
Markov Processes Relat. Fields 17, 499–522 (2011) Markov MPRF&¹¸

º·
Processes
and
Related Fields
c©Polymat, Moscow 2011

Brownian Motion in a Truncated Weyl

Chamber

W. König 1 and P. Schmid 2

1 Technical University Berlin, Str. des 17. Juni 136, 10623 Berlin, and Weierstrass Institute
Berlin, Mohrenstr. 39, 10117 Berlin, Germany. E-mail: koenig@math.tu-berlin.de,
koenig@wias-berlin.de

2 Universität Leipzig, Mathematisches Institut, Postfach 100920, D-04009 Leipzig, Germany.
E-mail: Patrick.Schmid@math.uni-leipzig.de

Received August 16, 2010, revised May 19, 2011

Abstract. We examine the non-exit probability of a multidimensional Brown-
ian motion from a growing truncated Weyl chamber. More precisely, we com-
pute, for fixed time t, the probability that the motion does not leave by time t
the intersection of a Weyl chamber and a t-dependent centred box, and we iden-
tify its asymptotics for t →∞. Different regimes are identified according to the
growth speed, ranging from polynomial decay over stretched exponential (that
is, exponential of a power function, here with exponent in (0, 1)) to exponential
decay. Furthermore we derive associated large deviation principles for the em-
pirical measure of the properly rescaled and transformed Brownian motion as
the dimension grows to infinity. Our main tool is an explicit eigenvalue expan-
sion for the transition probabilities before exiting the truncated Weyl chamber.
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1. Introduction

Our goal is to examine the non-exit probability of a Brownian motion from
a time-dependent truncated Weyl chamber for large times. Let k ∈ IN be fixed
and let B = (B(t))t∈[0,∞) be a standard Brownian motion in IRk. Furthermore,
let W = WA = {x = (x1, . . . , xk) ∈ Rk : x1 < . . . < xk} be the Weyl chamber of
type A. Then it is well-known [6] that the asymptotics of the probability not



500 W. König and P. Schmid

to exit W for a long time is given by

Px(B[0,t] ⊂ W ) ∼ Kh(x)t−(k/4)(k−1), t →∞, for x ∈ W, (1.1)

where the motion starts from x ∈ IRk under Px, K is an explicit constant, and

h(x) =
∏

1≤i<j≤k

(xj − xi) = det
[
(xj−1

i )i,j=1,...,k

]
(1.2)

denotes the well-known Vandermonde determinant. On the other hand, it is
also well-known, see [16] for example, that the non-exit probability from the
bounded set W ∩ Ik with I = (−π/2, π/2) is asymptotically given as

Px

(
B[0,t] ⊂ W ∩ Ik

) ∼ exp{−tλ(W∩Ik)}f (W∩Ik)(x)〈f (W∩Ik), 1l〉, (1.3)

t → ∞, for x ∈ W , where λ(U) denotes the principal eigenvalue and f (U)

the corresponding positive L2-normalised eigenfunction of −(1/2)∆ in an open
bounded connected set U ⊂ IRk with Dirichlet (i.e., zero) boundary condition,
and 〈f, g〉 denotes the standard inner product in L2(U). That is, the probability
of not exiting from the Weyl chamber decays polynomially in time, while the
one for the truncated Weyl chamber decays exponentially.

The first main goal of this paper is to understand the transition from expo-
nential to polynomial decay when replacing the box Ik in (1.3) by the box rIk,
and then letting r increase as a function r(t) (r : (0,∞) → (0,∞)).

In particular, an interesting question is how the two functions h and f (W∩Ik)

are transformed into each other. Is it true that the Vandermonde determinant
is equal to a rescaled limit of the principal eigenfunction of −(1/2)∆ in W ∩ Ik?

It will turn out that, for 1 ¿ r(t) ¿ √
t, the non-exit probability decays in

a stretched exponential way (that is, exponential of a power function, here with
exponent in (0, 1)), but for

√
t ¿ r(t), the same asymptotics as in (1.1) will

hold, since the motion does not feel the boundary, according to the central limit
theorem. However, the way in which the stretched-exponential decay becomes
a polynomial decay when r(t) ³ √

t, is a priori not clear. This is one of the
main topics of this paper. Here is a short version of our main result on this (see
Theorem 3.1 and Proposition 3.1 for the full result).

Theorem 1.1. For any x ∈ W and any r ∈ (0,∞), as t →∞,

Px

(
B[0,t] ⊂ W ∩ r(t)Ik

)
(1.4)

∼ h(x)





K0r(t)−(k/2)(k−1) exp{−tr(t)−2λ(W∩Ik)}, if 1 ¿ r(t) ¿ √
t,

Krt
−(k/4)(k−1), if r(t) ∼ r

√
t,

K∞t−(k/4)(k−1), if
√

t ¿ r(t).
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Here Kr ∈ (0,∞) are constants for r ∈ [0,∞] such that

lim
r→∞

Kr = K∞ and Kr ∼ K0r
−(k/2)(k−1) exp{−r−2λ(W∩Ik)} as r ↓ 0.

(1.5)

Interestingly, this shows that in the interpolating regime where 1¿ r(t)¿√
t, the polynomial decay term is already present; however, it does not come

from the time parameter, but from the spatial parameter. It arises from the
rescaling limit of the principal eigenfunction.

It is clear that the spectral decomposition method used in this paper is
also able to describe the limiting conditional distribution of the endpoint of the
Brownian motion given that the path stays in the truncated Weyl chamber for
a long time; it is given in terms of the L1-normalised principal eigenfunction:

Px

(
B(t) ∈ dy | B[0,t] ⊂ W ∩ Ik

)
=⇒ f (W∩Ik)(y)

〈f (W∩Ik), 1l〉 dy,

where the convergence is in the weak topology on W ∩ Ik. The second main
question that we address is the description of these endpoints if the dimension k
grows to infinity, at times and in boxes with growth that may be either bounded
or unbounded as k →∞. More precisely, we will give a large-deviation principle
for the empirical measure of the endpoints of the k single motions, properly
rescaled, and identify the rate function explicitly with the help of some recent
result by Eichelsbacher and Stolz. This in particular leads to a law of large
numbers for this empirical measure in the spirit of the famous Wigner semi-
circle law. However, the rate function and therefore the limiting probability
measure have a different form, as the k-dependent boundary of rkI is still felt
in this limit.

More precisely, writing B = B(k) = (B1, . . . , Bk), we consider the empirical
measure of the properly transformed and rescaled end points of the k Brownian
motions, B1(tk), . . . , Bk(tk),

µ(k)
rk,tk

=
1
k

k∑

i=1

δsin(Bi(tk)/rk), (1.6)

which is a random element of the set M1([−1, 1]) of probability measures on
[−1, 1]. A short version of our main result here, Theorem 4.1, reads as follows.

Theorem 1.2 (Large-deviations principle). Suppose that the sequences
(rk)k and (tk)k in (0,∞) fulfill tk ≥ 16r2

k. Then, as k → ∞, uniformly in
x ∈ W ∩ rkIk, the distribution of µ(k)

rk,tk
under Px( · | B(k)

[0,tk] ⊂ W ∩ rkIk) satis-

fies a large-deviation principle on M1([−1, 1]) with speed k2 and rate function

R(µ) =
1
2

1∫

−1

1∫

−1

log |x− y|−1 µ(dx)µ(dy)− d, µ ∈M1([−1, 1]), (1.7)
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where d ∈ IR is such that infµ∈M1([−1,1]) R(µ) = 0.

Explicitly, the statement of Theorem 1.2 is that R is a lower semicontinuous
function and that, for any open set F ⊂M1([−1, 1]) and for any closed subset
G ⊂M1([−1, 1]),

lim inf
k→∞

1
k2

logPx

(
µ(k)

rk,tk
∈ F | B(k)

[0,tk] ⊂ W ∩ rkIk
) ≥ − inf

µ∈F
R(µ),

lim sup
k→∞

1
k2

logPx

(
µ(k)

rk,tk
∈ G | B(k)

[0,tk] ⊂ W ∩ rkIk
) ≤ − inf

µ∈G
R(µ).

Actually, a related large-deviations principle with the same rate function R
has recently been derived by Eichelsbacher and Stolz [3] for the empirical mea-
sure of the eigenvalues of a certain random matrix with explicit joint dis-
tribution of the components in terms of an orthogonal polynomial ensemble.
Via the spectral decomposition method, we show that the joint distribution of
sin(B(k)(tk)/rk) is asymptotically sufficiently close to that ensemble. We find it
remarkable that no divergence of the time tk nor of the radius rk is required;
apparently no convergence to the invariant distribution is necessary.

From the principle in Theorem 1.2, a law of large numbers in the spirit of
Wigner’s semicircle theorem is derived as follows (see Cor. 4.1). Let the situation
of Theorem 1.2 be given.

Corollary 1.1 (Law of large numbers). As k → ∞, uniformly in x ∈ W ∩
rkIk, the distribution of µ(k)

rk,tk
under Px( · | B(k)

[0,tk] ⊂ W∩rkIk) converges weakly

towards the arcsine distribution on [−1, 1].

The remainder of the paper is devoted to the proper formulation of the main
results and their proofs. Actually, we do not treat the Weyl chamber WA only,
but all the three Weyl chambers WZ = WA,WC ,WD given by

WA = {x = (x1, . . . , xk) ∈ Rk : x1 < . . . < xk},
WC = {x = (x1, . . . , xk) ∈ Rk : 0 < x1 < . . . < xk},
WD = {x = (x1, . . . , xk) ∈ Rk : |x1| < x2 < . . . < xk}.

In connection with Brownian motion, these chambers appeared first in a work by
Grabiner [6]. They are defined with the help of certain reflection groups which
will be mentioned in Lemma 2.1. The intersection of these chambers with a box,
the truncated Weyl chambers, turn out to be alcoves; they are defined similarly
by affine reflection groups (another reflection is added). Let us mention that
Doumerc and Moriarty [2] examined non-exit probabilities of Brownian motion
from other (non-time-dependent) alcoves (there Pfaffians instead of determi-
nants arise), while Grabiner [7] exactly enumerated discrete walks restricted to
alcoves, and Krattenthaler [14] identified the asymptotics of this enumeration.
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Since the latter two authors work in a discrete setting, one should in principle
be able to derive our results from those of Grabiner and Krattenthaler by an
appropriate scaling limit.

One can also consider the Brownian motion conditioned never to hit the
boundary of W ∩ Ik. Specialised to our situation, Pinsky [15] showed that this
process has generator (1/2)∆+(∇f (W∩Ik)/f (W∩Ik))∇. This process is stationary,
and its invariant distribution has (f (W∩Ik))2 as Lebesgue density.

The paper is organized as follows: in the next section we set up the eigenfunc-
tion expansions that are essential for our purposes. In the subsequent section
we use this machinery to prove the asymptotics for the different regimes and the
soft transitions between them. In the final section we prove the large deviation
principle and the law of large numbers.

2. Eigenfunction expansions

In this section, we give the details of the eigenvalue expansions for the Brow-
nian motion before exiting any of the truncated Weyl chambers WZ ∩ Ik for Z
of type A, C or D. In particular, we explicitly identify all the eigenvalues and
eigenfunctions of one half times the negative Dirichlet Laplacian, −(1/2)∆, in
these three sets.

It is well-known that the non-exiting problem from an open bounded con-
nected domain U ⊂ IRk is closely linked with the eigenvalues and eigenfunctions
of the Dirichlet Laplacian in U . Let τU = inf{t > 0: B(t) /∈ U} be the first exit
time of the Brownian motion from the domain U . Then the events {B[0,t] ⊂ U}
and {τU > t} are identical. The transition density of B before exiting U can
be viewed as a symmetric positive definite operator on L2(Rk) (see, for exam-
ple, [16]) and therefore admits the eigenfunction expansion uniformly in x, y ∈ U
for t > 0,

Px

(
B(t) ∈ dy; τU > t

)/
dy =

∑

l∈IN

exp{−tλ(U)

l }f (U)

l (x)f (U)

l (y), (2.1)

where (λ(U)

l )l∈IN is the spectrum of −(1/2)∆ with Dirichlet (i.e., zero) boundary
condition in U , arranged in non-decreasing order, and (f (U)

l )l∈IN is a complete
orthonormal system in L2(U) of corresponding eigenfunctions. The principal
eigenvalue λ(U) = λ(U)

1 is simple and positive, and the corresponding eigenfunc-
tion f (U)

1 = f (U) is chosen strictly positive in U (see for example [1]).
The key idea is to combine the expansion in (2.1) for one-dimensional mo-

tions in I with a Karlin –McGregor type formula to derive an expansion for
the k-dimensional motion in the truncated Weyl chamber. This very natural
method was already suggested by Hobson and Werner [8] who examined non-
colliding Brownian motions on the circle. It avoids solving the heat equation
with zero boundary condition in the truncated Weyl chamber, which would seem
technically nasty.
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We need the one-dimensional eigenfunction expansion. It is well-known that
the spectrum and normalized eigenfunctions of −(1/2)∆ on I = (−π/2, π/2)
with Dirichlet boundary condition are given by

λ(I)

l =
l2

2
, f (I)

l =

√
2
π
×

{
sin(lx), if l is even,
cos(lx), if l is odd.

(2.2)

We could consider an arbitrary symmetric interval instead of I, but we focus on
(−π/2, π/2) for convenience since then the formulas simplify. The eigenvalues
and eigenfunctions on the interval rI with r > 0 are related by

λ(rI)

l = r−2λ(I)

l , f (rI)

l (x) = r−1/2f (I)

l (x/r). (2.3)

The Karlin –McGregor-type formula for truncated Weyl chambers can be
obtained from the original formula (see [11]) by a small modification. For com-
pleteness, we give the proof. We abbreviate the density of the distribution of
the one-dimensional Brownian motion before exiting the interval I by

p(I)
t (x, y) = Px

(
B1(t) ∈ dy; τI > t

)/
dy, x, y ∈ I. (2.4)

Lemma 2.1. (Karlin –McGregor formula for a truncated Weyl cham-
ber). For any t > 0, and for any x, y in WA, WC and WD, respectively,

Px

(
B(t) ∈ dy, τWA∩Ik > t

)/
dy = det

[
(p(I)

t (xi, yj))i,j=1,...,k

]
, (2.5)

Px

(
B(t) ∈ dy, τWC∩Ik > t

)/
dy = det

[(
p(I)

t (xi, yj)− p(I)
t (xi,−yj)

)
i,j=1,...,k

]
,

(2.6)

Px

(
B(t) ∈ dy, τWD∩Ik > t

)/
dy =

1
2

det
[(

p(I)
t (xi, yj)− p(I)

t (xi,−yj)
)
i,j=1,...,k

]

+
1
2

det
[(

p(I)
t (xi, yj) + p(I)

t (xi,−yj)
)
i,j=1,...,k

]
.

(2.7)

Proof. We follow [6, Sections 2 and 4], which gives the proof for Ik replaced
by IRk. The same proof applies to our situation, since I is symmetric around
zero and is the same set in any of the k dimensions.

The groups Ak−1, Ck, Dk defining the Weyl chambers WZ for Z of type A, C
or D consist of reflections IRk → IRk, which are characterised by permutations of
the components with sign changes of the components. In order not to overburden
the notation, we have decided to suppress the order of the group from the
notation of the Weyl chambers (so just types are indicated as the dimension
is understood). The elements of the symmetric group of order k, which may
also be conceived as the Weyl reflection group of type A of order k − 1, Ak−1,
only permute the components, the elements of Ck, the hyperoctahedral group of
order k, permute the components with arbitrary sign changes, and the elements
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of Dk, the even hyperoctahedral group of order k, permute the components with
an even number of sign changes. If these reflections are understood as k × k
matrices, then Ak−1 is the set of all permutation matrices, Ck is the set of
all matrices that have precisely one real of modulus one in each row and each
column, and zero otherwise, and Dk is the set of all such matrices with an even
number of −1s.

We prove the general formula

Px

(
B(t) ∈ dy, τWZ∩Ik > t

)
=

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t

)
, (2.8)

where z(y) = (ε(z)
1 yσz(1), . . . , ε(z)

k yσz(k)) ∈ IRk. Here ε(z)
i ∈ {−1, 1} denotes a

possible sign change, σz the permutation of the indices, and sign(z) =
sign(σz)

∏
i ε(z)

i . Our assertions (2.5)–(2.7) can be deduced from (2.8) by sub-
stituting the respective Weyl group.

The idea is an application of the strong Markov property at time τWZ
, which

leads to an application of an element of the Weyl group to the path (B(τWZ
+

s))s∈[0,t−τWZ
]. This uses that Brownian motion is a strong Markov process

and that its increments are symmetric with respect to the Weyl groups, i.e., the
distribution of B(t2) given B(t1) is, for 0 ≤ t1 < t2, the same as the distribution
of z(B(t2)) given z(B(t1)). Hence, we can treat the difference of the two sides
of (2.8) as follows:

Px

(
B(t) ∈ dy, τWZ∩Ik > t

)−
∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t

)

=
∑

z∈Z

sign(z)
(
Px

(
B(t) ∈ dz(y), τWZ∩Ik > t

)

− Px

(
B(t) ∈ dz(y), τIk > t

))

= −
∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t
)
. (2.9)

Now we argue that the right-hand side is equal to zero. Indeed, on {τWZ ≤ t},
we have B(τWZ ) ∈ ∂WZ . In a natural way, we decompose ∂WZ into (up to
Lebesgue null sets, disjoint) sets E1, . . . , EiZ

and assign to each Ej a reflection σj

of the respective Weyl group with sign(σj) = −1 that fixes every x ∈ Ej , i.e.,
σj(x) = x. In words, if Ej is the set of x ∈ ∂WZ such that xl = xm for some
l 6= m, then σj is the transposition of l and m. If Z is of type C and Ej is
the set of x ∈ ∂WZ such that x1 = 0, then we pick σj as the sign change for
the first component. If Z is of type D and Ej is the set of x ∈ ∂WZ such that
−x1 = x2, then we pick σj as the transposition of 1 and 2, together with two
sign changes in the first two components. Note that the event {τIk > t} remains
unchanged when (B(τWZ

+s))s∈[0,t−τWZ
] is replaced by its image under σj , since
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σj(Ik) = Ik. Therefore, we have

r.h.s. of (2.9)

= −
iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −
iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ ≤ t, B(τWZ ) ∈ Ej

)

=
iZ∑

j=1

∑

z∈Z

sign(σj ◦ z)Px

(
B(t) ∈ dσj(z(y)), τIk > t, τWZ ≤ t, B(τWZ ) ∈ Ej

)

=
iZ∑

j=1

∑

z∈Z

sign(z)Px

(
B(t) ∈ dz(y), τIk > t, τWZ

≤ t, B(τWZ
) ∈ Ej

)

= −r.h.s. of (2.9).

Hence, the term is equal to zero, and we are done. 2

Now we use the eigenfunction expansion (2.1) for U = I in (2.5)–(2.7) to ob-
tain the analogous expansions in the truncated Weyl chambers. We abbreviate,
for a multi-index l = (l1, . . . , lk) ∈ INk and x = (x1, . . . , xk) ∈ Ik,

λ(Z)

l =
k∑

i=1

λ(I)

li
, (2.10)

f (Z)

l (x) = det
[
(f (I)

li
(xj))i,j=1,...,k

]×





1, for type A,

2k/2, for type C,

2(k−1)/2, for type D.

Furthermore, we need the three index sets

NA = INk, NC = (2IN)k, ND = (2IN− 1)k ∪ (2IN)k. (2.11)

Lemma 2.2. (Eigenvalue expansion in truncated Weyl chambers). The
transition density of Brownian motion before exiting the truncated Weyl cham-
ber WZ ∩ Ik for Z of types A, C and D admits the following expansions, for
any t > 0, uniformly for x, y ∈ WZ ∩ Ik:

Px

(
B(t) ∈ dy, τWZ∩Ik > t

)/
dy =

∑

l∈WA∩NZ

exp{−tλ(Z)

l }f (Z)

l (x)f (Z)

l (y). (2.12)

Proof. Let us first prove the case A; we later explain the differences that occur
in the two other cases, C and D.
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We substitute the eigenvalue expansion (2.1) for p(I)
t defined in (2.4) in (2.5)

to obtain

Px

(
B(t) ∈ dy, τWA∩Ik > t

)/
dy (2.13)

= det
[( ∞∑

l=1

exp{−tλ(I)

l }f (I)

l (xi)f
(I)

l (yj)
)

i,j=1,...,k

]

=
∑

l=(l1,...,lk)∈INk

k∏

j=1

exp{−tλ(I)

lj
}det

[(
f (I)

lj
(xi)f

(I)

lj
(yj)

)
i,j=1,...,k

]
,

where we also used the multilinearity of the determinant in columns. Observe
that the last determinant is identically zero if the k indices l1, . . . , lk are not
pairwise distinct. Indeed, if li = lj for some i 6= j, then at least the ith and
the jth row of the matrix are multiples of each other for all x, y ∈ WA ∩ Ik.
Hence, the sum over l ∈ INk may be reduced to the sum over l ∈ WA ∩ INk with
an additional sum over β ∈ Sk, the set of all permutations of 1, . . . , k, and l
is replaced by lβ = (lβ(1), . . . , lβ(k)). Using also the notation in (2.10) for the
eigenvalue, this gives

r.h.s. of (2.13) (2.14)

=
∑

l=(l1,...,lk)∈WA∩INk

exp{−tλ(A)

l }
∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]
.

Let us evaluate the sum over β. Using the substitutions j = τ−1 ◦ β−1(i) and
τ−1 ◦ β = σ for β, τ ∈ Sk, we compute

∑

β∈Sk

det
[(

f (I)

lβ(j)
(xi)f

(I)

lβ(j)
(yj)

)
i,j=1,...,k

]

=
∑

β,τ

sign(τ)
k∏

j=1

[
f (I)

lβ◦τ(j)
(xj)f

(I)

lβ◦τ(j)
(yτ(j))

]

=
∑

β,τ

sign(τ)
k∏

i=1

[
f (I)

li
(xτ−1◦β−1(i))f

(I)

li
(yβ−1(i))

]

=
∑

β,τ

sign(τ)
k∏

i=1

[
f (I)

li
(xτ−1◦β(i))f

(I)

li
(yβ(i))

]

=
∑

β,σ

sign(β) sign(σ)
k∏

i=1

[
f (I)

li
(xσ(i))f

(I)

li
(yβ(i))

]

=
( ∑

β

sign(β)
k∏

i=1

f (I)

li
(yβ(i))

)(∑
σ

sign(σ)
k∏

j=1

f (I)

lj
(xσ(j))

)
= f (A)

l (x)f (A)

l (y),
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where we used the notation in (2.10) for the eigenfunction in the last step. Using
this in (2.14), we see that the proof of the lemma for Z of type A is complete.

Now we explain the differences to cases C and D. In the case C, inserting
the eigenvalue expansion (2.1) for U = I in the formula (2.6), recalling (2.2)
and using that f

(I)
l is even if l is odd (the same applies vice versa: f

(I)
l is odd

if l is even), we see that f
(I)
l terms for odd l disappear and f

(I)
l terms for even l

appear twice, more precisely,

Px

(
B(t) ∈ dy, τWC∩Ik > t

)/
dy

= det
[( ∞∑

l=1

2 exp{−tλ(I)

2l }f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]
.

Hence, only even indices appear, and a factor of 2k can be extracted from the
determinant and is distributed to the two functions f (C)

2l (x) and f (C)

2l (y), see the
second line in (2.10).

Case D is similar; from (2.7) we see that the first determinant is the same
as in case C, and in the second only cosines remain:

Px

(
B(t) ∈ dy, τWD∩Ik > t

)/
dy

=
1
2

det
[( ∞∑

l=1

2 exp{−tλ(I)

2l }f (I)

2l (xi)f
(I)

2l (yj)
)

i,j=1,...,k

]

+
1
2

det
[( ∞∑

l=1

2 exp{−tλ(I)

2l−1}f (I)

2l−1(xi)f
(I)

2l−1(yj)
)

i,j=1,...,k

]
.

Now one easily sees how the prefactors 2k/2, 2(k−1)/2 and the index sets NC ,
ND arise. 2

Corollary 2.1. For Z of type A, C and D the negative Dirichlet Laplacian
−(1/2)∆ on WZ∩Ik has spectrum {λ(Z)

l : l ∈ WA∩NZ}, where these eigenvalues
are counted with multiplicity. Furthermore, {f (Z)

l : l ∈ WA ∩NZ} is a complete
orthonormal system of corresponding eigenfunctions.

Proof. The functions f (Z)

l with l ∈ WA∩NZ are orthonormal on L2(WZ∩Ik) and
they are eigenfunctions of −(1/2)∆ corresponding to the eigenvalues λ(Z)

l , since
the f (Z)

l are linear combinations of products of one-dimensional eigenfunctions
which are orthonormalised on I, and the Laplacian is a linear operator. For the
reader’s convenience, we provide the details for this. We concentrate on case A
since the other cases follow in the same spirit. First we show the eigenfunction
property:

−1
2
∆f (A)

l (x) = −1
2
∆det

[
(f (I)

li
(xj))i,j=1,...,k

]
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= −1
2

∑
σ

sign(σ)∆
k∏

i=1

f (I)

li
(xσ(i))

=
∑

σ

sign(σ)
( k∑

i=1

λ(I)

li

) k∏

i=1

f (I)

li
(xσ(i))

=
( k∑

i=1

λ(I)

li

)
f (A)

l (x) = λ(A)

l f (A)

l (x),

where we also used (2.2) and (2.10). The boundary condition is obviously sat-
isfied because of the boundary condition of the one-dimensional eigenfunctions
and the determinantal structure. Now we show orthonormality for two multi-
indices l1, l2:

∫

WA∩Ik

f (A)

l1 (x)f (A)

l2 (x) dx =
1
k!

∫

Ik

f (A)

l1 (x)f (A)

l2 (x) dx

=
1
k!

∑

α,β

sign(α ◦ β)
∫

Ik

k∏

i=1

f (I)

l1i
(xα(i))f

(I)

l2i
(xβ(i)) dx

=
1
k!

∑

α,β

sign(α ◦ β)
k∏

i=1

〈
f (I)

l1i
, f (I)

l2
α◦β−1(i)

〉
,

where we wrote 〈·, ·〉 for the standard inner product on IR. If l1 6= l2, then,
for any α, β, there is at least one i such that l1i 6= l2α◦β−1(i), and hence the
corresponding inner product is zero, since the f (I)

l form an orthonormal basis.
If l1 = l2, then for any α 6= β, there is also at least such an i, such that the sum
reduces to the sum over α = β, which gives that the right-hand side is equal to
one. This shows orthonormality.

These are in fact all eigenfunctions since otherwise there is a function g 6= 0
such that

0 =
∑

l∈WA∩NZ

exp{−tλ(Z)

l }〈f (Z)

l , g〉2

=
∫∫

g(y)g(x)Px

(
B(t) ∈ dy, τWZ∩Ik > t

)
dx.

But this contradicts the existence of an expansion of the transition density in
terms of a complete orthonormal system, recall [16]. 2

Note that, for k ≥ 3, some of the eigenvalues λ(Z)

l coincide for different l,
i.e., their multiplicity is larger than one. Examples of such eigenvalues can be
constructed using Pythagorean number triples.
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Remark 2.1. In particular the principal eigenvalues and eigenfunctions of
−(1/2)∆ in WZ ∩ Ik with Dirichlet boundary condition are given by

λ(A) = λ(A)

id =
1
2

k∑

i=1

i2, λ(C) = λ(C)

2id = 4λ(A), λ(D) = λ(D)

2id−1 =
1
2

k∑

i=1

(2i− 1)2,

(2.15)

and

f (A) = |f (A)

id |, f (C) = 2k/2|f (A)

2id |, f (D) = 2(k−1)/2|f (A)

2id−1|, (2.16)

where id = (1, 2, 3, . . . , k).

Hence, f (Z) = f (WZ∩Ik) in the notation of Section 1. We are able to give
explicit expressions for the principal eigenfunctions in terms of the réduites.
These are, by definition, positive harmonic functions for −(1/2)∆ that vanish on
the boundary of the Weyl chambers. They are unique, up to positive multiples.
They are given by

hA(x) = det
[
(xj−1

i )i,j=1,...,k

]
, hD(x) = hA(x2), hC(x) = hD(x)

k∏

i=1

xi,

(2.17)

where we wrote x2 for the vector (x2
1, . . . , x

2
k). Note that h = hA is the classical

Vandermonde determinant. The following identification clarifies the relation
between the functions appearing in the asymptotics (1.1) and (1.3). It also
shows that it will be natural to consider the sine of the endpoints of the motions
instead of the motions themselves, see (1.6).

Corollary 2.2 (Principal eigenfunctions).

f (A)(x) =
2k2/2

πk/2
hA(sin(x))

k∏

i=1

cos(xi), (2.18)

f (C)(x) =
2k(k+1)

πk/2
hC(sin(x))

k∏

i=1

cos(xi), (2.19)

f (D)(x) =
2(2k2−1)/2

πk/2
hD(sin(x))

k∏

i=1

cos(xi). (2.20)

Proof. Let us first consider the case A. Use (2.16) and (2.10) (recall (2.2)) to
see that

f (A)(x) =
( 2

π

)k/2∣∣ det
[(

cos(ixj)1l{i odd} + sin(ixj)1l{i even}
)
i,j=1,...,k

]∣∣.
(2.21)
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Now use the well-known sine and cosine expansions for i odd in the cosine and
for i even in the sine:

cos(ix) = cos(x)
(i−1)/2∑

n=0

(−1)n

(
i

2n

)
(sin2(x))n(1− sin2(x))(i−1)/2−n, (2.22)

sin(ix) = cos(x) sin(x)
i/2∑
n=1

(−1)n+1

(
i

2n− 1

)
(sin2(x))n−1(1− sin2(x))i/2−n.

(2.23)

Note that the degrees of the monomials in the expansions all have the same
parity. We extract the factors cos(xj) row-wise from the determinants so that
the terms remaining in the ith row are polynomials pi in sin(xj), i.e.,

f (A)(x) =
( 2

π

)k/2 k∏

i=1

cos(xi)
∣∣ det

[(
pi(sin(xj))

)
i,j=1,...,k

]∣∣.

Now observe that pi has degree precisely equal to i− 1 with highest coefficient
coming from a summation of the binomial coefficients over all summands: For i
odd,

pi(y) =
(i−1)/2∑

n=0

(−1)n

(
i

2n

)
y2n(1−y2)(i−1)/2−n = yi−12i−1(−1)(i−1)/2+O(yi−3),

(2.24)
and for i even:

pi(y) = y

i/2∑
n=1

(−1)n+1

(
i

2n− 1

)
y2n−2(1− y2)i/2−n (2.25)

= yi−12i−1(−1)i/2−1 + O(yi−3).

Therefore, one can apply elementary row operations in such a way that in each
entry of the determinant only the leading monomial is left. Afterwards, we can
extract from the ith row the prefactor 2i−1 and are left with

f (A)(x) =
( 2

π

)k/2∣∣ det
[(

sini−1(xj)
)
i,j=1,...,k

]∣∣
k∏

i=1

[
cos(xi)2i−1

]
.

Now collect the terms and recall (2.17) to see that (2.18) is true.
Now we come to cases C and D. Plugging in the one-dimensional eigenfunc-

tions yields

f (C)(x) =
( 2

π

)k/2

2k/2
∣∣ det

[(
sin(2ixj)

)
i,j=1,...,k

]∣∣,

f (D)(x) =
( 2

π

)k/2

2(k−1)/2
∣∣ det

[(
cos((2i− 1)xj)

)
i,j=1,...,k

]∣∣.
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Using expansions (2.22) and (2.23) we obtain

f (C)(x) =
2k

πk/2

∣∣ det
[(

p2i(sin(xj))
)
i,j=1,...,k

]∣∣
k∏

i=1

cos(xi),

f (D)(x) =
2k−1/2

πk/2

∣∣ det
[(

p2i−1(sin(xj))
)
i,j=1,...,k

]∣∣
k∏

i=1

cos(xi).

For cases C and D the degrees of the polynomials in sin(x) increase by two with
each row, so that we get the degrees from 1 to 2k − 1 for case C and from 0 to
2k − 2 for case D. One can perform exactly the same row operations since all
occuring monomials of the polynomials have the same parity in their degrees.
But now we actually get hA in sine squares together with a product of sines in
case C. Hence we arrive at (2.19) and (2.20) (recall (2.17)). 2

3. Exit regimes

Now we use our results on the eigenvalue expansions from Section 2 to iden-
tify the asymptotics of the non-exit probabilities in time-dependent truncated
Weyl chambers. For this we prove a technical lemma. Note that we abbreviate
〈f (Z), 1l〉 by

∫
f (Z). Abbreviate

γ(t) := − ln
(
1− e−(t/2−7)

)− (t/2− 7), t > 14. (3.1)

Lemma 3.1. Fix a type A, C or D for Z. Then, for any t, r ∈ (0,∞) with
t/r2 > 14 and for any x, y ∈ WZ ∩ rIk,

Px

(
B(t) ∈ dy, τWZ∩rIk > t

)/
dy (3.2)

= exp{−tr−2λ(Z)}r−kf (Z)(x/r)f (Z)(y/r)(1 + ε(Z)

tr−2(x/r, y/r)),

and

Px

(
τWZ∩rIk > t

)
= exp{−tr−2λ(Z)}f (Z)(x/r)

∫
f (Z)

(
1 + ε̃(Z)

tr−2(x/r)
)
, (3.3)

where the error terms satisfy

sup
x,y∈WZ∩Ik

∣∣ε(Z)
t (x, y)

∣∣ ≤ ekγ(t), sup
x∈WZ∩Ik

∣∣ε̃(Z)
t (x)

∣∣ ≤ ekγ(t). (3.4)

Proof. We provide the details of the proof for Z of type A only and explain the
differences to the other two types later. Use (2.12), (2.3) and (2.15) and isolate
the first term in the expansion to get

Px

(
B(t) ∈ dy, τWA∩rIk > t

)/
dy (3.5)

=
∑

l∈WA∩Nk

exp{−tr−2λ(A)

l }r−kf (A)

l (x/r)f (A)

l (y/r)

= exp{−tr−2λ(A)}r−kf (A)(x/r)f (A)(y/r)
(
1 + ε(A)

tr−2(x/r, y/r)
)
,



Brownian motion in a truncated Weyl chamber 513

where

ε(A)
t (x, y) =

∑

l=(l1,...,lk)∈WA∩Nk\{id}
exp

{
− t

2

k∑

i=1

(l2i − i2)
}

f (A)

l (x)f (A)

l (y)
f (A)(x)f (A)(y)

. (3.6)

We first claim that

sup
x∈WA∩Ik

∣∣∣f
(A)

l (x)
f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)
hA(id)

( ∏

i : li>i

[23li/2li]
)( ∏

i : li=i

2li
)
, (3.7)

where l̃ ∈ WA ∩ Nk \ {id}, maximizes hA subject to l̃ ≤ l; we understand the
inequality componentwise. Its derivation will now be explained in detail.

As in the proof of Corollary 2.2, we see that, for any l ∈ INk,

f (A)

l (x) =
( 2

π

)k/2

det
[(

pli(sin(xj))
)
i,j=1,...,k

] k∏

i=1

cos(xi), (3.8)

where the polynomials pi are given in (2.24) and (2.25). The degree of pli is
li− 1, and the coefficients of all lower monomials with parity of degree different
from the one of li − 1 are zero.

Now we evaluate the determinant. As in the proof of Corollary 2.2, we carry
out suitable row operations to cancel in the polynomial of row i every monomial
of order < i − 1. But now, to achieve this, we first need to suitably permute
all rows i satisfying li > i. Let us call the arising vector l′. Hence, there are
polynomials

p̃i,l′i(w) =
l′i∑

n=i

wn−1bn,i,l′i , w ∈ IR,

with suitable coefficients bn,i,l′i such that
∣∣ det

[(
pli(sin(xj))

)
i,j=1,...,k

]∣∣ =
∣∣ det

[(
p̃i,l′i(sin(xj))

)
i,j=1,...,k

]∣∣.

These coefficients satisfy |bn,i,l′i | ≤ 23l′i/2 if l′i > i and |bn,i,l′i | ≤ 2l′i if l′i = i.
This is explained as follows: if l′i = i, then 2l′i bounds the sum of the binomial
coefficients for each monomial in (2.24) and (2.25); if l′i > i, then we need the
additional power of l′i/2 due to the binomial coefficients which arise by expansion
of the power of (1− y2) in (2.24) and (2.25).

Using the multilinearity of the determinant, we obtain

det
[(

p̃i,l′i(sin(xj))
)
i,j=1,...,k

]
=

∑

i≤ni≤l′i
i=1,...,k

an(sin(x))
k∏

i=1

bni,i,l′i ,
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where a(n1,...,nk)(w) = det[(wni−1
j )i,j=1,...,k] for w = (w1, . . . , wk). Now we

introduce the Schur polynomials,

sd(w) =
ad+id(w)
hA(w)

, w ∈ IRk,

where d = (d1, . . . , dk) ∈ INk
0 satisfies d1 ≤ · · · ≤ dk, see e.g. [5]. To be able to

employ these polynomials, we associate to each n ∈ INk
0 its increasingly ordered

version −→n . Then a−→n differs at most by a sign change from an. Note that if
ni = nj for at least two indices i and j, then an and hence a−→n is identically
zero. Using (3.8) for f (A)

l and (2.18) for f (A), we see that

∣∣∣f
(A)

l (x)
f (A)(x)

∣∣∣ =
∣∣∣
det

[(
pli(sin(xj))

)
i,j=1,...,k

]

2k(k−1)/2hA(sin(x))

∣∣∣

≤ 2−k(k−1)/2
∑

i≤ni≤l′i
i=1,...,k; ni 6=nj

∣∣s−→n−id(sin(x))
∣∣

k∏

i=1

|bni,i,l′i |.

Now we estimate the modulus of the right-hand side. Note that s−→n−id(sin(x))
is a multipolynomial in sin(x1), . . . , sin(xk) with positive coefficients and that
all these arguments are in [−1, 1]. Therefore,

∣∣s−→n−id(sin(x))
∣∣ ≤ s−→n−id(1l) =

|hA(n)|
hA(id)

≤ hA(l̃)
hA(id)

,

see [5] or [9, proof of Lemma 2.3]. Hence, we have

sup
x∈WA∩Ik

∣∣∣f
(A)

l (x)
f (A)(x)

∣∣∣ ≤ 2−k(k−1)/2 hA(l̃)
hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
)
.

This proves (3.7) which we can now plug in the error term ε(A)
t (x, y):

sup
x,y∈WA∩Ik

∣∣ε(A)
t (x, y)

∣∣

≤
∑

l∈WA∩Nk\{id}
exp

{
− t

2

k∑

i=1

(l2i − i2)
}(

sup
x∈WA∩Ik

∣∣∣f
(A)

l (x)
f (A)(x)

∣∣∣
)2

≤
∑

l∈WA∩Nk\{id}
2−k(k−1) exp

{
− t

2

∑

i : li>i

(li − i)(li + i)
}

×
( hA(l̃)

hA(id)

( ∏

i : li>i

23li/2li

)( ∏

i : li=i

2li
))2

.
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With help of the elementary estimate (also using that l̃ ≤ l)

ln
( hA(l̃)

hA(id)

)
≤

∑

i,j : j<i<l̃i

ln
l̃i − j

i− j
=

∑

i,j : j<i<l̃i

ln
(
1 +

l̃i − i

i− j

)

≤
∑

i,j : j<i<l̃i

ln(2( l̃i − i))

≤
∑

i : l̃i>i

(i− 1)2(li − i) ≤
∑

i : li>i

(li + i)(li − i)

and using that 2−k(k−1)(
∏

i : li=i 2li)2 ≤ 1, we can proceed by

sup
x,y∈WA∩Ik

∣∣ε(A)
t (x, y)

∣∣

≤
∑

l∈WA∩Nk\{id}
exp

(
2

∑

i : li>i

[
(li + i)(li − i) + li

3
2

ln 2 + ln(li)
])

× exp
(
− t

2

∑

i : li>i

(li − i)(li + i)
)

≤
∑

l∈WA∩Nk\{id}
exp

(
−

( t

2
− 7

) ∑

i : li>i

(li − i)(li + i)
)
,

where we also estimated

li
3
2

ln 2 + ln(li) ≤ 5
2
(li + i)(li − i).

Define c1(t) := t/2 − 7 and c2(t) := 1/(1 − exp{−c1(t)}). Then under the
assumption t > 14, we use in the sum over l that li ≥ i for i = 1, . . . , k − 1 and
lk ≥ k + 1 and compare to the geometric series, to obtain:

sup
x,y∈WA∩Ik

∣∣ε(A)
t (x, y)

∣∣

≤
∑

l∈WA∩Nk\{id}
exp

{− c1(t)(l21 − 12 + · · ·+ l2k − k2)
}

=
∑

l∈WA∩Nk\{id}

(
exp{−c1(t)}

)l21−1
k∏

i=2

exp
{− c1(t)(l2i − i2)

}

≤ 1
1− exp{−c1(t)}

∑

(l2,...,lk)∈WA∩(N+1)k−1\{(2,...,k)}

k∏

i=2

exp
{− c1(t)(l2i − i2)

}
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≤ (c2(t))k−1
∞∑

l=k+1

exp
{− c1(t)(l2 − k2)

}

= (c2(t))k−1
∞∑

n=1

exp
{− c1(t)(2nk + n2)

}

≤ (c2(t))k−1 exp{−kc1(t)}
∞∑

n=1

(
exp{−c1(t)}

)(2n−1)k

≤ (c2(t))k exp{−kc1(t)} = exp{kγ(t)},

where we recall the definition of γ(t) from (3.1). This proves the first bound
in (3.4) for the error term in (3.2) and therefore finishes the proof of (3.2) for
the case A.

If we integrate Px(B(t) ∈ dy, τWA∩rIk > t) over y, we obtain

Px

(
τWA∩rIk > t

)
=

∞∑

l=1

exp
{− tr−2λ(A)

l

}
f (A)

l (x/r)
∫

f (A)

l .

Now one can isolate the first summand as in (3.5) and carry out exactly the same
procedure as above with the only difference that f (A)

l (y) is replaced by
∫

f (A)

l .
This yields (3.3) with an error term ε̃ satisfying the second bound in (3.4).
Hence, the proof of the lemma for Z of type A is finished.

For cases C and D we can use the same procedure with the only differences
that some l ∈ WA ∩Nk \ {id} do not appear in the expansions and we now have
to divide by Vandermonde determinants in sine squares together with a product
of sines in case C. But this leads to the same bound since all components of the
occuring l are guaranteed to have the same parity. Hence the lemma is proved.

2

With the help of this lemma we can now formulate and prove our first main
theorem.

Theorem 3.1. (Late-time non-exit from a time-dependent truncated
Weyl chamber). Fix a type A, C or D for Z. Then, for any function
r : (0,∞) → (0,∞), as t goes to infinity, for x ∈ WZ ∩ r(t)Ik and r ∈ (0,∞),

Px

(
τWZ∩r(t)Ik > t

)
(3.9)

∼





exp{−tr−2λ(Z)}f (Z)(x/r)
∫

f (Z), if r(t) ≡ r,

K(Z)
0 r(t)−αZ hZ(x) exp{−tr(t)−2λ(Z)}, if 1 ¿ r(t) ¿ √

t,

K(Z)
r hZ(x)t−αZ/2, if r(t) ∼ r

√
t,

K(Z)
∞ hZ(x)t−αZ/2, if

√
t ¿ r(t).
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The convergence is uniform for x ∈ WZ ∩ r(t)Ik, without further restriction in
the first case, with the restriction |x| ≤ θtr(t) in the two middle cases and with
the restriction |x| ≤ θt

√
t in the last case, for any 0 < θt → 0 as t →∞. In the

third line, K(Z)
r := P0(τrIk > 1 | τWZ > 1)K(Z)

∞ . The other parameters are given
as follows.

αA =
k

2
(k − 1), αC = k2, αD = k(k − 1), (3.10)

and

K(A)
0 =

2k2/2

πk/2

∫
f (A),

K(A)
∞ =

2k
∏k

i=1 Γ(i/2 + 1)
πk/2k!

∏
i<j(j − i)

,

K(C)
0 =

2k(k+1)

πk/2

∫
f (C), (3.11)

K(C)
∞ =

23k2/2
∏k

i=1 Γ(i/2 + 1)Γ((i + 1)/2)

πkk!
∏

i<j [(2j − 1)2 − (2i− 1)2]
∏k

i=1(2k + 1− 2i)
,

K(D)
0 =

2(2k2−1)/2

πk/2

∫
f (D),

K(D)
∞ =

2(3k2−3k+2)/2
∏k

i=1 Γ(i/2 + 1)Γ(i/2)
πkk!

∏
i<j [(2j − 1)2 − (2i− 1)2]

.

Remark 3.1. The conditional probability appearing in the definition of K(Z)
r is

to be interpreted as

P0

(
τrIk > 1 | τWZ > 1

)
= lim

x→0,x∈WZ

Px(τrIk > 1, τWZ > 1)
Px(τWZ > 1)

, (3.12)

see [13, Thm. 2.2].

Proof. The assertions about the asymptotics of the non-exit probabilities in the
first two regimes follow from (3.3) and (3.4) of Lemma 3.1 since by the choices
of r(t) we have γ(t/r(t)2) → −∞ and furthermore

f (Z)(x/r(t)) ∼
(∫

f (Z)
)−1

K(Z)
0 r(t)−αZ hZ(x)

in the second regime.
Now we come to the proof of the last two regimes, for any type A, C, D. In

the third regime, where r(t)/
√

t → r, we use Brownian scaling to see that

Px

(
τWZ∩r(t)Ik > t

)
= Px/

√
t

(
τrIk > 1 | τWZ

> 1
)
Px(τWZ

> t).
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The asymptotics Px(τWZ
> t) ∼ K(Z)

∞ hZ(x)t−αZ/2 are well-known due to [6].
This is where the restriction |x| ≤ θt

√
t, with any 0 < θt → 0 as t → ∞, is

needed. In order to see that the first term on the right-hand side converges
towards K(Z)

r = P0(τrIk > 1 | τWZ > 1), we use [13] that (Bs)s∈[0,1], conditional
given {τWZ

> 1}, is a temporarily inhomogeneous diffusion process for which
zero is an entrance boundary. In particular, we have

lim
y→0,y∈WZ

Py

(
τrIk > 1 | τWZ

> 1
)

= P0

(
τrIk > 1 | τWZ

> 1
)
,

i.e., the proof in the third regime is done.
In the fourth regime, where r(t) À √

t, we proceed similarly:

Px

(
τWZ∩r(t)Ik > t

)
= Px/

√
t

(
τr(t)t−1/2Ik > 1 | τWZ

> 1
)
Px(τWZ

> t).

While the last term is handled in the same way as in the third regime, the
first term is easily seen to converge to one. Indeed, it is not larger than one,
and it is, for any fixed r > 0 and for any sufficiently large t, not smaller than
Px/

√
t(τrIk > 1 | τWZ

> 1). Now carry out the limit as t → ∞ using the above
argument, and afterwards the limit as r ↑ ∞. 2

Furthermore, there is even a smooth transition between these regimes.

Proposition 3.1 (Soft transition). For Z of type A, C or D,

lim
r→∞

K(Z)
r = K(Z)

∞

and
K(Z)

r ∼ K(Z)
0 exp{−r−2λ(Z)}r−αZ as r → 0.

Proof. The first statement is obvious. For proving the second, we use (3.12)
and substitute, in the denominator, the asymptotics

Px(τWZ > 1) = K(Z)
∞ hZ(x)(1 + ox(1)) as x → 0, x ∈ WZ ,

which easily follows via Brownian scaling from [6]. Note that we can interchange
the limits x → 0 and r ↓ 0 because of uniform convergence which follows from
Lemma 3.1, see (3.3), since limr↓0 γ(r−2) = −∞, see (3.1). This gives that

K(Z)
r = lim

x→0,x∈WZ

Px(τWZ∩rIk > 1)
Px(τWZ

> 1)
K(Z)
∞

∼ lim
x→0,x∈WZ

exp{−r−2λ(Z)}f (Z)(x/r)
∫

f (Z)

K(Z)∞ hZ(x)(1 + ox(1))
K(Z)
∞

= K(Z)
0 exp{−r−2λ(Z)}r−αZ .

2
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4. Large-deviation principle for large dimension

Now we consider limits as the dimension k diverges. Therefore, we now write
B(k) = (B1, . . . , Bk) for the k-dimensional Brownian motion.

By M1([a, b]) we denote the set of probability measures on [a, b], with
a, b ∈ R, a < b. Recall that µ(k)

rk,tk
denotes the empirical measure of the vec-

tor sin(B(k)(tk)/rk), see (1.6). With the help of Lemma 3.1, we can also prove
large-deviation principles.

Theorem 4.1 (LDP for diverging dimension). Assume that Z is of type A
or C. Let (rk)k∈IN and (tk)k∈IN be sequences in (0,∞) satisfying tk ≥ 16r2

k.
Then, as k → ∞, the conditional distribution of µ(k)

rk,tk
under Px(· | B(k)

[0,tk] ⊂
WZ ∩ rkIk) satisfies, uniformly in x ∈ WZ ∩ rkIk, a large deviation principle on
M1([−1, 1]) in the case A and on M1([0, 1]) in the case C with respect to the
weak topology with speed k2 and good rate function

RA(µ) =
1
2

1∫

−1

1∫

−1

log |x− y|−1 µ(dx) µ(dy)− dA, (4.1)

RC(µ) =
1
2

1∫

0

1∫

0

log |x2 − y2|−1 µ(dx)µ(dy)−
1∫

0

log xµ(dx)− dC , (4.2)

where dZ ∈ IR is such that inf RZ = 0.

It follows from the theory of logarithmic potentials with external fields,
see [18] for example, that dZ is finite. We also have

dZ = lim
k→∞

1
k2

log
∫

WZ∩(2I/π)k

hZ(x) dx.

Our proof of Theorem 4.1 relies on a related principle for an orthogonal poly-
nomial ensemble, proved by Eichelsbacher and Stolz [3]. However, the case D
cannot be treated by them, due to the appearance of a square in the density
of that ensemble, which leads to some ambiguity in the interpretation of the
square root.

Proof. We first claim that, as k →∞,

Px

(
sin

(B(k)(tk)
rk

)
∈ dy

∣∣∣ τWZ∩rkIk > tk

)
/dy ∼ hZ(y)∫

WZ∩(2I/π)k hZ(w) dw
, (4.3)

uniformly in x ∈ WZ ∩ rkIk and y ∈ WZ ∩ (2I/π)k. Indeed, if we apply the
transformation x 7→ sin(x/rk) to B(k)(tk) in (3.2) of Lemma 3.1, we obtain,
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as k →∞,

Px

(
sin

(B(k)(tk)
rk

)
∈ dy, τWZ∩rkIk > tk

)
/dy

=
K(Z)

0∫
f (Z)

exp{−tkr−2
k λ(Z)}f (Z)(x/rk)hZ(y)(1 + o(1)),

and

Px

(
τWZ∩rkIk > tk

)

=
K(Z)

0∫
f (Z)

exp{−tkr−2
k λ(Z)}f (Z)(x/rk)

∫

WZ∩(2I/π)k

hZ(w) dw(1 + o(1)),

since the errors εtkr−2
k

and ε̃tkr−2
k

vanish, by our assumption that

sup
k∈IN

γ(tk/r2
k) < 0;

see (3.4). Now a division yields the claim (4.3).
We now apply [3, Thm. 3.1], which contains the large-deviation principle for

the empirical measure of a random vector with density given by the right-hand
side of (4.3) with rate function given in (4.1) resp. (4.2). Our case A refers to
the choice Σ = [−1, 1], p(k) = k, wk ≡ 1, γ = 1, β = 1, κ = 1 in [3, Thm. 3.1],
and in the case C, one picks Σ = [0, 1], p(k) = k, wk(x) ≡ x, γ = 2, β = 1,
κ = 1. By (4.3), the empirical measure of a vector having density given by the
left-hand side of (4.3), also satisfies that principle. But this is our assertion. 2

We use the large-deviation principle to derive a law of large numbers in the
spirit of Wigner’s semi-circle law. Let us introduce the following measures µA

and µC .

µA(dx) =
1

π
√

1− x2
dx, x ∈ [−1, 1], (4.4)

µC(dx) =
3

2πx

√
x− 1/9
1− x

dx, x ∈ [1/9, 1]. (4.5)

Then µA is the well-known arcsine law.

Corollary 4.1 (Law of large numbers). Let the situation of Theorem 4.1
be given. Let Z be of type A or C. Then the conditional distribution of µ(k)

rk,tk

under Px(· | B(k)

[0,tk] ⊂ WZ ∩rkIk) converges, uniformly in x ∈ WZ ∩rkIk, weakly

towards µZ .
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Proof. That µA and µC are the unique minimizers of RA and RC , respectively, is
well-known from the theory of logarithmic potentials with external fields, see [18,
Ch. I, Section 1.1; Ch. IV, Example 5.3]. Hence we can apply [3, Cor. 3.2]: using
the upper bound of the large-deviation principle one obtains the strong law by
applying Borel – Cantelli’s lemma, see [4, B3, Thm. II]. 2
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