
Brownian motion in a trunated Weyl hamberWolfgang König and Patrik ShmidSeptember 13, 2011AbstratWe examine the non-exit probability of a multidimensional Brownian motion froma growing trunated Weyl hamber. More preisely, we ompute, for �xed time t, theprobability that the motion does not leave by time t the intersetion of a Weyl hamberand a t-dependent entred box, and we identify its asymptotis for t → ∞. Di�erentregimes are identi�ed aording to the growth speed, ranging from polynomial deayover strethed exponential (that is, exponential of a power funtion, here with expo-nent in (0, 1)) to exponential deay. Furthermore we derive assoiated large deviationpriniples for the empirial measure of the properly resaled and transformed Brown-ian motion as the dimension grows to in�nity. Our main tool is an expliit eigenvalueexpansion for the transition probabilities before exiting the trunated Weyl hamber.MSC2010. 60J65, 60F10Keywords and phrases. Weyl hamber, non-olliding Brownian motions, Karlin-MGre-gor formula, non-olliding probability, non-exit probability, eigenvalue expansion, ré-duite.1 IntrodutionOur goal is to examine the non-exit probability of a Brownian motion from a time-dependent trunated Weyl hamber for large times. Let k ∈ IN be �xed and let B =

(B(t))t∈[0,∞) be a standard Brownian motion in IRk. Furthermore, let W = WA =

{x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk} be the Weyl hamber of type A. Then it iswell-known [G99℄ that the asymptotis of the probability not to exit W for a long timeis given by

Px(B[0,t] ⊂ W ) ∼ Kh(x)t−
k
4
(k−1), t → ∞, for x ∈ W, (1)where the motion starts from x ∈ IRk under Px, K is an expliit onstant, and

h(x) =
∏

1≤i<j≤k

(xj − xi) = det
[
(xj−1

i )i,j=1,...,k

] (2)1



Wolfgang König and Patrik Shmiddenotes the well-known Vandermonde determinant. On the other hand, it is also well-known, see [PS78℄ for example, that the non-exit probability from the bounded set
W ∩ Ik with I = (−π

2 , π
2 ) is asymptotially given as

Px(B[0,t] ⊂ W ∩ Ik) ∼ e−tλ(W∩Ik)
f (W∩Ik)(x)〈f (W∩Ik), 1l〉, t → ∞, for x ∈ W, (3)where λ(U) denotes the prinipal eigenvalue and f (U) the orresponding positive L2-normalised eigenfuntion of −1

2∆ in an open bounded onneted set U ⊂ IRk withDirihlet (i.e., zero) boundary ondition, and 〈f, g〉 denotes the standard inner produtin L2(U). That is, the probability of not exiting from the Weyl hamber deays poly-nomially in time, while the one for the trunated Weyl hamber deays exponentially.The �rst main goal of this paper is to understand the transition from exponentialto polynomial deay when replaing the box Ik in (3) by the box rIk, and then letting
r inrease as a funtion r(t) (r : (0,∞) → (0,∞)).In partiular, an interesting question is how the two funtions h and f (W∩Ik) aretransformed into eah other. Is it true that the Vandermonde determinant is equal toa resaled limit of the prinipal eigenfuntion of −1

2∆ in W ∩ Ik?It will turn out that, for 1 ≪ r(t) ≪
√

t, the non-exit probability deays in astrethed exponential way (that is, exponential of a power funtion, here with exponentin (0, 1)), but for √t ≪ r(t), the same asymptotis as in (1) will hold, sine the motiondoes not feel the boundary, aording to the entral limit theorem. However, the wayin whih the strethed-exponential deay beomes a polynomial deay when r(t) ≍
√

t,is a priori not lear. This is one of the main topis of this paper. Here is a short versionof our main result on this (see Theorem 3.2 and Proposition 3.3 for the full result).Theorem 1.1. For any x ∈ W and any r ∈ (0,∞), as t → ∞,
Px

(
B[0,t] ⊂ W ∩ r(t)Ik

)
∼ h(x)





K0r(t)
− k

2
(k−1)e−tr(t)−2λ(W∩Ik)

, if 1 ≪ r(t) ≪
√

t,

Krt
− k

4
(k−1), if r(t) ∼ r

√
t,

K∞t−
k
4
(k−1), if √t ≪ r(t). (4)Here Kr ∈ (0,∞) are onstants for r ∈ [0,∞] suh that

lim
r→∞

Kr = K∞ and Kr ∼ K0r
− k

2
(k−1)e−r−2λ(W∩Ik) as r ↓ 0. (5)Interestingly, this shows that in the interpolating regime where 1 ≪ r(t) ≪

√
t,the polynomial deay term is already present; however, it does not ome from the timeparameter, but from the spatial parameter. It arises from the resaling limit of theprinipal eigenfuntion.It is lear that the spetral deomposition method used in this paper is also able todesribe the limiting onditional distribution of the endpoint of the Brownian motiongiven that the path stays in the trunated Weyl hamber for a long time; it is given interms of the L1-normalised prinipal eigenfuntion:

Px

(
B(t) ∈ dy

∣∣B[0,t] ⊂ W ∩ Ik
)

=⇒ f (W∩Ik)(y)

〈f (W∩Ik), 1l〉
dy,2



Brownian motion in a trunated Weyl hamberwhere the onvergene is in the weak topology on W ∩ Ik. The seond main questionthat we address is the desription of these endpoints if the dimension k grows to in�nity,at times and in boxes with growth that may be either bounded or unbounded as k → ∞.More preisely, we will give a large-deviation priniple for the empirial measure of theendpoints of the k single motions, properly resaled, and identify the rate funtionexpliitly with the help of some reent result by Eihelsbaher and Stolz. This inpartiular leads to a law of large numbers for this empirial measure in the spirit of thefamous Wigner semi-irle law. However, the rate funtion and therefore the limitingprobability measure have a di�erent form, as the k-dependent boundary of rkI is stillfelt in this limit.More preisely, writing B = B(k) = (B1, . . . , Bk), we onsider the empirial mea-sure of the properly transformed and resaled end points of the k Brownian motions,
B1(tk), . . . , Bk(tk),

µ(k)

rk,tk
=

1

k

k∑

i=1

δsin(Bi(tk)/rk), (6)whih is a random element of the set M1([−1, 1]) of probability measures on [−1, 1].A short version of our main result here, Theorem 4.1, reads as follows.Theorem 1.2 (Large-deviations priniple). Suppose that the sequenes (rk)k and (tk)kin (0,∞) ful�ll tk ≥ 16r2
k. Then, as k → ∞, uniformly in x ∈ W ∩ rkI

k, the distri-bution of µ(k)

rk,tk
under Px( · |B(k)

[0,tk ] ⊂ W ∩ rkI
k) satis�es a large-deviation priniple on

M1([−1, 1]) with speed k2 and rate funtion
R(µ) =

1

2

∫ 1

−1

∫ 1

−1
log |x − y|−1 µ(dx)µ(dy) − d, µ ∈ M1([−1, 1]), (7)where d ∈ IR is suh that infµ∈M1([−1,1]) R(µ) = 0.Expliitly, the statement of Theorem 1.2 is that R is a lower semiontinuous funtionand that, for any open set F ⊂ M1([−1, 1]) and for any losed subset G ⊂ M1([−1, 1]),

lim inf
k→∞

1

k2
log Px(µ(k)

rk,tk
∈ F |B(k)

[0,tk ] ⊂ W ∩ rkI
k) ≥ − inf

µ∈F
R(µ),

lim sup
k→∞

1

k2
log Px(µ

(k)

rk,tk
∈ G |B(k)

[0,tk ] ⊂ W ∩ rkI
k) ≤ − inf

µ∈G
R(µ).Atually, a related large-deviations priniple with the same rate funtion R hasreently been derived by Eihelsbaher and Stolz [ES08℄ for the empirial measure of theeigenvalues of a ertain random matrix with expliit joint distribution of the omponentsin terms of an orthogonal polynomial ensemble. Via the spetral deomposition method,we show that the joint distribution of sin(B(k)(tk)/rk) is asymptotially su�ientlylose to that ensemble. We �nd it remarkable that no divergene of the time tk norof the radius rk is required; apparently no onvergene to the invariant distribution isneessary.From the priniple in Theorem 1.2, a law of large numbers in the spirit of Wigner'ssemiirle theorem is derived as follows (see Cor. 4.2). Let the situation of Theorem 1.2be given. 3



Wolfgang König and Patrik ShmidCorollary 1.3 (Law of large numbers). As k → ∞, uniformly in x ∈ W ∩ rkI
k,the distribution of µ(k)

rk,tk
under Px( · |B(k)

[0,tk ] ⊂ W ∩ rkI
k) onverges weakly towards thearsine distribution on [−1, 1].The remainder of the paper is devoted to the proper formulation of the main resultsand their proofs. Atually, we do not treat the Weyl hamber WA only, but all thethree Weyl hambers WZ = WA,WC ,WD given by

WA = {x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk},

WC = {x = (x1, . . . , xk) ∈ R
k : 0 < x1 < . . . < xk},

WD = {x = (x1, . . . , xk) ∈ R
k : |x1| < x2 < . . . < xk}.In onnetion with Brownian motion, these hambers appeared �rst in a work by Gra-biner [G99℄. They are de�ned with the help of ertain re�etion groups whih will bementioned in Lemma 2.1. The intersetion of these hambers with a box, the trun-ated Weyl hambers, turn out to be aloves ; they are de�ned similarly by a�nere�etion groups (another re�etion is added). Let us mention that Doumer andMoriarty [DM09℄ examined non-exit probabilities of Brownian motion from other (non-time-dependent) aloves (there Pfa�ans instead of determinants arise), while Grabiner[G02℄ exatly enumerated disrete walks restrited to aloves, and Krattenthaler [K07℄identi�ed the asymptotis of this enumeration. Sine the latter two authors work ina disrete setting, one should in priniple be able to derive our results from those ofGrabiner and Krattenthaler by an appropriate saling limit.One an also onsider the Brownian motion onditioned never to hit the boundaryof W ∩ Ik. Speialised to our situation, Pinsky [P85℄ showed that this proess hasgenerator 1

2∆ + ∇f(W∩Ik)

f(W∩Ik)
∇. This proess is stationary, and its invariant distributionhas (f (W∩Ik))2 as Lebesgue density.The paper is organized as follows: in the next setion we set up the eigenfuntionexpansions that are essential for our purposes. In the subsequent setion we use thismahinery to prove the asymptotis for the di�erent regimes and the soft transitionsbetween them. In the �nal setion we prove the large deviation priniple and the lawof large numbers.2 Eigenfuntion ExpansionsIn this setion, we give the details of the eigenvalue expansions for the Brownian motionbefore exiting any of the trunated Weyl hambers WZ ∩ Ik for Z of type A, C or D.In partiular, we expliitly identify all the eigenvalues and eigenfuntions of one halftimes the negative Dirihlet Laplaian, −1

2∆, in these three sets.It is well-known that the non-exiting problem from an open bounded onneted do-main U ⊂ IRk is losely linked with the eigenvalues and eigenfuntions of the DirihletLaplaian in U . Let τU = inf{t > 0: B(t) /∈ U} be the �rst exit time of the Brow-nian motion from the domain U . Then the events {B[0,t] ⊂ U} and {τU > t} are4



Brownian motion in a trunated Weyl hamberidential. The transition density of B before exiting U an be viewed as a symmetripositive de�nite operator on L2(Rk) (see, for example, [PS78℄) and therefore admitsthe eigenfuntion expansion uniformly in x, y ∈ U for t > 0,
Px(B(t) ∈ dy; τU > t)/dy =

∑

l∈IN

e−tλ
(U)
l f (U)

l (x)f (U)

l (y), (8)where (λ(U)

l )l∈IN is the spetrum of −1
2∆ with Dirihlet (i.e., zero) boundary onditionin U , arranged in non-dereasing order, and (f (U)

l )l∈IN is a omplete orthonormal systemin L2(U) of orresponding eigenfuntions. The prinipal eigenvalue λ(U) = λ(U)

1 is simpleand positive, and the orresponding eigenfuntion f (U)

1 = f (U) is hosen stritly positivein U (see for example [D89℄).The key idea is to ombine the expansion in (8) for one-dimensional motions in I witha Karlin-MGregor type formula to derive an expansion for the k-dimensional motionin the trunated Weyl hamber. This very natural method was already suggestedby Hobson and Werner [HW96℄ who examined non-olliding Brownian motions on theirle. It avoids solving the heat equation with zero boundary ondition in the trunatedWeyl hamber, whih would seem tehnially nasty.We need the one-dimensional eigenfuntion expansion. It is well-known that thespetrum and normalized eigenfuntions of −1
2∆ on I = (−π

2 , π
2 ) with Dirihlet bound-ary ondition are given by

λ(I)

l =
l2

2
, f (I)

l =

√
2

π
×
{

sin(lx), if l is even,
cos(lx), if l is odd. (9)We ould onsider an abitrary symmetri interval instead of I, but we fous on (−π

2 , π
2 )for onveniene sine then the formulas simplify. The eigenvalues and eigenfuntionson the interval rI with r > 0 are related by

λ(rI)

l = r−2λ(I)

l , f (rI)

l (x) = r−1/2f (I)

l (x/r). (10)The Karlin-MGregor-type formula for trunated Weyl hambers an be obtainedfrom the original formula (see [KM59b℄) by a small modi�ation. For ompleteness, wegive the proof. We abbreviate the density of the distribution of the one-dimensionalBrownian motion before exiting the interval I by
p(I)

t (x, y) = Px(B1(t) ∈ dy; τI > t)/dy, x, y ∈ I. (11)Lemma 2.1 (Karlin-MGregor formula for a trunated Weyl hamber). For any t > 0,and for any x, y in WA, WC and WD, respetively,
Px(B(t) ∈ dy, τWA∩Ik > t)/dy = det

[
(p(I)

t (xi, yj))i,j=1,...,k

]
, (12)

Px(B(t) ∈ dy, τWC∩Ik > t)/dy = det
[
(p(I)

t (xi, yj) − p(I)

t (xi,−yj))i,j=1,...,k

]
, (13)

Px(B(t) ∈ dy, τWD∩Ik > t)/dy =
1

2
det
[
(p(I)

t (xi, yj) − p(I)

t (xi,−yj))i,j=1,...,k

] (14)
+

1

2
det
[
(p(I)

t (xi, yj) + p(I)

t (xi,−yj))i,j=1,...,k

]
.5



Wolfgang König and Patrik ShmidProof. We follow [G99, Setions 2 and 4℄, whih gives the proof for Ik replaed by IRk.The same proof applies to our situation, sine I is symmetri around zero and is thesame set in any of the k dimensions.The groups Ak−1, Ck,Dk de�ning the Weyl hambers WZ for Z of type A, C or
D onsist of re�etions IRk → IRk, whih are haraterised by permutations of theomponents with sign hanges of the omponents. In order not to overburden thenotation, we have deided to suppress the order of the group from the notation ofthe Weyl hambers (so just types are indiated as the dimension is understood). Theelements of the symmetri group of order k, whih may also be oneived as the Weylre�etion group of type A of order k − 1, Ak−1 , only permute the omponents, theelements of Ck, the hyperotahedral group of order k, permute the omponents witharbitrary sign hanges, and the elements of Dk, the even hyperotahedral group of orderk, permute the omponents with an even number of sign hanges. If these re�etionsare understood as k × k matries, then Ak−1 is the set of all permutation matries, Ckis the set of all matries that have preisely one real of modulus one in eah row andeah olumn, and zero otherwise, and Dk is the set of all suh matries with an evennumber of −1s.We prove the general formula

Px(B(t) ∈ dy, τWZ∩Ik > t) =
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t), (15)where z(y) = (ε(z)

1 yσz(1), . . . , ε
(z)

k yσz(k)) ∈ IRk. Here ε(z)

i ∈ {−1, 1} denotes a possiblesign hange, σz the permutation of the indies, and sign(z) = sign(σz)
∏

i ε(z)

i . Ourassertions (12)�(14) an be dedued from (15) by substituting the respetive Weylgroup.The idea is an appliation of the strong Markov property at time τWZ
, whih leadsto an appliation of an element of the Weyl group to the path (B(τWZ

+ s))s∈[0,t−τWZ
].This uses that Brownian motion is a strong Markov proess and that its inrements aresymmetri with respet to the Weyl groups, i.e., the distribution of B(t2) given B(t1)is, for 0 ≤ t1 < t2, the same as the distribution of z(B(t2)) given z(B(t1)). Hene, wean treat the di�erene of the two sides of (15) as follows:

Px(B(t) ∈ dy, τWZ∩Ik > t) −
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t) =

=
∑

z∈Z

sign(z)
(
Px(B(t) ∈ dz(y), τWZ∩Ik > t) − Px(B(t) ∈ dz(y), τIk > t)

)

= −
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t, τWZ
≤ t).

(16)Now we argue that the right hand side is equal to zero. Indeed, on {τWZ
≤ t}, we have

B(τWZ
) ∈ ∂WZ . In a natural way, we deompose ∂WZ into (up to Lebesgue null sets,disjoint) sets E1, . . . , EiZ and assign to eah Ej a re�etion σj of the respetive Weylgroup with sign(σj) = −1 that �xes every x ∈ Ej, i.e., σj(x) = x. In words, if Ej isthe set of x ∈ ∂WZ suh that xl = xm for some l 6= m, then σj is the transpositionof l and m. If Z is of type C and Ej is the set of x ∈ ∂WZ suh that x1 = 0, then6



Brownian motion in a trunated Weyl hamberwe pik σj as the sign hange for the �rst omponent. If Z is of type D and Ej is theset of x ∈ ∂WZ suh that −x1 = x2, then we pik σj as the transposition of 1 and2, together with two sign hanges in the �rst two omponents. Note that the event
{τIk > t} remains unhanged when (B(τWZ

+ s))s∈[0,t−τWZ
] is replaed by its imageunder σj, sine σj(I

k) = Ik. Therefore, we haver.h.s. of (16)
= −

iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −
iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

=

iZ∑

j=1

∑

z∈Z

sign(σj ◦ z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

=

iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −r.h.s. of (16).Hene, the term is equal to zero, and we are done.Now we use the eigenfuntion expansion (8) for U = I in (12)�(14) to obtain theanalogous expansions in the trunated Weyl hambers. We abbreviate, for a multi-index
l = (l1, . . . , lk) ∈ INk and x = (x1, . . . , xk) ∈ Ik,
λ(Z)

l =

k∑

i=1

λ(I)

li
and f (Z)

l (x) = det
[
(f (I)

li
(xj))i,j=1,...,k

]
×





1, for type A,

2k/2, for type C,

2(k−1)/2, for type D.(17)Furthermore, we need the three index sets
NA = INk, NC = (2IN)k, ND = (2IN − 1)k ∪ (2IN)k. (18)Lemma 2.2 (Eigenvalue expansion in trunated Weyl hambers). The transition den-sity of Brownian motion before exiting the trunated Weyl hamber WZ ∩ Ik for Zof types A, C and D admits the following expansions, for any t > 0, uniformly for

x, y ∈ WZ ∩ Ik:
Px(B(t) ∈ dy, τWZ∩Ik > t)/dy =

∑

l∈WA∩NZ

e−tλ
(Z)
l f (Z)

l (x)f (Z)

l (y). (19)Proof. Let us �rst prove the ase A; we later explain the di�erenes that our in thetwo other ases, C and D. 7



Wolfgang König and Patrik ShmidWe substitute the eigenvalue expansion (8) for p(I)

t de�ned in (11) in (12) to obtain
Px(B(t) ∈ dy,τWA∩Ik > t)/dy = det

[( ∞∑

l=1

e−tλ
(I)
l f (I)

l (xi)f
(I)

l (yj)
)

i,j=1,...,k

]

=
∑

l=(l1,...,lk)∈INk

k∏

j=1

e
−tλ

(I)
lj det

[(
f (I)

lj
(xi)f

(I)

lj
(yj)

)
i,j=1,...,k

]
,

(20)where we also used the multilinearity of the determinant in olumns. Observe that thelast determinant is identially zero if the k indies l1, . . . , lk are not pairwise distint.Indeed, if li = lj for some i 6= j, then at least the ith and the jth row of the matrixare multiples of eah other for all x, y ∈ WA ∩ Ik. Hene, the sum over l ∈ INk may beredued to the sum over l ∈ WA ∩ INk with an additional sum over β ∈ Sk, the set ofall permutations of 1, . . . , k, and l is replaed by lβ = (lβ(1), . . . , lβ(k)). Using also thenotation in (17) for the eigenvalue, this givesR.h.s. of (20) =
∑

l=(l1,...,lk)∈WA∩INk

e−tλ
(A)
l

∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]
.(21)Let us evaluate the sum over β. Using the substitutions j = τ−1◦β−1(i) and τ−1◦β = σfor β, τ ∈ Sk, we ompute

∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]

=
∑

β,τ

sign(τ)

k∏

j=1

[
f (I)

lβ◦τ(j)
(xj)f

(I)

lβ◦τ(j)
(yτ(j))

]

=
∑

β,τ

sign(τ)
k∏

i=1

[
f (I)

li
(xτ−1◦β−1(i))f

(I)

li
(yβ−1(i))

]

=
∑

β,τ

sign(τ)

k∏

i=1

[
f (I)

li
(xτ−1◦β(i))f

(I)

li
(yβ(i))

]

=
∑

β,σ

sign(β)sign(σ)

k∏

i=1

[
f (I)

li
(xσ(i))f

(I)

li
(yβ(i))

]

=
(∑

β

sign(β)
k∏

i=1

f (I)

li
(yβ(i))

)(∑

σ

sign(σ)
k∏

j=1

f (I)

lj
(xσ(j))

)

= f (A)

l (x)f (A)

l (y),where we used the notation in (17) for the eigenfuntion in the last step. Using this in(21), we see that the proof of the lemma for Z of type A is omplete.Now we explain the di�erenes to ases C and D. In the ase C, inserting theeigenvalue expansion (8) for U = I in the formula (13), realling (9) and using that
f

(I)
l is even if l is odd (the same applies vie versa: f

(I)
l is odd if l is even), we see that8



Brownian motion in a trunated Weyl hamber
f

(I)
l terms for odd l disappear and f

(I)
l terms for even l appear twie, more preisely,

Px(B(t) ∈ dy, τWC∩Ik > t)/dy = det
[( ∞∑

l=1

2e−tλ
(I)
2l f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]
.Hene, only even indies appear, and a fator of 2k an be extrated from the determi-nant and is distributed to the two funtions f (C)

2l (x) and f (C)

2l (y), see the seond line in(17).Case D is similar; from (14) we see that the �rst determinant is the same as in ase
C, and in the seond only osines remain:

Px(B(t) ∈ dy, τWD∩Ik > t)/dy = 1
2 det

[(∑∞
l=1 2e−tλ

(I)
2l f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]

+1
2 det

[(∑∞
l=1 2e−tλ

(I)
2l−1f (I)

2l−1(xi)f
(I)

2l−1(yj)
)

i,j=1,...,k

]
.Now one easily sees how the prefators 2k/2, 2(k−1)/2 and the index sets NC , ND arise.Corollary 2.3. For Z of type A, C and D the negative Dirihlet Laplaian −1

2∆ on
WZ ∩ Ik has spetrum {λ(Z)

l : l ∈ WA ∩ NZ}, where these eigenvalues are ounted withmultipliity. Furthermore, {f (Z)

l : l ∈ WA ∩ NZ} is a omplete orthonormal system oforresponding eigenfuntions.Proof. The funtions f (Z)

l with l ∈ WA ∩NZ are orthonormal on L2(WZ ∩ Ik) and theyare eigenfuntions of−1
2∆ orresponding to the eigenvalues λ(Z)

l , sine the f (Z)

l are linearombinations of produts of one-dimensional eigenfuntions whih are orthonormalisedon I, and the Laplaian is a linear operator. For the reader's onveniene, we providethe details for this. We onentrate on ase A sine the other ases follow in the samespirit. First we show the eigenfuntion property:
−1

2
∆f (A)

l (x) = −1

2
∆ det

[
(f (I)

li
(xj))i,j=1,...,k

]
= −1

2

∑

σ

sign(σ)∆

k∏

i=1

f (I)

li
(xσ(i))

=
∑

σ

sign(σ)

(
k∑

i=1

λ(I)

li

)
k∏

i=1

f (I)

li
(xσ(i)) =

(
k∑

i=1

λ(I)

li

)
f (A)

l (x)

= λ(A)

l f (A)

l (x),where we also used (9) and (17). The boundary ondition is obviously satis�ed beauseof the boundary ondition of the one-dimensional eigenfuntions and the determinantalstruture. Now we show orthonormality for two multi-indies l1, l2:
∫

WA∩Ik

f (A)

l1
(x)f (A)

l2
(x)dx =

1

k!

∫

Ik

f (A)

l1
(x)f (A)

l2
(x) dx

=
1

k!

∑

α,β

sign(α ◦ β)

∫

Ik

k∏

i=1

f (I)

l1i
(xα(i))f

(I)

l2i
(xβ(i)) dx

=
1

k!

∑

α,β

sign(α ◦ β)
k∏

i=1

〈
f (I)

l1i
, f (I)

l2
α◦β−1(i)

〉
,9



Wolfgang König and Patrik Shmidwhere we wrote 〈·, ·〉 for the standard inner produt on IR. If l1 6= l2, then, for any
α, β, there is at least one i suh that l1i 6= l2α◦β−1(i), and hene the orresponding innerprodut is zero, sine the f (I)

l form an orthonormal basis. If l1 = l2, then for any α 6= β,there is also at least suh an i, suh that the sum redues to the sum over α = β, whihgives that the right-hand side is equal to one. This shows orthonormality.These are in fat all eigenfuntions sine otherwise there is a funtion g 6= 0 suhthat
0 =

∑

l∈WA∩NZ

e−tλ
(Z)
l 〈f (Z)

l , g〉2 =

∫ ∫
g(y)g(x)Px(B(t) ∈ dy, τWZ∩Ik > t) dx.But this ontradits the existene of an expansion of the transition density in terms ofa omplete orthonormal system, reall [PS78℄.Note that, for k ≥ 3, some of the eigenvalues λ(Z)

l oinide for di�erent l, i.e., theirmultipliity is larger than one. Examples of suh eigenvalues an be onstruted usingPythagorean number triples.Remark 2.4. In partiular the prinipal eigenvalues and eigenfuntions of −1
2∆ in

WZ ∩ Ik with Dirihlet boundary ondition are given by
λ(A) = λ(A)

id =
1

2

k∑

i=1

i2, λ(C) = λ(C)

2id = 4λ(A), λ(D) = λ(D)

2id−1 =
1

2

k∑

i=1

(2i − 1)2,(22)and
f (A) = |f (A)

id |, f (C) = 2
k
2 |f (A)

2id |, f (D) = 2
k−1
2 |f (A)

2id−1|, (23)where id = (1, 2, 3, . . . , k).Hene, f (Z) = f (WZ∩Ik) in the notation of Setion 1. We are able to give expliitexpressions for the prinipal eigenfuntions in terms of the réduites. These are, byde�nition, positive harmoni funtions for −1
2∆ that vanish on the boundary of theWeyl hambers. They are unique, up to positive multiples. They are given by

hA(x) = det
[
(xj−1

i )i,j=1,...,k

]
, hD(x) = hA(x2), hC(x) = hD(x)

k∏

i=1

xi, (24)where we wrote x2 for the vetor (x2
1, . . . , x

2
k). Note that h = hA is the lassialVandermonde determinant. The following identi�ation lari�es the relation betweenthe funtions appearing in the asymptotis (1) and (3). It also shows that it will benatural to onsider the sine of the endpoints of the motions instead of the motionsthemselves, see (6). 10



Brownian motion in a trunated Weyl hamberCorollary 2.5 (Prinipal eigenfuntions).
f (A)(x) =

2k2/2

πk/2
hA(sin(x))

k∏

i=1

cos(xi), (25)
f (C)(x) =

2k(k+1)

πk/2
hC(sin(x))

k∏

i=1

cos(xi), (26)
f (D)(x) =

2(2k2−1)/2

πk/2
hD(sin(x))

k∏

i=1

cos(xi). (27)Proof. Let us �rst onsider the ase A. Use (23) and (17) (reall (9)) to see that
f (A)(x) =

( 2

π

)k/2∣∣∣ det
[(

cos(ixj)1l{i odd} + sin(ixj)1l{i even})i,j=1,...,k

]∣∣∣. (28)Now use the well-known sine and osine expansions for i odd in the osine and for ieven in the sine:
cos(ix) = cos(x)

(i−1)/2∑

n=0

(−1)n
(

i

2n

)
(sin2(x))n(1 − sin2(x))(i−1)/2−n, (29)

sin(ix) = cos(x) sin(x)

i/2∑

n=1

(−1)n+1

(
i

2n − 1

)
(sin2(x))n−1(1 − sin2(x))i/2−n.(30)Note that the degrees of the monomials in the expansions all have the same parity. Weextrat the fators cos(xj) row-wise from the determinants so that the terms remainingin the i-th row are polynomials pi in sin(xj), i.e.,

f (A)(x) =
( 2

π

)k/2
k∏

i=1

cos(xi)
∣∣∣det

[(
pi(sin(xj))

)
i,j=1,...,k

]∣∣∣.Now observe that pi has degree preisely equal to i− 1 with highest oe�ient omingfrom a summation of the binomial oe�ients over all summands: For i odd,
pi(y) =

(i−1)/2∑

n=0

(−1)n
(

i

2n

)
y2n(1 − y2)(i−1)/2−n = yi−12i−1(−1)(i−1)/2 + O(yi−3), (31)and for i even:

pi(y) = y

i/2∑

n=1

(−1)n+1

(
i

2n − 1

)
y2n−2(1−y2)i/2−n = yi−12i−1(−1)i/2−1+O(yi−3). (32)Therefore, one an apply elementary row operations in suh a way that in eah entryof the determinant only the leading monomial is left. Afterwards, we an extrat fromthe i-th row the prefator 2i−1 and are left with

f (A)(x) =
( 2

π

)k/2∣∣∣ det
[(

sini−1(xj)
)
i,j=1,...,k

]∣∣∣
k∏

i=1

[
cos(xi)2

i−1
]
.11



Wolfgang König and Patrik ShmidNow ollet the terms and reall (24) to see that (25) is true.Now we ome to ases C and D. Plugging in the one-dimensional eigenfuntionsyields
f (C)(x) =

( 2

π

)k/2
2k/2

∣∣∣ det
[(

sin(2ixj)
)
i,j=1,...,k

]∣∣∣

f (D)(x) =
( 2

π

)k/2
2(k−1)/2

∣∣∣ det
[(

cos((2i − 1)xj)
)
i,j=1,...,k

]∣∣∣.Using expansions (29) and (30) we obtain
f (C)(x) =

2k

πk/2

∣∣∣ det
[(

p2i(sin(xj))
)
i,j=1,...,k

]∣∣∣
k∏

i=1

cos(xi)

f (D)(x) =
2k−1/2

πk/2

∣∣∣det
[(

p2i−1(sin(xj))
)
i,j=1,...,k

]∣∣∣
k∏

i=1

cos(xi).For ases C and D the degrees of the polynomials in sin(x) inrease by two with eahrow, so that we get the degrees from 1 to 2k−1 for ase C and from 0 to 2k−2 for ase
D. One an perform exatly the same row operations sine all ouring monomials ofthe polynomials have the same parity in their degrees. But now we atually get hA insine squares together with a produt of sines in ase C. Hene we arrive at (26) and(27) (reall (24)).3 Exit regimesNow we use our results on the eigenvalue expansions from Setion 2 to identify theasymptotis of the non-exit probabilities in time-dependent trunated Weyl hambers.For this we prove a tehnial lemma. Note that we abbreviate 〈f (Z), 1l〉 by ∫ f (Z).Abbreviate

γ(t) := − ln
(
1 − e−( t

2
−7)
)
− ( t

2 − 7), t > 14. (33)Lemma 3.1. Fix a type A, C or D for Z. Then, for any t, r ∈ (0,∞) with t/r2 > 14and for any x, y ∈ WZ ∩ rIk,
Px(B(t) ∈ dy, τWZ∩rIk > t)/dy

= e−tr−2λ(Z)
r−kf (Z)(x/r)f (Z)(y/r)(1 + ε(Z)

tr−2(x/r, y/r)),
(34)and

Px(τWZ∩rIk > t) = e−tr−2λ(Z)
f (Z)(x/r)

∫
f (Z) (1 + ε̃(Z)

tr−2(x/r)), (35)where the error terms satisfy
sup

x,y∈WZ∩Ik

|ε(Z)

t (x, y)| ≤ ekγ(t), sup
x∈WZ∩Ik

|ε̃(Z)

t (x)| ≤ ekγ(t). (36)12



Brownian motion in a trunated Weyl hamberProof. We provide the details of the proof for Z of type A only and explain the di�er-enes to the other two types later. Use (19), (10) and (22) and isolate the �rst term inthe expansion to get
Px(B(t) ∈ dy, τWA∩rIk > t)/dy

=
∑

l∈WA∩Nk

e−tr−2λ
(A)
l r−kf (A)

l (x/r)f (A)

l (y/r)

= e−tr−2λ(A)
r−kf (A)(x/r)f (A)(y/r)(1 + ε(A)

tr−2(x/r, y/r)),

(37)where
ε(A)

t (x, y) =
∑

l=(l1,...,lk)∈WA∩Nk\{id}

e−
t
2

Pk
i=1(l

2
i −i2) f

(A)

l (x)f (A)

l (y)

f (A)(x)f (A)(y)
. (38)We �rst laim that

sup
x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)

hA(id)

( ∏

i : li>i

[23li/2li]
)( ∏

i : li=i

2li
)
, (39)where l̃ ∈ WA ∩N

k \ {id}, maximizes hA subjet to l̃ ≤ l; we understand the inequalityomponentwise. Its derivation will now be explained in detail.As in the proof of Corollary 2.5, we see that, for any l ∈ INk,
f (A)

l (x) =
( 2

π

)k/2
det
[(

pli(sin(xj))
)
i,j=1,...,k

] k∏

i=1

cos(xi), (40)where the polynomials pi are given in (31) and (32). The degree of pli is li − 1, and theoe�ients of all lower monomials with parity of degree di�erent from the one of li − 1are zero.Now we evaluate the determinant. As in the proof of Corollary 2.5, we arry outsuitable row operations to anel in the polynomial of row i every monomial of order
< i−1. But now, to ahieve this, we �rst need to suitably permute all rows i satisfying
li > i. Let us all the arising vetor l′. Hene, there are polynomials

p̃i,l′i
(w) =

l′i∑

n=i

wn−1bn,i,l′i
, w ∈ IR,with suitable oe�ients bn,i,l′i

suh that
∣∣∣det

[(
pli(sin(xj))

)
i,j=1,...,k

]∣∣∣ =
∣∣∣det

[(
p̃i,l′i

(sin(xj))
)
i,j=1,...,k

]∣∣∣.These oe�ients satisfy |bn,i,l′i
| ≤ 23l′i/2 if l′i > i and |bn,i,l′i

| ≤ 2l′i if l′i = i. This isexplained as follows: if l′i = i, then 2l′i bounds the sum of the binomial oe�ients foreah monomial in (31) and (32); if l′i > i, then we need the additional power of l′i/2 dueto the binomial oe�ients whih arise by expansion of the power of (1 − y2) in (31)and (32). 13



Wolfgang König and Patrik ShmidUsing the multilinearity of the determinant, we obtain
det
[(

p̃i,l′i
(sin(xj))

)
i,j=1,...,k

]
=

∑

i≤ni≤l′
i

i=1,...,k

an(sin(x))

k∏

i=1

bni,i,l′i
,where a(n1,...,nk)(w) = det[(wni−1

j )i,j=1,...,k] for w = (w1, . . . , wk). Now we introdue theShur polynomials,
sd(w) =

ad+id(w)

hA(w)
, w ∈ IRk,where d = (d1, . . . , dk) ∈ INk

0 satis�es d1 ≤ · · · ≤ dk, see e. g. [F97℄. To be able toemploy these polynomials, we assoiate to eah n ∈ INk
0 its inreasingly ordered version

−→n . Then a−→n di�ers at most by a sign hange from an. Note that if ni = nj for at leasttwo indies i and j, then an and hene a−→n is identially zero. Using (40) for f (A)

l and(25) for f (A), we see that
∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ =

∣∣∣∣∣
det
[(

pli(sin(xj))
)
i,j=1,...,k

]

2k(k−1)/2hA(sin(x))

∣∣∣∣∣

≤ 2−k(k−1)/2
∑

i≤ni≤l′
i

i=1,...,k;ni 6=nj

|s−→n −id(sin(x))|
k∏

i=1

|bni,i,l′i
|.Now we estimate the modulus of the right-hand side. Note that s−→n−id(sin(x)) is amultipolynomial in sin(x1), . . . , sin(xk) with positive oe�ients and that all these ar-guments are in [−1, 1]. Therefore,

|s−→n −id(sin(x))| ≤ s−→n−id(1l) =
|hA(n)|
hA(id)

≤ hA(l̃)

hA(id)
,see [F97℄ or [J00, proof of Lemma 2.3℄. Hene, we have

sup
x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)

hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
)
.This proves (39) whih we an now plug in the error term ε(A)

t (x, y):
sup

x,y∈WA∩Ik

|ε(A)

t (x, y)| ≤
∑

l∈WA∩Nk\{id}

e−
t
2

Pk
i=1(l2i −i2)

(
sup

x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣
)2

≤
∑

l∈WA∩Nk\{id}

2−k(k−1)e
− t

2

P

i : li>i(li−i)(li+i)

×


 hA(l̃)

hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
)



2

.14



Brownian motion in a trunated Weyl hamberWith help of the elementary estimate (also using that l̃ ≤ l)
ln

(
hA(l̃)

hA(id)

)
≤

∑

i,j : j<i<l̃i

ln
l̃i − j

i − j
=

∑

i,j : j<i<l̃i

ln

(
1 +

l̃i − i

i − j

)

≤
∑

i,j : j<i<l̃i

ln(2(l̃i − i)) ≤
∑

i : l̃i>i

(i − 1)2(li − i) ≤
∑

i : li>i

(li + i)(li − i)and using that 2−k(k−1)(
∏

i : li=i 2
li)2 ≤ 1, we an proeed by

sup
x,y∈WA∩Ik

|ε(A)

t (x, y)|

≤
∑

l∈WA∩Nk\{id}

exp


2

∑

i : li>i

[
(li + i)(li − i) + li

3
2 ln 2 + ln(li)

]



× exp


− t

2

∑

i : li>i

(li − i)(li + i)




≤
∑

l∈WA∩Nk\{id}

exp


−

(
t

2
− 7

) ∑

i : li>i

(li − i)(li + i)


 ,where we also estimated li

3
2 ln 2 + ln(li) ≤ 5

2(li + i)(li − i). De�ne c1(t) := t
2 − 7 and

c2(t) := 1
1−e−c1(t) . Then under the assumption t > 14, we use in the sum over l that

li ≥ i for i = 1, . . . , k−1 and lk ≥ k +1 and ompare to the geometri series, to obtain:
sup

x,y∈WA∩Ik

|ε(A)

t (x, y)| ≤
∑

l∈WA∩Nk\{id}

e−c1(t)(l21−12+···+l2k−k2)

=
∑

l∈WA∩Nk\{id}

(
e−c1(t)

)l21−1
k∏

i=2

e−c1(t)(l2i −i2)

≤ 1

1 − e−c1(t)

∑

(l2,...,lk)∈WA∩(N+1)k−1\{(2,...,k)}

k∏

i=2

e−c1(t)(l2i −i2)

≤ (c2(t))
k−1

∞∑

l=k+1

e−c1(t)(l2−k2) = (c2(t))
k−1

∞∑

n=1

e−c1(t)(2nk+n2)

≤ (c2(t))
k−1e−kc1(t)

∞∑

n=1

(
e−c1(t)

)(2n−1)k
≤ (c2(t))

ke−kc1(t)

= ekγ(t),where we reall the de�nition of γ(t) from (33). This proves the �rst bound in (36) forthe error term in (34) and therefore �nishes the proof of (34) for the ase A.If we integrate Px(B(t) ∈ dy, τWA∩rIk > t) over y, we obtain
Px(τWA∩rIk > t) =

∞∑

l=1

e−tr−2λ
(A)
l f (A)

l (x/r)

∫
f (A)

l .15



Wolfgang König and Patrik ShmidNow one an isolate the �rst summand as in (37) and arry out exatly the sameproedure as above with the only di�erene that f (A)

l (y) is replaed by ∫ f (A)

l . Thisyields (35) with an error term ε̃ satisfying the seond bound in (36). Hene, the proofof the lemma for Z of type A is �nished.For ases C and D we an use the same proedure with the only di�erenes thatsome l ∈ WA ∩N
k \{id} do not appear in the expansions and we now have to divide byVandermonde determinants in sine squares together with a produt of sines in ase C.But this leads to the same bound sine all omponents of the ouring l are guaranteedto have the same parity. Hene the lemma is proved.With the help of this lemma we an now formulate and prove our �rst main theorem.Theorem 3.2 (Late-time non-exit from a time-dependent trunated Weyl hamber).Fix a type A, C or D for Z. Then, for any funtion r : (0,∞) → (0,∞), as t goes toin�nity, for x ∈ WZ ∩ r(t)Ik and r ∈ (0,∞),

Px

(
τWZ∩r(t)Ik > t

)
∼





e−tr−2λ(Z)
f (Z)(x

r )
∫

f (Z), if r(t) ≡ r,

K(Z)

0 r(t)−αZ hZ(x)e−tr(t)−2λ(Z)
, if 1 ≪ r(t) ≪

√
t,

K(Z)
r hZ(x)t−αZ/2, if r(t) ∼ r

√
t,

K(Z)
∞ hZ(x)t−αZ/2, if √t ≪ r(t).

(41)The onvergene is uniform for x ∈ WZ ∩ r(t)Ik, without further restrition in the �rstase, with the restrition |x| ≤ θtr(t) in the two middle ases and with the restrition
|x| ≤ θt

√
t in the last ase, for any 0 < θt → 0 as t → ∞. In the third line, K(Z)

r :=

P0(τrIk > 1|τWZ
> 1)K(Z)

∞ . The other parameters are given as follows.
αA =

k

2
(k − 1), αC = k2, αD = k(k − 1), (42)and

K(A)

0 = 2k2/2

πk/2

∫
f (A), K(A)

∞ =
2k

k
Q

i=1
Γ(i/2+1)

πk/2k!
Q

i<j
(j−i)

K(C)

0 = 2k(k+1)

πk/2

∫
f (C), K(C)

∞ =
23k2/2

k
Q

i=1
Γ(i/2+1)Γ((i+1)/2)

πkk!
Q

i<j
[(2j−1)2−(2i−1)2]

k
Q

i=1
(2k+1−2i)

K(D)

0 = 2(2k2−1)/2

πk/2

∫
f (D), K(D)

∞ =
2(3k2−3k+2)/2

k
Q

i=1
Γ(i/2+1)Γ(i/2)

πkk!
Q

i<j
[(2j−1)2−(2i−1)2]

.

(43)
Remark. The onditional probability appearing in the de�nition of K(Z)

r is to be inter-preted as
P0(τrIk > 1|τWZ

> 1) = lim
x→0,x∈WZ

Px(τrIk > 1, τWZ
> 1)

Px(τWZ
> 1)

, (44)see [KT03, Thm. 2.2℄. 16



Brownian motion in a trunated Weyl hamberProof. The assertions about the asymptotis of the non-exit probabilities in the �rsttwo regimes follow from (35) and (36) of Lemma 3.1 sine by the hoies of r(t) wehave γ( t
r(t)2

) → −∞ and furthermore f (Z)(x/r(t)) ∼ K(Z)

0 r(t)−αZ hZ(x)/
∫

f (Z) in theseond regime.Now we ome to the proof of the last two regimes, for any type A, C, D. In thethird regime, where r(t)/
√

t → r, we use Brownian saling to see that
Px(τWZ∩r(t)Ik > t) = P x√

t

(
τrIk > 1

∣∣ τWZ
> 1
)

Px(τWZ
> t).The asymptotis Px(τWZ

> t) ∼ K(Z)
∞ hZ(x)t−αZ/2 are well-known due to [G99℄. Thisis where the restrition |x| ≤ θt

√
t, with any 0 < θt → 0 as t → ∞, is needed.In order to see that the �rst term on the right-hand side onverges towards K(Z)

r =

P0(τrIk > 1 | τWZ
> 1), we use [KT03℄ that (Bs)s∈[0,1], onditional given {τWZ

> 1}, isa temporarily inhomogeneous di�usion proess for whih zero is an entrane boundary.In partiular, we have limy→0,y∈WZ
Py(τrIk > 1 | τWZ

> 1) = P0(τrIk > 1 | τWZ
> 1),i.e., the proof in the third regime is done.In the fourth regime, where r(t) ≫

√
t, we proeed similarly:

Px(τWZ∩r(t)Ik > t) = P x√
t

(
τr(t)t−1/2Ik > 1

∣∣∣ τWZ
> 1
)

Px(τWZ
> t).While the last term is handled in the same way as in the third regime, the �rst termis easily seen to onverge to one. Indeed, it is not larger than one, and it is, for any�xed r > 0 and for any su�iently large t, not smaller than P x√

t
(τrIk > 1 | τWZ

> 1).Now arry out the limit as t → ∞ using the above argument, and afterwards the limitas r ↑ ∞.Furthermore, there is even a smooth transition between these regimes.Proposition 3.3 (Soft transition). For Z of type A, C or D,
lim

r→∞
K(Z)

r = K(Z)
∞ , and K(Z)

r ∼ K(Z)

0 e−r−2λ(Z)
r−αZ as r → 0.Proof. The �rst statement is obvious. For proving the seond, we use (44) and sub-stitute, in the denominator, the asymptotis Px(τWZ

> 1) = K(Z)
∞ hZ(x)(1 + ox(1)) as

x → 0, x ∈ WZ , whih easily follows via Brownian saling from [G99℄. Note that we aninterhange the limits x → 0 and r ↓ 0 beause of uniform onvergene whih followsfrom Lemma 3.1, see (35), sine limr↓0 γ(r−2) = −∞, see (33). This gives that
K(Z)

r = lim
x→0,x∈WZ

Px(τWZ∩rIk > 1)

Px(τWZ
> 1)

K(Z)
∞

∼ lim
x→0,x∈WZ

e−r−2λ(Z)
f (Z)(x/r)

∫
f (Z)

K(Z)
∞ hZ(x)(1 + ox(1))

K(Z)
∞

= K(Z)

0 e−r−2λ(Z)
r−αZ .17



Wolfgang König and Patrik Shmid4 Large-deviation priniple for large dimensionNow we onsider limits as the dimension k diverges. Therefore, we now write B(k) =

(B1, . . . , Bk) for the k-dimensional Brownian motion.ByM1([a, b]) we denote the set of probability measures on [a, b], with a, b ∈ R, a < b.Reall that µ(k)

rk,tk
denotes the empirial measure of the vetor sin(B(k)(tk)/rk), see (6).With the help of Lemma 3.1, we an also prove large-deviation priniples.Theorem 4.1 (LDP for diverging dimension). Assume that Z is of type A or C. Let

(rk)k∈IN and (tk)k∈IN be sequenes in (0,∞) satisfying tk ≥ 16r2
k. Then, as k → ∞, theonditional distribution of µ(k)

rk,tk
under Px(· |B(k)

[0,tk ] ⊂ WZ ∩ rkI
k) satis�es, uniformlyin x ∈ WZ ∩ rkI

k, a large deviation priniple on M1([−1, 1]) in the ase A and on
M1([0, 1]) in the ase C with respet to the weak topology with speed k2 and good ratefuntion

RA(µ) =
1

2

∫ 1

−1

∫ 1

−1
log |x − y|−1 µ(dx)µ(dy) − dA, (45)

RC(µ) =
1

2

∫ 1

0

∫ 1

0
log |x2 − y2|−1 µ(dx)µ(dy) −

∫ 1

0
log xµ(dx) − dC , (46)where dZ ∈ IR is suh that inf RZ = 0.It follows from the theory of logarithmi potentials with external �elds, see [ST97℄for example, that dZ is �nite. We also have dZ = limk→∞

1
k2 log

∫
WZ∩(2I/π)k hZ(x) dx.Our proof of Theorem 4.1 relies on a related priniple for an orthogonal polynomialensemble, proved by Eihelsbaher and Stolz [ES08℄. However, the ase D annot betreated by them, due to the appearane of a square in the density of that ensemble,whih leads to some ambiguity in the interpretation of the squareroot.Proof. We �rst laim that, as k → ∞,

Px

(
sin
(B(k)(tk)

rk

)
∈ dy

∣∣∣ τWZ∩rkIk > tk

)
/dy ∼ hZ(y)∫

WZ∩(2I/π)k hZ(w) dw
, (47)uniformly in x ∈ WZ ∩ rkI

k and y ∈ WZ ∩ (2I/π)k. Indeed, if we apply the transfor-mation x 7→ sin(x/rk) to B(k)(tk) in (34) of Lemma 3.1, we obtain, as k → ∞,
Px

(
sin
(B(k)(tk)

rk

)
∈ dy , τWZ∩rkIk > tk

)
/dy

=
K(Z)

0∫
f (Z)

e−tkr−2
k λ(Z)

f (Z)(x/rk)hZ(y)(1 + o(1)),and
Px

(
τWZ∩rkIk > tk

)
=

K(Z)

0∫
f (Z)

e−tkr−2
k λ(Z)

f (Z)(x/rk)

∫

WZ∩(2I/π)k

hZ(w) dw(1 + o(1)),sine the errors εtkr−2
k

and ε̃tkr−2
k

vanish, by our assumption that supk∈IN γ( tk
r2
k
) < 0; see(36). Now a division yields the laim (47).18



Brownian motion in a trunated Weyl hamberWe now apply [ES08, Thm. 3.1℄, whih ontains the large-deviation priniple forthe empirial measure of a random vetor with density given by the right-hand sideof (47) with rate funtion given in (45) resp. (46). Our ase A refers to the hoie
Σ = [−1, 1], p(k) = k,wk ≡ 1, γ = 1, β = 1, κ = 1 in [ES08, Thm. 3.1℄, and in the ase
C, one piks Σ = [0, 1], p(k) = k,wk(x) ≡ x, γ = 2, β = 1, κ = 1. By (47), the empirialmeasure of a vetor having density given by the left-hand side of (47), also satis�esthat priniple. But this is our assertion.We use the large-deviation priniple to derive a law of large numbers in the spiritof Wigner's semi-irle law. Let us introdue the following measures µA and µC .

µA(dx) =
1

π
√

1 − x2
dx, x ∈ [−1, 1], (48)

µC(dx) =
3

2πx

√
x − 1/9

1 − x
dx, x ∈ [1/9, 1]. (49)Then µA is the well-known arsine law.Corollary 4.2 (Law of large numbers). Let the situation of Theorem 4.1 be given. Let

Z be of type A or C. Then the onditional distribution of µ(k)

rk,tk
under Px(· |B(k)

[0,tk ] ⊂
WZ ∩ rkI

k) onverges, uniformly in x ∈ WZ ∩ rkI
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