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2 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�these models. Branching discrete random walks on Zd with time-space i.i.d. o�spring distributionswere studied in the context of survival properties, global/local growth rates and di�usivity; and theirconnections to the directed polymers in random environment, see e.g. [BGK05, Y08, CY11]. Detailedanalyses of recurrence/transience properties of discrete-time branching Markov chains with only space-dependent environment, which does not exhibit in general the the usual dichotomy valid for irreducibleMarkov chains, were carried out in [CMP98, MP00, MP03, CP07, M08, BGK09, GMPV10], to mentionsome. The main techniques in these studies relate these models to the better-known random walk inrandom environments, using the spectral properties of underlying Markov process and studying theembedded Galton-Watson processes in random environment.In this paper, we study a branching random walk in random environment (BRWRE), wherethe particles move around in space like independent random walks in continuous time, and thekilling/branching takes place in sites with a random site-dependent rate. We are interested in thelong-time asymptotics of the annealed moments of any order of the local and global population sizes.As was explained in [GM90] for the case of �rst moments, this question stands in a close connectionwith the description of the intermittent behaviour of the main particle �ow, i.e., its concentration be-haviour in small islands. According to the best of our knowledge, this question for the higher momentshas hardly been investigated for this model yet, the only example being [ABMY00]. In that paper, adeep relation between the moments of the BRWRE and the parabolic Anderson model is revealed andemployed in order to analyse the annealed moments of the BRWRE, i.e., the p-th moments over themedium of the n-th moment over the killing/branching and migration of the total and local populationsize. It is the aim of the present paper to signi�cantly increase the validity and the deepness of theresults of [ABMY00] and to reveal the general mechanism that leads to the moment asymptotics. Incontrast with [ABMY00], we will be using probabilistic methods rather than PDE methods.1.1 Branching random walk in random environmentLet us describe the model in more detail. The branching random environment on the lattice Zd isa pair Ξ = (ξ0, ξ2) of two independent i.i.d. �elds ξ0 = (ξ0(y))y∈Zd and ξ2 = (ξ2(y))y∈Zd of positivenumbers. Indeed, ξ0(y) and ξ2(y) play the rôle of the rate of the replacement of a particle at y ∈ Zdwith 0 or 2 particles, respectively. For n = 0, this is a killing, for n = 2, this is a binary splitting. (SeeSection 1.4 for more general branching mechanisms.)The probability measure corresponding to Ξ is denoted Prob; expectation with respect to Probwill be written with angular brackets 〈·〉. For a given realization of Ξ, the branching process with rate�eld Ξ is now de�ned by determining that any particle located at a lattice site y ∈ Zd, is subject tothe killing/branching de�ned by the rates ξ0(y) and ξ2(y), and additionally each particle performs acontinuous-time random walk on Zd with generator κ∆, where κ > 0 is a parameter, and
∆f(x) =

∑

y∼x

[
f(y) − f(x)

]
, for x ∈ Zd, f ∈ `2(Zd),is the standard lattice Laplacian. We write expectation with respect to a random walk with generator

κ∆ starting from x as Px with corresponding expectation Ex. We consider a localised initial condition,i.e., at time t = 0, there is a single particle at some site x ∈ Zd. Probability and expectation w.r.t. themigration, branching and killing of the BRWRE are denoted by Px and Ex, respectively, for �xedmedium Ξ.The description of the dynamics of the population is as follows. If a particle is at some time atsome site y, then during a small time interval of length h, with probability κh + o(h) it moves to a



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 3neighbouring site chosen uniformly at random, with probability ξ2(y)h + o(h) it dies and is replacedby two descendant particles, and with probability ξ0(y)h + o(h) it is killed without producing anyo�spring. Finally, with probability 1− (κ + ξ2(y) + ξ0(y))h + o(h) the particle experiences no changesduring the whole time interval of length h.Let η(t, y) be the number of particles at time t ∈ [0,∞) at y ∈ Zd, and let η(t) =
∑

y∈Zd η(t, y)be the total population size at time t. The main objects of interest in this paper are the quenchedmoments
mn(t, x, y) = Ex[η(t, y)n] and mn(t, x) = Ex[η(t)n], n ∈ N, (1.1)i.e., the expected n-th powers of the local and global particle numbers, where the expectation is takenonly over the migration and the killing/branching, for frozen killing/branching rates Ξ. Note that, for

n = 1, m1(t, x) is equal to the sum of m1(t, x, y) over y ∈ Zd, but such a relation is not valid for n ≥ 2.It will be the main purpose of the present paper to analyse the large-t asymptotics of the p-thmoments of mn(t, x) and of mn(t, x, y), taken over the medium Ξ.1.2 Connection with the parabolic Anderson modelIt is a fundamental knowledge in the theory of branching processes that the expected particle numbersatis�es certain partial di�erential equation systems. In our case, the characteristic system reads asfollows. Put
ξ = ξ2 − ξ0,and �x y ∈ Zd, then, (under certain integrability conditions, see [GM90]) for �xed localised initialcondition m1(0, ·, y) = δy(·), the map (t, x) 7→ m1(t, x, y) is the unique positive solution to the Cauchyproblem for the heat equation with potential ξ, i.e.,

∂

∂t
m1(t, x, y) = κ∆m1(t, x, y) + ξ(x)m1(t, x, y), for (t, x) ∈ (0,∞) × Zd. (1.2)Similarly, the map (t, x) 7→ m1(t, x) is the unique positive solution of (1.2) with delocalized initialcondition m1(t, ·) ≡ 1.The interesting feature in our case is that the potential ξ is random, and here (1.2) is often calledthe parabolic Anderson model. In fact, the operator κ∆ + ξ appearing on the right-hand side is calledthe Anderson operator; its spectral properties are well-studied in mathematical physics. Equation (1.2)describes a random mass transport through a random �eld of sinks and sources, corresponding to latticepoints z with ξ(z) < 0 and ξ(z) > 0, respectively. We refer the reader to [GM90], [M94] and [CM94] formore background and to [GK05] for a survey on mathematical results. We see two competing e�ects:the di�usion mechanism (Laplacian) tends to make the �eld m1 �at, and the local growth (potential)tries to make it irregular.Furthermore, it is also widely known since long [GM90] that m1 admits a representation in termsof the Feynman-Kac formula:

m1(t, x, y) = Ex

[
exp

{∫ t

0
ξ(Xs) ds

}
δy(Xt)

]
, (t, y) ∈ [0,∞) × Zd, (1.3)and the same formula without the last indicator for m1(t, x), where (Xs)s∈[0,∞) denotes a simplerandom walk with generator κ∆. Note that m1 depends only on the di�erence ξ of ξ2 and ξ0.The asymptotics of the moments of m1 were analysed in [GM98] for the interesting special case thatthe distribution of ξ lies in the vicinity of the so-called double-exponential distribution with parameter
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ρ ∈ (0,∞),

Prob(ξ(x) > r) = exp{−er/ρ}, r ∈ (0,∞). (1.4)The precise assumption on ξ can be written down in terms of the logarithmic moment generatingfunction
H(t) = log〈etξ(0)〉, (1.5)which is assumed to be �nite for any t > 0.Assumption 1.1. There exists ρ ∈ [0,∞] such that

lim
t→∞

H(ct) − cH(t)

t
= ρc log c, c ∈ (0, 1). (1.6)Under this assumption, it is proven in [GM98] that, for any x ∈ Zd, as t → ∞,

〈mp
1(t, x)〉 = eH(pt) e−2dκχ(ρ/κ)pt+o(t), p ∈ N, (1.7)where χ is de�ned as

χ(ρ) =
1

2
inf

µ∈P(Z)
[S(µ) + ρI(µ)]. (1.8)Here P(Z) denotes the space of probability measures on Z, and the functionals S,I : P(Z) → R+ aregiven by

S(µ) =
∑

x∈Z

(√
µ(x + 1) −

√
µ(x)

)2 and I(µ) = −
∑

x∈Z

µ(x) log µ(x). (1.9)We have 0 < χ(ρ) < 1 for ρ ∈ (0,∞) and χ(0) = 0 and limρ→∞ χ(ρ) = χ(∞) = 1. The right-handside of (1.7) is also equal to the moments of m1(t, x, y) for any �xed x, y ∈ Zd, as is seen from aninspection of the proof (see Remark 1.3 in [GM98]). Also note that H(t) � 2dκχ(ρ/κ)pt for large t,that is, asymptotically the �rst term on the right-hand side of (1.7) is much larger than the secondterm.Observe that the p-th moments of m1 at time t behave like the �rst moment at time tp, up tothe precision of (1.7). This can be easily guessed from a standard eigenvalue expansion for m1(t, x)in terms of the eigenvalues and eigenfunctions of κ∆ in large t-dependent boxes with zero or periodicboundary condition; in fact, m1(t, x) is roughly equal to etλ1(t), where λ1(t) is the principal one. Then,obviously, mp
1(t, x) is roughly equal to etpλ1(t).1.3 Moments of the BRWRELet us now turn to the main object of the present paper, the moments of mn for n ≥ 2. We canformulate our main result. Recall our assumptions from the beginning of Section 1.1. We will alsosuppose that the branching rate ξ2(0) satis�es Assumption 1.1. In the case ρ = ∞, we will need anextra assumption to avoid too large a growth of H2(t):Assumption 1.2. For any k ∈ N,

〈
ξ2(0)

k eξ2(0)t
〉
≤ 〈eξ2(0)t〉eo(t) as t → ∞. (1.10)Theorem 1.3 (Moments of the BRWRE). Suppose that the logarithmic moment generating function

H2 of ξ2(0) satis�es Assumption 1.1 and, in the case ρ = ∞, ξ2 also satis�es Assumption 1.2. Fix
x ∈ Zd, the starting site of the branching process. Then, for any p, n ∈ N, as t → ∞,

〈mp
n(t, x)〉 = exp

(
H(npt) − 2dκχ(ρ/κ)npt + o(t)

)
. (1.11)The same asymptotics holds true for 〈mp

n(t, x, y)〉 for any y ∈ Zd.



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 5Note that the logarithmic moment generating function H0 of −ξ0(0) has asymptotics 1
t H0(t) →

−essinf (ξ0(0)) ∈ (−∞, 0] as t → ∞. Therefore, by independence of ξ2 and ξ0, the logarithmic momentgenerating function H of ξ2(0)− ξ0(0) also satis�es Assumption 1.1, and this is crucial for the validityof Theorem 1.3.In particular, Theorem 1.3 says that the p-th moments of mn at time t are equal to the �rstmoment of m1 at time tpn, up to the precision in (1.11), i.e.,
〈mp

n(t, x)〉 = 〈mnp
1 (t, x)〉eo(t) = 〈m1(tnp, x)〉eo(t), t → ∞. (1.12)This fact is not so easy to understand as for the case n = 1, see above. However, see Section 1.5for some heuristic remarks. The proof of Theorem 1.3 is in Section 3.The main tool of our proof is a Feynman-Kac-type formula for mn, which we will derive inSection 2, see Theorem 2.1. We are going to use probabilistic tools from the theory of branchingprocesses, the main input coming from the many-to-few lemma of [HR12].In [ABMY00] there was a weaker version of (1.11) derived; actually only the �rst term eH(npt),and this only for the rather restricted case of a Weibull distribution, where H(t) ∼ Ctα for some

C ∈ (0,∞) and α ∈ (1,∞), a subcase contained in Assumption 1.1 in ρ = ∞. On the other hand,they drop the assumption of independence and only assume spatial homogeneity of Ξ. However, thisresult does not explain the spatial structure of the peaks of the moments of the population size, aninformation that is contained in the second term, as was discussed at length in [GM98]. The proof in[ABMY00] is based on the fact that mn is the solution to an inhomogeneous Cauchy problem, wherethe inhomogeneity is a linear combination of products of m1, . . . ,mn−1. Furthermore, they derivedfrom this a Feynman-Kac formula for mn, which depends on that inhomogeneity and is therefore ofrecursive type. This made it rather di�cult to identify the second term of the asymptotics. In contrast,we �rst derive a direct version of a Feynman-Kac-type formula in Theorem 2.1 and are then able to�nd the logarithmic asymptotics of the moments in much higher precision.1.4 More general branchingOur Theorem 1.3 is formulated only for the special case of binary branching, but it can straightforwardlybe extended to more general branching mechanisms, subject to additional conditions. Indeed, assumethat the branching random environment is a family Ξ = (ξk)k∈N0 of i.i.d. �elds ξk = (ξk(y))y∈Zd ofpositive numbers. Then ξk(y) is the rate for replacement of a particle at y by precisely k new particles,i.e., a splitting into k particles. To exclude trivialities, we put ξ1(y) = 0 for any y. The family (ξk)k∈N0is not assumed to be i.i.d. Indeed, we at least have to assume that the �eld
ξ(y) =

∞∑

k=0

(k − 1)ξk(y) (1.13)is well-de�ned (i.e., absolutely convergent) almost surely. One possible choice could be ξk = ξpk withsome probability distribution (pk)k∈N0 and some positive i.i.d. �eld ξ.Then, under the assumption that ∑
k∈N

knξk(y) < ∞ almost surely (e.g., if ξk ≡ 0 for all su�-ciently large k), our Feynman-Kac-type formula for mn in Theorem 2.1 below extends to this more gen-eral setting, see Remark 2.2. Furthermore, under suitable conditions on the moments of ∑
k∈N

knξk(y),also the proof of Theorem 1.3 in Section 3 can be easily extended to this situation. In order to avoidcumbersome formulas, we abstained from writing down the details.



6 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�1.5 DiscussionLet us explain why the moment asymptotics of mp
n(t, x) are equal to the ones of mpn

1 (t, x), see (1.12).We do this for n = 2 and p = 1. Note that, according to Theorem 2.1 below, m2 = m1 + m̃2, where
m̃2(t, x) =

∫ t

0
Ex

[
exp

{∫ s

0
ξ(Xr) dr +

∫ t

s
ξ(X ′

r) dr +

∫ t

s
ξ(X ′′

r ) dr
}
2ξ2(Xs)

]
ds, (1.14)where (Xr)r∈[0,s] and (X ′

r)r∈[s,t] and (X ′′
r )r∈[s,t] are independent simple random walks, given Xs, withgenerator κ∆, starting at X0 = x, and X ′

s = X ′′
s = Xs. In other words, these three random walksconstitute a branching random walk with precisely one splitting at time s. The �rst part in thedecomposition m2 = m1 + m̃2, corresponds to absence of splitting, and the second one to precisely onesplitting.Let us consider the behaviour of the moments of m̃2 as t → ∞. The �rst observation is that theterm 2ξ2(Xt) should have hardly any in�uence. This is due to Assumption 1.2, which rules out casesof extreme growth of H2(t). One can expect from (1.7) that the leading term of the expectation on theright-hand side of (1.14) should be eH(2t−s), corresponding to the total time s + (t − s) + (t − s) thatthe three random walks spend in the random environment. Since H(t) → ∞, this is clearly maximalfor s ≈ 0. Hence, the Laplace method gives that the main contribution comes from s ≈ 0. Hence,the contribution comes mainly from a product of expectations over two i.i.d. copies (X ′

r)r∈[0,t] and
(X ′′

r )r∈[0,t], i.e., from a term ≈ m2
1(t, x).In other words, it is favourable for the branching random walk to split as soon as possible intotwo copies and to travel through the environment with these copies for a long time. The deeper reasonfor this is that the potential ξ assumes extremely high values in some part of the space, where the twocopies collect much of them. This e�ect seems to be present as soon as esssup (ξ(0)) is positive, and itshould be turned into its opposite if esssup (ξ(0)) is negative. More precisely, for such potentials, weexpect that 〈mn(t, x)〉 ≈ 〈m1(t, x)〉. We expect that, for all four classes of potentials in the classi�cationmade in [HKM06], a version of Theorem 1.3 can be deduced from Theorem 2.1.2. Feynman-Kac-type formula for mn via spine techniquesIn this section, we derive a Feynman-Kac-type formula for mn, almost surely with respect to thebranching rates ξ2 and killing rates ξ0. Our main result of this section appears in Theorem 2.1 below.We will use the spine techniques of [HR12]. This requires the introduction of a branching random walk(BRW) in Zd with time interval [0, t] with up to n − 1 splitting events. In order to express this BRW,we will need the following ingredients.(i) a tree that expresses the branching structure,(ii) an ordering of the splitting sites of the tree to express their order in time,(iii) a time duration attached to each bond,(iv) an expectation over a simple random walk bridge attached to each bond.In order to keep the notation simple, we restrict to binary branching. See Remark 2.2 for more generalbranching mechanisms.We need some notation from the theory of trees. Let G = (V,E) be a �nite graph with V theset of vertices and E the set of edges. G is a tree if it is simple, connected and has no cycles. Letus assume that G is a rooted tree, i.e., a tree with a root ∅ ∈ V . This induces a natural ordering ofvertices, namely, for u, v ∈ V we say that u � v if the unique path from the root to v contains u. In



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 7particular, if (u, v) ∈ E then either u � v or v � u. We hence may assume that E is a directed tree,i.e., E contains only edges (u, v) with u � v, in which case we call u the parent of v and v a child of
u. Note that, except the root, each vertex has a unique parent. We call a vertex a leaf if it has nochildren. We call G a rooted binary tree if each vertex has at most two children. We distinguish binarytrees by labelling the children of each vertex as the left child and the right child.By Tk we denote the set of �nite rooted binary trees with k + 1 leaves, such that the root hasprecisely one child and every other vertex has precisely two children, except for the leaves. Note that
T0 consists of one tree only, which consists of the root, a leaf and an edge going from the root to theleaf. Furthermore, put T =

⋃
k∈N0

Tk. For a tree in T we call the vertices other than the root and theleaves splitting vertices. Note that a tree in Tk has precisely k splitting vertices. For T = (V,E) ∈ T ,we denote by S the set of its splitting vertices and by L the set of its leaves; hence V = {∅} ∪ S ∪ L,
#S = k and #L = k + 1. We write T = (∅, S, L,E). See Figure 1 for two representatives from T3.

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

∅ ∅

Figure 1. Two trees in T3. The empty circles represent the leaves L and the full circlesrepresent the branching vertices S.Now we equip trees with numberings. For k ∈ N0 and T = (∅, S, L,E) ∈ Tk let I : {∅} ∪ S →
{0, 1, 2, . . . , k} be a bijection. We call I a monotonous numbering of T if I(∅) = 0 and I(s1) < I(s2)for any s1, s2 ∈ S with (s1, s2) ∈ E. We extend I to L by setting I(l) = k + 1 for any leaf l ∈ L. SeeFigure 2 for an example. The set of monotonous numberings of T is denoted by N (T ).
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13 22 31∅ ∅

Figure 2. The only two possible monotonous numberings for the tree on the right ofFigure 1. The left tree there admits only one such numbering.Now we equip numbered trees with times. For k ∈ N0 and t > 0, denote by Zk(t) the set of timevectors
t̂ = (t0, . . . , tk+1), where 0 = t0 < t1 < · · · < tk < tk+1 = t. (2.1)



8 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�Let us �x a tree T ∈ Tk, an ordering I ∈ N (T ) and a time vector t̂ ∈ Zk(t). For b = (u, v) ∈ E, wedenote by
Y (b,bt) =

(
Y (b,bt)

r : r ∈ [tI(u), tI(v)]
)a continuous-time simple random walk on Zd with generator κ∆, starting from zero. We assume thatthe collection (Y (b,bt))b∈E is independent. We consider Y (b,bt) as the segment of a branching random walkwith parent u and child v that arises from a splitting event at time tI(u), considered until the nextsplitting event at time tI(v).Now we compose all these segments of simple random walks according to the tree and de�ne theBRW on [0, t] with precisely k splits. Fix the starting site x ∈ Zd of the branching process. For a leaf

l ∈ L let ∅ = u0, . . . , uj−1, uj = l be the vertices visited by the unique path from ∅ to the leaf l, and
bi = (ui−1, ui) the corresponding bonds, where j ∈ N. Then we de�ne the continuous-time randomwalk X(l) = (X(l)

r )r∈[0,t] by
X(l)

r := x +

i−1∑

m=1

Y (bm,bt)

tI(um)
+ Y (bi,bt)

r , r ∈ [tI(ui−1), tI(ui)], i ∈ {1, . . . , j}. (2.2)Note that the collection of the random walks (X(l))l∈L is consistent in the sense that, for any leaves
l and l′, the paths of X(l) and X(l′) coincide up to the time tI(eu) of the vertex ũ where the tree path
∅ → l splits from the path ∅ → l′; afterwards they are independent given the site X(l)

tI(eu)
= X(l′)

tI(eu)
. Theseparate pieces of the BRW between subsequent splits are denoted by

X(u,v) = (X(u,v)
r )r∈[tI(u),tI(v)] = (X(l)

r )r∈[tI(u),tI(v)], (u, v) ∈ E,where l ∈ L is any leaf such that the bond (u, v) lies on the unique path from ∅ to l. Because of theabove consistency property of (X(l))l∈L, the value does not depend on the choice of l. The collection ofall the path pieces X(u,v) with (u, v) ∈ E is consistent in the sense that X(u,v)

tI(v)
= X(v,u′)

tI(v)
for any edges

(u, v) and (v, u′). See Figure 3 for an example.
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Figure 3. An example of a BRW corresponding to the monotonously numbered treeon the right of Figure 2.



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 9Expectation with respect to the collection (X(l))l∈L will be denoted by E
(T,I,bt)
x . For y ∈ Zd, weabbreviate

Φx(T, I, t, y) :=

∫

Zk(t)
dt̂ E(T,I,bt)

x

[
exp

( ∑

(u,v)∈E

∫ tI(v)

tI(u)

ξ(X(u,v)
r ) dr

)( ∏

v∈S

ξ2(X
(u,v)

tI(v)
)
) ∑

l∈L

1l{X(l)

t = y}
]
,(2.3)where in the product u is the parent of v. Furthermore, we de�ne

Φx(T, I, t) :=

∫

Zk(t)
dt̂E(T,I,bt)

x

[
exp

( ∑

(u,v)∈E

∫ tI(v)

tI(u)

ξ(X(u,v)
r ) dr

)( ∏

v∈S

ξ2(X
(u,v)

tI(v)
)
)]

. (2.4)Finally, we de�ne sequence of numbers ck,n for n ∈ N and k = 0, . . . , n − 1 by setting c0,n = 1 forall n ∈ N and by the recursive relation
ck,n =

n−k∑

i=1

(
n

i

)
ck−1,n−i, k = 1, . . . , n − 1. (2.5)Now we can state the main theorem of this section, which gives us a Feynman-Kac-type formulafor the functions mn.Theorem 2.1. For n ∈ N and x, y ∈ Zd, we have

mn(t, x) =

n−1∑

k=0

∑

T∈Tk

∑

I∈N (T )

ck,nΦx(T, I, t), (2.6)and the same formula for mn(t, x, y) with Φx(T, I, t) replaced by Φx(T, I, t, y).Proof. We denote by N(t) the set of particles alive at time t. For a particle u ∈ N(t) let σu and τudenote the birth and death time of u, respectively. We put σu(t) = σu ∧ t and τu(t) = τu ∧ t. If
u ∈ N(t) we write Z(u)

s for the position of the unique ancestor of u alive at time s ∈ [0, t]. If u has nochildren we say that Z(u)
s is at the graveyard state, ∂, for any s ≥ τu.Specialising [HR12, Section 2] to our situation, we de�ne a new branching process by imposingthe following rules:(i) We start with one particle at x, which carries n marks (and their positions) 1, 2, . . . , n.(ii) We think of each of the marks 1, 2, . . . , n as a spine and denote by ζ(i)

t the position of thewhichever particle that carries the mark i at time t.(iii) Particles di�use as under Px, i.e., as independent continuous-time random walks with generator
κ∆.(iv) A particle at position y carrying j marks branches at rate 2jξ2(y) and is replaced with twonew particles.(v) At such a branching event of a particle carrying j marks, each mark chooses independentlyand uniformly at random one of the two particles to follow.(vi) Particles not carrying any marks behave as under Px.We write Q

(n)
x (·) for the corresponding probability measure and Q

(n)
x [·] for the corresponding ex-pectation. We call the collection of particles that have carried at least one mark up to time t the



10 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�skeleton at time t and write skel(t). We de�ne D(v) as the number of marks carried by a particle v.Let us abbreviate
A(t) = exp

( ∑

v∈skel(t)

∫ τv(t)

σv(t)

(
(2D(v) − 1)ξ2(Z

(v)
r ) − ξ0(Z

(v)
r )

)
dr

)
. (2.7)We now apply the many-to-few lemma [HR12, Lemma 3] for Y = 1 and ζ ≡ 1 and obtain

mn(t, x) = Q(n)
x [A(t)] and mn(t, x, y) = Q(n)

x

[
A(t)

∑

v∈skel(t)

1{Z(v)

t = y}
]
. (2.8)Note that the spine trajectory does not undergo a splitting at a branching event, if all the markschoose the same child to follow. Hence, we only want to consider splitting events that not all the markschoose the same particle to follow. Note that the probability of such event when a particle carrying jmarks branches is 1− 2−j+1. Then the rate of such branching events for particles carrying j marks atposition y is (2j − 2)ξ2(y). Accordingly, we de�ne a measure Q

(n)

x by changing the items (iv) and (v)in the above description of Q(n)
x by(iv) A particle at position y carrying j marks branches at rate (2j − 2)ξ2(y) and is replaced withtwo new particles.(v) At a branching event of a particle carrying j marks choose uniformly at random one of the twoparticles to follow conditioned on for each new particle there is at least one mark following it.Note that (2.8) is still valid when Q

(n)
x is replaced by Q

(n)

x .We only prove (2.6) since the proof of the formula for the moments of mn(t, x, y) is done exactly inthe same way. We proceed the proof by the method of strong induction. For n = 1, (2.6) is immediate.Now assume that (2.6) holds for n replaced by any i ∈ {1, . . . , n− 1}, and we prove that it is also truefor n.We start from the �rst formula in (2.8) and integrate over all values of the time, T , of the �rstbranching event under Q
(n)

x and over all possible branchings. The conditional distribution of T given
ζ(1) is given by

Q
(n)

x

(
T > t

∣∣ ζ(1)
)

= exp
(
−

∫ t

0
(2n − 2)ξ2(ζ

(1)
r ) dr

)
. (2.9)On the event {T > t}, we have skel(t) = {∅}, σ∅(t) = 0, τ∅(t) = t, D(∅) = n and Z(∅) = ζ(1). Hence,we have

Q
(n)

x

[
A(t)1l{T>t}

∣∣∣ ζ(1)

]
= exp

( ∫ t

0
ξ(ζ(1)

r ) dr
)
. (2.10)Integrating this with respect to Q

(n)

x , we get
Q

(n)

x

[
A(t)1l{T>t}

]
= Q

(n)

x

[l.h.s. of (2.10)
]

= Q
(n)

x

[
exp

(∫ t

0
ξ(ζ(1)

r ) dr

)]

= Ex

[
exp

(∫ t

0
ξ(Xr) dr

)]
,

(2.11)since any spine follows a simple random walk with generator κ∆. This is the term that correspondsto k = 0 in the sum in (2.6). Similarly we can calculate the conditional density of T as
Q

(n)

x

(
T ∈ dt1

∣∣ ζ(1)
)

= exp

(
−

∫ t1

0
(2n − 2)ξ2(ζ

(1)
r ) dr

)
(2n − 2)ξ2(ζ

(1)

t1 ) dt1, t1 > 0. (2.12)



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 11Let Bl,n−l be the event that at the branching time T , l marks follow the �rst child of ∅ and n− lmarks follow the second child. Then it is clear that
Q

(n)

x

(
Bl,n−l

)
=

(
n

l

)
1

2n − 2
, l = 1, . . . , n − 1. (2.13)So for l = 1, . . . , n − 1, by (2.8), we have, using the Markov property at time t1 ∈ [0, t],

Q
(n)

x

[
A(t)

∣∣ Bl,n−l, T = t1, ζ
(1)

]

= exp
( ∫ t1

0

{
(2n − 1)ξ2(ζ

(1)
r ) − ξ0(ζ

(1)
r )

}
dr

)
ml(t − t1, ζ

(1)

t1 )mn−l(t − t1, ζ
(1)

t1 ).
(2.14)Hence, using (2.14), (2.12), (2.13) and the independence of the splitting time and the number ofo�springs, we get

∫ t

0

n−1∑

l=1

Q
(n)

x

[
A(t)1lBl,n−l

, T ∈ dt1

∣∣∣ ζ(1)

]

=

∫ t

0

n−1∑

l=1

(
n

l

)
exp

(∫ t1

0
ξ(ζ(1)

r ) dr
)

ξ2(ζ
(1)

t1 )ml(t − t1, ζ
(1)

t1 )mn−l(t − t1, ζ
(1)

t1 ) dt1.

(2.15)The induction hypothesis for ml and mn−l says that
ml(t − t1,ζ

(1)

t1 )mn−l(t − t1, ζ
(1)

t1 )

=

l−1∑

k1=0

n−l∑

k2=0

∑

T1∈Tk1

∑

T2∈Tk2

∑

I1∈N (T1)

∑

I2∈N (T2)

ck1,l ck2,n−l Φζ
(1)
t1

(T1, I1, t − t1)Φζ
(1)
t1

(T2, I2, t − t1).(2.16)Let us denote by T (1,2) the tree in Tk1+k2+1 formed by attaching the tree T1 to the left of the uniquechild of the root and the tree T2 to the right of the unique child of the root. Then the Markov propertyat time t1 gives the following concatenation property of Φ:
∑

I1∈N (T1)

∑

I2∈N (T2)

∫ t

0
Q

(n)

x

[
exp

( ∫ t1

0
ξ(ζ(1)

r ) dr
)

Φ
ζ
(1)
t1

(T1, I1, t − t1)Φζ
(1)
t1

(T2, I2, t − t1)
]

dt1

=
∑

I∈N (T (1,2))

Φx(T
(1,2), I, t).Then, integrating both sides of (2.15) with respect to Q

(n)

x , we get
Q

(n)

x

[
A(t)1l{T∈[0,t]}

]
= Q

(n)

x

[l.h.s. of (2.15)
]

=

n−1∑

l=1

(
n

l

) l−1∑

k1=0

n−l∑

k2=0

∑

T1∈Tk1

∑

T2∈Tk2

ck1,l ck2,n−l

∑

I∈N (T (1,2))

Φx(T (1,2), I, t).
(2.17)Let T k1,k−k1−1

k denote the set of trees in Tk such that the two subtrees of the child of ∅ lie in Tk1 and
Tk−k1−1, respectively. By changing the order of the sum we get that the right-hand side of (2.17) isequal to

n−1∑

k=1

k−1∑

k1=0

∑

T∈T
k1,k−k1−1

k

n−(k−k1)∑

l=k1+1

(
n

l

)
ck1,l ck−k1−1,n−l

∑

I∈N (T )

Φx(T, I, t). (2.18)



12 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�By (2.5) we have
n−(k−k1)∑

l=k1+1

(
n

l

)
ck1,l ck−k1−1,n−l = ck,n. (2.19)This, together with (2.11) �nishes the proof of (2.6). �Remark 2.2. There are also versions of Theorem 2.1 for more general branching mechanisms asproposed in Section 1.4 above. Under the additional assumption that ∑

k∈N
knξk converges almostsurely, one can extend Theorem 2.1 to this setting. The main change in (2.6) is that the termsinvolving the cn,k and ξ2 must be replaced by a term of the form

∑

mark

∏

v

∞∑

k=2

(
kmark(v) − k

)
ξk(X

(v)

tI(v)
),where the marks are now taken from a more complex set than {1, . . . , n}. Since the formulas arising aremuch more cumbersome, we abstained from writing them down carefully and proving them. However,it is easily seen from the above proof that they have a form which also admits an analysis of the large-tlimit of the moments of mn in the same way as we do in Section 3.3. Proof of the main resultIn this section, we prove the main result of our paper, the moment asymptotics formulated in Theo-rem 1.3. The proof will be crucially based on the Feynman-Kac-type formula for mn given in Theo-rem 2.1 above. Another important ingredient is a large-deviations principle for the local times of thebranching random walk, which we will provide in Section 3.1. The proof of the lower and upper boundof the moment asymptotics are in Sections 3.2 and 3.3, respectively.3.1 LDP for the local times of the BRWIn this section we formulate and prove a large-deviations principle (LDP) for the normalised occupationtime measures (the local times) of the BRW introduced in Section 1.3, for a �xed tree T = (∅, S, L,E) ∈

Tk and a �xed monotonous numbering I ∈ N (T ), as the time parameter tends to in�nity.We de�ne the local times of the BRW as the sum of the times that its random walk segments
X(u,v) with (u, v) ∈ E spend in in a given site z ∈ Zd. More precisely, assume that T ∈ Tk and let atime vector t̂ = (t0, . . . , tk+1) ∈ Zk(t) be given and de�ne the local time of the BRW in z ∈ Zd as

`bt(z) =
∑

(u,v)∈E

∫ tI(v)

tI(u)

δ
X

(u,v)
r

(z) dr. (3.1)Then its total mass of is equal to
m(t̂) :=

∑

z∈Zd

`bt(z) =
∑

(u,v)∈E

(tI(v) − tI(u)). (3.2)Hence, we normalise the local times and obtain
Lbt(z) =

`bt(z)

m(t̂)
, z ∈ Zd; (3.3)



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 13a random element of the set P(Zd) of all probability measures on Zd. Fix the starting site x of theBRW. Let Td
R be the lattice cube of length 2R+1 centred at x. We consider the periodised local times

L(R)

bt
(z) :=

∑

y∈(2R+1)Zd+x

Lbt(z + y), z ∈ Td
R; (3.4)a random element of the set P(Td

R). Our LDP reads as follows.Lemma 3.1. Fix k ∈ N0, T ∈ Tk, I ∈ N (T ) and R ∈ N. Furthermore, �x the starting site x of theBRW and a vector ŝ = (s0, . . . , sk+1) ∈ Zk(1) and a sequence ŝt → ŝ as t → ∞. Then the normalisedlocal times L(R)

tbst
satisfy, as t → ∞, the (full) large deviation principle with scale tm(ŝ) and rate function

κS(per)

R , where
S(per)

R (µ) =
∑

y1,y2∈Td
R

: y1∼y2

(√
µ(y1) −

√
µ(y2)

)2
. (3.5)Proof. The special case k = 0 is classic and well-known, see [DV75-83, G77, GM98]. Here ŝ = (0, 1)and m(ŝ) = 1, and the BRW consists of just one random walk with start in x and time interval [0, t].This LDP holds even locally uniformly in ŝ ∈ Zk(1), as is seen from the proof, which uses an eigenvalueexpansion and the Gärtner-Ellis theorem, to turn it into modern notation. This also shows that theLDP is the same under the sub-probability measure that conditions on a �xed starting site and restrictsto a �xed terminal site.The general case is an easy consequence of that classical result, as the random walk segments X(u,v)with (u, v) ∈ E are conditionally independent, after conditioning all the starting site and restrictingto all the terminating sites, and these are only �nitely many. Under this sub-probability measure,the normalised local times of each segment X(u,v) satisfy the LDP with scale t(sI(v) − sI(u)) and therate function in (3.5), and L(R)

tbst
is just an elementary �nite convex combination of these independentobjects. The claimed LDP follows by summing over all the starting and terminating sites, as these areonly �nite sums. �3.2 Proof of the lower boundJensen's inequality gives, for any n, p ∈ N and any x, y ∈ Zd,

〈mp
n(t, x)〉 ≥ 〈mp

n(t, x, y)〉 = 〈Ex(η(t, y)n)p〉 ≥ 〈Ex(η(t, y))np〉 = 〈mnp
1 (t, x, y)〉, t > 0. (3.6)Now we can apply the result (1.7) from [GM98] for np instead of p and obtain the lower bound in(1.11); see also (1.12). Here we recall that the logarithmic asymptotics of 〈mnp

1 (t, x, y)〉 are the sameas for 〈mnp
1 (t, x)〉, as mentioned in subsection 1.2.3.3 Proof of the upper boundNow we give the corresponding upper estimate for the moments 〈mp

n(t, x)〉 (which applies then certainlyalso to 〈mp
n(t, x, y)〉). Recall from (2.6) that 〈mp

n(t, x)〉 is the expectation of the p-th power of the sumof ck,nΦx(T, I, t) over k ∈ {0, . . . , n − 1}, T ∈ Tk and I ∈ N (T ), where Φx(T, I, t) is given in (2.4).Rewriting Φx(T, I, t) using the local times of the BRW,
Φx(T, I, t) =

∫

Zk(t)
dt̂ E(T,I,bt)

x

[
exp

( ∑

z∈Zd

ξ(z)`(T,I)

bt
(z)

)( ∏

v∈S

ξ2(X
(u,v)

tI(v)
)
)]

, (3.7)it is clear (in the case ρ = ∞, from Assumption 1.2) that it is only the exponential term involving thelocal times that will turn out to be responsible for the claimed asymptotics, and only the summand



14 ONUR GÜN, WOLFGANG KÖNIG AND OZREN SEKULOVI�for k = n − 1 will turn out to give the leading asymptotics. We will dig this term out with repeatedapplications of Jensen's and Hölder's inequality.We use the inequality 〈(∑

i∈X

Xi

)p〉
≤ |X |p−1

∑

i∈X

〈
Xp

i

〉
, (3.8)derived from Jensen's inequality, three times to get

〈mp
n(t, x)〉 ≤ np−1

n−1∑

k=0

|Tk|
p−1

∑

T∈Tk

|N (T )|p−1
∑

I∈N (T )

cp
k,n

〈
Φp

x(T, I, t)
〉

= eo(t)
n−1∑

k=0

∑

T∈Tk

∑

I∈N (T )

〈
Φp

x(T, I, t)
〉
.

(3.9)Hence, the only dependence on t now sits in the last expectation, 〈Φp
x(T, I, t)〉, and it is enough toshow that this term satis�es the claimed asymptotics and that it is maximal for k = n−1. Using (3.8)in integral form for the integral over t̂ and Jensen's inequality for the expectation, we see that

Φp
x(T, I, t) ≤ |Zk(t)|

p−1

∫

Zk(t)
dt̂

(
E(T,I,bt)

x

[
exp

( ∑

z∈Zd

ξ(z)`bt(z)
)( ∏

v∈S

ξ2(X
(u,v)

tI(v)
)
)])p

,where |Zk(t)| = tk/k! denotes volume of Zk(t). Since this volume term is negligible for the logarithmicasymptotics, we only have to concentrate on the integral. Making the change of variables t̂ = tŝ, wesee that
Φp

x(T, I, t) ≤ eo(t)

∫

Zk(1)
dŝ

(
E(T,I,tbs)

x

[
exp

( ∑

z∈Zd

ξ(z)`tbs(z)
)( ∏

v∈S

ξ2(X
(u,v)

tsI(v)
)
)])p

. (3.10)At this stage we separate the cases 0 ≤ ρ < ∞ and ρ = ∞.
0 ≤ ρ < ∞: Our next step is to take expectation with respect to the branching/killing environmentand to separate the exponential term from the powers of the ξ2 terms by means of Hölder's inequality.Fix q, q′ > 1 (later chosen in dependence on t) satisfying 1

q + 1
q′ = 1, then we have

〈(
E(T,I,tbs)

x

[
exp

( ∑

z∈Zd

ξ(z)`tbs(z)
) ∏

v∈S

ξ2(X
(u,v)

tsI(v)
)
])p〉

≤
〈

E(T,I,tbs)
x

[
exp

(
q

∑

z∈Zd

ξ(z)`tbs(z)
)]p/q

E(T,I,tbs)
x

[ ∏

v∈S

ξq′

2 (X(u,v)

tsI(v)
)
]p/q′〉

≤
〈

E(T,I,tbs)
x

[
exp

(
q

∑

z∈Zd

ξ(z)`tbs(z)
)]p〉1/q〈

E(T,I,tbs)
x

[ ∏

v∈S

ξq′

2 (X(u,v)

tsI(v)
)
]p〉1/q′

,

(3.11)
where we used Hölder's inequality twice. Now we show that the second term in the above display isnegligible. Recall that |S| = k − 1 and that ξ2(x) is i.i.d. in x ∈ Zd. Then using Jensen's inequalityand Fubini's theorem we get

〈
E(T,I,tbs)

x

[ ∏

v∈S

ξq′

2 (X(u,v)

tsI(v)
)
]p〉1/q′

≤
[
E(T,I,tbs)

x

〈 ∏

v∈S

ξpq′

2 (X(u,v)

tsI(v)
)
〉]1/q′

≤
〈
ξ
p(k−1)q′

2 (0)
〉1/q′

, (3.12)



MOMENT ASYMPTOTICS FOR BRANCHING RANDOM WALKS IN RANDOM ENVIRONMENT 15where for the last inequality we used the fact that ξ2 ≥ 0. Now using the inequality x ≤ ex for x > 0we get
〈
ξ
p(k−1)q′

2 (0)
〉1/q′

≤
〈
ep(k−1)q′ξ2(0)

〉1/q′

= exp
{ 1

q′
H2

(
(k − 1)pq′

)}
, (3.13)where we recall that H2 denotes the logarithmic moment generating function of ξ2(0). Now we pick

q = qt = 1+ εt and q′t = 1+1/εt depending on t such that εt ↘ 0 as t → ∞. In our case where ρ < ∞,we have H2(t) ≤ ρt log t + O(t) as t → ∞, so it is clear that we can choose εt converging to 0 slowlyenough so that as t → ∞
εt

t
H2(1/εt) → 0. (3.14)Hence, by (3.14) and (3.13) we can conclude that the right-hand side of (3.12) is eo(t), i.e., the secondterm on the right-hand side of (3.11) is negligible.Proceeding as in the proof of (1.7) in [GM98] and using the LDP of Lemma 3.1, we get that

〈
E(T,I,tbs)

x

[
exp

(
qt

∑

z∈Zd

ξ(z)`tbs(z)
)]p〉1/qt

≤ exp
( 1

qt
H

(
qtptm(ŝ)

)
−

1

qt
2dκptm(ŝ)χ(ρ/κ)+o(t)

)
. (3.15)Recall that the LDP in Lemma 3.1 holds even uniformly in ŝ ∈ Zk(1) away from zero. Hence, we caneasily conclude that

〈Φp
x(T, I, t)〉p ≤ eo(t)

∫

Zk(1)
dŝ exp

( 1

qt
H

(
qtptm(ŝ)

)
−

1

qt
2dκptm(ŝ)χ(ρ/κ)

)
. (3.16)By (1.6), for ρ > 0 we have H(t) � t as t → ∞ and for ρ = 0, χ(0) = 0. Finally, since qt → 1 as

t → ∞, by Laplace's method we get that, for any T, I and k ∈ {0, . . . , n − 1},
〈Φp

x(T, I, t)〉p ≤ eo(t) exp
( 1

qt
H(qtpt(k + 1)) −

1

qt
2dκpt(k + 1)χ(ρ/κ)

)
, (3.17)as the main contribution comes from ŝ = (0, . . . , 0, 1), having total live time m(ŝ) = k + 1. Theinterpretation is that the main contribution to the moments comes from the BRW splitting into kparticles practically immediately after the beginning.Hence, using (3.9) and the fact that H(t) � t for ρ > 0 and χ(ρ) = 0 for ρ = 0 once again, byLaplace's method (`the largest rate wins') we get

〈mp
n(t, x)〉 ≤ eo(t) exp

( 1

qt
H(qtptn)−

1

qt
2dκptnχ(ρ/κ)

)
. (3.18)The proof of the upper bound for 0 ≤ ρ < ∞ is therefore �nished by noting that

exp
( 1

qt
H(qtptn)

)
= eH(ptn)eo(t), t → ∞. (3.19)This is seen as follows. Recall that qt ↘ 1, and note from [GM98, Remark 1.1(b)] that the convergencein (1.6) is uniform on [0, 1] and hence also locally uniform on [0,∞). Hence, writing

1

t

( 1

qt
H

(
qttpn

)
−H(tpn)

)
=

1

qt

(H
(
qttpn

)
− pnqtH(t)

t
−

H(pnt)− pnH(t)

t

)
+

qt − 1

qt

pnH(t) − H(tpn)

t
,(3.20)shows that (3.19) holds and �nishes the proof.
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ρ = ∞: We start from (3.10). In order to express the p-th power of the expectation, we introduce

p independent copies X(i,u,v)

tI(u)
, i = 1, . . . , p, of X(u,v)

tI(u)
and denote by `(p)

tbs the sum over i ∈ {1, . . . , p} ofthe local times of these random walks. For z ∈ Zd de�ne
r(z) =

p∑

i=1

∑

(u,v)∈S

δz

(
X(i,u,v)

tI(u)

)
; (3.21)and introduce the notation

G2(l, k) =

〈
elξ2(0)ξ2(0)

k
〉

〈
elξ2(0)

〉 =

〈
elξ(0)ξ2(0)

k
〉

〈
elξ(0)

〉 , l, k ∈ [0,∞), (3.22)where the last step used that ξ2(0) and ξ0(0) are independent; recall that ξ = ξ2 − ξ0. From (3.10) wehave
〈
Φp

x(T, I, t)
〉
≤ eo(t)

∫

Zk(1)
dŝ

〈
E

[
exp

( ∑

z∈Zd

`(p)

tbs (z)ξ(z)
) ∏

z∈Zd

ξ2(z)r(z))
]〉

= eo(t)

∫

Zk(1)
dŝE

[〈
exp

( ∑

z∈Zd

`(p)

tbs (z)ξ(z)
) ∏

z∈Zd

ξ2(z)r(z))
〉]

= eo(t)

∫

Zk(1)
dŝE

[ ∏

z∈Zd

〈
eξ(0)`

(p)
tbs

(z)ξ2(0)
r(z)

〉]

= eo(t)

∫

Zk(1)
dŝE

[( ∏

z∈Zd

eH(`
(p)
tbs

(z))
) ∏

z∈Zd

G2

(
`(p)

tbs (z), r(z)
)]

,

(3.23)
where we used Fubini's theorem and (3.22).Note that k 7→ G2(l, k) is log-convex for any l, since it is a moment generating function. Since
G2(l, 0) = 0, it is also easily seen to be log-subadditive. As a consequence, ∂lG2(l, k) = G2(l, k + 1) −
G2(l, 1)G(l, k) is nonnegative, hence l 7→ G2(l, k) is increasing. Hence, since the local times `(p)

tbs (z) sumup to tpm(ŝ), we have
∏

z∈Zd

G2

(
`(p)

tbs (z), r(z)
)
≤

∏

z∈Zd

G2

(
tpm(ŝ), r(z)

)
≤ G2

(
tpm(ŝ),

∑

z∈Zd

r(z)
)

= G2

(
tpm(ŝ), (n − 1)p

)
,since the r(z) sum up to p|S| = p(n − 1). Note that the right-hand side is ≤ eo(t) by Assumption 1.2.Using this fact in (3.23), we see that

〈
Φp

x(T, I, t)
〉
≤ eo(t)

∫

Zk(1)
dŝE

[ ∏

z∈Zd

eH(`
(p)
tbs

(z))
]
.Now, precisely as in the proof of (1.7) in [GM98], one proves that

E

[ ∏

z∈Zd

eH(`
(p)
tbs

(z))
]
≤ eH(tpm(bs))−2dκtpm(bs)+o(t).An inspection of the proof, using the uniformity in the LDP in Lemma 3.1, shows that this convergenceis locally uniform in ŝ. Hence, like in the above proof in the case ρ < ∞, we see that Laplace's methodyields the result, after optimising over ŝ ∈ Zk(1) and k ∈ {0, . . . , n − 1} (recall that χ(∞) = 1).
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