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tWe examine the non-exit probability of a multidimensional Brownian motion froma growing trun
ated Weyl 
hamber. More pre
isely, we 
ompute, for �xed time t, theprobability that the motion does not leave by time t the interse
tion of a Weyl 
hamberand a t-dependent 
entred box, and we identify its asymptoti
s for t → ∞. Di�erentregimes are identi�ed a

ording to the growth speed, ranging from polynomial de
ayover stret
hed exponential (that is, exponential of a power fun
tion, here with expo-nent in (0, 1)) to exponential de
ay. Furthermore we derive asso
iated large deviationprin
iples for the empiri
al measure of the properly res
aled and transformed Brown-ian motion as the dimension grows to in�nity. Our main tool is an expli
it eigenvalueexpansion for the transition probabilities before exiting the trun
ated Weyl 
hamber.MSC2010. 60J65, 60F10Keywords and phrases. Weyl 
hamber, non-
olliding Brownian motions, Karlin-M
Gre-gor formula, non-
olliding probability, non-exit probability, eigenvalue expansion, ré-duite.1 Introdu
tionOur goal is to examine the non-exit probability of a Brownian motion from a time-dependent trun
ated Weyl 
hamber for large times. Let k ∈ IN be �xed and let B =

(B(t))t∈[0,∞) be a standard Brownian motion in IRk. Furthermore, let W = WA =

{x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk} be the Weyl 
hamber of type A. Then it iswell-known [G99℄ that the asymptoti
s of the probability not to exit W for a long timeis given by

Px(B[0,t] ⊂ W ) ∼ Kh(x)t−
k
4
(k−1), t → ∞, for x ∈ W, (1)where the motion starts from x ∈ IRk under Px, K is an expli
it 
onstant, and

h(x) =
∏

1≤i<j≤k

(xj − xi) = det
[
(xj−1

i )i,j=1,...,k

] (2)1
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k S
hmiddenotes the well-known Vandermonde determinant. On the other hand, it is also well-known, see [PS78℄ for example, that the non-exit probability from the bounded set
W ∩ Ik with I = (−π

2 , π
2 ) is asymptoti
ally given as

Px(B[0,t] ⊂ W ∩ Ik) ∼ e−tλ(W∩Ik)
f (W∩Ik)(x)〈f (W∩Ik), 1l〉, t → ∞, for x ∈ W, (3)where λ(U) denotes the prin
ipal eigenvalue and f (U) the 
orresponding positive L2-normalised eigenfun
tion of −1

2∆ in an open bounded 
onne
ted set U ⊂ IRk withDiri
hlet (i.e., zero) boundary 
ondition, and 〈f, g〉 denotes the standard inner produ
tin L2(U). That is, the probability of not exiting from the Weyl 
hamber de
ays poly-nomially in time, while the one for the trun
ated Weyl 
hamber de
ays exponentially.The �rst main goal of this paper is to understand the transition from exponentialto polynomial de
ay when repla
ing the box Ik in (3) by the box rIk, and then letting
r in
rease as a fun
tion r(t) (r : (0,∞) → (0,∞)).In parti
ular, an interesting question is how the two fun
tions h and f (W∩Ik) aretransformed into ea
h other. Is it true that the Vandermonde determinant is equal toa res
aled limit of the prin
ipal eigenfun
tion of −1

2∆ in W ∩ Ik?It will turn out that, for 1 ≪ r(t) ≪
√

t, the non-exit probability de
ays in astret
hed exponential way (that is, exponential of a power fun
tion, here with exponentin (0, 1)), but for √t ≪ r(t), the same asymptoti
s as in (1) will hold, sin
e the motiondoes not feel the boundary, a

ording to the 
entral limit theorem. However, the wayin whi
h the stret
hed-exponential de
ay be
omes a polynomial de
ay when r(t) ≍
√

t,is a priori not 
lear. This is one of the main topi
s of this paper. Here is a short versionof our main result on this (see Theorem 3.2 and Proposition 3.3 for the full result).Theorem 1.1. For any x ∈ W and any r ∈ (0,∞), as t → ∞,
Px

(
B[0,t] ⊂ W ∩ r(t)Ik

)
∼ h(x)





K0r(t)
− k

2
(k−1)e−tr(t)−2λ(W∩Ik)

, if 1 ≪ r(t) ≪
√

t,

Krt
− k

4
(k−1), if r(t) ∼ r

√
t,

K∞t−
k
4
(k−1), if √t ≪ r(t). (4)Here Kr ∈ (0,∞) are 
onstants for r ∈ [0,∞] su
h that

lim
r→∞

Kr = K∞ and Kr ∼ K0r
− k

2
(k−1)e−r−2λ(W∩Ik) as r ↓ 0. (5)Interestingly, this shows that in the interpolating regime where 1 ≪ r(t) ≪

√
t,the polynomial de
ay term is already present; however, it does not 
ome from the timeparameter, but from the spatial parameter. It arises from the res
aling limit of theprin
ipal eigenfun
tion.It is 
lear that the spe
tral de
omposition method used in this paper is also able todes
ribe the limiting 
onditional distribution of the endpoint of the Brownian motiongiven that the path stays in the trun
ated Weyl 
hamber for a long time; it is given interms of the L1-normalised prin
ipal eigenfun
tion:

Px

(
B(t) ∈ dy

∣∣B[0,t] ⊂ W ∩ Ik
)

=⇒ f (W∩Ik)(y)

〈f (W∩Ik), 1l〉
dy,2
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ated Weyl 
hamberwhere the 
onvergen
e is in the weak topology on W ∩ Ik. The se
ond main questionthat we address is the des
ription of these endpoints if the dimension k grows to in�nity,at times and in boxes with growth that may be either bounded or unbounded as k → ∞.More pre
isely, we will give a large-deviation prin
iple for the empiri
al measure of theendpoints of the k single motions, properly res
aled, and identify the rate fun
tionexpli
itly with the help of some re
ent result by Ei
helsba
her and Stolz. This inparti
ular leads to a law of large numbers for this empiri
al measure in the spirit of thefamous Wigner semi-
ir
le law. However, the rate fun
tion and therefore the limitingprobability measure have a di�erent form, as the k-dependent boundary of rkI is stillfelt in this limit.More pre
isely, writing B = B(k) = (B1, . . . , Bk), we 
onsider the empiri
al mea-sure of the properly transformed and res
aled end points of the k Brownian motions,
B1(tk), . . . , Bk(tk),

µ(k)

rk,tk
=

1

k

k∑

i=1

δsin(Bi(tk)/rk), (6)whi
h is a random element of the set M1([−1, 1]) of probability measures on [−1, 1].A short version of our main result here, Theorem 4.1, reads as follows.Theorem 1.2 (Large-deviations prin
iple). Suppose that the sequen
es (rk)k and (tk)kin (0,∞) ful�ll tk ≥ 16r2
k. Then, as k → ∞, uniformly in x ∈ W ∩ rkI

k, the distri-bution of µ(k)

rk,tk
under Px( · |B(k)

[0,tk ] ⊂ W ∩ rkI
k) satis�es a large-deviation prin
iple on

M1([−1, 1]) with speed k2 and rate fun
tion
R(µ) =

1

2

∫ 1

−1

∫ 1

−1
log |x − y|−1 µ(dx)µ(dy) − d, µ ∈ M1([−1, 1]), (7)where d ∈ IR is su
h that infµ∈M1([−1,1]) R(µ) = 0.Expli
itly, the statement of Theorem 1.2 is that R is a lower semi
ontinuous fun
tionand that, for any open set F ⊂ M1([−1, 1]) and for any 
losed subset G ⊂ M1([−1, 1]),

lim inf
k→∞

1

k2
log Px(µ(k)

rk,tk
∈ F |B(k)

[0,tk ] ⊂ W ∩ rkI
k) ≥ − inf

µ∈F
R(µ),

lim sup
k→∞

1

k2
log Px(µ

(k)

rk,tk
∈ G |B(k)

[0,tk ] ⊂ W ∩ rkI
k) ≤ − inf

µ∈G
R(µ).A
tually, a related large-deviations prin
iple with the same rate fun
tion R hasre
ently been derived by Ei
helsba
her and Stolz [ES08℄ for the empiri
al measure of theeigenvalues of a 
ertain random matrix with expli
it joint distribution of the 
omponentsin terms of an orthogonal polynomial ensemble. Via the spe
tral de
omposition method,we show that the joint distribution of sin(B(k)(tk)/rk) is asymptoti
ally su�
iently
lose to that ensemble. We �nd it remarkable that no divergen
e of the time tk norof the radius rk is required; apparently no 
onvergen
e to the invariant distribution isne
essary.From the prin
iple in Theorem 1.2, a law of large numbers in the spirit of Wigner'ssemi
ir
le theorem is derived as follows (see Cor. 4.2). Let the situation of Theorem 1.2be given. 3
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k S
hmidCorollary 1.3 (Law of large numbers). As k → ∞, uniformly in x ∈ W ∩ rkI
k,the distribution of µ(k)

rk,tk
under Px( · |B(k)

[0,tk ] ⊂ W ∩ rkI
k) 
onverges weakly towards thear
sine distribution on [−1, 1].The remainder of the paper is devoted to the proper formulation of the main resultsand their proofs. A
tually, we do not treat the Weyl 
hamber WA only, but all thethree Weyl 
hambers WZ = WA,WC ,WD given by

WA = {x = (x1, . . . , xk) ∈ R
k : x1 < . . . < xk},

WC = {x = (x1, . . . , xk) ∈ R
k : 0 < x1 < . . . < xk},

WD = {x = (x1, . . . , xk) ∈ R
k : |x1| < x2 < . . . < xk}.In 
onne
tion with Brownian motion, these 
hambers appeared �rst in a work by Gra-biner [G99℄. They are de�ned with the help of 
ertain re�e
tion groups whi
h will bementioned in Lemma 2.1. The interse
tion of these 
hambers with a box, the trun-
ated Weyl 
hambers, turn out to be al
oves ; they are de�ned similarly by a�nere�e
tion groups (another re�e
tion is added). Let us mention that Doumer
 andMoriarty [DM09℄ examined non-exit probabilities of Brownian motion from other (non-time-dependent) al
oves (there Pfa�ans instead of determinants arise), while Grabiner[G02℄ exa
tly enumerated dis
rete walks restri
ted to al
oves, and Krattenthaler [K07℄identi�ed the asymptoti
s of this enumeration. Sin
e the latter two authors work ina dis
rete setting, one should in prin
iple be able to derive our results from those ofGrabiner and Krattenthaler by an appropriate s
aling limit.One 
an also 
onsider the Brownian motion 
onditioned never to hit the boundaryof W ∩ Ik. Spe
ialised to our situation, Pinsky [P85℄ showed that this pro
ess hasgenerator 1

2∆ + ∇f(W∩Ik)

f(W∩Ik)
∇. This pro
ess is stationary, and its invariant distributionhas (f (W∩Ik))2 as Lebesgue density.The paper is organized as follows: in the next se
tion we set up the eigenfun
tionexpansions that are essential for our purposes. In the subsequent se
tion we use thisma
hinery to prove the asymptoti
s for the di�erent regimes and the soft transitionsbetween them. In the �nal se
tion we prove the large deviation prin
iple and the lawof large numbers.2 Eigenfun
tion ExpansionsIn this se
tion, we give the details of the eigenvalue expansions for the Brownian motionbefore exiting any of the trun
ated Weyl 
hambers WZ ∩ Ik for Z of type A, C or D.In parti
ular, we expli
itly identify all the eigenvalues and eigenfun
tions of one halftimes the negative Diri
hlet Lapla
ian, −1

2∆, in these three sets.It is well-known that the non-exiting problem from an open bounded 
onne
ted do-main U ⊂ IRk is 
losely linked with the eigenvalues and eigenfun
tions of the Diri
hletLapla
ian in U . Let τU = inf{t > 0: B(t) /∈ U} be the �rst exit time of the Brow-nian motion from the domain U . Then the events {B[0,t] ⊂ U} and {τU > t} are4
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ated Weyl 
hamberidenti
al. The transition density of B before exiting U 
an be viewed as a symmetri
positive de�nite operator on L2(Rk) (see, for example, [PS78℄) and therefore admitsthe eigenfun
tion expansion uniformly in x, y ∈ U for t > 0,
Px(B(t) ∈ dy; τU > t)/dy =

∑

l∈IN

e−tλ
(U)
l f (U)

l (x)f (U)

l (y), (8)where (λ(U)

l )l∈IN is the spe
trum of −1
2∆ with Diri
hlet (i.e., zero) boundary 
onditionin U , arranged in non-de
reasing order, and (f (U)

l )l∈IN is a 
omplete orthonormal systemin L2(U) of 
orresponding eigenfun
tions. The prin
ipal eigenvalue λ(U) = λ(U)

1 is simpleand positive, and the 
orresponding eigenfun
tion f (U)

1 = f (U) is 
hosen stri
tly positivein U (see for example [D89℄).The key idea is to 
ombine the expansion in (8) for one-dimensional motions in I witha Karlin-M
Gregor type formula to derive an expansion for the k-dimensional motionin the trun
ated Weyl 
hamber. This very natural method was already suggestedby Hobson and Werner [HW96℄ who examined non-
olliding Brownian motions on the
ir
le. It avoids solving the heat equation with zero boundary 
ondition in the trun
atedWeyl 
hamber, whi
h would seem te
hni
ally nasty.We need the one-dimensional eigenfun
tion expansion. It is well-known that thespe
trum and normalized eigenfun
tions of −1
2∆ on I = (−π

2 , π
2 ) with Diri
hlet bound-ary 
ondition are given by

λ(I)

l =
l2

2
, f (I)

l =

√
2

π
×
{

sin(lx), if l is even,
cos(lx), if l is odd. (9)We 
ould 
onsider an abitrary symmetri
 interval instead of I, but we fo
us on (−π

2 , π
2 )for 
onvenien
e sin
e then the formulas simplify. The eigenvalues and eigenfun
tionson the interval rI with r > 0 are related by

λ(rI)

l = r−2λ(I)

l , f (rI)

l (x) = r−1/2f (I)

l (x/r). (10)The Karlin-M
Gregor-type formula for trun
ated Weyl 
hambers 
an be obtainedfrom the original formula (see [KM59b℄) by a small modi�
ation. For 
ompleteness, wegive the proof. We abbreviate the density of the distribution of the one-dimensionalBrownian motion before exiting the interval I by
p(I)

t (x, y) = Px(B1(t) ∈ dy; τI > t)/dy, x, y ∈ I. (11)Lemma 2.1 (Karlin-M
Gregor formula for a trun
ated Weyl 
hamber). For any t > 0,and for any x, y in WA, WC and WD, respe
tively,
Px(B(t) ∈ dy, τWA∩Ik > t)/dy = det

[
(p(I)

t (xi, yj))i,j=1,...,k

]
, (12)

Px(B(t) ∈ dy, τWC∩Ik > t)/dy = det
[
(p(I)

t (xi, yj) − p(I)

t (xi,−yj))i,j=1,...,k

]
, (13)

Px(B(t) ∈ dy, τWD∩Ik > t)/dy =
1

2
det
[
(p(I)

t (xi, yj) − p(I)

t (xi,−yj))i,j=1,...,k

] (14)
+

1

2
det
[
(p(I)

t (xi, yj) + p(I)

t (xi,−yj))i,j=1,...,k

]
.5
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hmidProof. We follow [G99, Se
tions 2 and 4℄, whi
h gives the proof for Ik repla
ed by IRk.The same proof applies to our situation, sin
e I is symmetri
 around zero and is thesame set in any of the k dimensions.The groups Ak−1, Ck,Dk de�ning the Weyl 
hambers WZ for Z of type A, C or
D 
onsist of re�e
tions IRk → IRk, whi
h are 
hara
terised by permutations of the
omponents with sign 
hanges of the 
omponents. In order not to overburden thenotation, we have de
ided to suppress the order of the group from the notation ofthe Weyl 
hambers (so just types are indi
ated as the dimension is understood). Theelements of the symmetri
 group of order k, whi
h may also be 
on
eived as the Weylre�e
tion group of type A of order k − 1, Ak−1 , only permute the 
omponents, theelements of Ck, the hypero
tahedral group of order k, permute the 
omponents witharbitrary sign 
hanges, and the elements of Dk, the even hypero
tahedral group of orderk, permute the 
omponents with an even number of sign 
hanges. If these re�e
tionsare understood as k × k matri
es, then Ak−1 is the set of all permutation matri
es, Ckis the set of all matri
es that have pre
isely one real of modulus one in ea
h row andea
h 
olumn, and zero otherwise, and Dk is the set of all su
h matri
es with an evennumber of −1s.We prove the general formula

Px(B(t) ∈ dy, τWZ∩Ik > t) =
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t), (15)where z(y) = (ε(z)

1 yσz(1), . . . , ε
(z)

k yσz(k)) ∈ IRk. Here ε(z)

i ∈ {−1, 1} denotes a possiblesign 
hange, σz the permutation of the indi
es, and sign(z) = sign(σz)
∏

i ε(z)

i . Ourassertions (12)�(14) 
an be dedu
ed from (15) by substituting the respe
tive Weylgroup.The idea is an appli
ation of the strong Markov property at time τWZ
, whi
h leadsto an appli
ation of an element of the Weyl group to the path (B(τWZ

+ s))s∈[0,t−τWZ
].This uses that Brownian motion is a strong Markov pro
ess and that its in
rements aresymmetri
 with respe
t to the Weyl groups, i.e., the distribution of B(t2) given B(t1)is, for 0 ≤ t1 < t2, the same as the distribution of z(B(t2)) given z(B(t1)). Hen
e, we
an treat the di�eren
e of the two sides of (15) as follows:

Px(B(t) ∈ dy, τWZ∩Ik > t) −
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t) =

=
∑

z∈Z

sign(z)
(
Px(B(t) ∈ dz(y), τWZ∩Ik > t) − Px(B(t) ∈ dz(y), τIk > t)

)

= −
∑

z∈Z

sign(z)Px(B(t) ∈ dz(y), τIk > t, τWZ
≤ t).

(16)Now we argue that the right hand side is equal to zero. Indeed, on {τWZ
≤ t}, we have

B(τWZ
) ∈ ∂WZ . In a natural way, we de
ompose ∂WZ into (up to Lebesgue null sets,disjoint) sets E1, . . . , EiZ and assign to ea
h Ej a re�e
tion σj of the respe
tive Weylgroup with sign(σj) = −1 that �xes every x ∈ Ej, i.e., σj(x) = x. In words, if Ej isthe set of x ∈ ∂WZ su
h that xl = xm for some l 6= m, then σj is the transpositionof l and m. If Z is of type C and Ej is the set of x ∈ ∂WZ su
h that x1 = 0, then6
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ated Weyl 
hamberwe pi
k σj as the sign 
hange for the �rst 
omponent. If Z is of type D and Ej is theset of x ∈ ∂WZ su
h that −x1 = x2, then we pi
k σj as the transposition of 1 and2, together with two sign 
hanges in the �rst two 
omponents. Note that the event
{τIk > t} remains un
hanged when (B(τWZ

+ s))s∈[0,t−τWZ
] is repla
ed by its imageunder σj, sin
e σj(I

k) = Ik. Therefore, we haver.h.s. of (16)
= −

iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −
iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

=

iZ∑

j=1

∑

z∈Z

sign(σj ◦ z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

=

iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −r.h.s. of (16).Hen
e, the term is equal to zero, and we are done.Now we use the eigenfun
tion expansion (8) for U = I in (12)�(14) to obtain theanalogous expansions in the trun
ated Weyl 
hambers. We abbreviate, for a multi-index
l = (l1, . . . , lk) ∈ INk and x = (x1, . . . , xk) ∈ Ik,
λ(Z)

l =

k∑

i=1

λ(I)

li
and f (Z)

l (x) = det
[
(f (I)

li
(xj))i,j=1,...,k

]
×





1, for type A,

2k/2, for type C,

2(k−1)/2, for type D.(17)Furthermore, we need the three index sets
NA = INk, NC = (2IN)k, ND = (2IN − 1)k ∪ (2IN)k. (18)Lemma 2.2 (Eigenvalue expansion in trun
ated Weyl 
hambers). The transition den-sity of Brownian motion before exiting the trun
ated Weyl 
hamber WZ ∩ Ik for Zof types A, C and D admits the following expansions, for any t > 0, uniformly for

x, y ∈ WZ ∩ Ik:
Px(B(t) ∈ dy, τWZ∩Ik > t)/dy =

∑

l∈WA∩NZ

e−tλ
(Z)
l f (Z)

l (x)f (Z)

l (y). (19)Proof. Let us �rst prove the 
ase A; we later explain the di�eren
es that o

ur in thetwo other 
ases, C and D. 7
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hmidWe substitute the eigenvalue expansion (8) for p(I)

t de�ned in (11) in (12) to obtain
Px(B(t) ∈ dy,τWA∩Ik > t)/dy = det

[( ∞∑

l=1

e−tλ
(I)
l f (I)

l (xi)f
(I)

l (yj)
)

i,j=1,...,k

]

=
∑

l=(l1,...,lk)∈INk

k∏

j=1

e
−tλ

(I)
lj det

[(
f (I)

lj
(xi)f

(I)

lj
(yj)

)
i,j=1,...,k

]
,

(20)where we also used the multilinearity of the determinant in 
olumns. Observe that thelast determinant is identi
ally zero if the k indi
es l1, . . . , lk are not pairwise distin
t.Indeed, if li = lj for some i 6= j, then at least the ith and the jth row of the matrixare multiples of ea
h other for all x, y ∈ WA ∩ Ik. Hen
e, the sum over l ∈ INk may beredu
ed to the sum over l ∈ WA ∩ INk with an additional sum over β ∈ Sk, the set ofall permutations of 1, . . . , k, and l is repla
ed by lβ = (lβ(1), . . . , lβ(k)). Using also thenotation in (17) for the eigenvalue, this givesR.h.s. of (20) =
∑

l=(l1,...,lk)∈WA∩INk

e−tλ
(A)
l

∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]
.(21)Let us evaluate the sum over β. Using the substitutions j = τ−1◦β−1(i) and τ−1◦β = σfor β, τ ∈ Sk, we 
ompute

∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]

=
∑

β,τ

sign(τ)

k∏

j=1

[
f (I)

lβ◦τ(j)
(xj)f

(I)

lβ◦τ(j)
(yτ(j))

]

=
∑

β,τ

sign(τ)
k∏

i=1

[
f (I)

li
(xτ−1◦β−1(i))f

(I)

li
(yβ−1(i))

]

=
∑

β,τ

sign(τ)

k∏

i=1

[
f (I)

li
(xτ−1◦β(i))f

(I)

li
(yβ(i))

]

=
∑

β,σ

sign(β)sign(σ)

k∏

i=1

[
f (I)

li
(xσ(i))f

(I)

li
(yβ(i))

]

=
(∑

β

sign(β)
k∏

i=1

f (I)

li
(yβ(i))

)(∑

σ

sign(σ)
k∏

j=1

f (I)

lj
(xσ(j))

)

= f (A)

l (x)f (A)

l (y),where we used the notation in (17) for the eigenfun
tion in the last step. Using this in(21), we see that the proof of the lemma for Z of type A is 
omplete.Now we explain the di�eren
es to 
ases C and D. In the 
ase C, inserting theeigenvalue expansion (8) for U = I in the formula (13), re
alling (9) and using that
f

(I)
l is even if l is odd (the same applies vi
e versa: f

(I)
l is odd if l is even), we see that8



Brownian motion in a trun
ated Weyl 
hamber
f

(I)
l terms for odd l disappear and f

(I)
l terms for even l appear twi
e, more pre
isely,

Px(B(t) ∈ dy, τWC∩Ik > t)/dy = det
[( ∞∑

l=1

2e−tλ
(I)
2l f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]
.Hen
e, only even indi
es appear, and a fa
tor of 2k 
an be extra
ted from the determi-nant and is distributed to the two fun
tions f (C)

2l (x) and f (C)

2l (y), see the se
ond line in(17).Case D is similar; from (14) we see that the �rst determinant is the same as in 
ase
C, and in the se
ond only 
osines remain:

Px(B(t) ∈ dy, τWD∩Ik > t)/dy = 1
2 det

[(∑∞
l=1 2e−tλ

(I)
2l f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]

+1
2 det

[(∑∞
l=1 2e−tλ

(I)
2l−1f (I)

2l−1(xi)f
(I)

2l−1(yj)
)

i,j=1,...,k

]
.Now one easily sees how the prefa
tors 2k/2, 2(k−1)/2 and the index sets NC , ND arise.Corollary 2.3. For Z of type A, C and D the negative Diri
hlet Lapla
ian −1

2∆ on
WZ ∩ Ik has spe
trum {λ(Z)

l : l ∈ WA ∩ NZ}, where these eigenvalues are 
ounted withmultipli
ity. Furthermore, {f (Z)

l : l ∈ WA ∩ NZ} is a 
omplete orthonormal system of
orresponding eigenfun
tions.Proof. The fun
tions f (Z)

l with l ∈ WA ∩NZ are orthonormal on L2(WZ ∩ Ik) and theyare eigenfun
tions of−1
2∆ 
orresponding to the eigenvalues λ(Z)

l , sin
e the f (Z)

l are linear
ombinations of produ
ts of one-dimensional eigenfun
tions whi
h are orthonormalisedon I, and the Lapla
ian is a linear operator. For the reader's 
onvenien
e, we providethe details for this. We 
on
entrate on 
ase A sin
e the other 
ases follow in the samespirit. First we show the eigenfun
tion property:
−1

2
∆f (A)

l (x) = −1

2
∆ det

[
(f (I)

li
(xj))i,j=1,...,k

]
= −1

2

∑

σ

sign(σ)∆

k∏

i=1

f (I)

li
(xσ(i))

=
∑

σ

sign(σ)

(
k∑

i=1

λ(I)

li

)
k∏

i=1

f (I)

li
(xσ(i)) =

(
k∑

i=1

λ(I)

li

)
f (A)

l (x)

= λ(A)

l f (A)

l (x),where we also used (9) and (17). The boundary 
ondition is obviously satis�ed be
auseof the boundary 
ondition of the one-dimensional eigenfun
tions and the determinantalstru
ture. Now we show orthonormality for two multi-indi
es l1, l2:
∫

WA∩Ik

f (A)

l1
(x)f (A)

l2
(x)dx =

1

k!

∫

Ik

f (A)

l1
(x)f (A)

l2
(x) dx

=
1

k!

∑

α,β

sign(α ◦ β)

∫

Ik

k∏

i=1

f (I)

l1i
(xα(i))f

(I)

l2i
(xβ(i)) dx

=
1

k!

∑

α,β

sign(α ◦ β)
k∏

i=1

〈
f (I)

l1i
, f (I)

l2
α◦β−1(i)

〉
,9



Wolfgang König and Patri
k S
hmidwhere we wrote 〈·, ·〉 for the standard inner produ
t on IR. If l1 6= l2, then, for any
α, β, there is at least one i su
h that l1i 6= l2α◦β−1(i), and hen
e the 
orresponding innerprodu
t is zero, sin
e the f (I)

l form an orthonormal basis. If l1 = l2, then for any α 6= β,there is also at least su
h an i, su
h that the sum redu
es to the sum over α = β, whi
hgives that the right-hand side is equal to one. This shows orthonormality.These are in fa
t all eigenfun
tions sin
e otherwise there is a fun
tion g 6= 0 su
hthat
0 =

∑

l∈WA∩NZ

e−tλ
(Z)
l 〈f (Z)

l , g〉2 =

∫ ∫
g(y)g(x)Px(B(t) ∈ dy, τWZ∩Ik > t) dx.But this 
ontradi
ts the existen
e of an expansion of the transition density in terms ofa 
omplete orthonormal system, re
all [PS78℄.Note that, for k ≥ 3, some of the eigenvalues λ(Z)

l 
oin
ide for di�erent l, i.e., theirmultipli
ity is larger than one. Examples of su
h eigenvalues 
an be 
onstru
ted usingPythagorean number triples.Remark 2.4. In parti
ular the prin
ipal eigenvalues and eigenfun
tions of −1
2∆ in

WZ ∩ Ik with Diri
hlet boundary 
ondition are given by
λ(A) = λ(A)

id =
1

2

k∑

i=1

i2, λ(C) = λ(C)

2id = 4λ(A), λ(D) = λ(D)

2id−1 =
1

2

k∑

i=1

(2i − 1)2,(22)and
f (A) = |f (A)

id |, f (C) = 2
k
2 |f (A)

2id |, f (D) = 2
k−1
2 |f (A)

2id−1|, (23)where id = (1, 2, 3, . . . , k).Hen
e, f (Z) = f (WZ∩Ik) in the notation of Se
tion 1. We are able to give expli
itexpressions for the prin
ipal eigenfun
tions in terms of the réduites. These are, byde�nition, positive harmoni
 fun
tions for −1
2∆ that vanish on the boundary of theWeyl 
hambers. They are unique, up to positive multiples. They are given by

hA(x) = det
[
(xj−1

i )i,j=1,...,k

]
, hD(x) = hA(x2), hC(x) = hD(x)

k∏

i=1

xi, (24)where we wrote x2 for the ve
tor (x2
1, . . . , x

2
k). Note that h = hA is the 
lassi
alVandermonde determinant. The following identi�
ation 
lari�es the relation betweenthe fun
tions appearing in the asymptoti
s (1) and (3). It also shows that it will benatural to 
onsider the sine of the endpoints of the motions instead of the motionsthemselves, see (6). 10



Brownian motion in a trun
ated Weyl 
hamberCorollary 2.5 (Prin
ipal eigenfun
tions).
f (A)(x) =

2k2/2

πk/2
hA(sin(x))

k∏

i=1

cos(xi), (25)
f (C)(x) =

2k(k+1)

πk/2
hC(sin(x))

k∏

i=1

cos(xi), (26)
f (D)(x) =

2(2k2−1)/2

πk/2
hD(sin(x))

k∏

i=1

cos(xi). (27)Proof. Let us �rst 
onsider the 
ase A. Use (23) and (17) (re
all (9)) to see that
f (A)(x) =

( 2

π

)k/2∣∣∣ det
[(

cos(ixj)1l{i odd} + sin(ixj)1l{i even})i,j=1,...,k

]∣∣∣. (28)Now use the well-known sine and 
osine expansions for i odd in the 
osine and for ieven in the sine:
cos(ix) = cos(x)

(i−1)/2∑

n=0

(−1)n
(

i

2n

)
(sin2(x))n(1 − sin2(x))(i−1)/2−n, (29)

sin(ix) = cos(x) sin(x)

i/2∑

n=1

(−1)n+1

(
i

2n − 1

)
(sin2(x))n−1(1 − sin2(x))i/2−n.(30)Note that the degrees of the monomials in the expansions all have the same parity. Weextra
t the fa
tors cos(xj) row-wise from the determinants so that the terms remainingin the i-th row are polynomials pi in sin(xj), i.e.,

f (A)(x) =
( 2

π

)k/2
k∏

i=1

cos(xi)
∣∣∣det

[(
pi(sin(xj))

)
i,j=1,...,k

]∣∣∣.Now observe that pi has degree pre
isely equal to i− 1 with highest 
oe�
ient 
omingfrom a summation of the binomial 
oe�
ients over all summands: For i odd,
pi(y) =

(i−1)/2∑

n=0

(−1)n
(

i

2n

)
y2n(1 − y2)(i−1)/2−n = yi−12i−1(−1)(i−1)/2 + O(yi−3), (31)and for i even:

pi(y) = y

i/2∑

n=1

(−1)n+1

(
i

2n − 1

)
y2n−2(1−y2)i/2−n = yi−12i−1(−1)i/2−1+O(yi−3). (32)Therefore, one 
an apply elementary row operations in su
h a way that in ea
h entryof the determinant only the leading monomial is left. Afterwards, we 
an extra
t fromthe i-th row the prefa
tor 2i−1 and are left with

f (A)(x) =
( 2

π

)k/2∣∣∣ det
[(

sini−1(xj)
)
i,j=1,...,k

]∣∣∣
k∏

i=1

[
cos(xi)2

i−1
]
.11



Wolfgang König and Patri
k S
hmidNow 
olle
t the terms and re
all (24) to see that (25) is true.Now we 
ome to 
ases C and D. Plugging in the one-dimensional eigenfun
tionsyields
f (C)(x) =

( 2

π

)k/2
2k/2

∣∣∣ det
[(

sin(2ixj)
)
i,j=1,...,k

]∣∣∣

f (D)(x) =
( 2

π

)k/2
2(k−1)/2

∣∣∣ det
[(

cos((2i − 1)xj)
)
i,j=1,...,k

]∣∣∣.Using expansions (29) and (30) we obtain
f (C)(x) =

2k

πk/2

∣∣∣ det
[(

p2i(sin(xj))
)
i,j=1,...,k

]∣∣∣
k∏

i=1

cos(xi)

f (D)(x) =
2k−1/2

πk/2

∣∣∣det
[(

p2i−1(sin(xj))
)
i,j=1,...,k

]∣∣∣
k∏

i=1

cos(xi).For 
ases C and D the degrees of the polynomials in sin(x) in
rease by two with ea
hrow, so that we get the degrees from 1 to 2k−1 for 
ase C and from 0 to 2k−2 for 
ase
D. One 
an perform exa
tly the same row operations sin
e all o

uring monomials ofthe polynomials have the same parity in their degrees. But now we a
tually get hA insine squares together with a produ
t of sines in 
ase C. Hen
e we arrive at (26) and(27) (re
all (24)).3 Exit regimesNow we use our results on the eigenvalue expansions from Se
tion 2 to identify theasymptoti
s of the non-exit probabilities in time-dependent trun
ated Weyl 
hambers.For this we prove a te
hni
al lemma. Note that we abbreviate 〈f (Z), 1l〉 by ∫ f (Z).Abbreviate

γ(t) := − ln
(
1 − e−( t

2
−7)
)
− ( t

2 − 7), t > 14. (33)Lemma 3.1. Fix a type A, C or D for Z. Then, for any t, r ∈ (0,∞) with t/r2 > 14and for any x, y ∈ WZ ∩ rIk,
Px(B(t) ∈ dy, τWZ∩rIk > t)/dy

= e−tr−2λ(Z)
r−kf (Z)(x/r)f (Z)(y/r)(1 + ε(Z)

tr−2(x/r, y/r)),
(34)and

Px(τWZ∩rIk > t) = e−tr−2λ(Z)
f (Z)(x/r)

∫
f (Z) (1 + ε̃(Z)

tr−2(x/r)), (35)where the error terms satisfy
sup

x,y∈WZ∩Ik

|ε(Z)

t (x, y)| ≤ ekγ(t), sup
x∈WZ∩Ik

|ε̃(Z)

t (x)| ≤ ekγ(t). (36)12



Brownian motion in a trun
ated Weyl 
hamberProof. We provide the details of the proof for Z of type A only and explain the di�er-en
es to the other two types later. Use (19), (10) and (22) and isolate the �rst term inthe expansion to get
Px(B(t) ∈ dy, τWA∩rIk > t)/dy

=
∑

l∈WA∩Nk

e−tr−2λ
(A)
l r−kf (A)

l (x/r)f (A)

l (y/r)

= e−tr−2λ(A)
r−kf (A)(x/r)f (A)(y/r)(1 + ε(A)

tr−2(x/r, y/r)),

(37)where
ε(A)

t (x, y) =
∑

l=(l1,...,lk)∈WA∩Nk\{id}

e−
t
2

Pk
i=1(l

2
i −i2) f

(A)

l (x)f (A)

l (y)

f (A)(x)f (A)(y)
. (38)We �rst 
laim that

sup
x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)

hA(id)

( ∏

i : li>i

[23li/2li]
)( ∏

i : li=i

2li
)
, (39)where l̃ ∈ WA ∩N

k \ {id}, maximizes hA subje
t to l̃ ≤ l; we understand the inequality
omponentwise. Its derivation will now be explained in detail.As in the proof of Corollary 2.5, we see that, for any l ∈ INk,
f (A)

l (x) =
( 2

π

)k/2
det
[(

pli(sin(xj))
)
i,j=1,...,k

] k∏

i=1

cos(xi), (40)where the polynomials pi are given in (31) and (32). The degree of pli is li − 1, and the
oe�
ients of all lower monomials with parity of degree di�erent from the one of li − 1are zero.Now we evaluate the determinant. As in the proof of Corollary 2.5, we 
arry outsuitable row operations to 
an
el in the polynomial of row i every monomial of order
< i−1. But now, to a
hieve this, we �rst need to suitably permute all rows i satisfying
li > i. Let us 
all the arising ve
tor l′. Hen
e, there are polynomials

p̃i,l′i
(w) =

l′i∑

n=i

wn−1bn,i,l′i
, w ∈ IR,with suitable 
oe�
ients bn,i,l′i

su
h that
∣∣∣det

[(
pli(sin(xj))

)
i,j=1,...,k

]∣∣∣ =
∣∣∣det

[(
p̃i,l′i

(sin(xj))
)
i,j=1,...,k

]∣∣∣.These 
oe�
ients satisfy |bn,i,l′i
| ≤ 23l′i/2 if l′i > i and |bn,i,l′i

| ≤ 2l′i if l′i = i. This isexplained as follows: if l′i = i, then 2l′i bounds the sum of the binomial 
oe�
ients forea
h monomial in (31) and (32); if l′i > i, then we need the additional power of l′i/2 dueto the binomial 
oe�
ients whi
h arise by expansion of the power of (1 − y2) in (31)and (32). 13



Wolfgang König and Patri
k S
hmidUsing the multilinearity of the determinant, we obtain
det
[(

p̃i,l′i
(sin(xj))

)
i,j=1,...,k

]
=

∑

i≤ni≤l′
i

i=1,...,k

an(sin(x))

k∏

i=1

bni,i,l′i
,where a(n1,...,nk)(w) = det[(wni−1

j )i,j=1,...,k] for w = (w1, . . . , wk). Now we introdu
e theS
hur polynomials,
sd(w) =

ad+id(w)

hA(w)
, w ∈ IRk,where d = (d1, . . . , dk) ∈ INk

0 satis�es d1 ≤ · · · ≤ dk, see e. g. [F97℄. To be able toemploy these polynomials, we asso
iate to ea
h n ∈ INk
0 its in
reasingly ordered version

−→n . Then a−→n di�ers at most by a sign 
hange from an. Note that if ni = nj for at leasttwo indi
es i and j, then an and hen
e a−→n is identi
ally zero. Using (40) for f (A)

l and(25) for f (A), we see that
∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ =

∣∣∣∣∣
det
[(

pli(sin(xj))
)
i,j=1,...,k

]

2k(k−1)/2hA(sin(x))

∣∣∣∣∣

≤ 2−k(k−1)/2
∑

i≤ni≤l′
i

i=1,...,k;ni 6=nj

|s−→n −id(sin(x))|
k∏

i=1

|bni,i,l′i
|.Now we estimate the modulus of the right-hand side. Note that s−→n−id(sin(x)) is amultipolynomial in sin(x1), . . . , sin(xk) with positive 
oe�
ients and that all these ar-guments are in [−1, 1]. Therefore,

|s−→n −id(sin(x))| ≤ s−→n−id(1l) =
|hA(n)|
hA(id)

≤ hA(l̃)

hA(id)
,see [F97℄ or [J00, proof of Lemma 2.3℄. Hen
e, we have

sup
x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)

hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
)
.This proves (39) whi
h we 
an now plug in the error term ε(A)

t (x, y):
sup

x,y∈WA∩Ik

|ε(A)

t (x, y)| ≤
∑

l∈WA∩Nk\{id}

e−
t
2

Pk
i=1(l2i −i2)

(
sup

x∈WA∩Ik

∣∣∣
f (A)

l (x)

f (A)(x)

∣∣∣
)2

≤
∑

l∈WA∩Nk\{id}

2−k(k−1)e
− t

2

P

i : li>i(li−i)(li+i)

×


 hA(l̃)

hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
)



2

.14



Brownian motion in a trun
ated Weyl 
hamberWith help of the elementary estimate (also using that l̃ ≤ l)
ln

(
hA(l̃)

hA(id)

)
≤

∑

i,j : j<i<l̃i

ln
l̃i − j

i − j
=

∑

i,j : j<i<l̃i

ln

(
1 +

l̃i − i

i − j

)

≤
∑

i,j : j<i<l̃i

ln(2(l̃i − i)) ≤
∑

i : l̃i>i

(i − 1)2(li − i) ≤
∑

i : li>i

(li + i)(li − i)and using that 2−k(k−1)(
∏

i : li=i 2
li)2 ≤ 1, we 
an pro
eed by

sup
x,y∈WA∩Ik

|ε(A)

t (x, y)|

≤
∑

l∈WA∩Nk\{id}

exp


2

∑

i : li>i

[
(li + i)(li − i) + li

3
2 ln 2 + ln(li)

]



× exp


− t

2

∑

i : li>i

(li − i)(li + i)




≤
∑

l∈WA∩Nk\{id}

exp


−

(
t

2
− 7

) ∑

i : li>i

(li − i)(li + i)


 ,where we also estimated li

3
2 ln 2 + ln(li) ≤ 5

2(li + i)(li − i). De�ne c1(t) := t
2 − 7 and

c2(t) := 1
1−e−c1(t) . Then under the assumption t > 14, we use in the sum over l that

li ≥ i for i = 1, . . . , k−1 and lk ≥ k +1 and 
ompare to the geometri
 series, to obtain:
sup

x,y∈WA∩Ik

|ε(A)

t (x, y)| ≤
∑

l∈WA∩Nk\{id}

e−c1(t)(l21−12+···+l2k−k2)

=
∑

l∈WA∩Nk\{id}

(
e−c1(t)

)l21−1
k∏

i=2

e−c1(t)(l2i −i2)

≤ 1

1 − e−c1(t)

∑

(l2,...,lk)∈WA∩(N+1)k−1\{(2,...,k)}

k∏

i=2

e−c1(t)(l2i −i2)

≤ (c2(t))
k−1

∞∑

l=k+1

e−c1(t)(l2−k2) = (c2(t))
k−1

∞∑

n=1

e−c1(t)(2nk+n2)

≤ (c2(t))
k−1e−kc1(t)

∞∑

n=1

(
e−c1(t)

)(2n−1)k
≤ (c2(t))

ke−kc1(t)

= ekγ(t),where we re
all the de�nition of γ(t) from (33). This proves the �rst bound in (36) forthe error term in (34) and therefore �nishes the proof of (34) for the 
ase A.If we integrate Px(B(t) ∈ dy, τWA∩rIk > t) over y, we obtain
Px(τWA∩rIk > t) =

∞∑

l=1

e−tr−2λ
(A)
l f (A)

l (x/r)

∫
f (A)

l .15



Wolfgang König and Patri
k S
hmidNow one 
an isolate the �rst summand as in (37) and 
arry out exa
tly the samepro
edure as above with the only di�eren
e that f (A)

l (y) is repla
ed by ∫ f (A)

l . Thisyields (35) with an error term ε̃ satisfying the se
ond bound in (36). Hen
e, the proofof the lemma for Z of type A is �nished.For 
ases C and D we 
an use the same pro
edure with the only di�eren
es thatsome l ∈ WA ∩N
k \{id} do not appear in the expansions and we now have to divide byVandermonde determinants in sine squares together with a produ
t of sines in 
ase C.But this leads to the same bound sin
e all 
omponents of the o

uring l are guaranteedto have the same parity. Hen
e the lemma is proved.With the help of this lemma we 
an now formulate and prove our �rst main theorem.Theorem 3.2 (Late-time non-exit from a time-dependent trun
ated Weyl 
hamber).Fix a type A, C or D for Z. Then, for any fun
tion r : (0,∞) → (0,∞), as t goes toin�nity, for x ∈ WZ ∩ r(t)Ik and r ∈ (0,∞),

Px

(
τWZ∩r(t)Ik > t

)
∼





e−tr−2λ(Z)
f (Z)(x

r )
∫

f (Z), if r(t) ≡ r,

K(Z)

0 r(t)−αZ hZ(x)e−tr(t)−2λ(Z)
, if 1 ≪ r(t) ≪

√
t,

K(Z)
r hZ(x)t−αZ/2, if r(t) ∼ r

√
t,

K(Z)
∞ hZ(x)t−αZ/2, if √t ≪ r(t).

(41)The 
onvergen
e is uniform for x ∈ WZ ∩ r(t)Ik, without further restri
tion in the �rst
ase, with the restri
tion |x| ≤ θtr(t) in the two middle 
ases and with the restri
tion
|x| ≤ θt

√
t in the last 
ase, for any 0 < θt → 0 as t → ∞. In the third line, K(Z)

r :=

P0(τrIk > 1|τWZ
> 1)K(Z)

∞ . The other parameters are given as follows.
αA =

k

2
(k − 1), αC = k2, αD = k(k − 1), (42)and

K(A)

0 = 2k2/2

πk/2

∫
f (A), K(A)

∞ =
2k

k
Q

i=1
Γ(i/2+1)

πk/2k!
Q

i<j
(j−i)

K(C)

0 = 2k(k+1)

πk/2

∫
f (C), K(C)

∞ =
23k2/2

k
Q

i=1
Γ(i/2+1)Γ((i+1)/2)

πkk!
Q

i<j
[(2j−1)2−(2i−1)2]

k
Q

i=1
(2k+1−2i)

K(D)

0 = 2(2k2−1)/2

πk/2

∫
f (D), K(D)

∞ =
2(3k2−3k+2)/2

k
Q

i=1
Γ(i/2+1)Γ(i/2)

πkk!
Q

i<j
[(2j−1)2−(2i−1)2]

.

(43)
Remark. The 
onditional probability appearing in the de�nition of K(Z)

r is to be inter-preted as
P0(τrIk > 1|τWZ

> 1) = lim
x→0,x∈WZ

Px(τrIk > 1, τWZ
> 1)

Px(τWZ
> 1)

, (44)see [KT03, Thm. 2.2℄. 16



Brownian motion in a trun
ated Weyl 
hamberProof. The assertions about the asymptoti
s of the non-exit probabilities in the �rsttwo regimes follow from (35) and (36) of Lemma 3.1 sin
e by the 
hoi
es of r(t) wehave γ( t
r(t)2

) → −∞ and furthermore f (Z)(x/r(t)) ∼ K(Z)

0 r(t)−αZ hZ(x)/
∫

f (Z) in these
ond regime.Now we 
ome to the proof of the last two regimes, for any type A, C, D. In thethird regime, where r(t)/
√

t → r, we use Brownian s
aling to see that
Px(τWZ∩r(t)Ik > t) = P x√

t

(
τrIk > 1

∣∣ τWZ
> 1
)

Px(τWZ
> t).The asymptoti
s Px(τWZ

> t) ∼ K(Z)
∞ hZ(x)t−αZ/2 are well-known due to [G99℄. Thisis where the restri
tion |x| ≤ θt

√
t, with any 0 < θt → 0 as t → ∞, is needed.In order to see that the �rst term on the right-hand side 
onverges towards K(Z)

r =

P0(τrIk > 1 | τWZ
> 1), we use [KT03℄ that (Bs)s∈[0,1], 
onditional given {τWZ

> 1}, isa temporarily inhomogeneous di�usion pro
ess for whi
h zero is an entran
e boundary.In parti
ular, we have limy→0,y∈WZ
Py(τrIk > 1 | τWZ

> 1) = P0(τrIk > 1 | τWZ
> 1),i.e., the proof in the third regime is done.In the fourth regime, where r(t) ≫

√
t, we pro
eed similarly:

Px(τWZ∩r(t)Ik > t) = P x√
t

(
τr(t)t−1/2Ik > 1

∣∣∣ τWZ
> 1
)

Px(τWZ
> t).While the last term is handled in the same way as in the third regime, the �rst termis easily seen to 
onverge to one. Indeed, it is not larger than one, and it is, for any�xed r > 0 and for any su�
iently large t, not smaller than P x√

t
(τrIk > 1 | τWZ

> 1).Now 
arry out the limit as t → ∞ using the above argument, and afterwards the limitas r ↑ ∞.Furthermore, there is even a smooth transition between these regimes.Proposition 3.3 (Soft transition). For Z of type A, C or D,
lim

r→∞
K(Z)

r = K(Z)
∞ , and K(Z)

r ∼ K(Z)

0 e−r−2λ(Z)
r−αZ as r → 0.Proof. The �rst statement is obvious. For proving the se
ond, we use (44) and sub-stitute, in the denominator, the asymptoti
s Px(τWZ

> 1) = K(Z)
∞ hZ(x)(1 + ox(1)) as

x → 0, x ∈ WZ , whi
h easily follows via Brownian s
aling from [G99℄. Note that we 
aninter
hange the limits x → 0 and r ↓ 0 be
ause of uniform 
onvergen
e whi
h followsfrom Lemma 3.1, see (35), sin
e limr↓0 γ(r−2) = −∞, see (33). This gives that
K(Z)

r = lim
x→0,x∈WZ

Px(τWZ∩rIk > 1)

Px(τWZ
> 1)

K(Z)
∞

∼ lim
x→0,x∈WZ

e−r−2λ(Z)
f (Z)(x/r)

∫
f (Z)

K(Z)
∞ hZ(x)(1 + ox(1))

K(Z)
∞

= K(Z)

0 e−r−2λ(Z)
r−αZ .17



Wolfgang König and Patri
k S
hmid4 Large-deviation prin
iple for large dimensionNow we 
onsider limits as the dimension k diverges. Therefore, we now write B(k) =

(B1, . . . , Bk) for the k-dimensional Brownian motion.ByM1([a, b]) we denote the set of probability measures on [a, b], with a, b ∈ R, a < b.Re
all that µ(k)

rk,tk
denotes the empiri
al measure of the ve
tor sin(B(k)(tk)/rk), see (6).With the help of Lemma 3.1, we 
an also prove large-deviation prin
iples.Theorem 4.1 (LDP for diverging dimension). Assume that Z is of type A or C. Let

(rk)k∈IN and (tk)k∈IN be sequen
es in (0,∞) satisfying tk ≥ 16r2
k. Then, as k → ∞, the
onditional distribution of µ(k)

rk,tk
under Px(· |B(k)

[0,tk ] ⊂ WZ ∩ rkI
k) satis�es, uniformlyin x ∈ WZ ∩ rkI

k, a large deviation prin
iple on M1([−1, 1]) in the 
ase A and on
M1([0, 1]) in the 
ase C with respe
t to the weak topology with speed k2 and good ratefun
tion

RA(µ) =
1

2

∫ 1

−1

∫ 1

−1
log |x − y|−1 µ(dx)µ(dy) − dA, (45)

RC(µ) =
1

2

∫ 1

0

∫ 1

0
log |x2 − y2|−1 µ(dx)µ(dy) −

∫ 1

0
log xµ(dx) − dC , (46)where dZ ∈ IR is su
h that inf RZ = 0.It follows from the theory of logarithmi
 potentials with external �elds, see [ST97℄for example, that dZ is �nite. We also have dZ = limk→∞

1
k2 log

∫
WZ∩(2I/π)k hZ(x) dx.Our proof of Theorem 4.1 relies on a related prin
iple for an orthogonal polynomialensemble, proved by Ei
helsba
her and Stolz [ES08℄. However, the 
ase D 
annot betreated by them, due to the appearan
e of a square in the density of that ensemble,whi
h leads to some ambiguity in the interpretation of the squareroot.Proof. We �rst 
laim that, as k → ∞,

Px

(
sin
(B(k)(tk)

rk

)
∈ dy

∣∣∣ τWZ∩rkIk > tk

)
/dy ∼ hZ(y)∫

WZ∩(2I/π)k hZ(w) dw
, (47)uniformly in x ∈ WZ ∩ rkI

k and y ∈ WZ ∩ (2I/π)k. Indeed, if we apply the transfor-mation x 7→ sin(x/rk) to B(k)(tk) in (34) of Lemma 3.1, we obtain, as k → ∞,
Px

(
sin
(B(k)(tk)

rk

)
∈ dy , τWZ∩rkIk > tk

)
/dy

=
K(Z)

0∫
f (Z)

e−tkr−2
k λ(Z)

f (Z)(x/rk)hZ(y)(1 + o(1)),and
Px

(
τWZ∩rkIk > tk

)
=

K(Z)

0∫
f (Z)

e−tkr−2
k λ(Z)

f (Z)(x/rk)

∫

WZ∩(2I/π)k

hZ(w) dw(1 + o(1)),sin
e the errors εtkr−2
k

and ε̃tkr−2
k

vanish, by our assumption that supk∈IN γ( tk
r2
k
) < 0; see(36). Now a division yields the 
laim (47).18



Brownian motion in a trun
ated Weyl 
hamberWe now apply [ES08, Thm. 3.1℄, whi
h 
ontains the large-deviation prin
iple forthe empiri
al measure of a random ve
tor with density given by the right-hand sideof (47) with rate fun
tion given in (45) resp. (46). Our 
ase A refers to the 
hoi
e
Σ = [−1, 1], p(k) = k,wk ≡ 1, γ = 1, β = 1, κ = 1 in [ES08, Thm. 3.1℄, and in the 
ase
C, one pi
ks Σ = [0, 1], p(k) = k,wk(x) ≡ x, γ = 2, β = 1, κ = 1. By (47), the empiri
almeasure of a ve
tor having density given by the left-hand side of (47), also satis�esthat prin
iple. But this is our assertion.We use the large-deviation prin
iple to derive a law of large numbers in the spiritof Wigner's semi-
ir
le law. Let us introdu
e the following measures µA and µC .

µA(dx) =
1

π
√

1 − x2
dx, x ∈ [−1, 1], (48)

µC(dx) =
3

2πx

√
x − 1/9

1 − x
dx, x ∈ [1/9, 1]. (49)Then µA is the well-known ar
sine law.Corollary 4.2 (Law of large numbers). Let the situation of Theorem 4.1 be given. Let

Z be of type A or C. Then the 
onditional distribution of µ(k)

rk,tk
under Px(· |B(k)

[0,tk ] ⊂
WZ ∩ rkI

k) 
onverges, uniformly in x ∈ WZ ∩ rkI
k, weakly towards µZ.Proof. That µA and µC are the unique minimizers of RA and RC , respe
tively, is well-known from the theory of logarithmi
 potentials with external �elds, see [ST97, Ch. I,Se
tion 1.1; Ch. IV, Example 5.3℄. Hen
e we 
an apply [ES08, Cor. 3.2℄: using theupper bound of the large-deviation prin
iple one obtains the strong law by applyingBorel-Cantelli's lemma, see [E85, B3, Thm. II℄.A
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