −X

(2)
s | ≥ 3δ}1l{X(1)

s
�
←→

s
X(2)

s },in the limit N →∞, followed by δ ↓ 0. We will use τ (N,δ,>)

T as a lower bound and τ (N,δ,≥)

T as an upperbound for τ (N)

T . Recall the quantities τ (�)

T de�ned in (1.3), which will serve as limiting objects of τ (N,δ,�)

T .Proposition 2.1 (Limiting expectation of τ (N)

T ). Let the distributions of the N i.i.d. walkers sat-isfy Assumption 1.1(i). Then, for P-almost all X(1) and X(2), provided that R is chosen such that∫ t
0 ds 1l{fs(X

(i)
s ) = λc(R)} = 0, for i = 1, 2,
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lim sup

δ↓0
lim sup
N→∞

E1,2

(
τ (N)

T − τ (N,δ,≥)

T

)+
= 0, (2.1)

lim inf
δ↓0

lim inf
N→∞

E1,2

(
τ (N)

T − τ (N,δ,>)

T

)−
= 0. (2.2)(ii) For any � ∈ {>,≥},

lim
δ↓0

lim
N→∞

E1,2[τ
(N,δ,�)

T ] = τ (�)

T (X(1),X(2)). (2.3)The main step in the proof is the following.Lemma 2.2. Let the distributions of the N i.i.d. walkers satisfy Assumption 1.1(i). Then, for P-almost all X(1) and X(2), for almost any s ∈ [0, T ] and on the event {fs(X
(1)
s ) 6= λc(R)} ∩ {fs(X

(2)
s ) 6=

λc(R)} ∩ {X(1)
s 6= X(2)

s },(i)
lim sup

δ↓0
lim sup
N→∞

P1,2

[(
X(1)

s
N
←→

s
X(2)

s

)∖(
G(1)

N,s,δ ∩G
(2)

N,s,δ ∩ {X
(1)
s

≥
←→

s
X(2)

s }
)]

= 0, (2.4)
lim sup

δ↓0
lim sup
N→∞

P1,2

[(
G(1)

N,s,δ ∩G
(2)

N,s,δ ∩ {X
(1)
s

>
←→

s
X(2)

s }
)∖(

X(1)
s

N
←→

s
X(2)

s

)]
= 0. (2.5)(ii)

θ(fs(X
(1)
s )−, R)θ(fs(X

(2)
s )−, R) ≤ lim inf

δ↓0
lim inf
N→∞

P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)

≤ lim sup
δ↓0

lim sup
N→∞

P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)

≤ θ(fs(X
(1)
s )+, R)θ(fs(X

(2)
s )+, R).

(2.6)Proof. Fix s and let us abbreviate x = X(1)
s and y = X(2)

s . Under P1,2, only the sites X(3)
s , . . . ,X(N)

sare random (in fact, they are i.i.d. with density fs), but the notion of connectedness and componentsinduced by the point process refer to all the balls B(X(i)
s , RN−1/d) with i = 1, 2, . . . , N .Let us prove (ii). First we consider the case that fs(x) < λc(R) or fs(y) < λc(R), in which casethe events {X(1)

s
>
←→

s
X(2)

s } and {X(1)
s

≥
←→

s
X(2)

s } are not ful�lled. Without loss of generality, let usassume that fs(x) < λc(R). Choose δ > 0 so small that the δ-box around x does not contain y andthat fs < λc(R) within that box. We apply [P95, Proposition 2] for ε = δ/4 and obtain that, with
P1,2-probability tending to 1 as N → ∞, any connected component of ⋃N

i=3B(X(i)
s , RN−1/d) in thiscube has a diameter bounded from above by ε. In particular, with P1,2-probability tending to 1, x isnot connected with the boundary of the cube x+ (−δ, δ)d. Therefore (2.6) is trivial, as all terms arezero.To prove (2.6) in the remaining case fs(x) ≥ λc(R) and fs(y) ≥ λc(R), we show now that the twoevents G(1)

N,s,δ and G(2)

N,s,δ are asymptotically independent with P1,2-probabilities tending to θ(fs(x), R)and θ(fs(y), R), respectively. Let µs denote the measure with density fs. Indeed, �rst note that,for every su�ciently large N such that the ball diameter 2RN−1/d is less than the distance between
x+ (−δ, δ)d and y+ (−δ, δ)d. Hence, the positions of the points falling in x+ (−δ, δ)d and y+ (−δ, δ)dare independent, conditionally on their numbers. These two numbers are binomially distributed withparameters N and µs(x + (−δ, δ)d)) and µs(y + (−δ, δ)d), respectively. Therefore, by the law oflarge numbers, they stochastically dominate, with P1,2-probability tending to 1, the Poisson law withparameters N(µs(x+ (−δ, δ)d)− η(2δ)d) and N(µs(y+ (−δ, δ)d)− η(2δ)d), respectively, for any η > 0.Note that the events G(1)

N,s,δ and G(2)

N,s,δ are monotonic in the intensity, i.e., their P1,2-probability is



12 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGnot larger than the P1,2-probability of the same event under continuum percolation in x + (−δ, δ)dand y + (−δ, δ)d with intensity parameters fs(x) − 2η and fs(y) − 2η, respectively, and ball diameter
RN−1/d. Since we are now considering Poisson point processes, the events are independent. Theirrespective probabilities converge towards θ(fs(x) − 2η,R) and θ(fs(y) − 2η,R). Since this is true forany η, we can use the continuity of θ(·, R), to obtain the lower bound in (2.6). The upper bound isproved in a similar manner, using that θ(λ) is the limiting probability that the origin is connected withthe boundary of a centred cube for diverging radius. This �nishes the proof of (ii).In order to show (i), we are going to decompose into four separate cases. First we consider thecase that fs(x) < λc(R) or fs(y) < λc(R). As before, let us assume that fs(x) < λc(R). With P1,2-probability tending to 1, x is not connected with the boundary of the cube x+ (−δ, δ)d and thereforeneither with y, by the previous argument. This proves (2.4) and (2.5) in this case.In the second part of the proof, we assume that x and y belong to the same component of {fs >

λc(R)}, in which case both events {X(1)
s

>
←→

s
X(2)

s } and {X(1)
s

≥
←→

s
X(2)

s } are ful�lled. Pick someauxiliary parameter η > 0 that is smaller than fs(x) − λc(R) and smaller than fs(y) − λc(R). Now,using the continuity of fs in accordance with Assumption 1.1(i), pick δ > 0 so small that x+ (−δ, δ)dand y+ (−δ, δ)d have positive distance and that fs takes values in [fs(x)− η, fs(x) + η] in x+ (−δ, δ)dand values in [fs(y) − η, fs(y) + η] in y + (−δ, δ)d and such that there exists a set of the form U =⋃m
i=0 2δzi + [−δ, δ]d in {fs > λc(R)} with m ∈ N, z1, . . . , zm ∈ Zd such that zi and zi−1 are nearestneighbours for any i = 1, . . . ,m and x+ (−δ, δ)d ⊂ U and y + (−δ, δ)d ⊂ U and fs > λc(R) inside U .That this is possible is easy to see by elementary continuity and compactness arguments. Since U is acompact subset of {fs > λc(R)}, the density fs is even bounded away from λc(R) on U .Let C(s,N)

x,δ and C(s,N)

y,δ , respectively, denote the largest component of the union of the RN−1/d-ballsaround the points X(1)
s , . . . ,X(N)

s which lie in x + (−δ, δ)d, respectively in y + (−δ, δ)d. According to[P95, Proposition 3], with P1,2-probability tending to 1 as N → ∞, these are the only ones in therespective boxes whose size (measured in terms of the number of i such that X(i)
s belongs to it) isof order N , and they are also uniquely determined by requiring their diameter of positive order. Inparticular, as N → ∞, the probability of the symmetric di�erence between the events {x ∈ C(s,N)

x,δ }and G(1)

N,s,δ (respectively {y ∈ C(s,N)

y,δ } and G(2)

N,s,δ) goes to zero. By [P95, Proposition 4], such a uniquecluster, C(s,N)

U also exists for the set U . Hence, with P1,2-probability tending to 1, both C(s,N)

x,δ and C(s,N)

y,δbelong to C(s,N)

U . This implies that with probability tending to 1 as N →∞, the symmetric di�erencebetween the event {x N
←→

s
y} and the event G(1)

N,s,δ ∩G
(2)

N,s,δ goes to zero, which implies (2.5) and (2.4).In the third case, we have fs(x) > λc(R) and fs(y) > λc(R), and x
≥
←→

s
y, but not x >

←→
s

y, inwhich case (2.5) is trivial, as the event inside the probability is empty. To prove (2.4), it is enough tosee that, deterministically, the existence of a path between x and y implies G(1)

N,s,δ and G(2)

N,s,δ.In the fourth case, we have fs(x) > λc(R) and fs(y) > λc(R), but not x ≥
←→

s
y. Here, (2.5) is againtrivial, as the event inside the probability is empty. To prove (2.4) it is enough to check that, withprobability tending to 1, x and y are not connected in the union of the RN−1/d-balls around the points

X(1)
s , . . . ,X(N)

s . Here it is intuitively clear that any path between x and y has to cross a non-trivialzone where fs < λc(R) and that this disconnects x and y in the limit. Let us give a proof.First we argue that there is a (deterministic) compact set Γ ⊂ D and ε, γ > 0 such that Γ ⊂ {fs ≤

λc(R) − ε} and every path connecting x and y passes through Γ for at least γ space units. Indeed,since x ≥
←→

s
y does not hold, x and y lie in disjoint components of {fs ≥ λc(R)}. Hence, both thesecomponents have a positive distance η to the remainder of {fs ≥ λc(R)}, since these three sets are
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Γα = {z ∈ D : dist(z, {fs ≥ λc(R)}) ≥ α}, α > 0,and pick Γ = Γη/16. Then every path from x to y passes at least a distance γ = η − 2η/16 = 7η/8through Γ. By continuity of fs, this set Γ is compact and is contained in {fs ≤ λc(R) − ε} for some

ε > 0.Second, we argue that, with P1,2-probability tending to 1 as N → ∞, any connected componentof ⋃N
i=3B(X(i)

s , RN−1/d) in Γ has a diameter at most γ/2. Indeed, consider the neighbourhood Γ̃ =

Γη/32 of Γ, then, for N su�ciently large, the connected components inside Γ do not depend on thecon�guration outside Γ̃. By continuity of fs, on Γ̃, the function fs is still bounded away from λc(R),say it is bounded from above by λc(R)− ε̃ for some ε̃ > 0. We upper bound the probability of havingany connected component inside Γ̃ of diameter bigger than γ/2 against the same probability under thehomogeneous Poisson point process with intensity parameter λc(R)− ε̃/2 on some cube that contains
Γ̃ (see the above argument). Now, as this intensity parameter is subcritical, this probability tends to
0 as N →∞.Now we �nish the proof of (2.4) and (2.5) in the fourth case. Indeed, the existence of a connectionfrom x to y through ⋃N

i=1B(X(i)
s , RN−1/d) implies the existence of at least one connected componentof this set in Γ of diameter at least γ, since any path from x to y passes at least a distance γ through

Γ. But, as we saw in the second step, the probability of this existence tends to 0 as N →∞.
�Proof of Proposition 2.1. Observe that

E1,2

(
τ (N)

T − τ (N,δ,≥)

T

)+

≤

∫ T

0
ds

(
P1,2

[(
X(1)

s
N
←→

s
X(2)

s

)∖(
G(1)

N,s,δ ∩G
(2)

N,s,δ ∩ {X
(1)
s

≥
←→

s
X(2)

s }
)]

1l{|X(1)
s −X

(2)
s | > 3δ}

· 1l{fs(X
(1)
s ) 6= λc(R)}1l{fs(X

(2)
s ) 6= λc(R)}

+ 1l{|X(1)
s −X

(2)
s | < 3δ} + 1l{fs(X

(1)
s ) = λc(R)}+ 1l{fs(X

(2)
s ) = λc(R)}

)
.Hence, by (2.4),

lim sup
δ↓0

lim sup
N→∞

E1,2

(
τ (N)

T − τ (N,δ,≥)

T

)
≤

∫ T

0
ds 1l{|X(1)

s −X
(2)
s | = 0},according to our assumption on R. Note that, almost surely, ∫ T

0 ds 1l{|X(1)
s −X

(2)
s | = 0} = 0, since X(1)

sand X(2)
s are independent with density fs for any s ∈ [0, T ]. Hence, the proof of (2.1) is �nished. Theproof of (2.2) is done in the same way using (2.5). Hence, part (i) is proved.Now we turn to the proof of (ii).Note that our assumptions exclude that fs(X

(i)
s ) = λc(R) outside a set of measure zero. Thereforethis does not appear in the integral. Furthermore, θ is continuous except maybe for λc(R). Thereforefor almost every s, (2.6) reformulates to

lim
δ↓0

lim inf
N→∞

P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)
= lim

δ↓0
lim sup
N→∞

P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)
= θ(fs(X

(1)
s ), R)θ(fs(X

(2)
s ), R).Thus (ii) follows by Lebesgue's theorem. �



14 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIG2.3. Finish of the proof. The second main step in proving Theorem 1.2 is the following lemma.Recall that P1,2 denotes the conditional distribution given X(1) and X(2).Lemma 2.3 (τ (N,δ,�)

T is asymptotically deterministic). Let the distributions of the N i.i.d. walkerssatisfy Assumption 1.1(i) and (ii). Then, for any � ∈ {>,≥}, for almost every paths X(1),X(2), thedi�erence τ (N,δ,�)

T −E1,2[τ
(N,δ,�)

T ] vanishes as N →∞, followed by δ ↓ 0, in P1,2-probability, provided that
R is chosen such that ∫ T

0 ds 1l{fs(X
(i)
s ) = λc(R)} = 0 for i = 1, 2.Proof. The claimed convergence follows, by Chebyshev's inequality, from the fact that the P1,2-variance of τ (N,δ,�)

T vanishes. Writing V1,2 for the P1,2-variance, this is equal to
V1,2(τ

(N,δ,�)

T ) =

∫ T

0
ds

∫ T

0
ds̃ 1l{|X(1)

s −X
(2)
s | > 3δ}1l{X(1)

s
�
←→

s
X(2)

s }

· 1l{|X(1)

es −X
(2)

es | > 3δ}1l{X(1)

es
�
←→

es
X(2)

es }

·
[
P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ ∩G
(1)

N,es,δ ∩G
(2)

N,es,δ

)
− P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)
P1,2

(
G(1)

N,es,δ ∩G
(2)

N,es,δ

)]
.

(2.7)We now show, for any s 6= s̃, that the limit superior of the term in the last line is not positive. This�nishes the proof by Lebesgue's theorem.We abbreviate x = X(1)
s and x̃ = X(1)

es and y = X(2)
s and ỹ = X(2)

es . Without loss of generality, weassume that s < s̃, x 6= y and x̃ 6= ỹ. Furthermore we also may and will assume that x ≥
←→

s
y and

x̃
≥
←→

es
ỹ. Without loss of generality, all the four terms fs(x), fs(y), f

es(x̃) and f
es(ỹ) are larger than

λc(R). Let, as in the proof of Lemma 2.2, C(s,N)

x,δ denote the biggest component of the union of the
RN−1/d-balls around X(1)

s ,X(2)
s , . . . ,X(N)

s within x+ (−δ, δ)d, analogously for y, s̃, x̃ and ỹ.We recall from the proof of Lemma 2.2 that the probability of the symmetric di�erence between
G(i)

N,t,δ and the event {
X(i)

t ∈ C
(t,N)

X
(i)
t ,δ

}, i = 1, 2 and t = s, s̃, tends to 0 as N goes to in�nity, followedby δ ↓ 0. This reduces the problem to showing that
lim sup

δ↓0
lim sup
N→∞

[
P1,2

(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)

y,δ , x̃ ∈ C(es,N)

ex,δ , ỹ ∈ C(es,N)

ey,δ

)

− P1,2

(
G(1)

N,s,δ ∩G
(2)

N,s,δ

)
P1,2

(
G(1)

N,es,δ ∩G
(2)

N,es,δ

)]
≤ 0. (2.8)We pick δ > 0 smaller than 1

3 min{|x − y|, |x̃ − ỹ|}. Let us give some heuristic explanation of thefollowing argument. To get (2.8), we only have to prove that, with probability tending to 1 as N →∞,the partial clusters C(s,N)

x,δ ∪ C(s,N)

y,δ , and C(es,N)

ex,δ ∪ C(es,N)

ey,δ , depend only on two disjoint sub-collections of
X(3), . . . ,X(N) or at least on sub-collections with a small overlap. What we mean precisely here is thatthe density of the walkers in C(es,N)

ex,δ ∪ C(es,N)

ey,δ is roughly the same if we remove those points that were in
C(s,N)

x,δ ∪ C
(s,N)

y,δ . Therefore we need Assumption 1.1(ii) to describe the position of the walkers at time s,given their position at time s̃. In more technical terms, it says the following. By B(D) we denote theBorel σ-�eld on D. Let a version of the conditional distribution of Xs given X
es = y be given, i.e., aMarkov kernel Ks,es : D×B(D)→ B(D) such that, almost surely, P(Xs ∈ A | X

es = y) = Ks,es(y,A) forany A ∈ B(D). Then we require that Ks,es(y, {x}) = 0 for any x ∈ D. Indeed, this assumption impliesthat, for any y ∈ D,
lim
δ↓0

P(Xs ∈ B(x, δ) | X
es = y) = lim

δ↓0
Ks,es(y,B(x, δ)) = Ks,es(y, {x}) = 0. (2.9)Since the probability on the left-hand side is continuous in y and monotonous in δ, the convergenceis even uniform in y ∈ D, according to Dini's theorem. Hence, we can multiply this term with f

es(y),



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 15integrate over y ∈ D and interchange this integration with the limit δ ↓ 0. Now we can see heuristicallythe statement as follows. According to a large-N ergodic theorem, there are only of order Nδ2d walkersthat are at time s in B(x, δ) and at time s̃ in B(x̃, δ), analogously with y and ỹ. Hence, among all the
� Nδd walkers present in B(x̃, δ) at time s̃, those ones who were in B(x, δ) at time s are negligible forsmall δ. This implies the claimed asymptotic independence.Let us turn to the proof. We need to introduce a bit of notation. For A ⊂ {1, . . . , N}, we write
C(s,A)

x,δ for the largest cluster in the δ-box around x that is built out of all the X(i)
s with i ∈ A only. Weput

A(N)
s = {i ∈ {1, . . . , N} : X(i)

s /∈ B(x, δ) ∪B(y, δ)}.Now we use the triangle inequality to bound
P1,2

(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)

y,δ , x̃ ∈ C(es,N)

ex,δ , ỹ ∈ C(es,N)

ey,δ

)

≤ P1,2

(
x ∈ C(s,N)

x,δ , y ∈ C(s,N)

y,δ , x̃ ∈ C(es,A
(N)
s )

ex,δ , ỹ ∈ C(es,A
(N)
s )

ey,δ

)

+ P1,2

(
x̃ ∈ C(es,N)

ex,δ \ C
(es,A

(N)
s )

ex,δ

)
+ P1,2

(
ỹ ∈ C(es,N)

ey,δ \ C(es,A
(N)
s )

ey,δ

)
.

(2.10)Since C(s,N)

x,δ and C(s,N)

y,δ depend only on the X(i)
s with i in the complement of A(N)

s , the �rst two eventsin the �rst term on the right-hand side are independent from the last two events. Lemma 2.2(ii) andthe continuity of θ(·, R) imply that the probability of the intersection of the �rst two events convergestowards θ(fs(x), R)θ(fs(y), R). Note that the particles that the point processes C(es,A
(N)
s )

ex,δ and C(es,A
(N)
s )

ey,δputs are given by trajectories that do not visit any of the two balls B(x, δ) and B(y, δ) at time s; moreprecisely, they are picked according to the density
f (s,δ)

es (z) = P(Xs /∈ B(x, δ) ∪B(y, δ),X
es ∈ dz)/dz = Ks,es

(
z, (B(x, δ) ∪B(y, δ))c

)
f

es(z). (2.11)Hence, the probability of the intersection of the last two events converges towards
θ(f (s,δ)

es (x̃), R)θ(f (s,δ)

es (ỹ), R).A glance at (2.11) shows that f (s,δ)

es (z) converges, as δ ↓ 0, for any z ∈ D, towards P(Xs 6= x,Xs 6=

y,X
es ∈ dz)/dz, which is, by Assumption 1.1(i) (or also by (ii)), equal to f

es(z). Since fes(x̃) and f
es(ỹ)are larger than the critical value, we may use continuity of θ.All together, we have that the �rst term of the right-hand side of (2.10) converges, as N → ∞followed by δ ↓ 0, towards

θ(fs(x), R)θ(fs(y), R)θ(f
es(x̃), R)θ(f

es(ỹ), R). (2.12)Furthermore, Assumption 1.1(ii) also implies that
lim sup
N→∞

P1,2

(
x̃ ∈ C(es,N)

ex,δ \ C
(es,A

(N)
s )

ex,δ

) (2.13)vanishes as δ ↓ 0. Indeed, we know that C(es,A
(N)
s )

ex,δ ⊂ C(es,N)

ex,δ , therefore the above limit superior is equalto θ(f
es(x̃)) − θ(f

(s,δ)

es (x̃)). Hence, the convergence of f (s,δ)

es and the continuity of θ give the result. Weproceed analogously for the last term in (2.10) and get that the limit superior as N →∞ and δ ↓ 0 ofthe left-hand side of (2.10) is not larger than the expression in (2.12). Now use Lemma 2.2(ii) for thesecond term in (2.8) to see that from this the desired assertion follows. �Proof of Theorem 1.2. First note that both assertions of (1.4) easily follow from Proposition 2.1,in conjunction with Lemma 2.3, provided that R is chosen such that
∫ T

0
ds 1l{fs(X

(i)
s ) = λc(R)} = 0 for i = 1, 2. (2.14)



16 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGFurthermore, note that, almost surely, (2.14) holds for almost all R. Indeed, this follows from
E

(∫ ∞

0
dR

∫ T

0
ds 1l{fs(X

(i)
s ) = λc(R)}

)
=

∫ T

0
ds

∫

D
dx fs(x)

∫ ∞

0
dR 1l{fs(x) = R−dλc(1)} = 0.Hence, for a given (random) exceptional R, we pick sequences (Rk)k∈N and (R′

k)k∈N such that Rk ↓ Rand R′
k ↑ R and Rk and R′

k satisfy (2.14) for any k in place of R. Since τ (N)

T is an increasing functionof R, we may estimate it from above and below by replacing R with Rk and R′
k, respectively, andapplying Proposition 2.1 and Lemma 2.3 with these. This yields (1.4) with τ (≥)

T and τ (>)

T replaced bytheir versions for R replaced with Rk and with R′
k, respectively.The only thing that we need to do is to show the right-uppersemicontinuity of the map R 7→ τ (≥)

T andthe left-lowersemicontinuity of the map R 7→ τ (>)

T . To show these, note that θ(≥)
(·, R) = θ(Rd · +, 1) isright-continuous and θ(>)

(·, R) = θ(Rd · −, 1) is left-continuous. Furthermore, for any x, y ∈ D and any
s ∈ [0, T ], the map R 7→ 1l{x

≥
←→

s
y} is right-uppersemicontinuous, and the map R 7→ 1l{x

>
←→

s
y} isleft-lowersemicontinuous. The latter assertion is quite easy to see; let us show the former. Assume that,for all ε > 0, x and y are connected through the set {fs ≥ λc(R+ ε)}. Recall that λc(R) = R−dλc(1)is decreasing in R. If x and y were not connected through the set {fs ≥ λc(R)}, then they would lie indi�erent components of this set. By compactness, these components have a positive distance to eachother. Hence, there is a hyperplane in D through the complement of {fs ≥ λc(R)} that separates thesetwo components. Since this hyperplane is compact, fs assumes a maximum on it, which is strictlysmaller than λc(R). Hence, every curve from x to y must cross this hyperplane, i.e. must pass a pointwith an fs-value bounded away from λc(R). This means that, for some su�ciently small ε > 0, x and

y are not connected through {fs ≥ λc(R + ε)}. Hence, lim supε↓0 1l{x
≥,R+ε
←→

s
y} ≤ 1l{x

≥,R
←→

s
y}, wherewe wrote ≥,R

←→
s

for connectedness through the set {fs ≥ λc(R)}. Using Lebesgue's theorem shows theclaimed continuity properties of τ (≥)

T and τ (>)

T in R and �nishes the proof of Theorem 1.2. �3. Long-time investigations for the random waypoint modelIn this section, we prove Lemma 1.4 and Theorem 1.6, that is, we restrict ourselves to the randomwaypoint model (RWP) introduced in Section 1.4 and study the long time behaviour of the limitingconnection time both in terms of an ergodic theorem and a large-deviations result. First we provein Section 3.1 the convergence of the RWP to its invariant distribution. The proof of Lemma 1.4 isbased on a certain discrete-time Markov chain, whose ergodic and mixing properties are derived inSection 3.2. The proof then follows in Section 3.3. Finally, we prove Theorem 1.6 in Section 3.4.3.1. Recurrence and ergodicity of the RWP. Since we want to study long-time properties ofthe connection time, we will need recurrence and ergodic properties of the RWP, which we provide inthis section. For the special case of W being the uniform distribution on D, most of our results inthis section are already contained in [LV06], but our Proposition 3.2 below also contains a statementon convergence in total variation, which will be important in Lemma 3.4 below. For the reader'sconvenience, we provide all necessary proofs; they are independent of [LV06], but use di�erent variantsof the Markov renewal theorem available in the literature.The trajectory is divided into trips, by which we mean the parts from leaving a waypoint to arrivingat the next one. P(0) and E(0) denote probability and expectation if the process starts at time 0 at thebeginning of a trip at the zeroth of the waypoints, i.e., if the initial waypoint W0 has distribution W.In [LV06, Theorem 6], another variant of Y is considered, and it is argued that that process possessesa unique invariant distribution. Projecting on our �rst coordinate, the location of the walker, the



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 17distribution of X in equilibrium is given by the formula
µ∗(dx) =

1

Z

∫ 1

0
dsE(0)

( V1

|W1 −W0|
;W0 + s(W1 −W0) ∈ dx

)
, (3.1)where Z is a normalisation. It turns out below that this formula persists also for a general waypointmeasure. In particular µ∗ has a continuous density. We refer in particular to [L04] for a generalmethodology to describe this measure. See [BW02, Section 5] and [HLV06, Section III and IV] for ex-plicit formulas, approximations and simulations for special cases of domains D and waypoint measures

W, like uniform distributions on rectangles and balls.For the sake of illustration, we give an explicit value in d = 2 in the simplest case where the domainis the unit disk, the waypoint measure W is the uniform measure on it and the velocity is chosen tobe constant. In this case, the density of the waypoint location in the invariant distribution is given by
f∗(x) =

45

64π
(1− |x|2)

∫ π

0

√
1− |x|2 cos2(ϕ) dϕ, x ∈ B(0, 1).An approximation with a mean square error ≤ 0.0065 and an absolute error ≤ 0.067 is given by

f∗(x) = 2
π (1− |x|2), see [QZ07] and [BW02, eq. (18)].In the following, we give detailed proofs for ergodic properties of the RWP, based on the Markovrenewal theorem in the form provided by [K74]. Alternative proofs could be based on the form givenin [LV06, Theorem 6].We �rst show that the sequence of the trips is positive Harris recurrent. More precisely, we considerthe sequence T = (Tn)n∈N = (Wn−1,Wn, Vn)n∈N in D. Since (Wn)n∈N0 and (Vn)n∈N are independenti.i.d. sequences, T is obviously a Markov chain. Furthermore, it is also easy to see that T is positiveHarris recurrent, since it satis�es

Py(Tn ∈ A) =W ⊗W ⊗ V(A), n ≥ 2, y ∈ D, A ⊂ D mb., (3.2)where we wrote Py for the probability measure under which the walker starts from Y (0) = y. We usethis to prove the convergence of Yt introduced in (1.7). The proof goes in two step. The �rst one(see Lemma 3.1) applies the Markov renewal theorem using the fact that Yt is a time change of Tand gives a good understanding and a description of the limit law (in particular it states the existenceof an invariant distribution with �nite mass). However, as we will see, this approach only gives weakconvergence. In a second step we use Harris recurrence (see Proposition 3.2) to obtain convergence intotal variation. Of course it is then easy to check that the convergence has to be towards the samelimit. By Pα we denote the probability measure under which the process (Yt)t∈[0,∞) starts from thedistribution α.Lemma 3.1. For any bounded continuous function g : D × R+ → R+, and for any y ∈ D,
lim
t→∞

Ey[g(TN(t), TN(t) − t)] =
1

E[U1]

∫

D
PW⊗W⊗V [T1 ∈ dz, U1 ∈ dλ]

∫ λ

0
g(z, s) ds. (3.3)Proof. We apply [K74, Theorem 1], which immediately implies the assertion, noting that the measure

ψ in [K74] is indeed equal to W ⊗W ⊗ V by [K74, Lemma 2]. That is, we only have to check thevalidity of Conditions I.1-4 of [K74].Conditions I.1 and I.2 are trivial here, while Condition I.3 is the usual non-lattice assumption. Itstates that there is a non-lattice sequence (ζν)ν∈N in R such that, for each ν ∈ N and δ > 0, thereexists some y ∈ D, such that, for every ε > 0, there exists a measurable set A with positiveW⊗W⊗V-measure, integers m1, m2 and τ ∈ R such that, for x ∈ A,
Px[d(Tm1 , y) < ε, |Tm1 − τ | ≤ δ] > 0 and Px[d(Tm2 , y) < ε, |Tm2 − τ − ζν | ≤ δ] > 0, (3.4)

d being the usual Euclidean distance on D.



18 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGWe will prove this assumption with an arbitrary y = (w0, w1, v1) inside the support of W ⊗W ⊗V,not depending on ν nor on δ, and with A = {x ∈ D : d(x, y) < ε}, where we assumed without lossof generality that 2εv−1
− + diam(D)εv−2

− < δ/3. Furthermore, we put τ := |w1 − w0|/v1 and pick anynon-lattice sequence (ζν)ν∈N inside the support of τ + |w0 − w1|/V1. Furthermore, put m1 = 1 and
m2 = 3. By continuity of the densities of W and V, the W ⊗W ⊗V-measure of A is positive. Putting
x = (w′

0, w
′
1, v

′
1) ∈ A and denoting by T1(x) = |w′

1 − w
′
0|/v

′
1 the (deterministic) value of T1 startingfrom x, we see that

|T1(x)− τ | ≤
|w′

1 − w
′
0 − (w1 − w0)|

v′1
+ |w1 − w0|

∣∣∣
1

v1
−

1

v′1

∣∣∣ ≤
2ε

v−
+

diam(D)ε

v2
−

<
δ

3
. (3.5)Noting that T1 = x with Px-probability one, we see that the �rst part of (3.4) is satis�ed; the probabilityis even equal to one.Now we turn to the proof of the second. Keep x ∈ A �xed. Recall that Tn = U0 + U1 + · · · + Un−1and that Un = |Wn+1 −Wn|/Vn for any n. Note that, under Px, T3 has distribution W ⊗W ⊗V, andtherefore Px(d(T3, y) < ε) = W ⊗W ⊗ V(A) > 0. On the event {d(T3, y) < ε}, with Px-probabilityone, (3.5) shows that |U0 − τ | < δ/3, and a the same calculation with x replaced by T3 shows that

|U2 − τ | < δ/3. By our choice of ζν and by continuity of the densities of W and V, we easily see thatthe event {|U1 + τ − ζν | ≤ δ/3} has positive Px-probability on {d(T3, y) < ε}, since
|U1 + τ − ζν | ≤

|W2 −W1 − (w0 − w1)|

v−
+

∣∣∣
|w0 −w1|

V2
− (ζν − τ)

∣∣∣ ≤
2ε

v−
+

∣∣∣
|w0 − w1|

V2
− (ζν − τ)

∣∣∣,and the probability (with respect to V2) to have the last term smaller than diam(D)εv−2
− is positive.Since

|T3 − τ − ζν | = |U0 + U1 + U2 − τ − ζν| ≤ |U0 − τ |+ |U1 + τ − ζν |+ |U2 − τ |,we now see that also the last condition in (3.4) is satis�ed.Condition I.4 states that, for any x ∈ D, δ > 0, there exists r0(x, δ) > 0 such that for any measurablefunction f : DN × RN0 → R, and for all y with d(y, x) < r0(x, δ),
Ex

[
f
(
(Ti)i∈N, (Ui)i∈N0

)]
≤ Ey

[
lim

n→∞
sup

{
f
(
(ti)i∈N, (ui)i∈N0

)
: d(ti,Ti) + |ui − Ui| < δ for i ≤ n}]

+ δ sup |f |. (3.6)This assumption is in general di�cult to prove, but here things are simple, as Ti and Ui are inde-pendent of the starting point for i ≥ 3. We can do the following coupling: write x = (w(x)

0 , w(x)

1 , v(x)

1 )and y = (w(y)

0 , w(y)

1 , v(y)

1 ). We draw a sequence of i.i.d. waypoints and speeds (Wi, Vi)i≥2 according to
W ⊗V. De�ne, for z ∈ {x, y},

W (z)

0 = w(z)

0 , W (z)

1 = w(z)

1 , V (z)

1 = v(z)

1 , (W (z)

i , V (z)

i )i≥2 = (Wi, Vi)i≥2, (3.7)and put T (z)

i = (W (z)

i−1,W
(z)

i , V (z)

i ). It is then clear that (T (z)

i )i∈N is a realisation of (Ti)i∈N under Pzand that for any i ≥ 3, T (x)

i = T (y)

i . We saw in the veri�cation of Condition I.3 that, if d(x, y) < r,then with obvious notation,
d(T (x)

i ,T (y)

i ) < r, d(U (x)

i , U (y)

i ) < r
( 2

v−
+

diam(D)

v2
−

)
.Taking r0(δ) such that both right-hand sides are < δ, immediately gives Condition I.4. �Using (1.6), we easily derive the above mentioned weak convergence of Xt towards µ∗ identi�ed in(3.1), as Xt may be written as an explicit continuous function of TN(t) and TN(t) − t. We now give



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 19a re�ned result, using the notion of Harris recurrence for continuous-time Markov chains. First notethat the process
Y =

(
Yt

)
t∈[0,∞)

=
(
TN(t),

TN(t) − t

UN(t)−1

)
t∈[0,∞)is a continuous-time Markov chain on D × [0, 1] with right-continuous paths. The second componentof Y runs from 0 to 1 with linear speed between the arrival times at the waypoints. It is also easy toexpress Yt as a continuous functional of Yt.Proposition 3.2. (Yt)t∈[0,∞) is a strongly aperiodic Harris recurrent chain, and its distribution con-verges in total variation towards the unique invariant distribution. As a consequence, the convergencein Lemma 3.1 is true for any measurable bounded function g. Furthermore, an ergodic theorem holdsfor (Yt)t∈[0,∞).Proof. We use the characterization of Harris recurrence given in [KM94, Theorem 1], with the measure

ν given by W ⊗W ⊗ V ⊗ λ, where λ is the Lebesgue measure on [0, 1]. It is easy to see that any set
A with positive ν-measure will be hit by the process (Yt)t∈[0,∞). Indeed, without loss of generality, wecan assume that A is a product set. By independence it will certainly happen that one of the Tn willfall into the D-component of A. Then as TN(t)−t

UN(t)−1
visits all of [0, 1] between two waypoints, it followsthat also A will be hit by Y, implying Harris recurrence.This implies in particular the existence of a unique (up to multiplicative constants) invariant measure.It is not di�cult to check that this measure has to be the one appearing in Lemma 3.1, up to thenormalisation. In particular, it has �nite total mass. As a consequence, Y is strongly Harris recurrent.We also have that this process has spread-out cycles, in the sense of [A03, p. 202]. In fact, the hittingtimes of any set under any starting point are spread out. Indeed, the �rst hitting times might bedeterministic (if the initial condition implies that the set is hit during the �rst travel of the walker),but then one can easily check that, due to the existence of a density for the speed, the hitting timesalso have a continuous density. Therefore, using [A03, Proposition VII.3.8], this implies convergencein total variation of Yt towards its invariant distribution. The ergodic theorem can be found in [A03,Proposition VII.3.7]. �Note that, at this point, it would be possible to use the above result to get a simple proof ofLemma 1.4. However, we would like to present a di�erent proof, as we need to introduce the importantdiscrete-time Markov chain (Zj)j∈N0 , that will be useful for the sequel. This proof can be found inSection 3.3.3.2. Recurrence and mixing properties of Z. In this section, we introduce an important tool forour proofs of Lemma 1.4 and Theorem 1.6, a discrete-time Markov chain Z = (Zj)j that registersthe locations, waypoints and velocities of two independent RWPs at all the times at which one ofthem arrives at a new waypoint. In this section, we study recurrence and the mixing properties ofthis chain, in Sections 3.3 and 3.4 we will use it to derive the long-time average and large-deviationsproperties of the connection time. For proving just the former of the two results in Lemma 1.4, somestraight-forward ergodic arguments would be also su�cient, however, we will need the identi�cationof the ergodic limit in terms of the Markov chain Z in order to prove the large-deviations result inTheorem 1.6. We show that (Zk)k∈N0 is a time-homogeneous, ψ-mixing and Harris ergodic Markovchain. It is an object of independent interest, as it may serve also for other long-time investigations ofthe model, as well as for computer simulations.The Markov chain Z is de�ned as follows. We consider the times 0 ≤ S1 < S2 < . . . at which anyof the two walkers arrives at his waypoint. Formally, S0 = 0 and

Sj = inf
{
t > Sj−1 : W (1)

N(1)(t)
6= W (1)

N(1)(Sj−1)
or W (2)

N(2)(t)
6= W (2)

N(2)(Sj−1)

}
, j ∈ N, (3.8)



20 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGwhere the superscripts (1) and (2) mark the two walkers. Put
Zj =

(
Y (1)(Sj), Y

(2)(Sj)
)

=
((
X(1)

Sj
,W (1)

N(1)(Sj)
, V (1)

N(1)(Sj)

)
,
(
X(2)

Sj
,W (2)

N(2)(Sj)
, V (2)

N(2)(Sj)

))
∈ D2, j ∈ N0.(3.9)That is, Z = (Zj)j∈N0 is the trace-Markov chain of two independent copies of the RWP, observed atthe times at which any of the two arrives at a waypoint; it is a time-change of (Y (1), Y (2)). It is easyto see that (Zj)j is a time-homogeneous Markov chain on D2. This chain does not explicitly recordthe location of the random walker at any �xed time, but the time that passes between the waypointarrivals can be deduced from the information contained in Z. Hence, it is well-suitable for deducingasymptotic assertions for long time. First we derive a mixing property, which will later be used for thelarge-deviations principle.Lemma 3.3. The sequence (Zj)j is ψ-mixing under any starting distribution, i.e.,

lim
k→∞

sup
A∈F0

0 ,B∈F∞
k

∣∣∣
P(A ∩B)

P(A)P(B)
− 1

∣∣∣ = 0,where Fk
m := σ(Zm, . . . , Zk).Proof. Introduce the event

Ek =
{
∃l,m ∈ {1, . . . , k − 1} : W (1)

0 6= W (1)

N(1)(Sl)
6= W (1)

N(1)(Sk)
and W (2)

0 6= W (2)

N(2)(Sm)
6= W (2)

N(2)(Sk)

}that both walkers choose at least two new waypoints by time Sk. Then, conditional on Ek, any A ∈ F0
0and B ∈ F∞

k are independent. Indeed, on the event Ek, A depends on X(1)

0 ,W (1)

1 , V (1)

1 ,X(2)

0 ,W (2)

1 , V (2)

1only, while B depends only on the variables W (1)

l , V (1)

l ,W (2)

l , V (2)

l for some l ≥ 3 and on X(1)

Sl
,X(2)

Slwith l ≥ 2; note that, for i ∈ {1, 2}, X(i)

Sl
is a function of W (i)

N(i)(Sl)
,W (i)

N(i)(Sl)−1
and V (i)

N(i)(Sl)
only, and

N (i)(Sl) ≥ 3 on Ek. Using the independence of A and B on Ek, a small calculation yields that
P(A ∩B)

P(A)P(B)
=

P(Ek|A)P(Ek|B)

P(Ek)
+ P(Ec

k|A ∩B)
P(A ∩B)

P(A)P(B)
.Hence, the assertion follows from

lim
k→∞

sup
A∈F0

0 ,B∈F∞
k

P(Ec
k|A ∩B) = 0. (3.10)We show now that (3.10) holds. The event Ec

k splits into the event that the �rst walker has chosen notmore than one new waypoint by time Sk, but the second has chosen at least k− 1 new waypoints, andthe same event with �rst and second walker reversed. Let us only look at the �rst of these two events.On this event, the time Sk is not larger than 2diam(D)/v−, since a choice of a new waypoint is doneafter diam(D)/v− time units at the latest, since all ways are no longer than diam(D) and all velocitiesare no less than v−. Since the time that passes between the second walker picks his (j − 1)-st and the
j-th waypoint is |W (2)

j −W
(2)

j−1|/V
(2)

j , we have that its sum over j ∈ {1, . . . , k − 1} is not larger than
2diam(D)/v−. Hence, on this event we have

k−1∑

j=1

∣∣W (2)

j −W
(2)

j−1

∣∣ ≤ 2
v+
v−

diam(D).Leaving out the summands for j = 1 and j = k − 1, this remaining sum is still upper bounded by theright-hand side, and it does not depend on Z0 nor on Zk, Zk+1, . . . . Hence, the probability for thissum being smaller than the right-hand side is an upper bound for the half of P(Ec
k|A∩B) that we areconsidering, and it does not depend on A nor on B. Since the right-hand side is constant and sincethe waypoints are not deterministic, the probability for this event tends to 0 as k → ∞. This showsthat (3.10) holds and ends the proof. �



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 21The following lemma says that Z is Harris recurrent, has a unique invariant distribution and is non-lattice, which is summarised by saying that it is Harris ergodic. In particular, it satis�es an ergodictheorem, i.e., for any bounded measurable function f , the averages 1
N

∑N
i=1 f(Zi) converge almostsurely to the integral of f with respect to the invariant distribution.Lemma 3.4. The chain Z is Harris ergodic.Proof. Harris recurrence of Z is equivalent to the existence of a nontrivial σ-�nite measure ϕ suchthat Z is ϕ-recurrent, see [A03, Cor. VII.3.12]. Therefore we have to show that there exists some

σ-�nite measure ϕ such that every measurable set F ⊂ D2 with ϕ(F ) > 0 is recurrent.We denote the invariant measure of the process (Y (1)

t )t∈[0,∞) by γ. De�ne ϕ = γ ⊗ W ⊗W ⊗ V,which is obviously σ-�nite. Let F ⊂ D2 be measurable with ϕ(F ) > 0. We are going to show that thehitting time of F is almost surely �nite. Note that ϕ(F ) > 0 implies, by Fubini's theorem, that, forsome ε > 0, the set F̃ of all T satisfying ∫
1lF ((Y, T )) γ(dY ) > ε has positive W ⊗W ⊗ V measure.First consider the sequence (nk)k∈N0 of times at which the second walker arrives at a waypoint, thatis, (Snk

)k∈N0 = (T (2)

k )k∈N0 . The �rst component of the process (Znk
)k∈N0 is a RWP sampled at timeswhich are given by an independent renewal process, and the second component has the same law as

(Tk+1)k∈N0 . According to (3.2) and [A03, Cor. VII.3.12] the second component is (W⊗W⊗V)-positiverecurrent. In particular there exists a subsequence (ñk)k of (nk)k such that the second component of
Z

enk
belongs to F̃ for any k ∈ N0. Also (S

enk
)k∈N0 is a transient Markov renewal process, independentof Y (1).Now conditioning on the second component process, Y (2), (Y (1)

Senk

)k∈N0 is given by sampling the,by Proposition 3.2 Harris ergodic, process Y (1) at a deterministic, sequence of times that increaseto in�nity. Still conditioning on Y (2), the event that Z
enk
∈ F has probability asymptotically lowerbounded by ε. It is then obvious by ergodicity that this event will occur in�nitely often.According to [A03, Cor. VII.3.12], this proves Harris recurrence of (Zn)n∈N, and in particular the ex-istence of a unique invariant measure, [A03, Thm. VII.3.5]. Now as we want positive Harris recurrence,we are going to show that this measure is �nite.Note that the previous arguments, together with the ergodic theorem [A03, Prop. VII.3.7] give that

lim
N→∞

1

N

N∑

k=1

1l{Zenk
∈F} = γ(F (1)) > 0.Note that nk/k → 2, since the arrival times of Y (1) and Y (2) are disjoint and have asymptotically thesame distribution. Hence, sinceW⊗W⊗V(F (2)) is equal to the probability that Y (2) hits F (2), we have

ñk/k → 2/W ⊗W ⊗ V(F (2)) by the ergodic theorem. Noting the symmetry in the two components,we see that
lim

N→∞

1

N

N∑

k=1

1l{Zk∈F} =
1

2

(
γ ⊗W ⊗W ⊗ V(F ) +W ⊗W ⊗ V ⊗ γ(F )

)
.Since the right-hand side is a probability measure in F , (Zn)n∈N is positive Harris recurrent. Notethat we proved the ergodic theorem in the course of the proof, as well as gave an explicit form for theinvariant measure.We also see from this proof that the sequence of hitting times of F is non-lattice, since the sequence

(ñk)k∈N is non-lattice, because (nk)k∈N is non-lattice. �



22 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIG3.3. Longtime average of the connection time. Here we give a proof of the ergodic limit inLemma 1.4 using the Markov chain Z de�ned in (3.9). As we mentioned above, a simpler proof canbe done using ergodic theory, but we will later need the representation of the ergodic limit in terms of
Z. We saw in Section 3.2 that (Zk)k∈N0 is a time-homogeneous, ψ-mixing and Harris ergodic Markovchain on D2. In this section we prove the ergodic limit in Lemma 1.4, giving an explicit formula for thelimit p(>)

∗ . The main object in the proof of Theorem 1.6 in Section 3.4 is the empirical pair measure of
Z, for which a large-deviation principle is known to hold.We are going to express τ (�,∗)

T in terms of Z. To this end, we de�ne, for any zk =(
(x(1)

k , w(1)

k , v(1)

k ); (x(2)

k , w(2)

k , v(2)

k )
)
∈ D2,

M (1)(z1, z2) =
|x(1)

2 − x
(1)

1 |

v(1)

2

, (3.11)
F�(z1, z2) =

∫ 1

0
ds θ

(�)(
f∗(p1(s)), R

)
θ

(�)(
f∗(p2(s)), R

)
1l{p1(s)

�
←→
∗

p2(s)}, (3.12)where pi(s) = sx(i)

2 + (1 − s)x(i)

1 , s ∈ [0, 1], denotes the path of the i-th walker from x(i)

1 to x(i)

2 . Then
M (1) is the time that elapses while the two walkers move from one waypoint arrival to the next one,and F� describes the proportion of time that the two are connected with each other on that way.Recalling (3.9), we have, for any n ∈ N,

Sn =
n∑

j=1

(Sj − Sj−1) =
n∑

j=1

|X(1)

Sj
−X(1)

Sj−1
|

VN(1)(Sj)

=
n∑

j=1

M (1)(Zj−1, Zj). (3.13)Now we express τ (�,∗)

T for T replaced by the waypoint arrival time. For any n ∈ N, we have
τ (�,∗)

Sn
=

n∑

j=1

∫ Sj

Sj−1

ds θ
(�)

(f∗(X
(1)
s ), R)θ

(�)
(f∗(X

(2)
s ), R)1l{X(1)

s
�
←→
∗

X(2)
s }

=

n∑

j=1

(Sj − Sj−1)

∫ 1

0
ds θ

(�)
(f∗(p1(s)), R)θ

(�)
(f∗(p2(s)), R)1l{p1(s)

�
←→
∗

p2(s)}

=

n∑

j=1

M (1)(Zj−1, Zj)F�(Zj−1, Zj),

(3.14)
where pi(s) = X(i)

Sj−1
+ s(X(i)

Sj
−X(i)

Sj−1
).Now the proof of Lemma 1.4 is quite obvious. According to [A03, Th. VII.3.6], based on Lemma 3.4,implies that the distribution of Zk converges towards its invariant distribution, which we want to call

π. Hence, (Zj−1, Zj) converges to its invariant distribution π ⊗ P , where we wrote P : D × F → [0, 1]for its transition kernel, writing F for the σ algebra on D. This convergence is in total variation sense.Since M (1) and F� are bounded and measurable, we have that
lim

n→∞

1

n
Sn =

∫
M (1) d(π ⊗ P ) and lim

n→∞

1

n
τ (�,∗)

Sn
=

∫
M (1)F� d(π ⊗ P ).Pick nT = sup{n ∈ N : Sn ≤ T}, then it is easy to see that 1

T nT → 1/
∫
M (1) d(π ⊗ P ) as T → ∞,almost surely and in probability. It is only an exercise to prove that the above limits are also true if nis replaced by nT . Furthermore, it is also easy to see that 1

T (τ (�,∗)

T − τ (�,∗)

SnT
) vanishes almost surely andin probability as T →∞. Hence, we have

p(�)
∗ = lim

T→∞

1

T
τ (�,∗)

T =

∫
M (1)F� d(π ⊗ P )∫
M (1) d(π ⊗ P )

. (3.15)



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 23This ends the proof of Lemma 1.4 with the identi�cation of the limit p(�)
∗ as the right-hand side of(3.15).3.4. Proof of Theorem 1.6. Now we turn to the proof of Theorem 1.6, i.e., we prove the upperbound for the downwards deviations of the normalised connection time, 1
T τ

(>,∗)

T , for the RWP in thelimit T → ∞. Let us abbreviate τ (>,∗)

T by τT . We are going to give an explicit upper bound for theprobability of the event {τT ≤ Tp} for any p ∈ (0, p(>)
∗ ). In order to formulate it, we need to introducesome more notation, which mostly stems from the theory of large deviations. See [DZ10] for moreabout this theory.As a consequence of Lemma 3.3, also (Zj−1, Zj)j∈N is a ψ-mixing and bounded Markov chain. As anice consequence, we now have a large-deviation principle (LDP) for the empirical pair measure of the

Zn, de�ned as
Qn :=

1

n

n∑

j=1

δ(Zj−1,Zj) ∈M1(D ×D), (3.16)see [BD96], Theorem 1 under the mixing condition (S) and the remark on page 554, which states that
ψ-mixing implies (S). The rate function in [BD96, Theorem 1] is given by

I(Q) = sup
f∈B(D2,R)

{∫

D2

Q(dx,dy)f(x, y)− Λ(f)
}
,where Λ(f) = limn→∞

1
n log E∗

[
e

Pn
j=1 f(Zj−1,Zj)

], and B(D2,R) is the set of all bounded, Borel mea-surable functions on D2 to R. We denote by M(s)

1 (D × D) the set of probability measures Q on
D × D whose two marginals coincide. We denote any of the two marginals of such a Q by Q, i.e.,
Q(A) = Q(A×D) = Q(D ×A) for A ∈ B(D). Now we use [DZ10], Theorem 6.5.2 for the state space
Σ = D2 and then Theorem 6.5.12 for k = 1 to identify the rate function as

I(Q) = H(Q | Q⊗ P ) =

∫

D

∫

D
Q(dx,dy) log

Q(dx,dy)

Q(dx)P (x,dy)
if Q� Q⊗ P, (3.17)and I(Q) =∞ otherwise, for Q ∈M(s)

1 (D ×D).Explicitly, the LDP states that the level sets {Q ∈ M(s)

1 (D × D) : I(Q) ≤ c} are compact for any
c ∈ R, and that we have the estimates

lim sup
n→∞

1

n
log P∗(Qn ∈ F ) ≤ − inf

F
I and lim inf

n→∞

1

n
log P∗(Qn ∈ G) ≥ − inf

G
I,for any closed, respectively open, subset F and G ofM(s)

1 (D ×D).Theorem 1.6 follows from the following theorem. We now prefer the notation 〈f, P 〉 for the integral ofa function f with respect to a measure P . We recall from (3.15) that p(>)
∗ = 〈M (1)F>, π⊗P 〉/〈M

(1), π⊗

P 〉, where π is the invariant distribution of Z.Theorem 3.5. For any p ∈ (0, p(>)
∗ ),
lim sup
T→∞

1

T
log P∗(τT ≤ Tp) ≤ −χp, (3.18)where

χp = inf
{ I(Q)

〈M (1), Q〉
: Q ∈M(s)

1 (D ×D),
〈M (1)F>, Q〉

〈M (1), Q〉
≤ p

}
. (3.19)Moreover, the in�mum is attained, and χp is positive.



24 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGThe term 〈M (1), Q〉 is the average time that elapses between two subsequent arrivals at waypoints, ifthe two walkers move in such a way that the distribution of the location, velocity and next waypoint attwo subsequent such arrivals is given by Q, and 〈M (1)F>, Q〉 is the average portion of connection timeon such a way, and I(Q) is the negative rate of the probability that the two follow that strategy Q pernumber of waypoints. Hence, the upper bound in (3.18) is intuitive and can be interpreted. Note that
F> is lower semicontinuous, as the indicator of connectedness of two points through {f∗ > λc(R)} is acountable sum of indicators of open sets. However, in general F> may not be upper semicontinuous.This makes it questionable whether or not also the lower bound in (3.18) holds, since the map Q 7→
〈Q,M (1)F>〉 is in general not continuous.Proof of Theorem 3.5. That the in�mum in (3.19) is attained is easily seen as follows. By lowersemicontinuity of F> and a result of Fatou-type (see, e. g. [DZ10, Theorem D.12]), the map Q 7→

〈Q,M (1)F>〉 is also lower semicontinuous. Since also I is lower semicontinuous and has compact levelsets and the map Q 7→ 〈Q,M (1)〉 is continuous, it easily follows that the in�mum in (3.19) is even aminimum.Now we argue that χp is positive. Indeed, the only minimiser of I on M(s)

1 (D × D) is the measure
π ⊗ P , where we recall that π is the invariant distribution of Z and P its transition kernel. To seethis, note that, for any Q satisfying I(Q) = 0, we have Q(dx,dy) = Q(dx)P (x,dy) by the equalitydiscussion in Jensen's inequality, and from the marginal property it follows that Q is invariant for
P , i.e., equal to π by uniqueness of the invariant distribution for the chain Z. Hence, also the onlyminimiser of Q 7→ I(Q)/〈M (1), Q〉 is π ⊗ P , and it satis�es p(>)

∗ = 〈M (1)F>, π ⊗ P 〉/〈M (1), π ⊗ P 〉,see below (3.15). Therefore, it is not contained in the admissibility set on the right of (3.19) and istherefore not equal to its minimiser. Hence, χp is positive.Now we prove (3.18). We are going to express the time T and the variable τT in terms of integralsover Qn. First the time. We write Zj =
((
X(1)

Sj
,W (1)

N(1)(Sj)
, V (1)

N(1)(Sj)

)
,
(
X(2)

Sj
,W (2)

N(2)(Sj)
, V (2)

N(2)(Sj)

)).From (3.13) and (3.14) we have, for any n ∈ N,
Sn = n〈M (1), Qn〉 and τSn = n〈M (1)F>, Qn〉,recalling the de�nition of M (1) and of F> in (3.11), where pi(s) = X(i)

Sj−1
+ s(X(i)

Sj
− X(i)

Sj−1
). Hence,we can already give a heuristic proof of Theorem 3.5 as follows. The LDP for (Qn)n∈N roughly saysthat P∗(Qn ≈ Q) ≈ e−nI(Q) for any strategy Q ∈M(s)

1 (D2). Taking n such that T ≈ Sn, we have that
n ≈ T/〈M (1), Qn〉 and τT /T ≈ 〈M (1)F>, Qn〉/〈M

(1), Qn〉. Hence, we should have
P∗(τT ≤ pT ) ≈ P∗

(
〈M (1)F>, Qn〉/〈M

(1), Qn〉 ≤ p
)

≈ exp
(
− n inf

{
I(Q) : Q ∈M(s)

1 (D2),
〈M (1)F>, Q〉

〈M (1), Q〉
≤ p

})

≈ e−Tχp ,with χp as de�ned in Theorem 3.5. The main di�culty in making this line of argument rigorous liesin the randomness of n.Let us now give a rigorous proof of the upper bound in (3.18). Fix p ∈ (0, p(>)
∗ ) and pick a largeauxiliary parameter K and a small one, δ > 0. First we distinguish all the n no larger than KT suchthat T ≈ Sn:

1 ≤

bKT c∑

n=bT/Lc

1l{Sn ≤ T < Sn+1}+ 1l{T ≥ SbKT c+1}.



CONNECTION TIMES IN LARGE AD-HOC MOBILE NETWORKS 25On the �rst event, {Sn ≤ T < Sn+1}, we have,
τT ≥ τSn = n〈Qn,M

(1)F>〉 ≥ (T − L)
〈M (1)F>, Qn〉

〈M (1), Qn〉
≥ T (1− δ)

〈M (1)F>, Qn〉

〈M (1), Qn〉
,where the last inequality is true for all su�ciently large T (depending only on δ and L), which we wantto assume from now.Observe that M (1) is bounded from above by L = diam(D)/v−, with probability 1 with respectto Q for any Q ∈ M(s)

1 (D2), since D is bounded and all velocities are at least v−. Hence, we have
Sj − Sj−1 ≤ L for any j ∈ N and therefore also 0 < Sn/n ≤ L for any n ∈ N. Therefore, the indicatoron the event {Sn ≤ T < Sn+1} can be upper bounded as

1l{Sn ≤ T < Sn+1} ≤ 1l{T − L ≤ Sn ≤ T} ≤ 1l
{

(1− δ)
T

n
≤ 〈M (1), Qn〉 ≤

T

n

}
.This implies the upper bound

P∗(τT ≤ pT ) ≤

bKT c∑

n=bT/Lc

P∗

(〈M (1)F>, Qn〉

〈M (1), Qn〉
≤

p

1− δ
, (1− δ)

T

n
≤ 〈M (1), Qn〉 ≤

T

n

)
+ P∗(T ≥ SbKT c+1).The last term is an error term, as we will show later that

lim
K→∞

lim sup
T→∞

1

T
log P∗(T ≥ SbKT c+1) = −∞. (3.20)Now we cut the sum over n into pieces of length Tε, where ε > 0 is a small auxiliary parameter:

bKT c∑

n=bT/Lc

=

bK/εc∑

i=1+b1/Lεc

∑

(i−1)Tε<n≤iT ε

.For �xed i and (i− 1)Tε < n ≤ iT ε, we can estimate, for any large T ,
P∗

(〈M (1)F>, Qn〉

〈M (1), Qn〉
≤

p

1− δ
, (1 − δ)

T

n
≤ 〈M (1), Qn〉 ≤

T

n

)
≤ P∗(Qn ∈ Ai), (3.21)where

Ai =
{
Q ∈M(s)

1 (D2) :
〈M (1)F>, Q〉

〈M (1), Q〉
≤

p

1− δ
,
1− δ

iε
≤ 〈M (1), Q〉 ≤

1

(i− 1)ε

}
.Recall that F> is lower semicontinuous. By [DZ10, Theorem D.12], the map Q 7→ 〈Q,M (1)F>〉 is alsolower semicontinuous. Hence, Ai is closed in the weak topology. Now we apply the upper bound inthe above mentioned LDP, to obtain, as T →∞,

sup
(i−1)Tε<n≤iT ε

P∗(Qn ∈ Ai) ≤ e−T eχp(δ,ε) eo(T ),where
χ̃p(δ, ε) = (i− 1)ε inf

{
I(Q) : Q ∈ Ai

}

= (i− 1)ε inf
{
I(Q) : Q ∈M(s)

1 (D2),
〈M (1)F>, Q〉

〈M (1), Q〉
≤

p

1− δ
,
1− δ

iε
≤ 〈M (1), Q〉 ≤

1

(i− 1)ε

}

≥ inf
{
I(Q)

( 1− δ

〈M (1), Q〉
− ε

)
: Q ∈M(s)

1 (D2),
〈M (1)F>, Q〉

〈M (1), Q〉
≤

p

1− δ
,

1− δ

iε
≤ 〈M (1), Q〉 ≤

1

(i− 1)ε

}

≥ inf
{
I(Q)

( 1− δ

〈M (1), Q〉
− ε

)
: Q ∈M(s)

1 (D2),
〈M (1)F>, Q〉

〈M (1), Q〉
≤

p

1− δ

}

=: χp(δ, ε).



26 HANNA DÖRING, GABRIEL FARAUD, WOLFGANG KÖNIGIt is easy to see that limε↓0,δ↓0 χp(δ, ε) = χp as de�ned in (3.19). Hence, the upper bound in (3.18) isproved, subject to (3.20), which we prove now.Note that {Sn : n ∈ N0} = {T (1)
n : n ∈ N0} ∪ {T

(2)
n : n ∈ N0}, where T (i)

n denotes the arrival time ofthe i-th walker at the n-th waypoint. The j-th step U (1)

j of the �rst of these processes is the durationof the �rst walker's travel from the j-th to the j + 1-st waypoint. Hence,
P∗(T ≥ SbKT c+1) ≤ 2P∗(T ≥ T

(1)

bKT/2c+1) ≤ 2P∗(T ≥ T̃
(1)

bKT/4c),where T̃ (1)
n =

∑n−1
j=0 U

(1)

2j denotes the random walk consisting of the even steps only. Hence, we are nowlooking at downwards deviations of the random walk (T̃ (1)
n )n∈N, whose steps U (1)

2j are i.i.d. with supportin [0, L]. Therefore, Cramér's theorem yields
lim sup
T→∞

1

T
log P∗(T̃

(1)

bKT/4c ≤ T ) ≤
K

4
lim sup
T→∞

1

KT/4
log P∗

(
T̃ (1)

bKT/4c ≤
4

K
bKT/4c

)

≤ −
K

4
sup
λ<0

(
λ

4

K
− log E∗[e

λU
(1)
0 ]

)
= − sup

λ<0

(
λ−

K

4
log E∗[e

λU
(1)
0 ]

)
.Note that the essential in�mum of U (1)

0 is equal to zero, as we assumed that the waypoint measurehas a continuous density. Indeed, if the waypoint walker stands in his waypoint, with probability 1there is a nontrivial ball around the location in which the waypoint measure has a positive density,and therefore arbitrarily small travels to the next waypoint have a positive probability.Hence, log E∗[e
λU

(1)
0 ] = o(|λ|) as λ → −∞, and therefore it is possible to pick a sequence λK → ∞as K → ∞ such that λK −

K
4 log E∗[e

λKU
(1)
0 ] → ∞ as K → ∞. This implies that (3.20) holds and�nishes the proof of Theorem 3.5.
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