
SELF-INTERSECTION LOCAL TIMES OF RANDOM WALKS:EXPONENTIAL MOMENTS IN SUBCRITICAL DIMENSIONSBy Mathias Beker and Wolfgang KönigWIAS Berlin, and WIAS Berlin and TU Berlin18 January, 2011Abstrat: Fix p > 1, not neessarily integer, with p(d − 2) < d. We study the p-fold self-intersetion loal time of a simple random walk on the lattie Z
d up to time t. This is the

p-norm of the vetor of the walker's loal times, ℓt. We derive preise logarithmi asymptotis ofthe expetation of exp{θt‖ℓt‖p} for sales θt > 0 that are bounded from above, possibly tendingto zero. The speed is identi�ed in terms of mixed powers of t and θt, and the preise rate isharaterized in terms of a variational formula, whih is in lose onnetion to the Gagliardo-Nirenberg inequality. As a orollary, we obtain a large-deviation priniple for ‖ℓt‖p/(trt) fordeviation funtions rt satisfying trt ≫ E[‖ℓt‖p]. Informally, it turns out that the random walkhomogeneously squeezes in a t-dependent box with diameter of order ≪ t1/d to produe therequired amount of self-intersetions. Our main tool is an upper bound for the joint density ofthe loal times of the walk.MSC 2000. 60K37, 60F10, 60J55.Keywords and phrases. Self-intersetion loal time, upper tail, Donsker-Varadhan large deviations,variational formula, Gagliardo-Nirenberg inequality.1. IntrodutionIn this paper, we give preise logarithmi asymptotis for the exponential moments of self-intersetionloal times of random walks on Z
d on various sales. This topi has been studied a lot in the lastdeade, sine it is a natural question, and a rih phenemonology of ritial behaviours of the randomwalk arises, depending on the dimension, the intersetion parameter, the sale, and the type of therandom proess. Furthermore, the question is tehnially very di�ult to handle, due to bad ontinuityand boundedness properties of the self-intersetion loal time. A ouple of di�erent tehniques forstudying self-intersetions have been introdued yet, whih turned out to be more or less fruitful invarious situations.Self-intersetions of random paths are not only partiularly fundamental objets in the theory ofstohasti proesses, but play also a role in Eulidean quantum �eld theory [V69℄, in the study ofrandom polymer models in Physis [F81℄ and in Chemistry [dG79℄. Furthermore, they appear in thestudy of models of random paths in random media, whih are often motivated by Physis. Let usmention as examples the paraboli Anderson model [GK05℄ (the heat equation with random potential,desribing random mass transport through random media), the losely related problem of randomwalks in random senery [AC07℄ (desribing random transport through porous media [MM80℄) and theWiener-sausage problem [DV75℄, [DV79℄. While a random polymer has a self-repellent path interation



2 MATHIAS BECKER AND WOLFGANG KÖNIG(whih we do not onsider here), a random medium typially imposes a self-attrative interation, whihis the regime under interest here.In this paper, we introdue a reently developed method to the study of self-intersetions, whihenables us to derive limits in terms of an expliit variational formula desribing the asymptotis; thisformula explains the optimal behaviour of the random walk to produe many self-intersetions. Weare working in sub-ritial dimensions, where this behaviour onsists of a homogeneous squeezing ofthe path over the whole time interval in a box of a ertain time-dependent diameter.Our method is strongly in�uened by the elebrated Donsker-Varadhan large-deviations theory. Themain obstale that has to be overome to make these ideas work is the lak of ontinuity, and this isserious. To overome this, we use an expliit upper bound for the joint density of the walker's loaltimes, whih has been derived by Brydges, van der Hofstad and König [BHK07℄. The main task leftafter applying this bound is to identify the saling limit of the arising formula, and this is the mainnovelty of the present paper.1.1 Self-intersetion loal timeLet (St)t∈[0,∞) be a simple random walk in ontinuous time in Z
d started from the origin. We denoteby P the underlying probability measure and by E the orresponding expetation. The main objet ofthis paper is the self-intersetion loal time of the random walk. In order to introdue this objet, weneed the loal times of the random walk at time t > 0,

ℓt(z) =

∫ t

0
1l{Sr=z} dr, for z ∈ Z

d. (1.1)Fix p ∈ (1,∞) and onsider the p-norm of the loal times:
‖ℓt‖p =

( ∑

z∈Zd

ℓt(z)
p
)1/p

, for t > 0. (1.2)If p is an integer, then, learly
‖ℓt‖p

p =

∫ t

0
dt1 . . .

∫ t

0
dtp 1l{St1=···=Stp} (1.3)is equal to the p-fold self-intersetion loal time of the walk, i.e., the amount of time tuples that itspends in p-fold self-intersetion sites. For p = 2, this is usually alled the self-intersetion loal time.For p = 1, ‖ℓt‖p

p is just the number t, and for p = 0, it is equal to #{Sr : r ∈ [0, t]}, the rangeof the walk. It is ertainly also of interest to study ‖ℓt‖p
p for non-integer values of p > 1, see forexample [HKM06℄, where this reeived tehnial importane.The typial behaviour of ‖ℓt‖p

p for ontinuous-time random walks annot be found in the literature,to the best of our knowledge, but we have no doubt that it is, up to the value of the prefator, equalto the behaviour of the self-intersetion loal time, ‖ℓn‖p
p, of a entred random walk in disrete time.This has been identi�ed as

E[‖ℓn‖p
p] ∼ Cad,p(n), where ad,p(n) =





n(p+1)/2 if d = 1,

n(log n)p−1 if d = 2,

n if d ≥ 3,

(1.4)where
C =





Γ(p+1)

(2π
√

det Σ)
p−1 if d = 2,

γ2
∑∞

j=1 j
p(1 − γ)1−j if d ≥ 3,

(1.5)where γ = P(Sn 6= 0 for any n ∈ N) denotes the esape probability and Σ the ovariane matrix of therandom walk. See [Ce07℄ for d = 2 and [BK09℄ for d ≥ 3, but we ould �nd no referene for d = 1.



EXPONENTIAL MOMENTS OF SELF-INTERSECTION LOCAL TIMES 31.2 Main resultsIn this paper, we study the behaviour of the random walk when the walker produes extremely manyself-intersetions. We restrit to the subritial dimensions, where d(p− 1) < 2p. Before we formulateour results, let us informally desribe the optimal behaviour to produe many self-intersetions in thesedimensions. It is a homogeneous self-squeezing strategy: the walker does not leave a box with radiuson a partiular sale αt ≪
√
t (we write bt ≪ ct if limt→∞ ct/bt = ∞), and the sizes of all the loaltimes are on the same sale t/αd

t within this box. Furthermore, their resaled shape approximates aertain deterministi pro�le, whih is given in terms of a harateristi variational formula.In our result, we do not prove this path piture, but we derive preise logarithmi asymptotis, as
t→ ∞, for the exponential moments of θt‖ℓt‖p for various hoies of weight funtions θt ∈ (0,∞) thatare bounded from above. As a diret onsequene, this leads to asymptotis of the probability of theevent {‖ℓt‖p > trt} for various hoies of sale funtions rt ∈ [0, 1] satisfying ad,p(t) ≪ trt.In order to formulate the result, we have to introdue more notation. By Lq(Rd) we denote theusual Lebesgue spae, whih is equipped with the norm ||| · |||q if q ≥ 1. (Sine the ounterplay betweenfuntions de�ned on Z

d and on R
d will be ruial in this paper, we deided to distinguish the normsymbols.) The spae H1(Rd) is the usual Sobolev spae. By M1(X) we denote the set of probabilitymeasures on a metri spae X equipped with the Borel sigma �eld. We regard M1(Z

d) as a subset of
ℓ1(Zd).Now we formulate our main result.Theorem 1.1 (Exponential Moments). Assume that d ∈ N and p > 1.(i) For any θ > 0,

lim
t→∞

1

t
log E

(
eθ‖ℓt‖p

)
= ρ(d)

d,p(θ), (1.6)where
ρ(d)

d,p(θ) = sup
{
θ‖µ‖p − J(µ) : µ ∈ M1(Z

d)
}
∈ (0, θ], (1.7)and J(µ) = 1

2

∑
x∼y

(√
µ(x) −

√
µ(y)

)2 denotes the Donsker-Varadhan rate funtional.(ii) Additionally assume that d(p − 1) < 2p. De�ne λ = 2p+d−dp
2p ∈ (0, 1) and let (θt)t>0 be afuntion in (0,∞) suh that

(
log t

t

) 2λ
d+2

≪ θt ≪ 1. (1.8)Furthermore, put
ρ(c)

p,d(θ) = sup
{
θ|||g2|||p −

1

2
|||∇g|||22 : g ∈ H1(Rd), |||g|||2 = 1

}
, θ > 0. (1.9)Then ρ(c)

p,d(θ) ∈ (0,∞), and(a)
1

t
log E

(
eθt‖ℓt‖p

)
≥ θ

1/λ
t

(
ρ(c)

d,p(1) + o(1)
)
, t→ ∞. (1.10)(b) If, additionally to d(p − 1) < 2p, the stronger assumption d(p− 1) < 2 is ful�lled, then

1

t
log E

(
eθt‖ℓt‖p

)
≤ θ

1/λ
t

(
ρ(c)

d,p(1) + o(1)
)
, t→ ∞. (1.11)Note that we derive the logarithmi asymptotis for exponential moments with �xed parameter θ inany dimension, but with vanishing parameter θt only in subritial dimensions d < 2p

p−1 .A few months after the appearane of the �rst version of this paper, C. Laurent [L10b℄ provedan extension of Theorem 1.1(ii). Indeed, he replaed our assumption d(p − 1) < 2 by the optimalassumption d(p − 1) < 2p and onsidered all hoies of t 1
p
−1 ≪ rt ≪ 1.



4 MATHIAS BECKER AND WOLFGANG KÖNIGA heuristi derivation of Theorem 1.1 is given in Setion 1.5. The proof is given in Setion 2. Someomments on the related literature are given in Setion 1.4. We proeed with a ouple of remarks.1.3 RemarksRemark 1.2 (Connetion between ρ(c)

d,p and ρ(d)

d,p(θ)). Note that the Donsker-Varadhan funtional isequal to the walk's Dirihlet form at √µ, i.e.,
J(µ) =

1

2
‖∇(d)√µ‖2

2, µ ∈ M1(Z
d),where ∇(d) denotes the disrete gradient. Hene, we see that ρ(c)

p,d(θ) is the ontinuous version of ρ(d)

d,p(θ).An important step in our proof of Theorem 1.1(ii) is to show that the ontinuous version of this formuladesribes the small-θ asymptotis of the disrete one, i.e.,
ρ(d)

d,p(θ) ∼ θ1/λρ(c)

d,p(1), θ ↓ 0. (1.12)(Atually, we only prove a version of this statement on large boxes, see Lemma 2.1.) In the light ofthis, we an heuristially explain the transition between the two ases in Theorem 1.1. Indeed, if weuse (i) for θ replaed by θt → 0, then we formally obtain
1

t
log E

(
eθt‖ℓt‖p

)
∼ ρ(d)

p,d(θt) ∼ θ
1/λ
t ρ(c)

d,p(1). (1.13)Hene, (1.12) shows that Theorem 1.1(i) and (ii) are onsistent. 3Remark 1.3 (On the onstant ρ(c)

d,p(θ)). We will show in the following that
ρ(c)

p,d(θ) = θ1/λλ

(
2p

d(p− 1)
χd,p

)λ−1
λ

, θ ∈ (0,∞), (1.14)where
χd,p = inf

{1

2
|||∇g|||22 : g ∈ L2p(Rd) ∩ L2(Rd) ∩H1(Rd) : |||g|||2 = 1 = |||g|||2p

}
. (1.15)It turned out in [GKS07, Lemma 2.1℄ that χd,p is positive if and only if d(p−1) ≤ 2p, i.e., in partiularin the ases onsidered in the present paper. This implies in partiular, that ρ(c)

p,d(θ) is �nite andpositive for any θ > 0. Beause of (1.12), also ρ(d)

p,d(θ) is �nite and positive, for any su�iently small
θ ∈ (0,∞). By monotoniity, it is positive for any θ ∈ (0,∞). It is also �nite (even not larger than θ),sine J(µ) ≥ 0 and ‖µ‖p ≤ 1 for any µ ∈ M1(Z

d).Let us now prove (1.14). In the de�nition (1.9) of ρ(c)

p,d(θ), we replae g, for any β ∈ (0,∞), with
βd/2g(β ·), whih is also L2-normalized. This gives, for any β > 0,

ρ(c)

p,d(θ) = sup
g∈H1(Rd) : |||g|||2=1

{
θβ

d(p−1)
p |||g2|||p −

1

2
β2|||∇g|||22

}
.Piking the optimal value

β∗ =
(
θ
d(p− 1)

p

|||g2|||p
|||∇g|||22

)1/(2λ)
,we get

ρ(c)

p,d(θ) = θ1/λλ sup
g∈H1(Rd) : |||g|||2=1

( 2p

d(p − 1)

[ 1
2 |||∇g|||22

|||g|||2/(1−λ)
2p

])λ−1
λ
.Note that the term in square brakets remains invariant under the transformation g 7→ βd/2g(β ·),whih keeps the L2-norm �xed. Thus we may freely add the ondition that |||g|||2p = 1. Reall (1.15)to see that the proof of (1.14) is �nished. 3



EXPONENTIAL MOMENTS OF SELF-INTERSECTION LOCAL TIMES 5Remark 1.4 (Relation to the Gagliardo-Nirenberg onstant). In dimensions d ≥ 2, the onstant χd,pin (1.15) an be identi�ed in terms of the Gagliardo-Nirenberg onstant, Kd,p, as follows. Assume that
d ≥ 2 and p < d

d−2 . Then Kd,p is de�ned as the smallest onstant C > 0 in the Gagliardo-Nirenberginequality
|||ψ|||2p ≤ C|||∇ψ|||

d(p−1)
2p

2 |||ψ|||1−
d(p−1)

2p

2 , for ψ ∈ H1(Rd). (1.16)This inequality reeived a lot of interest from physiists and analysts, and it has deep onnetions toNash's inequality and logarithmi Sobolev inequalities. Furthermore, it also plays an important role inthe work of Chen [Ch04℄, [BC04℄ on intersetions of random walks and self-intersetions of Brownianmotion. See [Ch04, Set. 2℄ for more on the Gagliardo-Nirenberg inequality.It is lear that
Kd,p = sup

ψ∈H1(Rd)
ψ 6=0

|||ψ|||2p

|||∇ψ|||
d(p−1)

2p

2 |||ψ|||1−
d(p−1)

2p

2

=
(

inf
ψ∈H1(Rd)
|||ψ|||2=1

|||ψ|||−
4q
d

2p |||∇ψ|||22
)− d

4q
. (1.17)Clearly, the term over whih the in�mum is taken remains unhanged if ψ is replaed by ψβ(·) =

β
d
2ψ(·β) for any β > 0. Hene, we an freely add the ondition |||ψ|||2p = 1 and obtain that

Kd,p = χ
− d

4q

d,p .In partiular, the variational formulas for Kd,p in (1.17) and for χd,p in (1.15) have the same max-imizer(s) respetively minimizer(s). It is known that (1.17) has a maximizer, and this is a smooth,positive and rotationally symmetri funtion (see [We83℄). Some uniqueness results are in [MS81℄. 3Remark 1.5 (Large deviations). In the spirit of the Gärtner-Ellis theorem (see [DZ98, Set. 4.5℄),from Theorem 1.1(ii) large-deviation priniples for ‖ℓt‖p on various sales follow. Indeed, �x somefuntion (rt)t>0 satisfying
(

log t

t

) d(p−1)
p(d+2)

≪ rt ≪ 1 as t→ ∞. (1.18)Then, as t→ ∞, under the onditions p > 1 and d(p − 1) < 2, we have
1

t
log P

(∥∥ℓt/t
∥∥

p
≥ rt

)
∼ −χd,pr

2p
d(p−1)

t . (1.19)Applying this to urt instead of rt, one obtains that ‖ℓt‖p/(trt) satis�es a large-deviation priniple on thesale tr2p/(d(p−1))
t with stritly onvex and ontinuous rate funtion (0,∞) ∋ u 7→ χd,p

d(p−1)
2p u2p/(d(p−1)).In order to prove the upper bound in (1.19), put θt = (rtλ/ρ

(c)

d,p(1))
λ/(1−λ) and note that the assump-tion in (1.8) is satis�ed. Now use the exponential Chebyshev inequality to see that

P
(∥∥ℓt/t

∥∥
p
≥ rt

)
≤ E

(
eθt‖ℓt‖p

)
e−trtθt .Finally use (1.11) and summarize to see that the upper bound in (1.19) is true. The lower bound isderived in a standard way using an exponential hange of measure, like in the proof of the Gärtner-Ellis theorem. The point is that the limiting logarithmi moment generating funtion of θt‖ℓt‖p isdi�erentiable throughout (0,∞), as is seen from (1.10) and (1.11).However, it is not lear to us from Theorem 1.1(i) whether or not ‖ℓt‖p/t satis�es a large-deviationpriniple. Indeed, it is unlear if the map ρ(d)

d,p is di�erentiable sine the map µ 7→ θ‖µ‖p − J(µ) isa di�erene of onvex funtions and therefore not neessarily stritly onvex. As a result, we do notknow if the maximiser is uniquely attained. 3



6 MATHIAS BECKER AND WOLFGANG KÖNIGRemark 1.6. One might wonder what (1.19) might look like in the ritial ase p = d
d−2 . Notethat the right-hand side is then equal to −χd,d/(d−2)rt, whih is nontrivial aording to [GKS07,Lemma 2.1℄, reall Remark 1.3. However, in d ≥ 3, [Ca10, Theorem 2℄ shows that (1.19) holds,for any t 1

p
−1 ≪ rt ≪ 1, with χd,d/(d−2) replaed by sup{‖∇(d)f‖2

2 : f ∈ ℓ2p(Zd), ‖f‖2p = 1}, whih isa disrete version of χd,d/(d−2). This interestingly shows that the ritial dimension d = 2p
p−1 seems toexhibit a di�erent regime and is not the boundary regime of the ases onsidered here. 3Remark 1.7 (Restritions for rt). The restrition in (1.18) in our Theorem 1.1(ii) is tehnial andomes from the error terms in [BHK07, Theorem 2.1, Prop. 3.6℄, whih is an important ingredient ofour proof of the upper bound, see (2.7). Our proof of the lower bound in (1.10) does not use this andis indeed true in greater generality. 3Remark 1.8 (Restrition in the dimension). Unfortunately, our proof method does not work for allthe values of p and d in the subritial dimensions. The point is that in the proof of the statement in(1.12), we have to approximate a ertain step funtion with its interpolating polygon line in L2p-sense,and the di�erene is essentially equal to the gradient of the polygon line. A ontrol in L2-sense ispossible by omparison to the energy term, but the required L2p-ontrol represents a problem that wedid not overome to full extent, see (2.23). 31.4 Literature remarksFor deades, and partiularly in this millenium, there is an ative interest in the extreme behaviourof self-intersetion loal times and their onnetions with the theory of large deviations. The reentmonograph [Ch10℄ omprehensively studies a host of results and onepts on extremely self-attrativepaths and the losely related topi of extreme mutual attration of several independent random paths.This subjet is a rih soure of various phenomena that arise, depending on the dimension d, theintersetion parameter p and the sale of the deviation, rt. In partiular, an interesting ollapsetransition in the path behaviour from subritial dimensions (whih we study here) to superritialdimensions an be observed: homogeneous squeezing versus short-time lumping. See [K10℄ for aonise desription of the relevant heuristis and a survey on urrent proof tehniques.Various methods have been employed in this �eld, and the monograph [Ch10℄ gave an inspiration todevelop new ideas very reently. Le Gall [Le86℄ used a bisetion tehnique (introdued by Varadhan in[V69℄) of suessive division of the path into equally long piees and ontrolling the mutual interation.In the important speial ases d = 2 = p and d = 3, p = 2, Bass, Chen and Rosen [BCR06, Theorem 1.1℄and Chen, respetively, derived our Theorem 1.1(ii) in greater generality, using the bisetion method,see also [Ch10, Theorems 8.2.1 and 8.4.2℄. Furthermore, Chen and Li [CL04, Theorem 1.3℄ proved italso in d = 1 for arbitrary p ∈ N, see [Ch10, Theorem 8.1.1℄. Their strategy made the appliation ofDonsker-Varadhan's large-deviation tehnique possible by a sophistiated ompati�ation proedure,whih uses a lot of abstrat funtional analysis and goes bak to de Aosta. An earlier result by Chen[Ch04, Theorem 3.1, (3.3)℄ onerns a smoothed version of Theorem 1.1(ii) for all subritial values ofintegers p. The bisetion method has been further developed by Asselah to other values of p > 1 in aseries of papers, out of whih we want to mention [AC07℄, [A08℄, and [A09℄. A ombinatorial methodthat ontrols the high, t-dependent, polynomial moments of the intersetion loal time was applied in[HKM06, Prop. 2.1℄ to derive a weaker statement than Theorem 1.1(ii), still identifying the orretsale. Reently, Castell [Ca10℄ used Dynkin's isomorphism for deriving preise logarithmi asymptotisfor the deviations of the intersetion loal times in d ≥ 3 for the ritial parameter p = d

d−2 , whihis the boundary of our restrition d(p − 1) < 2p. See the introdution of [Ca10℄ for an extensive butonise summary of related results. Her tehnique was later adapted to proofs of very-large deviationpriniples in sub- and in superritial dimension [L10a℄, [L10b℄.



EXPONENTIAL MOMENTS OF SELF-INTERSECTION LOCAL TIMES 7The present paper uses a new strategy that goes bak to a formula for the joint density of the loaltimes of any ontinuous-time �nite-state spae Markov hain. The kernel is an expliit upper bound forthis density, whih basially implies the upper bound in Donsker-Varadhan's large-deviation priniplefor these loal times without using any topology. In this way, one obtains a disrete, t-dependentvariational formula, and the main task is to �nd its large-t asymptotis. This is done via tehniquesin the spirit of Γ-onvergene. An example of this tehnique was arried out in [HKM06, Setion 5℄.1.5 Heuristi derivation of Theorem 1.1We now give a heuristi derivation of Theorem 1.1(ii), whih is based on large-deviation theory.Reall that λ = (2p − dp + d)/2p ∈ (0, 1). For some sale funtion αt → ∞, to be spei�ed later,de�ne the random step funtion Lt : R
d → [0,∞) as the saled normalized version of the loal times

ℓt, i.e.,
Lt(x) =

αd
t

t
ℓt

(
⌊xαt⌋

)
, for x ∈ R

d. (1.20)Then Lt is a random element of the set
F =

{
f ∈ L1(Rd) : f ≥ 0,

∫

Rd

f(x) dx = 1
} (1.21)of all probability densities on R

d. In the spirit of the elebrated large-deviation theorem of Donsker andVaradhan, if αt satis�es 1 ≪ αd
t ≪ ad,0(t) (see (1.4)), then the distributions of Lt satisfy a weak large-deviation priniple in the weak L1-topology on F with speed tα−2

t and rate funtion I : F → [0,∞]given by
I(f) =

{
1
2

∥∥∇√
f
∥∥2

2
if √f ∈ H1(Rd),

∞ otherwise. (1.22)Roughly, this large-deviation priniple says that,
P(Lt ∈ · ) = exp

{
− t

α2
t

[
inf
f∈ ·

I(f) + o(1)
]}
, (1.23)and the onvergene takes plae in the weak topology. This priniple has been partially proved in aspeial ase in [DV79℄, a proof in the general ase was given in [HKM06, Prop. 3.4℄.In order to heuristially reover Theorem 1.1(ii) in terms of the statement in (1.23), note that

θt‖ℓt‖p = θt

( ∑

z∈Zd

ℓt(z)
p
)1/p

= tθtα
−d
t

( ∑

z∈Zd

Lt

(
z
αt

)p
)1/p

= tθtα
d(1−p)
p

t |||Lt|||p.Now we hoose αt = θ
−1/(2λ)
t and have therefore that

θt‖ℓt‖p =
t

α2
t

|||Lt|||p and tθ
1/λ
t =

t

α2
t

. (1.24)Therefore, the sale t/α2
t of the large-deviation priniple oinides with the logarithmi sale tθ1/λ

t ofthe expetation under interest in Theorem 1.1(ii). A formal appliation of Varadhan's lemma yields
E

(
eθt‖ℓt‖p

)
= E

(
exp

{ t

α2
t

|||Lt|||p
})

= exp
{ t

α2
t

(ρ̃+ o(1))
}
,where

ρ̃ = sup
{
|||f |||p − I(f) : f ∈ F

}

= sup
{
|||g2|||p −

1

2
|||∇g|||22 : g ∈ L2(Rd) ∩ L2p(Rd) ∩H1(Rd), |||g|||2 = 1

}

= ρ(c)

d,p(1).

(1.25)



8 MATHIAS BECKER AND WOLFGANG KÖNIGThis ends the heuristi derivation of Theorem 1.1(ii). In the same way, one an derive also Theo-rem 1.1(i); this is similar to the line of argument used in [GM98℄.Hene, we see informally that, in Theorem 1.1(ii), the main ontribution to the exponential momentsshould ome from those random walk realisations that make the resaled loal times, Lt, look like theminimiser(s) of the variational formula ρ(c)

d,p(1). In partiular, the random walk should stay within aregion with diameter αt ≪ t1/d, and eah loal time should be of order t/αd
t ≫ 1. That is, there isa time-homogeneous squeezing strategy. In Theorem 1.1(i), the interpretation is analogous, but thediameter of the preferred region is now of �nite order in t. This is why a disrete piture arises in thevariational formula ρ(d)

d,p(1).There are several serious obstales to be removed when trying to turn the above heuristis into anhonest proof: (1) the large-deviation priniple only holds on ompat subsets of R
d, (2) the funtional

Lt 7→ |||Lt|||p is not bounded, and (3) this funtional is not ontinuous. Removing the obstale (1) iseasy and standard, but it is in general notoriously di�ult to overome the obstales (2) and (3) forrelated problems. 2. Proof of Theorem 1.1We prove Theorem 1.1(i) (that is, (1.6)) in Setion 2.1, the lower-bound part (1.10) of Theorem 1.1(ii)in Setion 2.2 and the upper-bound part (1.11) in Setion 2.3.2.1 Proof of (1.6)This is analogous to the proof of [GM98, Theorem 1.2℄; we will sketh the argument. First we explainthe lower bound. Let QR denote the box [−R,R]d∩Z
d and insert an indiator on the event {supp(ℓt) ⊂

QR} in the expetation, to get, for any θ > 0,
E

(
eθ‖ℓt‖p

)
≥ E

(
eθt‖ℓt/t‖p1l{supp(ℓt)⊂QR}

)
.Now observe that the funtional µ 7→ ‖µ‖p is ontinuous and bounded on the set M1(QR) of allprobability measures on QR. Furthermore, under the sub-probability measure P(·, supp(ℓt) ⊂ QR),the distributions of ℓt/t satisfy a large-deviations priniple with sale t and rate funtion equal to therestrition of J de�ned in Theorem 1.1(i) to M1(QR). Hene, Varadhan's lemma [DZ98, Lemma 4.3.4℄yields that

lim inf
t→∞

1

t
log E

(
eθ‖ℓt‖p

)
≥ sup

µ∈M1(QR)

(
θ‖µ‖p − J(µ)

)
. (2.1)Letting R → ∞ and using an elementary approximation argument, we see that the right-hand sideonverges towards ρ(d)

d,p(θ). This ends the proof of the lower bound in (1.6).Now we explain the upper bound. Introdue the periodized version of the loal times in QR,
ℓ(R)

t (z) =
∑

x∈Zd

ℓt(z +Rx), t ∈ (0,∞), R ∈ N, z ∈ QR. (2.2)Then it is easy to see that ‖ℓt‖p ≤ ‖ℓ(R)

t ‖p,R, where ‖ · ‖p,R denotes the p-norm for funtions QR → R.Hene, for any θ ∈ (0,∞),
E

(
eθ‖ℓt‖p) ≤ E

(
eθ‖ℓ(R)

t ‖p,R)
= E

(
eθt‖ℓ(R)

t /t‖p,R)
.It is well-known that (ℓ(R)

t /t)t>0 satis�es a large-deviations priniple on the set of probability measureson QR with rate funtion µ 7→ JR,per(µ) equal to the Dirihlet form at √µ of −1
2∆ in QR with periodiboundary ondition. By ontinuity and boundedness of the map µ 7→ ‖µ‖p, it is lear from Varadhan's
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lim sup

t→∞

1

t
log E

(
eθ‖ℓt‖p

)
≤ sup

µ∈M1(QR)

(
θ‖µ‖p − JR,per(µ)

)
. (2.3)In the same way as in the proof of [GM98, Lemma 1.10℄, one shows that the di�erene between thevariational formulas on the right-hand sides of (2.3) and (2.1) vanish in the limit as R → ∞. Thisends the proof of (1.6).2.2 Proof of the lower bound (1.10)Fix q > 1 with 1

p + 1
q = 1, and onsider a ontinuous bounded funtion f : R

d → R suh that |||f |||q = 1.Aording to Hölder's inequality, we have
|||Lt|||p ≥ 〈f, Lt〉.Reall from Setion 1.5 that αt = θ

−1/(2λ)
t . Using (1.24), we obtain, for any R > 0, the lower bound

E

(
eθt‖ℓt‖p

)
= E

(
etα−2

t |||Lt|||p
)
≥ E

(
etα−2

t 〈f,Lt〉1l{supp(Lt)⊂BR}
)
, (2.4)where we denote BR = [−R,R]d. Aording to [GKS07, Lemma 3.2℄, the distributions of Lt under thesub-probability measure P(· , supp(Lt) ⊂ BR) satisfy, as t → ∞, a large-deviation priniple on the setof probability densities on R

d with support in BR. The rate funtion is
g2 7→ 1

2
|||∇g|||22, g ∈ H1(Rd), |||g|||2 = 1, supp(g) ⊂ BR,and we put the value of the rate funtion equal to +∞ if g is not in H1(Rd) or not normalized or ifits support is not ontained in BR. The speed is tα−2

t , whih is idential to the logarithmi sale in(1.10), tθ1/λ
t . Sine the map Lt 7→ 〈f, Lt〉 is ontinuous, we obtain, by Varadhan's lemma, from thatlarge-deviation priniple the following estimate for the exponential moments:

lim inf
t→∞

α2
t

t
log E

(
eθt‖ℓt‖p

)
≥ sup

g∈H1(Rd) : |||g|||2=1
supp(g)⊂BR

(
〈f, g2〉 − 1

2
|||∇g|||22

)
.Certainly we an restrit the supremum over g to g ∈ L2p(Rd). Sine the left-hand side does not dependon f , we an take on the right-hand side the supremum over all ontinuous bounded f : BR → Rsatisfying |||f |||q = 1. Using an elementary approximation argument and the duality between Lq(Rd)and Lp(Rd), we see that

sup
f∈C(BR),|||f |||q=1

sup
g∈H1(Rd) : |||g|||2=1

supp(g)⊂BR

(
〈f, g2〉 − 1

2
|||∇g|||22

)
≥ sup

g∈H1(Rd)∩L2p(Rd) : |||g|||2=1
supp(g)⊂BR

(
|||g2|||p −

1

2
|||∇g|||22

)
.Letting R → ∞ and using another elementary approximation argument, we see that the right-handside onverges to ρ(c)

d,p(1). This ends the proof of the lower bound in (1.10).2.3 Proof of the upper bound (1.11)Fix θt ∈ (0,∞) satisfying (1.8). Reall from Setion 1.5 that λ = (2p − dp + d)/2p ∈ (0, 1) and that
αt = θ

−1/(2λ)
t . As in the proof of (1.6), we estimate from above against a periodized version of the walk,but now in the t-dependent box QRαt = [−Rαt, Rαt]

d ∩ Z
d. Reall that ℓ(Rαt)t denotes the periodizedversion of the loal times, see (2.2). We estimate

E

(
eθt‖ℓt‖p

)
≤ E

(
eθt‖ℓ(Rαt)t ‖p,Rαt

)
= E

(
exp

{
tα−2λ

t

∥∥1
t ℓ

(Rαt)

t

∥∥
p,Rαt

})
. (2.5)Note that ℓ(Rαt)t is the loal time vetor of the ontinuous-time random walk on QRαt with generator

ARαt , whih is 1
2 times the Laplae operator in QRαt with periodi boundary ondition.



10 MATHIAS BECKER AND WOLFGANG KÖNIGNow we employ a reently developed method for e�etively deriving large-deviation upper boundswithout ontinuity and boundedness assumptions. The base of this method has been laid in [BHK07℄and has been applied �rst in [BHK07, Theorem 3.7℄ and [HKM06, Setion 5℄. The main point isthe identi�ation of a joint density of the loal time vetor ℓ(Rαt)t and of an expliit upper bound forthis density. In this way, no ontinuity or boundedness is required, whih is a great improvementover lassial large-deviations arguments. The upper bound is in terms of a disrete-spae variationalformula and additional error terms involving the box size. Let us remark that these error terms giveus the lower restrition for θt in (1.8). The main work after the appliation of the upper bound is toderive the large-t asymptotis of the disrete variational formula, whih requires Gamma-onvergenetehniques.We apply [BHK07, Theorem 3.6℄ to get, for any t ≥ 1,
log E

(
exp

{
tα−2λ

t

∥∥1
t ℓ

(Rαt)

t

∥∥
p,Rαt

})
≤ t sup

µ∈M1(QRαt )

[
α−2λ

t ‖µ‖p,Rαt − ‖ (−ARαt)
1/2 √µ‖2

2,Rαt

]

+ |QRαt | log
(
2d

√
8e t

)
+ log |QRαt | +

|QRαt |
4t

(2.6)Here we have used that ηQRαt
, de�ned in [BHK07, (3.2)℄, is equal to 2d.Let us �rst show that the terms in the seond line on the right-hand side are asymptotially negligibleon the sale t/α2

t = tθ
1/λ
t . Indeed, these terms are of order αd

t log t, and we see that
αd

t log t =
t

α2
t

αd+2
t

log t

t
=

t

α2
t

θ
− d+2

2λ
t

log t

t
≪ t

α2
t

, (2.7)where we used (1.8).Hene, substituting this in (2.5) and (2.6), it is lear that, for the proof of the upper bound in (1.11),it is su�ient to prove the following.Lemma 2.1.
lim sup
R→∞

lim sup
t→∞

α2
t sup

µ∈M1(QRαt )

[
α−2λ

t ‖µ‖p,Rαt −
∥∥ (−ARαt)

1/2 √µ
∥∥2

2,Rαt

]
≤ ρ(c)

p,d(1). (2.8)Proof. We will adapt the method desribed in [HKM06, Prop. 5.1℄. First, we pik sequenes Rn → ∞,
tn → ∞ and µn ∈ M1(QRnαtn ) suh thatL.h.s. of (2.8) ≤ α

d(p−1)/p
tn ‖µn‖p,Rnαtn − α2

tn

∥∥ (
−ARnαtn

)1/2 √
µn

∥∥2

2,Rnαtn
+ 1

n , n ∈ N. (2.9)We may assume that µn is a probability measure on Zd with support in QRnαtn .In the following, we will onstrut a sequene (hn)n in H1(Rd) suh that (1) hn is L2-normalized,(2) the term α2
tn‖(−ARnαtn )1/2√µn‖2

2,Rnαtn
is approximately equal to its energy, 1

2 |||∇hn|||22, and (3)the term α
d(p−1)/p
tn ‖µn‖p,Rnαtn is approximately equal to |||h2

n|||p. Having onstruted suh a series, theproof is quikly �nished.We are using �nite-element methods to onstrut suh funtion hn, see [B07℄ for the general the-ory. We split R
d along the integer grid into half-open unit ubes C(k) = ×d

i=1(ki, ki + 1] with
k = (k1, . . . , kd) ∈ Z

d. Eah suh ube is split into d! `tetrahedra' as follows. For σ ∈ Sd, theset of permutations of 1, . . . , d, we denote by Tσ(k) the intersetion of C(k) with the onvex hull gen-erated by k, k + eσ(1), . . . , k + eσ(1) + . . . + eσ(d), where ei denotes the i-th unit vetor in R
d. Up tothe boundary, the tetrahedra Tσ(k) with σ ∈ Sd are pairwise disjoint. One an easily see that, for

x ∈ C(k),
x ∈ Tσ(k) ⇐⇒ xσ(1) − ⌊xσ(1)⌋ ≥ . . . ≥ xσ(d) − ⌊xσ(d)⌋ > 0.The interior of Tσ(k) is haraterised by strit inequalities. A site x belongs to two di�erent of thesetetrahedra if and only if at least one of the inequalities is an equality.



EXPONENTIAL MOMENTS OF SELF-INTERSECTION LOCAL TIMES 11Now we introdue the following funtions. For n ∈ N, i ∈ {1, . . . , d} and y ∈ R
d, put

fn,σ,i(y) =
[√

µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i)

)
−

√
µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i−1)

) ]
(yσ(i)−⌊yσ(i)⌋), (2.10)where we use the onvention σ(0) = 0 and e0 = 0. Furthermore, given k ∈ Z

d and y ∈ C(k), we piksome σ(y) ∈ Sd suh that y ∈ Tσ(y)(k) and de�ne
gn(x) = α

d/2
tn µn(⌊αtnx⌋)1/2 + α

d/2
tn

d∑

i=1

fn,σ(αtnx),i(αtnx). (2.11)Now we show that gn is well-de�ned, i.e., that if y lies in Tσ1(k) and in Tσ2(k), then
d∑

i=1

fn,σ1,i(y) =

d∑

i=1

fn,σ2,i(y). (2.12)For sake of simpliity, we do this only for the speial ase
σ1(1) = 1 = σ2(2) and σ1(2) = 2 = σ2(1), and σ1(i) = σ2(i) for i ≥ 3.That is, y1 − ⌊y1⌋ = y2 − ⌊y2⌋ ≥ yi − ⌊yi⌋ for any i ∈ {3, . . . , d}. We alulate
d∑

i=1

fn,σ1,i(y) −
d∑

i=1

fn,σ2,i(y) =
[√

µn

(
⌊y⌋ + e1

)
−

√
µn

(
⌊y⌋

)]
(y1 − ⌊y1⌋)

+
[√

µn

(
⌊y⌋ + e1 + e2

)
−

√
µn

(
⌊y⌋ + e1

]
(y2 − ⌊y2⌋)

−
[√

µn

(
⌊y⌋ + e2

)
−

√
µn

(
⌊y⌋

]
(y2 − ⌊y2⌋)

−
[√

µn

(
⌊y⌋ + e2 + e1

)
−

√
µn

(
⌊y⌋ + e2

]
(y1 − ⌊y1⌋).This is equal to zero, sine y1−⌊y1⌋ = y2−⌊y2⌋. Hene, we know that gn is well-de�ned. Furthermore,this also shows that gn is ontinuous within eah C(k). From now on, we abbreviate fn,σ(y),i(y) by

fn,σ,i(y).Similarly, we see that gn is also ontinuous at the boundary of eah of the ubes. Indeed, a site
y ∈ R

d belongs to this boundary if and only if it has at least one integer oordinate. For the sake ofsimpliity assume that only for i = 1 it holds that yi−⌊yi⌋ = 1. It is lear that y ∈ Tσ1(k)∩Tσ2(k + e1)where σ1, σ2 ∈ Sd are given by
σ1(1) = 1, σ2(d) = 1 and σ1(i+ 1) = σ2(i) ∀i ∈ {1, . . . , d− 1}Choose an arbitrary sequene (y(m))m ∈ Tσ2(k + e1) that onverges to y. For su�iently large m itholds that ⌊y⌋ + e1 = ⌊y(m)⌋. We see now that:

µn(⌊y(m)⌋)1/2 +

d∑

i=1

fn,σ2,i(y
(m)) = µn(⌊y⌋ + e1)

1/2 +

d∑

i=1

(y(m)

σ2(i) − ⌊y(m)

σ2(i)⌋)

×
[√

µn

(
⌊y⌋ + e1 + eσ2(1) + · · · + eσ2(i)

)
−

√
µn

(
⌊y⌋ + e1 + eσ2(1) + · · · + eσ2(i−1)

) ]
.Note that the summand for i = d onverges to zero, sine limm→∞(y(m)

σ2(d) − ⌊y(m)

σ2(d)⌋) = 0. In theremaining sum on i = 1, . . . , d− 1, we shift the sum by substituting i = j − 1 and replae σ2(j − 1) by
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σ1(j), to get, as m→ ∞,
µn(⌊y(m)⌋)1/2 +

d∑

i=1

fn,σ2,i(y
(m))

= µn(⌊y⌋)1/2 +
[√

µn(⌊y⌋ + e1) −
√
µ(⌊y⌋)

]
(y(m)

σ1(1) − ⌊yσ1(1)⌋)

+

d∑

j=2

[√
µn

(
⌊y⌋ + eσ1(1) + eσ1(2) + · · · + eσ1(j)

)
−

√
µn

(
⌊y⌋ + eσ1(1) + eσ1(2) + · · · + eσ1(j−1)

)]

× (y(m)

σ1(j) − ⌊y(m)

σ1(j)⌋) + o(1).As y(m)

j → yj, we see that the right-hand side onverges towards µn(⌊y⌋)1/2 +
∑d

j=1 fn,σ1,j(y). Hene,we proved the ontinuity of gn at the border of eah C(k) and thus the ontinuity of gn on the entirebox BRn = [−Rn, Rn]d. In addition, as gn is learly di�erentiable in the interior of eah tetrahedron
Tσ(k), we get that gn lies in H1(BRn). An elementary alulation shows that

|||∇Rngn|||22,Rn = α2
tn

∥∥ (
−ARnαtn

)1/2 √
µn

∥∥2

2,Rnαtn
, n ∈ N, (2.13)where ||| · |||p,R denotes the p-norm of funtions BR → R, and ∇Rngn denotes the gradient of gn in thebox BRn with periodi boundary ondition. Furthermore, we will prove at the end of the proof of thislemma that, for any n ∈ N,

α
d(p−1)/p
tn ‖µn‖p,Rnαtn

≤ |||g2
n|||p,Rn

[
1 + Cα

[d(p−1)−2]/2p
tn

]
+

[
|||∇Rngn|||22,Rn + 1

]
C

[
α

[d(p−1)−2]/2p
tn + α

[d(p−1)−2]/p
tn

]
,

(2.14)where C depends on d and p only. Our assumption d(p− 1) < 2 implies that the exponents at αtn onthe right-hand side are negative. Realling that αtn tends to in�nity as tn → ∞ we have (at the ostof hoosing a subsequene of (Rn, tn, µn)n):
α

d(p−1)/p
tn ‖µn‖p,Rnαtn ≤ |||g2

n|||p,Rn(1 + 1
n) + 1

n

(
|||∇Rngn|||22,Rn

+ 1
)
. (2.15)Note that gn asymptotially satis�es periodi boundary ondition in the box [−Rn, Rn]d. Now weompare it to some version that satis�es zero boundary ondition. To this end, pik some ε ∈ (0, 1)and introdue ΨRn =

⊗d
i=1 ψRn : R

d → [0, 1], where ψRn : R → [0, 1] is zero outside [−Rn, Rn], one in
[−Rn +Rε

n, Rn −Rε
n] and linearly interpolates between −Rn and −Rn +Rε

n and between Rn −Rε
n and

Rn. We are going to estimate the hanges of the funtionals when going from gn to gnΨRn . We �rstuse the triangle inequality in (2.11) and note that the L2-norm of x 7→ α
d/2
tn

∑d
i=1 fn,σ,i(αtnx) is notlarger than Cα−1

tn |||∇Rngn|||2,Rn , where C ∈ (0,∞) depends on d only, to see that
|||gn|||2,Rn ≤

∣∣∣
∣∣∣
∣∣∣
√
αd

tnµn

(
⌊αtn ·⌋

)∣∣∣
∣∣∣
∣∣∣
2,Rn

+
∣∣∣
∣∣∣
∣∣∣αd/2

tn

d∑

i=1

fn,σ,i(αtn ·)
∣∣∣
∣∣∣
∣∣∣
2,Rn

≤ 1 + Cα−1
tn |||∇Rngn|||2,Rn .Analogously we derive |||gn|||2,Rn ≥ 1 − Cα−1

tn |||∇Rngn|||2,Rn and thus we get
∣∣|||gn|||2,Rn − 1

∣∣ ≤ Cα−1
tn |||∇Rngn|||2,Rn , n ∈ N. (2.16)



EXPONENTIAL MOMENTS OF SELF-INTERSECTION LOCAL TIMES 13Using Shwarz's inequality and using n so large that dR−ε
n ≤ 1, this allows us to show that

|||∇(gnΨRn)|||22 ≤
∫

Rd

d∑

i=1

∣∣∂ign(x)ΨRn(x) + gn(x)∂iΨRn(x)
∣∣2dx

≤ |||∇Rngn|||22,Rn + 2R−ε
n |||gn|||2,Rn |||∇Rngn|||2,Rn + dR−2ε

n |||gn|||22,Rn

≤ |||∇Rngn|||22,Rn + 2R−ε
n

1
2

(
|||gn|||22,Rn

+ |||∇Rngn|||22,Rn

)
+ dR−2ε

n |||gn|||22,Rn

≤ |||∇Rngn|||22,Rn

[
1 +R−ε

n

]
+ 2R−ε

n |||gn|||22,Rn

≤ |||∇Rngn|||22,Rn

[
1 +R−ε

n

]
+ 2R−ε

n

(
1 + 2Cα−1

tn |||∇Rngn|||2,Rn + C2α−2
tn |||∇Rngn|||22,Rn

)
.Hene, we have (probably by hoosing again a subsequene of (Rn, tn, µn)n):

|||∇Rngn|||22,Rn ≥ |||∇(gnΨRn)|||22(1 − 1
n) − 1

n , n ∈ N. (2.17)Furthermore, we note that, without loss of generality, we may assume that
∫

BRn\BRn−Rεn

g2p
n (x) dx ≤ |BRn \BRn−Rεn |

|BRn |

∫

BRn

g2p
n (x) dx, n ∈ N. (2.18)This an be easily derived using the shift invariane of the seond integral due to periodi boundaryonditions. To see this, assume that for every shift θz(x) = x + z modulo Rn with z ∈ BRn it holdsthat: ∫

BRn\BRn−Rεn

g2p
n (θz(x)) dx >

|BRn \BRn−Rεn |
|BRn |

∫

BRn

g2p
n (x) dx. (2.19)Now, integrate both sides over all z ∈ BRn , to get a ontradition by hanging the order of theintegration. Hene, for some z ∈ BRn , the opposite of (2.19) holds, and we ontinue to work with

gn ◦ θz instead of gn. All properties onsidered so far are preserved by periodiity.Note that the quotient on the right-hand side of (2.18) an be estimated against CRε−1
n where Cdoes not depend on n. Thus, we have:

|||g2
n|||pp,Rn

− |||(gnΨRn)
2|||pp ≤ CRε−1

n |||g2
n|||pp,Rnwhih leads (after probably hoosing again a subsequene of (Rn, tn, µn)n) to

|||g2
n|||p,Rn ≤ |||(gnΨRn)

2|||p(1 + 1
n), n ∈ N. (2.20)Summarizing, substituting (2.13) and (2.15), and using (2.17) and (2.20), for any n we haveR.h.s. of (2.9) ≤ |||g2

n|||p,Rn(1 + 1
n) − |||∇Rngn|||22,Rn

(1 − 2
n) − 1

n |||∇Rngn|||22,Rn
+ 2

n

≤ |||(gnΨRn)
2|||p(1 + 3

n) − |||∇(gnΨRn)|||22(1 − 3
n) − 1

n |||∇Rngn|||22,Rn
+ 3

n

=
[ |||(gnΨRn)

2|||p
|||gnΨRn |||22

1 + 3
n

1 − 3
n

− |||∇(gnΨRn)|||22
|||gnΨRn |||22

]
(1 − 3

n)|||gnΨRn |||22 − 1
n |||∇Rngn|||22,Rn

+ 3
n .(2.21)Now observe that hn = gnΨRn/|||gnΨRn |||2 is an L2-normalized element of H1(Rd) and of L2p(Rd).Hene, we may estimate the term in the brakets against the supremum over all suh funtions, whihis equal to ρ(c)

d,p(
1+3/n
1−3/n ), see (1.9). Sine ρ(c)

d,p(
1+3/n
1−3/n ) > 0 by (1.14) and, obviously, |||gnΨRn |||22 ≤ |||gn|||22,Rn

,we an proeed withR.h.s. of (2.9) ≤ ρ(c)

d,p

(1+3/n
1−3/n

)
(1 − 3

n)|||gn|||22,Rn
− 1

n |||∇Rngn|||22,Rn
+ 3

n

≤ ρ(c)

d,p

(1+3/n
1−3/n

)
|||gn|||22,Rn

− 1
n |||∇Rngn|||22,Rn

+ 3
n .



14 MATHIAS BECKER AND WOLFGANG KÖNIGBy (2.16) and at the ost of hosing again a subsequene of (Rn, tn, µn)n, we have that |||gn|||22,Rn
≤

1 + 1
n |||∇Rngn|||22,Rn

/ρ(c)

d,p(
1+3/n
1−3/n ). Using this in the last display, we arrive for all n, atR.h.s. of (2.9) ≤ ρ(c)

d,p

(1+3/n
1−3/n

)
+ 3

n .Realling (1.14), we see that the right-hand side onverges to ρ(c)

d,p(1) as n ↑ ∞. This ends the proof ofthe lemma.Now we give the proof of (2.14). Reall (2.10) and (2.11) and that we write fn,σ,i(y) instead of
fn,σ(y),i(y). The triangle inequality gives that

|||gn|||2p,Rn ≥ α
d/2
tn |||µn(⌊αtn · ⌋)1/2|||2p − α

d/2
tn

∣∣∣
∣∣∣
∣∣∣

d∑

i=1

fn,σ,i(αtn · )
∣∣∣
∣∣∣
∣∣∣
2p,Rn

= α
d(p−1)/2p
tn ‖µn‖

1
2
p − α

d(p−1)/2p
tn

∣∣∣
∣∣∣
∣∣∣

d∑

i=1

fn,σ,i

∣∣∣
∣∣∣
∣∣∣
2p,Rn

.

(2.22)Now we estimate, for any y ∈ R
d,

∣∣∣
d∑

i=1

fn,σ,i(y)
∣∣∣
2p

≤ d2p
d∑

i=1

∣∣∣
√
µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i)

)
−

√
µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i−1)

)∣∣∣
2p

≤ d2p
d∑

i=1

∣∣∣
√
µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i)

)
−

√
µn

(
⌊y⌋ + eσ(1) + · · · + eσ(i−1)

)∣∣∣
2

= d2pα−d−2
tn |∇Rngn(y/αtn)|2, (2.23)sine the term in brakets is not larger than one (reall that µn is a probability measure on a �niteset). Using this in (2.22), we obtain

α
d(p−1)/2p
tn ‖µn‖

1
2
p ≤ |||gn|||2p,Rn + dα

[d(p−1)−2]/2p
tn |||∇Rngn|||

1
p

2,Rn
.Now square both sides and use the estimates

|||∇Rngn|||
1
p

2,Rn
≤ 1 + |||∇Rngn|||2,Rn and |||gn|||2p,Rn |||∇Rngn|||2,Rn ≤ 1

2

(
|||gn|||22p,Rn + |||∇Rngn|||22,Rn

)and summarize to arrive at (2.14).
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