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A VARIATIONAL FORMULA FOR THE FREE ENERGY OF AN
INTERACTING MANY-PARTICLE SYSTEM1
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University of Warwick, Università Ca’ Foscari and Technical University Berlin
and Weierstrass Institute for Applied Analysis and Stochastics

We consider N bosons in a box in R
d with volume N/ρ under the in-

fluence of a mutually repellent pair potential. The particle density ρ ∈ (0,∞)

is kept fixed. Our main result is the identification of the limiting free energy,
f (β,ρ), at positive temperature 1/β, in terms of an explicit variational for-
mula, for any fixed ρ if β is sufficiently small, and for any fixed β if ρ is
sufficiently small.

The thermodynamic equilibrium is described by the symmetrized trace of
e−βHN , where HN denotes the corresponding Hamilton operator. The well-
known Feynman–Kac formula reformulates this trace in terms of N interact-
ing Brownian bridges. Due to the symmetrization, the bridges are organized
in an ensemble of cycles of various lengths. The novelty of our approach is
a description in terms of a marked Poisson point process whose marks are
the cycles. This allows for an asymptotic analysis of the system via a large-
deviations analysis of the stationary empirical field. The resulting variational
formula ranges over random shift-invariant marked point fields and optimizes
the sum of the interaction and the relative entropy with respect to the refer-
ence process.

In our proof of the lower bound for the free energy, we drop all interaction
involving “infinitely long” cycles, and their possible presence is signalled by
a loss of mass of the “finitely long” cycles in the variational formula. In the
proof of the upper bound, we only keep the mass on the “finitely long” cycles.
We expect that the precise relationship between these two bounds lies at the
heart of Bose–Einstein condensation and intend to analyze it further in future.

1. Introduction and main results. In this paper, we study a probabilistic
model for interacting bosons at positive temperature in the thermodynamic limit
with positive particle density. See Section 1.4 for the physical background.
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1.1. The model. The main object is the following symmetrized sum of Brown-
ian bridge expectations:

Z
(bc)
N (β,�)

= 1

N !
∑

σ∈SN

∫
�

dx1 · · ·
∫
�

dxN(1.1)

×
N⊗

i=1

μ(bc,β)
xi ,xσ(i)

[
exp

{
− ∑

1≤i<j≤N

∫ β

0
v
(∣∣B(i)

s − B(j)
s

∣∣)ds

}]
.

Here μ
(bc,β)
x,y is the canonical Brownian bridge measure with boundary condition

bc ∈ {∅,per,Dir}, time horizon β > 0 and initial point x ∈ � and terminal point
y ∈ �, and the sum is on permutations σ ∈ SN of 1, . . . ,N . [We write μ(f ) for
the integral of f with respect to the measure μ.] The interaction potential v : R →
[0,∞] is measurable, decays sufficiently fast at infinity and is possibly infinite
close to the origin. Our precise assumptions on v appear prior to Theorem 1.2
below. We assume that � is a measurable subset of R

d with finite volume.
The boundary condition bc = ∅ refers to the standard Brownian bridge, whereas

for bc = Dir, the expectation is on those Brownian bridge paths which stay in �

over the time horizon [0, β]. In the case of periodic boundary condition, bc = per,
we consider Brownian bridges on the torus � = (R/LZ)d with side length L.

Our main motivation to study the quantity Z
(bc)
N (β,�) is the fact that, for both

periodic and Dirichlet boundary conditions, it is related to the N -body Hamilton
operator,

H(bc)
N,� = −

N∑
i=1

�
(bc)
i + ∑

1≤i<j≤N

v(|xi − xj |), x1, . . . , xn ∈ �,(1.2)

where bc ∈ {Dir,per}, and �
(bc)
i stands for the Laplacian with bc boundary con-

dition. More precisely, Z
(bc)
N (β,�) is equal to the trace of the projection of the

operator exp{−βH(bc)
N,�} to the set of symmetric (i.e., permutation invariant) func-

tions (Rd)N → R. This statement is proven via the Feynman–Kac formula (see [6]
or [15]). Hence, we call Z

(bc)
N (β,�) a partition function.

It is the main purpose of this paper to derive a variational expression for the
limiting free energy

f (bc)(β, ρ) = − 1

β
lim

N→∞
1

|�LN
| logZ

(bc)
N (β,�LN

),(1.3)

where |�LN
| = N/ρ, for any β,ρ ∈ (0,∞), any d ∈ N and any bc ∈ {∅,per,Dir}.

The existence of the thermodynamic limit in (1.3) with bc ∈ {per,Dir} under suit-
able assumptions on the interaction potential v can be shown by standard methods
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(see, e.g., [18], Theorem 3.58, and [19]). However, to the best of our knowledge,
there is no useful identification or characterization of f (bc)(β, ρ) available in the
literature. We also give new proofs for the independence of the value of the free
energy on the boundary conditions, which is another novelty.

Our approach, and the remainder of Section 1, can be summarized as follows.
Since any permutation decomposes into cycles, and using the Markov property,
the family of the N bridges in (1.1) decomposes into cycles of various lengths,
that is, into bridges that start and end at the same site, which is uniformly dis-
tributed over �. We conceive these initial-terminal sites as the points of a stan-
dard Poisson point process on R

d and the cycles as marks attached to these points
(see Section 1.2 for the relevant notation). In Proposition 1.1 below we rewrite
Z

(bc)
N (β,�) in terms of an expectation over a reference process, the marked Pois-

son point process ωP.
In Section 1.3, we present our results on the large-N asymptotics of Z

(bc)
N (β,�)

when � is a centered cube of volume N/ρ. Indeed, in Theorem 1.2, its exponen-
tial rate is bounded from above and below in terms of two variational formulas that
range over marked shift-invariant point processes and optimize the sum of an en-
ergy term and an entropy term. These bounds are shown to coincide for any fixed
ρ if β is sufficiently small, and for any fixed β if ρ is sufficiently small. The main
value and novelty of these representations is the explicit description of the inter-
play between entropy, interaction and symmetrization of the system. We think that
these formulas, even in the case where our two bounds do not coincide, are explicit
enough to serve as a basis for future deeper investigations of properties like phase
transitions.

The physical interpretation, motivation and relevance are discussed in Sec-
tion 1.4.

1.2. Representation of the partition function. In this section, we introduce our
representation of the partition function Z

(bc)
N (β,�) for each boundary condition

bc ∈ {∅,per,Dir} in terms of an expectation over a marked Poisson point process.
The main result of this section is Proposition 1.1. We have to introduce some no-
tation.

We begin with the mark space. The space of marks is defined as

E(bc) = ⋃
k∈N

C(bc)
k,� , bc ∈ {∅,per,Dir},(1.4)

where, for k ∈ N, we denote by Ck = C(∅)
k,� the set of continuous functions

f : [0, kβ] → R
d satisfying f (0) = f (kβ), equipped with the topology of uniform

convergence. Moreover, C(Dir)
k,� , respectively, C(per)

k,� , is the space of continuous func-
tions in �, respectively, on the torus � = (R/LZ)d , with time horizon [0, kβ]. We
sometimes call the marks cycles. By � :E(bc) → N we denote the canonical map
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defined by �(f ) = k if f ∈ C(bc)
k,� . We call �(f ) the length of f ∈ E. When dealing

with the empty boundary condition, we sometimes drop the superscript ∅.
We consider spatial configurations that consist of a locally finite set ξ ⊂ R

d

of particles, and to each particle x ∈ ξ we attach a mark fx ∈ E(bc) satisfying
fx(0) = x. Hence, a configuration is described by the counting measure

ω =∑
x∈ξ

δ(x,fx)

on R
d × E for the empty boundary condition, respectively, on � × E(bc) for bc ∈

{per,Dir}.
We now introduce three marked Poisson point processes for the three boundary

conditions. The one for the empty condition will later serve as a reference process
and is introduced separately first.

Reference process. Consider on C = C1 the canonical Brownian bridge mea-
sure

μ(∅,β)
x,y (A) = μ(β)

x,y(A) = Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C measurable.(1.5)

Here B = (Bt )t∈[0,β] is a Brownian motion in R
d with generator �, starting from

x under Px . Then μ
(β)
x,y is a regular Borel measure on C with total mass equal to the

Gaussian density

μ(β)
x,y(C) = gβ(x, y) = Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e−1/(4β)|x−y|2 .(1.6)

We write P
(β)
x,y = μ

(β)
x,y/gβ(x, y) for the normalized Brownian bridge measure on C .

Let

ωP = ∑
x∈ξP

δ(x,Bx)

be a Poisson point process on R
d × E with intensity measure equal to ν whose

projection onto R
d × Ck is equal to

νk(dx, df ) = 1

k
Leb(dx) ⊗ μ(kβ)

x,x (df ), k ∈ N.(1.7)

Alternatively, we can conceive ωP as a marked Poisson point process on R
d , based

on some Poisson point process ξP on R
d , and a family (Bx)x∈ξP of i.i.d. marks,

given ξP. The intensity of ξP is

q = ∑
k∈N

qk with qk = 1

(4πβ)d/2k1+d/2 , k ∈ N.(1.8)
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Conditionally given ξP, the length �(Bx) is an N-valued random variable with dis-
tribution (qk/q)k∈N, and, given �(Bx) = k, Bx is in distribution equal to a Brown-
ian bridge with time horizon [0, kβ], starting and ending at x. Let Q denote the
distribution of ωP, and denote by E the corresponding expectation. Hence, Q is a
probability measure on the set  of all locally finite counting measures on R

d ×E.

Processes for Dirichlet and periodic boundary conditions. For Dirichlet
boundary condition, one restricts the Brownian bridges to not leaving the set �.
Consider the measure

μ(Dir,β)
x,y (A) = Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C(Dir)

1,� measurable,(1.9)

which has total mass

g
(Dir)
β (x, y) = μ(Dir,β)

x,y

(
C(Dir)

1,�

)= Px(B[0,β] ⊂ �;Bβ ∈ dy)

dy
.(1.10)

For periodic boundary condition, the marks are Brownian bridges on the torus
� = (R/LZ)d . The corresponding path measure is denoted by μ

(per,β)
x,y ; its total

mass is equal to

g
(per)
β (x, y) = μ(per,β)

x,y

(
C(per)

�

)= ∑
z∈Zd

gβ(x, y + zL)

(1.11)
= (4πβ)−d/2

∑
z∈Zd

e−|x−y−zL|2/(4β).

For periodic and Dirichlet boundary conditions (1.8) is replaced by

q(bc) =
N∑

k=1

q
(bc)
k with q

(bc)
k = 1

k|�|
∫
�

dx g
(bc)
kβ (x, x).(1.12)

Note that this weight depends on � and on N . We introduce the Poisson point
process ωP =∑

x∈ξP
δ(x,Bx) on � × E(bc) with intensity measure ν(bc) whose pro-

jections on � × C(bc)
k,� with k ≤ N are equal to ν

(bc)
k (dx, df ) = 1

k
Leb�(dx) ⊗

μ
(bc,kβ)
x,x (df ) and are zero on this set for k > N . We do not label ωP nor ξP with

the boundary condition nor with N ; ξP is a Poisson process on � with intensity
measure q(bc) times the restriction Leb� of the Lebesgue measure to �. By Q(bc)

and E(bc) we denote probability and expectation with respect to this process. Con-
ditionally on ξP, the lengths of the cycles Bx with x ∈ ξP are independent and have
distribution (q

(bc)
k /q(bc))k∈{1,...,N}; this process has only marks with lengths ≤ N .

A cycle Bx of length k is distributed according to

P
(bc,kβ)
x,x (df ) = μ

(bc,kβ)
x,x (df )

g
(bc)
kβ (x, x)

.(1.13)
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We now formulate our first main result, a presentation of the partition func-
tion defined in (1.1) in � ⊂ R

d with |�| < ∞ and boundary condition bc ∈
{∅,per,Dir}. We write 〈P,F 〉 for the expectation of a function F with respect to
a probability measure P . We introduce a functional on  that expresses the inter-
action between particles in � ⊂ R

d , more precisely, between their marks. Define
the Hamiltonian H� : → [0,∞] by

H�(ω) = ∑
x,y∈ξ∩�

Tx,y(ω) where ω =∑
x∈ξ

δ(x,fx) ∈ ,(1.14)

where we abbreviate, for ω ∈ ,x, y ∈ ξ ,

Tx,y(ω) = 1

2

�(fx)−1∑
i=0

�(fy)−1∑
j=0

1{(x,i) �=(y,j)}

(1.15)

×
∫ β

0
v
(|fx(iβ + s) − fy(jβ + s)|)ds.

The function H�(ω) summarizes the interaction between different marks of
the point process and between different legs of the same mark; here we call the
restriction of a mark fx to the interval [iβ, (i + 1)β)] with i ∈ {0, . . . , �(fx) − 1}
a leg of the mark. Denote by

N
(�)
� (ω) = ∑

x∈ξ∩�

�(fx)(1.16)

the total length of the marks of the particles in � ⊂ R
d (whose marks may be not

contained in �).

PROPOSITION 1.1 (Rewrite in terms of the marked Poisson process). Fix β ∈
(0,∞). Let v : [0,∞) → (−∞,∞] be measurable and bounded from below, and
let � ⊂ R

d be measurable with finite volume (assumed to be a torus for periodic
boundary condition). Then, for any N ∈ N, and bc ∈ {∅,per,Dir},

Z
(bc)
N (β,�) = e|�|q(bc)

E(bc)[e−H�(ωP)1
{
N

(�)
� (ωP) = N

}]
.(1.17)

That is, up the nonrandom term |�|q(bc), the partition function is equal to the
expectation over the Boltzmann factor e−H� of a marked Poisson process with
fixed total length of marks of the particles.

1.3. The limiting free energy. In this section, we present our major result, the
identification of the limiting free energy defined in (1.3) in terms of an explicit
variational formula (see Theorem 1.2). We first introduce some notation.

Define the shift operator θy : Rd → R
d as θy(x) = x − y. We extend it to a shift

operator on marked configurations by

θy(ω) =∑
x∈ξ

δ(x−y,fx) = ∑
x∈ξ−y

δ(x,fx+y) for ω =∑
x∈ξ

δ(x,fx).
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By Pθ we denote the set of all shift-invariant probability measures on . The
distribution Q of the above marked Poisson point reference process ωP belongs
to Pθ .

Define �β : → [0,∞] by

�β(ω) = ∑
x∈ξ∩U

∑
y∈ξ

Tx,y(ω),(1.18)

where Tx,y(ω) was defined in (1.15), and U = [−1
2 , 1

2 ]d denotes the centered unit
box. The quantity �β(ω) describes all the interactions between different legs of
marks of ω, when at least one of the marks is attached to a point in U .

Next, we introduce an entropy term. For probability measures μ,ν on some
measurable space, we write

H(μ|ν) =
⎧⎨⎩
∫

f logf dν, if f = dμ

dν
exists,

∞, otherwise,
(1.19)

for the relative entropy of μ with respect ν. It will be clear from the context which
measurable space is used. It is easy to see and well known that H(μ|ν) is nonneg-
ative and that it vanishes if and only if μ = ν. Now we set

Iβ(P ) = lim
N→∞

1

|�N |H(P�N
|Q�N

), P ∈ Pθ ,(1.20)

where we write P� for the projection of P to �, that is, the image measure of P

under

ω �→ ω|� = ∑
x∈ξ∩�

δ(x,fx) for ω =∑
x∈ξ

δ(x,fx).(1.21)

The limit in (1.20) is along centered boxes �N with diverging volume. According
to [13], Proposition 2.6, the limit in (1.20) exists, and Iβ is a lower semicontin-
uous function with compact level sets in the topology of local convergence (see
Lemma 3.3 below). It turns out there that Iβ is the rate function of a crucial large-
deviations principle for the family of the stationary empirical fields, which is one
of the important objects of our analysis and will be introduced at the beginning of
Section 3.

Now we introduce two important variational formulas. For any β,ρ ∈ (0,∞),
define

χ(≤)(β, ρ) = inf
{
Iβ(P ) + 〈P,�β〉 :P ∈ Pθ ,

〈
P,N

(�)
U

〉≤ ρ
}
,(1.22)

χ(=)(β, ρ) = inf
{
Iβ(P ) + 〈P,�β〉 :P ∈ Pθ ,

〈
P,N

(�)
U

〉= ρ
}
.(1.23)

These formulas range over shift-invariant marked processes P . They have three
components: the entropic distance Iβ(P ) between P and the reference process Q,

the interaction term 〈P,�β〉 and the condition 〈P,N
(�)
U 〉 = ρ, respectively, ≤ρ.
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Obviously, χ(≤) ≤ χ(=). Since all the maps P �→ Iβ(P ), P �→ 〈P,�β〉 and P �→
〈P,N

(�)
U 〉 are easily seen to be lower semicontinuous and since the level sets of

Iβ are compact, it is clear that the infimum on the right-hand side of (1.22) is
attained and is therefore a minimum. However, this is not at all clear for (1.23);
this question lies much deeper and has some relation to the question about Bose–
Einstein condensation (see the discussion in Section 1.4).

Now we specify our assumptions on the particle interaction potential v.

ASSUMPTION (V). We assume that v : [0,∞) → [0,∞] is measurable and
tempered, that is, there are h > d,A ≥ 0 and R0 > 0 such that v(t) ≤ At−h for
t ∈ [R0,∞). Additionally, we assume that the integral

α(v) =
∫

Rd
v(|x|) dx

is finite and that lim infr→0 v(r) > 0.

We now present variational characterizations for upper and lower bounds for
the exponential rate of the partition function. We denote by �L = [−L

2 , L
2 ]d the

centered box in R
d with volume Ld .

THEOREM 1.2. Let LN = (N
ρ
)1/d , such that �LN

has volume N/ρ. Let v

satisfy Assumption (v). Denote

Dv = {
(β,ρ) ∈ (0,∞)2 : (4πβ)−d/2 ≥ ρeβρα(v)}.(1.24)

Then, for any β,ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},

lim sup
N→∞

1

|�LN
| logZ

(bc)
N (β,�LN

) ≤ ζ(1 + d/2)

(4πβ)d/2 − χ(≤)(β, ρ)(1.25)

and

lim inf
N→∞

1

|�LN
| logZ

(bc)
N (β,�LN

)

(1.26)

≥ ζ(1 + d/2)

(4πβ)d/2 −
{

χ(≤)(β, ρ), if (β,ρ) ∈ Dv,
χ(=)(β, ρ), if (β,ρ) /∈ Dv,

where ζ(m) =∑∞
k=1 k−m denotes the Riemann zeta function.

Note that the first term on the right, ζ(1 + d
2 )/(4πβ)d/2, is equal to the total

mass q , the sum of the qk defined in (1.8). The proof of Theorem 1.2 is in Sec-
tions 3.2 [proof of (1.25)] and 3.3 [proof of (1.26)] for empty boundary conditions,
and in Section 3.4 for the other two.

The assumptions
∫
Rd v(|x|) dx < ∞ and lim infr→0 v(r) > 0 are only necessary

for our proof of the lower bound in (1.26). In the proof of the upper bound in (1.25),
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it is allowed that v takes the value +∞ on a set of positive measure (corresponding
to hard core repulsion) and also that v ≡ 0 (the noninteracting case) (see discussion
in Section 1.5).

As an obvious corollary we now identify the free energy defined in (1.3) in the
high-temperature phase and in the low-density phase.

COROLLARY 1.3 (Free energy). Fix (β,ρ) ∈ Dv . Then, for any bc ∈ {∅,Dir,
per}, the free energy introduced in (1.3) is given by

f (β,ρ) = f (bc)(β, ρ)

= − 1

β

ζ(1 + d/2)

(4πβ)d/2(1.27)

+ 1

β
min

{
Iβ(P ) + 〈P,�β〉 :P ∈ Pθ ,

〈
P,N

(�)
U

〉≤ ρ
}
.

A by-product of the proof of the lower bound of (1.26) (see Corollary 3.5) we
have the following upper bound on the free energy.

LEMMA 1.4. For any β,ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},
f (bc)(β, ρ) = lim sup

N→∞
− 1

β

1

|�LN
| logZ

(bc)
N (β,�LN

)

(1.28)
≤ ρ

β
log(ρ(4πβ)d/2) + ρ2α(v).

1.4. Relevance and discussion. One of the most prominent open problems in
mathematical physics is the understanding of Bose–Einstein condensation (BEC),
a phase transition in a mutually repellent many-particle system at positive, fixed
particle density, if a sufficiently low temperature is reached. That is, a macroscopic
part of the system condenses to a state which is highly correlated and coherent. The
first experimental realization of BEC was only in 1995, and it has been awarded
with a Nobel prize. In spite of an enormous research activity, this phase transi-
tion has withstood a mathematical proof yet. Only partial successes have been
achieved, like the description of the free energy of the ideal, that is, noninteract-
ing, system (already contained in Bose and Einstein’s seminal paper in 1925) or
the analysis of mean-field models (e.g., [9, 22]) or the analysis of dilute systems
at vanishing temperature [16] or the proof of BEC in lattice systems with half-
filling [16]. However, the original problem for fixed positive particle density and
temperature is still waiting for a promising attack. Not even a tractable formula for
the limiting free energy was known yet that could serve as a basis for a proof of
BEC. The main purpose of the present paper is to provide such a formula.

The mathematical description of bosons is in terms of the symmetrized trace
of the negative exponential of the corresponding Hamiltonian times the inverse



692 S. ADAMS, A. COLLEVECCHIO AND W. KÖNIG

temperature. The symmetrization creates long range correlations of the interacting
particles making the analysis an extremely challenging endeavor. The Feynman–
Kac formula gives, in a natural way, a representation in terms of an expansion
with respect to the cycles of random paths. It is conjectured by Feynman [10] that
BEC is signaled by the decisive appearance of a macroscopic amount of “infinite”
cycles, that is, cycles whose lengths diverge with the number of particles. This
phenomenon is also signaled by a loss of probability mass in the distribution of
the “finite” cycles. See [20] and [21] for proofs of this coincidence in the ideal
Bose gas and some mean-field models. A different line of research is studying the
effect of the symmetrization in random permutation and random partition models
(see [1–4, 23], or in spatial random permutation models going back to [11] and
extended in [5]).

In the present paper, we address the original problem of a mutually repellent
many-particle system at fixed positive particle density and temperature and derive
an explicit variational expression for the limiting free energy. More precisely, we
prove upper and lower bounds, which coincide in the high-temperature phase, re-
spectively, low density phase. The formula yields deep inside in the cycle structure
of the random paths appearing in the Feynman–Kac formula. In particular, it opens
up a new way to analyze the structure of the cycles at any temperature and density,
also in the low-temperature phase, where our two bounds differ. In future work,
we intend to analyze the conjectured phase transition in that variational formula
and to link it to BEC.

The methods used in the present paper are mainly probabilistic. Our starting
point is the well-known Feynman–Kac formula, which translates the partition
function in terms of an expectation over a large symmetrized system of interacting
Brownian bridge paths. In a second step, which is also well known, we reduce the
combinatorial complexity by concatenating the bridges using the symmetrization.
The novelty of the present approach is a reformulation of this system in terms of
an expectation with respect to a marked Poisson point process, which serves as a
reference process. This is a Poisson process in the space R

d to whose particles we
attach cycles called marks, starting and ending at that particle. The symmetrization
is reflected by an a priori distribution of cycle lengths. The interaction between the
Brownian particles are encoded as interaction between the marks in an exponential
functional. The particle density is described by a condition on the total length of
the marks in the unit box.

Approaches to Bose gases using point processes have occasionally been used in
the past (see [11] and the references therein) and also recently in [17], but systems
with interactions have not yet been considered using this technique, to the best of
our knowledge.

The greatest advantage of this approach is that it is amenable to a large-
deviations analysis. The central object here is the stationary empirical field of
the marked point process, which contains all relevant information and satisfies a
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large-deviations principle in the thermodynamic limit. For some class of interact-
ing systems, this direction of research was explored in [13, 14]. In the present
paper, we apply these ideas to the more difficult case of the interacting Bose gas.
The challenge here is that the interaction involves the spatial points and the details
of the marks. Modulo some error terms, we express the interaction and the mark
length condition in terms of a functional of the stationary empirical field. Formally
using Varadhan’s lemma, we obtain a variational formula in the limit.

However, due to a lack of continuity in the functionals that describe the inter-
action and the mark lengths, the upper and lower bounds derived in this way, may
differ in general. (At sufficiently high temperature, we overcome this problem by
additional efforts and establish a formula for the limit.) This effect is not a techni-
cal drawback of the method, but lies at the heart of BEC.

In Theorem 1.2, we formulate the limiting free energy in terms of a minimizing
problem for random shift-invariant marked point processes with interaction under
a constraint on the total length of the marks per unit volume. Both formulas in our
upper and lower bounds in Theorem 1.2 are formulated in terms of random point
fields having finitely long cycles as marks. The concept used in the present paper
is not able to incorporate infinitely long cycles nor to quantify their contribution
to the interaction. In the proof of our lower bound of the free energy, we drop
the interactions involving any cycle longer than a parameter R that is eventually
sent to infinity, and in our proof of the upper bound we even drop these cycles in
the probability space. As a result, our two formulas register only “finitely long”
cycles. Their total macroscopic contribution is represented by the term 〈P,N

(�)
U 〉,

and the one of the “infinitely long” cycles by the term ρ − 〈P,N
(�)
U 〉. In this way,

the long cycles are only indirectly present in our analysis: in terms of a “loss of
mass,” the difference between the particle density ρ and the total mass of short
cycles. Physically speaking, this difference is the total mass of a condensate of the
particles.

The values of the two formulas χ(≤)(β, ρ) and χ(=)(β, ρ) differ if “infinitely
long” cycles do have some decisive contribution in the sense that the optimal point
process(es) P in χ(≤)(β, ρ) satisfies 〈P,N

(�)
U 〉 < ρ. We conjecture that the ques-

tion whether or not the optimal P in χ(≤)(β, ρ) has a loss of probability mass
of infinitely long cycles is intimately related with the question whether or not
χ(≤)(β, ρ) = χ(=)(β, ρ) and that this question is in turn decisively connected with
the question whether or not BEC appears. This is in accordance with Sütő’s work
[20, 21]. The conjecture is that, for given β and in d ≥ 3, if ρ is sufficiently small,
then it is satisfied, and for sufficiently large ρ it is not satisfied. The latter phase
is conjectured to be the BEC phase. Future work will be devoted to an analysis of
this question.

Here is an abstract sufficient criterion for χ(≤)(β, ρ) = χ(=)(β, ρ).

LEMMA 1.5. Fix β ∈ (0,∞). If there exists a minimizer P̂ of the variational
problem infP∈Pθ (Iβ(P ) + 〈P,�β〉) satisfying ρ̂ := 〈P̂ ,N

(�)
U 〉 < ∞, then, for any
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ρ ∈ (0, ρ̂),

χ(≤)(β, ρ) = χ(=)(β, ρ).(1.29)

PROOF. Pick ρ < ρ̂. Let P be a minimizer in the formula for χ(≤)(β, ρ), that
is, of inf{Iβ(P ) + �β(P ) :P ∈ Pθ , 〈P,N

(�)
U 〉 ≤ ρ}. If 〈P,N

(�)
U 〉 would be smaller

than ρ, then an appropriate convex combination, P̃ , of P and P̂ would satisfy
〈P̃ ,N

(�)
U 〉 ∈ (〈P,N

(�)
U 〉, ρ] and Iβ(P̃ ) + �β(P̃ ) < Iβ(P ) + �β(P ). This would

contradict the minimizing property of P . Hence, 〈P,N
(�)
U 〉 = ρ, and therefore P

minimizes also the formula for χ(=)(β, ρ). �

1.5. The noninteracting case. Let us compare our results to the noninteracting
case. Indeed, [1], Theorem 2.1, says that, in the case v ≡ 0, the identification of
the limiting free energy in (1.27) holds for any β,ρ ∈ (0,∞). To see this, we have
to argue a bit, and we will only sketch the argument.

Explicitly, after applying some elementary manipulations, one sees that [1],
Theorem 2.1, amounts to

f (β,ρ) = − 1

β

ζ(1 + d/2)

(4πβ)d/2 + 1

β
inf

λ∈�1(N) :
∑

k kλk≤1
J (λ),(1.30)

where we recall that q was defined in (1.8), and we put

J (λ) = ∑
k∈N

qk + ρH(λ|q) + ρ
∑
k∈N

λk logρ − ρ
∑
k∈N

λk.

Now we rewrite the minimum on the right-hand side of (1.27) in a similar form by
splitting N

(�)
U into

∑
k∈N kNk , where

Nk,�(ω) = #{x ∈ ξ ∩ � :�(fx) = k}(1.31)

and Nk = Nk,U is the number of particles in the unit box U whose cycles have
length k (and are allowed to leave U ). Then we may write

inf
{
Iβ(P ) :P ∈ Pθ ,

〈
P,N

(�)
U

〉≤ ρ
}= inf

λ∈�1(N) :
∑

k kλk≤1
inf

P∈Pθ : λ(P )=λ
Iβ(P ),

where λ(P ) = 1
ρ
(〈P, Nk〉)k∈N. In order to see that (1.30) coincides with (1.27) for

v = 0, one only has to check that J (λ) = infP∈Pθ : λ(P )=λ Iβ(P ) for any λ ∈ �1(N)

satisfying
∑

k kλk ≤ 1.
We do not offer an analytical proof of this fact, but instead a probabilistic one,

which makes use of the large-deviations principle in Lemma 3.3 below for the sta-
tionary empirical field R�L,ωP introduced in (3.2) with rate function Iβ . Observe
that the mapping P �→ λ(P ) is continuous as a function from the set of all P ∈ Pθ

satisfying 〈P,N
(�)
U 〉 ≤ ρ into the sequence space �1(N). Hence, by the contraction

principle (see [8], Theorem 4.2.1), the sequence (λ(R�L,ωP))L>0 satisfies a large-
deviations principle with rate function λ �→ infP∈Pθ : λ(P )=λ Iβ(P ). By uniqueness
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of rate functions, it suffices to show that this sequence satisfies the principle with
rate function J . We now indicate how to derive this by explicit calculation.

Introduce

M� =
{
λ ∈ [0,1]N :

∑
k

kλk ≤ 1,∀k ∈ N :λk|�|ρ ∈ N0

}
,

and for λ ∈ M�, we calculate

Q
(
λ(R�,ωP) = λ

)= Q(∀k ∈ N : 〈R�,ωP, Nk〉 = ρλk)

= Q
(∀k ∈ N : #

(
ξ

(k)
P ∩ �

)= ρ|�|λk

)
,

where ξ
(k)
P = {x ∈ ξP :fx ∈ Ck} is the set of those Poisson points with cycle of

length k. Since the Poisson processes ξ
(k)
P , k ∈ N, are independent with inten-

sity qk , we can proceed with

Q
(
λ(R�,ωP) = λ

)= ∏
k∈N

Q
(
#
(
ξ

(k)
P ∩ �

)= ρ|�|λk

)

= ∏
k∈N

(
e−|�|qk

(|�|qk)
ρ|�|λk

(ρ|�|λk)!
)
.

Using Stirling’s formula, we get from here that
1

|�L| logQ
(
λ(R�L,ωP) = λ

)∼ −J (λ) λ ∈ M�L
as L → ∞.

From here, it is easy to finish the proof of the large-deviations principle for
(λ(R�L,ωP))L>0 with rate function J . This finishes the proof of (1.27) for any
β,ρ ∈ (0,∞) in the noninteracting case v ≡ 0.

The well-known Bose–Einstein phase transition in the free energy was made
explicit in the analysis of the right-hand side of (1.30) in [1]. It was shown there
that

f (β,ρ) = − 1

β

1

(4πβ)d/2

(1.32)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k∈N

e−αk

kd/2+1 + (4πβ)d/2ρα, if ρ(4πβ)d/2 < ζ

(
d

2

)
,

ζ

(
1 + d

2

)
, if ρ(4πβ)d/2 ≥ ζ

(
d

2

)
,

where α is the unique root of ρ = (4πβ)−d/2∑
k∈N

e−αk

kd/2 . Note that ζ(d
2 ) = ∞ in

d ∈ {1,2}, and hence there is no phase transition in these dimensions. The first
line in (1.32) corresponds to the case where the minimizer λ in (1.30) satifies∑

k kλk = 1, that is, no “infinitely long” cycles contribute to the free energy, and
the second line to the case

∑
k kλk < 1. Hence, the Bose–Einstein phase transition

is precisely at the point where the variational formula in (1.30) with “≤” starts
differing from the formula with “=.”
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2. Rewrite of the partition function. In this section, we give the proof of
Proposition 1.1.

As a first step, we give a representation of Z
(bc)
N (β,�) in terms of an expansion

with respect to the cycles of the permutations in (1.1). This is well known and goes
back to Feynman 1955.

We denote the set of all integer partitions of N by

PN =
{
λ = (λk)k ∈ N

N

0 :
∑
k

kλk = N

}
.(2.1)

The numbers λk are called the occupation numbers of the integer partition λ. Any
integer partition λ of N defines a conjugacy class of permutations of 1, . . . ,N

having exactly λk cycles of length k for any k ∈ N. The term in (1.1) after the
sum on σ depends only on this class. Hence, we replace this sum by a sum on
integer partitions λ ∈ PN and count the permutations in that class. For any of these
cycles of length k, we integrate out over all but one of the starting and terminating
points of all the k Brownian bridges belonging to that cycle and use the Markov
property to concatenate them. This gives the ith (with i = 1, . . . , λk) bridge B(k,i)

with time horizon [0, kβ], starting and terminating at a site, which is uniformly
distributed over �. The family of these bridges B(k,i) is independent, and B(k,i)

has distribution P
(bc,kβ)
� , where we define

P
(bc,β)
� (df ) =

∫
� dx μ

(bc,β)
x,x (df )∫

� dx g
(bc)
β (x, x)

.(2.2)

The expectation will be denoted by E
(bc,β)
� .

For λ ∈ PN , define

G(λ)
N,β = 1

2

N∑
k1,k2=1

λk1∑
i1=1

λk2∑
i2=1

k1−1∑
j1=0

k2−1∑
j2=0

1(k1,i1,j1) �=(k2,i2,j2)

×
∫ β

0
ds v

(∣∣B(k1,i1)(j1β + s)(2.3)

− B(k2,i2)(j2β + s)
∣∣).

In words, Gλ
N,β is the total interaction between different bridges B(k1,i1) and B(k2,i2)

and between different legs of the same bridge B(k,i).

LEMMA 2.1 (Cycle expansion). For any N ∈ N,

Z
(bc)
N (β,�) = ∑

λ∈PN

(∏
k∈N

[∫� dx g
(bc)
kβ (x, x)]λk

λk!kλk

)⊗
k∈N

(
E

(bc,kβ)
�

)⊗λk [e−G(λ)
N,β ].(2.4)
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PROOF. We are going to split every permutation on the right-hand side of (1.1)
into a product of its cycles. Assume that a permutation σ ∈ SN has precisely λk

cycles of length k, for any k ∈ {1, . . . ,N}. Then
∑N

k=1 kλk = N . The correspond-

ing Brownian bridges may be renumbered B
(k,i)
j with k ∈ N, i = 1, . . . , λk and

j = 1, . . . , k.
Then the measure

∫
� dx1 · · · ∫� dxN

⊗N
i=1 μ

(bc,β)
xi ,xσ(i)

splits into an according prod-
uct, which can be written, after a proper renumbering of the indices, as

N∏
k=1

λk∏
i=1

k−1∏
j=0

∫
�

dx
(i)
k,j+1

⊗
k∈N

λk⊗
i=1

k−1⊗
j=0

μ
(bc,β)

x
(i)
k,j ,x

(i)
k,j+1

where x
(i)
k,0 = x

(i)
k,k.(2.5)

Denote by f1 � · · · � fk the concatenation of f1, . . . , fk , that is, f1 � · · · � fk((i −
1)β + s) = fi(s) for s ∈ [0, β]. Note that the Markov property of the canonical
Brownian bridge measures implies the concatenation formula

μ(bc,kβ)
x,x

(
d(f1 � · · · � fk)

)= ∫
(�)k−1

dx1 · · ·dxk−1

k⊗
i=1

μ(bc,β)
xi−1,xi

(dfi),(2.6)

where we put x0 = xk = x. Now we integrate out over x
(i)
k,2, . . . , x

(i)
k,k for any k ∈ N

and i = 1, . . . , λk . In this way, we obtain that we may replace the bridges B
(k,i)
j

under the measure

N⊗
k=1

λk⊗
i=1

(∫
�

dx
(i)
k μ

(bc,kβ)

x
(i)
k ,x

(i)
k

)

by the bridges B(k,i) = B
(k,i)
1 � · · · � B

(k,i)
k under the measure

N⊗
k=1

[∫
�

dx g
(bc)
kβ (x, x)

]λk (
E

(bc,kβ)
�

)⊗λk .

Summarizing, we get

Z
(bc)
N (β,�) = ∑

λ∈PN

A(λ)

N !
N∏

k=1

[∫
�

dx g
(bc)
kβ (x, x)

]λk ⊗
k∈N

(
E

(bc,kβ)
�

)⊗λk [e−G(λ)
N,β ],

where A(λ) = #{σ ∈ SN :σ has λk cycles of length k,∀k ∈ N} is the size of the
conjugacy class for the integer partition λ ∈ PN . Standard counting arguments
(see [7], Theorem 12.1) give

A(λ) = N !∏N
k=1(λk!kλk )

,

and conclude the proof. �
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Now we explain our rewrite of the partition sum in terms of the marked Poisson
point process introduced in Section 1.2, that is, we prove Proposition 1.1. The main
idea is to replace the sum over integer partitions in Lemma 2.1 by an expectation
with respect to the marked Poisson point process under conditions on the mark
events. We restrict to the case of empty boundary conditions; the other two require
only notational changes.

It will be convenient to write the process ωP as the superposition

ωP = ∑
k∈N

ω
(k)
P where ω

(k)
P = ∑

x∈ξ
(k)
P

δ(x,Bx),(2.7)

and ω
(k)
P is the Poisson process on R

d × Ck with intensity measure νk defined in

(1.7). The processes ω
(k)
P are independent.

PROOF OF PROPOSITION 1.1. We start from Lemma 2.1. Pick an integer
partition λ ∈ PN with occupation number λk satisfying

∑N
k=1 kλk = N , and ab-

breviate the number of cycles of λ by m = ∑N
k=1 λk . For any k ∈ N, the fam-

ily (B(k,i))i=1,...,λk
under the measure (P

(kβ)
� )⊗λk has the same distribution as

the family of marks (Bx)x∈ξ
(k)
P

of the conditional Poisson process ω
(k)
P given

{#(ξ
(k)
P ∩ �) = λk}. Considering the product measure

⊗
k∈N(P

(kβ)
� )⊗λk is equiva-

lent to considering the superposition of the conditional processes ω
(k)
P with k ∈ N.

Hence, we have precisely m Poisson points in �. For any k ∈ N, conditional on
{#(ξ

(k)
P ∩ �) = λk}, the set ξ

(k)
P ∩ � has the same distribution as the set of starting

points, {B(k,1)(0), . . . ,B(k,λk)(0)}. A comparison of (1.14) and (1.15) with (2.3)
shows that the interaction term G(λ)

N,β must be replaced by the Hamiltonian H�(ωP).
Hence, ⊗

k∈N

(
E

(kβ)
�

)⊗λk [e−G(λ)
N,β ] = E

[
e−H�(ωP)|∀k ∈ N,#

(
ξ

(k)
P ∩ �

)= λk

]
.

We see in an elementary way that

E
[
e−H�(ωP)|∀k ∈ N,#

(
ξ

(k)
P ∩ �

)= λk

]
= E

[
e−H�(ωP)1

{∀k ∈ N,#
(
ξ

(k)
P ∩ �

)= λk

}|#(ξP ∩ �) = m
]

(2.8)

×
∏

k∈N λk!
m! qm

∏
k∈N

(qk)
−λk ,

where q and the qk are defined in (1.8). Let us summarize all the terms involving
λk from (2.4) and (2.8) [noting that gβ(x, x) = (4πβk)−d/2]:(∏

k∈N

(4πβk)−d/2λk |�|λk

λk!kλk

)
×
∏

k∈N λk!
m! qm

∏
k∈N

(qk)
−λk = |�|m qm

m! .
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We denote by Nk,�(ω) = #{x ∈ � :�(fx) = k} and N�(ω) = #(ξ ∩�) the number
of particles in � (whose marks do not have to be contained in �) with mark length
equal to k, respectively, with arbitrary mark length. Then we get

ZN(β,�)

=
N∑

m=1

|�|m qm

m!
∑

λ∈PN ,∑
k λk=m

E
[
e−H�(ωP)(2.9)

× 1{∀k ∈ N, Nk,�(ωP) = λk}|N�(ωP) = m
]
.

Note that the event {N�(ωP) = m} has probability |�|m qm

m! exp{−|�|q}. Hence

ZN(β,�)

= e|�|q
N∑

m=1

∑
λ∈PN ,∑
k λk=m

E
[
e−H�(ωP)1{∀k ∈ N, Nk,�(ωP) = λk}(2.10)

× 1{N�(ωP) = m}].
Note that the events {∀k ∈ N, Nk,�(ωP) = λk} ∩ {N�(ωP) = m} are a decomposi-
tion of the event {N(�)

� (ωP) = N}. Hence, the assertion in (1.17) follows. �

3. Large-deviations arguments: Proof of Theorem 1.2. In this section we
prove Theorem 1.2 by applying large-deviations arguments to the representation of
the partition function in Proposition 1.1. In Sections 3.1–3.3 we carry out the proof
for empty boundary condition, and in Section 3.4 we show how to trace the other
two boundary conditions back to this case. In Section 3.1 we introduce the main
object of our analysis, the stationary empirical field with respect to the marked
Poisson process ωP, and we rewrite the partition function in terms of this field. We
also formulate and explain the main steps of the proof, among which the crucial
large-deviations principle for that field. In Sections 3.2 and 3.3 we prove the upper
and lower bounds, respectively, for empty boundary condition.

3.1. The stationary empirical field. Our analysis is based on a large-deviations
principle for the stationary empirical field, defined as follows. For any ξ ⊂ R

d and
for any centered box � ⊂ R

d , let ξ(�) be the �-periodic continuation of ξ ∩ �.
Analogously, we define the �-periodic continuation of the restriction of the con-
figuration ω to � as

ω(�) = ∑
z∈Zd

∑
x∈ξ∩�

δ(x+Lz,fx) if ω =∑
x∈ξ

δ(x,fx) ∈ ,(3.1)
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where L is the side length of the centered cube �. Then the stationary empirical
field is given by

R�,ω = 1

|�|
∫
�

dy δθy(ω(�)), ω ∈ ,(3.2)

where the shift operator θy : Rd → R
d is defined by θy(x) = x − y. It is clear that

R�,ω is a shift-invariant probability measure on , that is, it is an element of Pθ .
Now we express N

(�)
� (ω) in terms of R�,ω. Recall that U denotes the centered

unit box.; we write �L for �.

LEMMA 3.1. For any centered box � ⊂ R
d with |�| > 1, and any ω ∈ ,

|�|〈R�,ω,N
(�)
U

〉= N
(�)
� (ω).

PROOF. The assertion follows from [13], Remark 2.3(1); however, we give
a direct proof without using Palm measures. Let L > 1 be such that � = �L =
[−L

2 , L
2 ]d . We calculate

|�|〈R�,ω,N
(�)
U

〉= ∫
�

dzN
(�)
U

(
θz

(
ω(�)

))= ∑
x∈ξ(�)

∫
�

dz1U−x(z)�(fx)

= ∑
x∈ξ(�)

x∈�+U

�(fx)|� ∩ (U − x)|

= N
(�)
� (ω) + ∑

x∈ξ(�)∩((�+U)\�)

�(fx)|� ∩ (U − x)|

+ ∑
x∈ξ∩�

�(fx)
(|� ∩ (U − x)| − 1

)
.

It remains to show that the sum of the two last sums is equal to zero. Note that
the last sum can be restricted to x ∈ ξ ∩ (� \ �L−1). We use the fact that for each
point x ∈ ξ ∩ (� \ �L−1) there exists a collection of points in ξ(�) ∩ (�L+1 \ �),
with the same mark of x. Indeed, there exists a positive integer m(x) ≤ d and a set
{x′

1, . . . , x
′
m(x)}, such that x′

i ∈ ξ(�) ∩ (� + U) \ �, x ′
i = x + Lzi for some zi ∈ Z

d

and
∑m(x)

i=1 |� ∩ (U − x′
i )| = 1 − |� ∩ (U − x)|. Notice that

⋃
x∈ξ∩(�\�L−1)

m(x)⋃
i=1

x′
i = ξ(�) ∩ ((� + U) \ �

)
and fx = fx′

i
, for any i ≤ m(x). Hence∑

x∈ξ(�)∩((�+U)\�)

�(fx)|� ∩ (U − x)| = ∑
x∈ξ∩�

�(fx)
(
1 − |� ∩ (U − x)|).

�
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Now we express the interaction Hamiltonian in terms of integrals of the station-
ary empirical field against suitable functions; more precisely, we give lower and
upper bounds. In the following lower bound, it is important that this functional is
local and bounded; this will be achieved up to a small error only.

Fix large truncation parameters M,R and K and introduce ξ (≤K) = {x ∈
ξ :�(fx) ≤ K} for ω ∈  and

�
(R,M,K)
β (ω) = ∑

x∈ξ (≤K)∩U

∑
y∈ξ (≤K)∩�R

T (M)
x,y (ω),(3.3)

where �R = [−R
2 , R

2 ]d and

T (M)
x,y (ω) = 1

2

�(fx)−1∑
i=0

�(fy)−1∑
j=0

1{(x,i) �=(y,j)}
∫ β

0
vM

(|fx(iβ + s) − fy(jβ + s)|)ds,

and where vM(r) = (v ∧ M)(r) = min{v(r),M}. Recall that N�(ω) = #(ξ ∩ �)

denotes the particle number in a measurable set � ⊂ R
d .

LEMMA 3.2 (Hamiltonian bounds). Fix any centred box � = �L.

(i) For any M,R,K,S ∈ (1,∞), and for L ≥ R + 2,

H�(ω) ≥ |�|〈R�,ω,�
(R,M,K)
β 1{N�R

≤ S}〉
(3.4)

− CN�L\�L−R−2(ω), ω ∈ ,

where C = 2dβMK2rS, and r depends only on R and d .
(ii)

H�(ω) ≤ |�|〈R�,ω,�β〉, ω ∈ .(3.5)

PROOF. (i) Estimate

|�|〈R�,ω,�
(R,M,K)
β 1{N�R

≤ S}〉
=
∫
�

dz�
(R,M,K)
β

(
θz

(
ω(�)

))
1
{
N�R

(
θz

(
ω(�)

))≤ S
}

≤
∫
�

dz
∑

x∈ξ
(≤K)
(�) ∩(U−z)

∑
y∈ξ

(≤K)
(�) ∩(�R−z)

T (M)
x,y

(
ω(�)

)
(3.6)

× 1
{
#
(
ξ

(≤K)
(�) ∩ (�R − z)

)≤ S
}

= ∑
x,y∈ξ

(≤K)
(�) ,x∈�+U,

y∈�+�R,x∈�R+1+y

T (M)
x,y

(
ω(�)

) ∫
�∩(U−x)∩(�R−y)

dz

× 1
{
#
(
ξ

(≤K)
(�) ∩ (�R − z)

)≤ S
}
.
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Observe that the integral over z is not larger than one. Now we split the last sum
into the sums on (x, y) ∈ �2 and the remainder. For (x, y) ∈ �2, we may replace
T

(M)
x,y (ω(�)) by T

(M)
x,y (ω) and estimate it against Tx,y(ω). Hence,

left-hand side of (3.6) ≤ H�(ω) + �
(R,M,K,S)
� (ω),

where the remainder term is

�
(R,M,K,S)
� (ω)

= ∑
x,y∈ξ

(≤K)
� ,x∈�+U,

y∈�+�R,x∈�R+1+y,(x,y)/∈�2

T (M)
x,y

(
ω(�)

) ∫
�∩(U−x)∩(�R−y)

dz

× 1
{
#
(
ξ

(≤K)
(�) ∩ (�R − z)

)≤ S
}

≤ 1

2
βMK2

× ∑
x,y∈ξ

(≤K)
� ,x∈�+U,

y∈�+�R,x∈�R+1+y,(x,y)/∈�2

1
{∃z ∈ � ∩ (U − x)

∩ (�R − y) : #
(
ξ

(≤K)
� ∩ (�R − z)

)≤ S
}

≤ 1

2
βMK2

∑
x,y∈ξ

(≤K)
(�) ,x∈�+U,

y∈�+�R,x∈�R+1+y,(x,y)/∈�2

1
{
#
(
ξ

(≤K)
(�) ∩ (�R−1 + x)

)≤ S
}
.

The sum over (x, y) /∈ �2 is split into the sum over x ∈ (� + U) \ �,y ∈ � + �R

and x ∈ � + U,y ∈ (� + �R) \ �. Recall that � = �L and that L ≥ R + 1. The
condition x ∈ �R+1 + y implies that in both cases y is summed over a subset of
�L+R+2 \ �L−R−1. Hence,

�
(R,M,K,S)
� (ω)

≤ 1

2
βMK2

× ∑
y∈ξ

(≤K)
(�) ∩(�L+R+2\�L−R−1)

#
{
x ∈ ξ

(≤K)
(�) ∩ (�R+1 + y) :

#
(
ξ

(≤K)
(�) ∩ (�R−1 + x)

)≤ S
}
.

Now we show that the counting factor is not larger than rS, where r depends only
on R and the dimension d . Indeed, cover �R+1 + y with r boxes �1, . . . ,�r of
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diameter (R − 1)/2, then

#
{
x ∈ ξ

(≤K)
� ∩ (�R+1 + y) : #

(
ξ

(≤K)
(�) ∩ (�R−1 + x)

)≤ S
}

≤
r∑

i=1

#
{
x ∈ ξ

(≤K)
(�) ∩ �i : #

(
ξ

(≤K)
(�) ∩ (�R−1 + x)

)≤ S
)

≤
r∑

i=1

#
{
x ∈ ξ

(≤K)
(�) ∩ �i : #

(
ξ

(≤K)
(�) ∩ �i

)≤ S
}

≤ rS,

since �i ⊂ �R−1 + x if x ∈ �i . This gives

�
(R,M,K,S)
� (ω) ≤ 1

2βMK2rSN�L+R+2\�L−R−1

(
ω(�)

)
≤ 2dβMK2rSN�L\�L−R−2(ω),

and finishes the proof of (i).
(ii) In a similar way as in (3.6), one sees that, for any ω ∈ ,

|�|〈R�,ω,�β〉 = ∑
x,y∈ξ(�)

Tx,y

(
ω(�)

)|� ∩ (U − x)|

= H�(ω) + ∑
x,y∈ξ∩�

Tx,y

(
ω(�)

)(|� ∩ (U − x)| − 1
)

(3.7)

+ ∑
x,y∈ξ(�) : x∈�L+1,(x,y)/∈�2

Tx,y

(
ω(�)

)|� ∩ (U − x)|.

It remains to show that the sum of the two last sums is nonnegative. Note that
the sum on x in the first sum may be restricted to x ∈ ξ ∩ (� \ �L−1). For each
such x and for any y ∈ ξ ∩ �, there exist a positive integer m(x) ≤ d and a set
{x′

1, y
′
1, . . . , x

′
m(x), y

′
m(x)}, such that x′

i ∈ ξ(�) ∩ �L+1, x′
i = x + Lzi and y′

i = y +
Lzi for some zi ∈ Z

d , and
m(x)∑
i=1

|� ∩ (U − x′
i )| = |� ∩ (U − x)| − 1.

Then Tx,y(ω(�)) = Tx′,y′(ω(�)) by �-periodicity of ω(�). This shows that the sum
of the two last sums in (3.7) is nonnegative, which finishes the proof of (ii). �

Recall that LN = (N/ρ)d . Applying Lemmas 3.1 and 3.2(i) to the representa-
tion in Proposition 1.1, we obtain, for any R,M,K,S > 0, the upper bound

ZN(β,�LN
)

≤ e|�LN
|qE

[
exp

{−|�LN
|〈R�LN

,ωP,�
(R,M,K)
β 1{N�R

≤ S}〉}(3.8)

× exp{CN�LN
\�LN −R−2(ωP)}1{〈R�LN

,ωP,N
(�)
U

〉= ρ
}]

,
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for any N ∈ N, and, using Lemmas 3.1 and 3.2(ii), the lower bound

ZN(β,�LN
) ≥ e|�LN

|qE
[
e
−|�LN

|〈R�LN
,ωP ,�β 〉

1
{〈
R�LN

,ωP,N
(�)
U

〉= ρ
}]

,(3.9)

for any N ∈ N.
The main point of introducing the stationary empirical field is that the family

(R�L,ωP)L>0 satisfies a large-deviations principle on Pθ , which is known from the
work by Georgii and Zessin. On Pθ we consider the following topology. A mea-
surable function g : → R is called local if it depends only on the restriction of
ω to some bounded open cube, and it is called tame if |g| ≤ c(1 + N�) for some
bounded open cube � and some constant c ∈ R

+. We endow the space Pθ with
the topology τL of local convergence, defined as the smallest topology on Pθ such
that the mappings P �→ 〈P,g〉 are continuous for any g ∈ L, where L denotes the
linear space of all local tame functions. It is clear that the map P �→ 〈P,NU 〉 is
τL-continuous; however, the map P �→ 〈P,N

(�)
U 〉 is only lower semicontinuous.

LEMMA 3.3 (Large deviations for R�L,ωP ). The measures R�L,ωP satisfy, as
L → ∞, a large-deviations principle in the topology τL with speed |�L| and rate
function Iβ : Pθ → [0,∞] defined in (1.20). The function Iβ is affine and lower
τL-semicontinuous and has τL-compact level sets.

PROOF. This is [13], Theorem 3.1. �

Our goal is to apply Varadhan’s lemma to the expectations on the right-hand
sides of (3.8) and (3.9). In conjunction with the large-deviations principle of
Lemma 3.3, this formally suggests that both (1.25) and (1.26) should be valid,
as we explain now. Indeed, first consider (3.9) and note that the map P �→ 〈P,�β〉
has the proper continuity property for the application of the lower bound half of
Varadhan’s lemma. If one neglects the fact that the condition 〈P,N

(�)
U 〉 = ρ does

not define an open set of P ’s, then one easily formally obtains (1.26) from (3.9).
Now we consider (3.8). Assume that the term N�LN

\�LN −R−2(ωP) is a neg-
ligible error term and that taking the truncation parameters R,M,K and S to

infinity will finally turn �
(R,M,K)
β 1{N�R

≤ S} into �β . The functional P �→
〈P,�

(R,M,K)
β 1{N�R

≤ S}〉 has the sufficient continuity property for the applica-
tion of the upper bound half of Varadhan’s lemma. However, the functional P �→
〈P,N

(�)
U 〉 is not upper semicontinuous. Hence, the equality 〈R�LN

,ωP,N
(�)
U 〉 = ρ

is turned into the inequality 〈P,N
(�)
U 〉 ≤ ρ in the resulting variational formula.

Therefore, one easily formally obtains (1.25) from (3.8). In particular, our upper
and lower bounds in Theorem 1.2 may differ. For small β , respectively, small ρ,
we improve the proof in Lemma 3.4 and achieve a coincidence of upper and lower
bounds, but this has nothing to do with large-deviations arguments.
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The lack of upper semicontinuity of the functional P �→ 〈P,N
(�)
U 〉 causes se-

rious technical problems in the proof of the lower bound, since the condition
〈P,N

(�)
U 〉 = ρ must be approximated by some open condition.

In Lemma 3.2, we already estimated away all the interaction involving cycles of
length > K , and in the proof of the lower bound we will restrict the configuration
space to marks with lengths ≤ K . This is why our variational formulas spot only
the presence of “finitely long” cycles.

3.2. The upper bound for empty boundary condition. In this section, we prove
the upper bound in (1.25) for bc = ∅. According to (3.8), it will be sufficient to
prove

lim sup
R,M,K,S→∞

lim sup
N→∞

1

|�LN
| logE

[
exp

{−|�LN
|

× 〈
R�LN

,ωP,�
(R,M,K)
β 1{N�R

≤ S}〉}
× exp{CN�LN

\�LN −R−2(ωP)}(3.10)

× 1
{〈
R�LN

,ωP,N
(�)
U

〉= ρ
}]

≤ −χ(≤)(β, ρ).

An outline of the proof is as follows. We separate first the two exponential
terms from each other with the help of Hölder’s inequality. The latter term will
turn out to be a negligible error term. The functional that appears in the first ex-
ponent turns out to be local and bounded. Since its integral against a probability
measure P is a τL-continuous and bounded function of P , Varadhan’s lemma can
be applied and expresses the limit superior in terms of the variational formula for
the truncated versions of the interaction functionals. The indicator on the event
{〈R�LN

,ωP,N
(�)
U 〉 = ρ} is estimated against the indicator on its closure, which is

the same set with “≤” instead of “=.” In this way, we obtain an upper bound
against a truncated version of the variational formula −χ(≤)(β, ρ). By letting the
truncation parameters go to infinity, this formula converges to −χ(≤)(β, ρ).

Let us turn to the details. We abbreviate RN = R�LN
,ωP .

We pick η ∈ (0,1) and start from (3.8), then Hölder’s inequality gives

ZN(β,�LN
) ≤ e|�LN

|qE
[
e
−1/(1−η)|�LN

|〈RN ,�
(R,M,K)
β 1{N�R

≤S}〉

× 1
{〈
RN,N

(�)
U

〉≤ ρ
}]1−η(3.11)

× E
[
e

1/ηCN�LN
\�LN −R−2 (ωP)]η;

note that we also estimated “= ρ” against “≤ρ” in the indicator. The second
term on the right-hand side of (3.11) is easily estimated using the fact that
N�LN

\�LN −R−2 is a Poisson random variable with parameter q ×|�LN
\�LN−R−2|
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and that this parameter is of surface order Ld−1
N = o(|�N |). Hence, the expectation

is estimated

E
[
e

1/ηCN�LN
\�LN −R−2 (ωP)]η

= e−ηq|�LN
\�LN −R−2| exp{ηeC/ηq|�LN

\ �LN−R−2|}
≤ eo(|�LN

|).

We turn to the first term on the right-hand side of (3.11). It turns out that
�

(R,M,K)
β 1{N�R

≤ S} is bounded. In fact,

�
(R,M,K)
β (ω)1{N�R

(ω) ≤ S}

≤ 1

2
Mβ

[ ∑
x∈U∩ξ

�(fx)
∑

y∈�R∩ξ

�(fy) +
( ∑

x∈U∩ξ

�(fx)

)2]
(3.12)

× 1{N�R
(ω) ≤ S}

≤ MβK2S2.

Furthermore, it is easily seen that it is also local. Therefore, the map

P �→ 〈
P,�

(R,M,K)
β 1{N�R

≤S}
〉

is bounded and continuous on Pθ with respect to the topology τL. Now we can
apply a variant of Varadhan’s lemma [8], Theorem 4.3.1, in conjunction with the
large-deviations principle of Lemma 3.3, to obtain that

lim sup
N→∞

1

|�LN
| logE

[
exp

{
− 1

1 − η
|�LN

|〈RN,�
(R,M,K)
β 1{N�R

≤ S}〉}

× 1
{〈
RN,N

(�)
U

〉≤ ρ
}]

(3.13)

≤ − inf
P∈Pθ : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + 1

1 − η

〈
P,�

(R,M,K)
β 1{N�R

≤ S}〉),

since the set {P ∈ Pθ : 〈P,N
(�)
U 〉 ≤ ρ} is closed.

It remains to prove that

lim inf
R,M,K→∞,η↓0

lim inf
S→∞ inf

P : 〈P,N
(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,S,η(P )

)
(3.14)

≥ inf
P : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + F(P )

)
,

where we used the abbreviations F(P ) = 〈P,�β〉 and FM,R,K,S,η(P ) = 1
1−η

〈P ,

�
(R,M,K)
β 1{N�R

≤ S}〉. Fix M,R,K > 0 and η ∈ (0,1) and pick a sequence Sn →
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∞ and some Qn satisfying 〈Qn,N
(�)
U 〉 ≤ ρ such that

Iβ(Qn) + FM,R,K,Sn,η(Qn)
(3.15)

< inf
P : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)+ 1

n
.

By compactness of the level sets of Iβ , we may assume that the limiting measure
Q = limn→∞ Qn exists in Pθ , where the limit is taken along some suitable subse-
quence. Notice further that 〈Q,N

(�)
U 〉 ≤ ρ by Fatou’s lemma. Fix any large S > 0,

then for n sufficiently large,

inf
P : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)
> Iβ(Qn) + FM,R,K,Sn,η(Qn) − 1

n
(3.16)

≥ Iβ(Qn) + FM,R,K,S,η(Qn) − 1

n
,

where the second inequality uses the monotonicity of FM,R,K,S,η in S. Now send
n → ∞ and use the lower semi-continuity of Iβ and the continuity of FM,R,K,S,η,
to get that the limit inferior of the right-hand side of (3.16) is larger or equal to
Iβ(Q) + FM,R,K,S,η(Q). Sending S → ∞ and using the monotone convergence
theorem, we arrive at

lim inf
S→∞ inf

P : 〈P,N
(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,S,η(P )

)
(3.17)

≥ inf
P : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,∞,η(P )

)
.

In a similar way one proves that

lim inf
R,M,K→∞,η↓0

inf
P : 〈P,N

(�)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,∞,η(P )

)
≥ inf

P : 〈P,N
(�)
U 〉≤ρ

(
Iβ(P ) + F(P )

)
,

which implies (3.14) and ends the proof of (3.10).

3.3. The lower bound for empty boundary condition. In this section, we prove
the lower bound in (1.26) for bc = ∅. According to (3.9), it will be sufficient to
prove

lim inf
N→∞

1

|�LN
| logE

[
e
−|�LN

|〈R�LN
,ωP ,�β 〉

1
{〈
R�LN

,ωP,N
(�)
U

〉= ρ
}]

(3.18)
≥ −χ(=)(β, ρ).
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We follow the standard strategy of changing the measure so that untypical events
become typical, and controlling the Radon–Nikodym density by means of McMil-
lan’s theorem. However, for our problem we have to overcome two major diffi-
culties. First, the map P �→ 〈P,�β〉 is not upper semicontinuous, and second, the

set {P ∈ Pθ : 〈P,N
(�)
U 〉 = ρ} appearing in the indicator is not open. This set in-

duces long-range correlations not only between the points of the process, but also
between their marks. Therefore, the results of [13] cannot be applied directly, but
some ideas of [14] can be adapted.

We now describe our strategy. In Lemma 3.7, we replace the condition
〈P,N

(�)
U 〉 = ρ by the condition |〈P,N

(�)
U 〉 − ρ| < δ for some small δ and control

the replacement error. This condition becomes an open condition when restricting
the mark space E to a cut-off version. A restriction of Pθ in Lemma 3.8 makes the
map P �→ 〈P,�β〉 continuous. In order to apply McMillan’s theorem to the trans-
formed point process, an ergodic approximation is carried out in Lemma 3.10.

Let us turn to the details. First, we prepare for relaxing the condition “=ρ” to
“≈ρ” in the following step, which is of independent interest. Bounding the quo-
tient ZN+1/ZN of partition functions is often the key step to prove the equivalence
of the canonical ensemble with the grand canonical ensemble, where the particle
number is not fixed but governed by the mean. In the following, we give a lower
bound in our case, which will also imply a nontrivial upper bound for the limiting
free energy. Our proof is carried out in the setting of the cycle expansion intro-
duced in Section 2 and is independent of the reformulation in terms of the marked
Poisson point process.

LEMMA 3.4. For any N ∈ N and any measurable set � ⊂ R
d ,

ZN+1(β,�)

ZN(β,�)
≥ (4πβ)−d/2 |�|

N + 1
e−Nβα(v)/|�|,(3.19)

where we recall that α(v) = ∫
Rd v(|x|) dx.

PROOF. The strategy is as follows. We start with the cycle expression for the
partition function Zl . We then add a particle, that is, an additional cycle of length
one, and control the changes in the combinatorial factor and in the energy. Here our
assumption

∫
Rd v(|x|) dx < ∞ allows to bound the additional interaction energy.

We abbreviate ZN(β,�) by ZN in this proof. Recall (2.1). According to Lem-
ma 2.1, the cycle representation of the partition function reads

ZN = ∑
λ∈PN

F1(λ)F2(λ),(3.20)

with the combinatorial and interaction part

F1(λ) =
N∏

k=1

(4πβk)−dλk/2|�|λk

λk!kλk
,
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F2(λ) =
(

N⊗
k=1

(
E

(kβ)
�

)⊗λk

)
[e−G(λ)

N,β ].

Define the injection

T :PN → PN+1, T (λ) = λ̃ with λ̃k =
{

λ1 + 1, if k = 1,
λk, if k ≥ 2.

All the terms in (3.20) are nonnegative, and hence we may estimate

ZN+1 ≥ ∑
λ̃∈PN+1 : λ̃1≥1

F1(̃λ)F2(̃λ)

= ∑
λ∈PN

F1(T (λ))F2(T (λ))(3.21)

= ∑
λ∈PN

F1(T (λ))

F1(λ)

F2(T (λ))

F2(λ)
F1(λ)F2(λ).

The first quotient on the right-hand side of (3.21) is bounded from below as fol-
lows:

F1(T (λ))

F1(λ)
= (4πβ)−d/2 |�|

λ1 + 1
≥ (4πβ)−d/2 |�|

N + 1
.(3.22)

The second quotient is estimated via Jensen’s inequality as follows. Recall that
B

(k,i)
(j−1)β+s is the Brownian bridge of the j th leg of the ith cycle of length k, 1 ≤

i ≤ λk ,

F2(T (λ)) = E
(β)
� ⊗

(
N⊗

k=1

(
E

(kβ)
�

)⊗λk

)

×
[
e
−G(λ)

N,β exp

{
−∑

k∈N

λk∑
i=1

k∑
j=1

∫ β

0
v
(∣∣Bs − B

(k,i)
(j−1)β+s

∣∣)ds

}]
(3.23)

≥
(

N⊗
k=1

(
E

(kβ)
�

)⊗λk

)

×
[
e
−G(λ)

N,β exp

{
−∑

k∈N

λk∑
i=1

k∑
j=1

∫ β

0
E

(β)
�

[
v
(∣∣Bs − B

(k,i)
(j−1)β+s

∣∣)]ds

}]
.

Given λ ∈ PN and k ∈ N, i ∈ {1, . . . , λk}, j ∈ {1, . . . , k}, we write f (s) :=
B

(k,i)
(j−1)β+s , and we estimate the expectation in the exponent as follows:

E
(β)
�

(
v
(|Bs − f (s)|))

= 1

|�|
∫
�

dx

∫
�

dy
gs(x, y)v(|y − f (s)|)gβ−s(y, x)

gβ(x, x)
(3.24)
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= 1

|�|
∫
�

dy v
(|y − f (s)|) ∫

�
dx

(
gβ−s(y, x)gs(x, y)

gβ(y, y)

)
gβ(y, y)

gβ(x, x)

= 1

|�|
∫
�

dy v
(|y − f (s)|),

since, because of gβ(x, x) = gβ(y, y), the integral over x is exactly 1. An upper
bound follows easily because the interaction potential is nonnegative, that is,

E
(β)
�

(
v
(|Bs − f (s)|))= 1

|�|
∫
�

dy v
(|y − f (s)|)≤ 1

|�|
∫

Rd
v(|x|) dx

(3.25)

= 1

|�|α(v).

Using this in (3.23), we get

F2(T (λ)) ≥
(

N⊗
k=1

(
E

(kβ)
�

)⊗λk

)[
e
−G(λ)

N,β e
−∑

k∈N

∑λk
i=1

∑k
j=1 β1/|�|α(v)]

= F2(λ)e−Nβ/|�|α(v).

Using this and (3.22) in (3.21), the assertion follows. �

Now we draw two corollaries. First, we give an upper bound for the free energy,
introduced in (1.3). Recall that �LN

is the centered box with volume N/ρ.

COROLLARY 3.5 (Upper bound for the free energy). For any β,ρ ∈ (0,∞),

lim sup
N→∞

− 1

β

1

|�LN
| logZN(β,�LN

) ≤ ρ

β
log(ρ(4πβ)d/2) + ρ2α(v).

PROOF. We use Lemma 3.4 iteratively, to get

ZN(β,�LN
) =

N−1∏
l=0

Zl+1(β,�LN
)

Zl(β,�LN
)

≥
N−1∏
l=0

(
(4πβ)−d/2 1

ρ
e−βα(v)ρ

)

=
(
(4πβ)−d/2 1

ρ
e−βα(v)ρ

)N

.

The assertion follows by taking lim supN→∞ − 1
β

1
|�LN

| log. �

COROLLARY 3.6. Fix (β,ρ) ∈ Dv . Then, for any N, Ñ ∈ N satisfying Ñ ≤ N ,

E
[
e
−H�LN

(ωP)
1
{
N

(�)
�LN

(ωP) = N
}]≥ E

[
e
−H�LN

(ωP)
1
{
N

(�)
�LN

(ωP) = Ñ
}]

.

In particular, the map Ñ �→ ZÑ(β,�LN
) is increasing in Ñ ∈ {1, . . . ,N}.
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PROOF. Observe that, for l < N , by Lemma 3.4,

Zl+1(β,�LN
)

Zl(β,�LN
)

≥ (4πβ)−d/2 |�LN
|

l + 1
e−lβα(v)/|�LN

| ≥ (4πβ)−d/2 1

ρ
e−βρα(v) ≥ 1,

where the last step follows from (β,ρ) ∈ Dv . Hence, for any Ñ ∈ N satisfying
Ñ ≤ N , we have ZN(β,�LN

) ≥ ZÑ(β,�LN
). Now use Proposition 1.1 to finish.

�

Openness. As we already mentioned, some of the technical difficulties for
the application of Varadhan’s lemma come from the fact that the set {P ∈
Pθ : 〈P,N

(�)
U 〉 = ρ} is not open. This problem will be taken care of in the fol-

lowing lemma: we derive a lower bound for the right-hand side in (3.9) in terms of
the same expectation, where the strict condition = ρ is replaced by the condition
∈ (ρ − δ, ρ + δ), for some δ > 0. Though this set is not open in Pθ , it will be open
after restricting  to some cut-off version (K,R), which we will introduce a bit
later.

LEMMA 3.7. Fix β,ρ ∈ (0,∞). We abbreviate RN(ω) = R�LN
,ω for ω ∈ .

Fix δ ∈ (0, ρ). Then for any N ∈ N,

E
[
e
−H�LN

(ωP)
1
{〈
RN(ωP),N

(�)
U

〉= ρ
}]

≥ (C1 ∧ C2)
δ|�LN

|

2δ|�LN
| + 2

(3.26)

× E
[
e−|�LN

|〈RN(ωP),�β 〉1
{〈
RN(ωP),N

(�)
U

〉 ∈ (ρ − δ, ρ + δ)
}]

,

where C1 = 1 ∧ (e−(ρ+δ)βα(v)(4πβ)−d/2 1
ρ+δ

) and C2 = e−q/(ρ−δ).

PROOF. Define the subset

Pl =
{
P ∈ Pθ :

〈
P,N

(�)
U

〉= l

|�LN
|
}

of probability measures. Abbreviate

Y
(1)
l = E

[
e
−H�LN

(ωP)
1Pl

(RN(ωP))
]
,(3.27)

Y
(2)
l = E

[
e−|�LN

|〈RN(ωP),�β 〉1Pl
(RN(ωP))

]
.(3.28)

Notice that, since N/|�LN
| = ρ, the left-hand side of (3.26) is equal to Y

(1)
N , while

the expectation on the right-hand side is equal to∑
l∈N : (ρ−δ)|�LN

|<l<(ρ+δ)|�LN
|
Y

(2)
l .
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We now estimate the quotients Y
(1)
l+1/Y

(1)
l , respectively, Y (2)

l+1/Y
(2)
l , from below and

above. More precisely, we show, for any l ∈ N0,

Y
(1)
l+1 ≥ C1Y

(1)
l if (ρ − δ)|�LN

| < l ≤ ρ|�LN
|(3.29)

and

Y
(2)
l ≥ C2Y

(2)
l+1 if ρ|�LN

| ≤ l < (ρ + δ)|�LN
|.(3.30)

The proof of (3.29) follows from Lemma 3.4, combined with Proposition 1.1.
Now we prove (3.30).

We find a map T : Pl+1 → Pl that describes a thinning procedure with the
parameter p = l

l+1 . To this end, we introduce a probability kernel K from 

to  by putting K(ω, ·) equal to the distribution of ω(η) = ∑
x∈ξ ηxδ(x,fx) =∑

x∈ξ (η) δ(x,fx), where ω =∑
x∈ξ δ(x,fx) ∈ , and, given ω, (ηx)x∈ξ is a Bernoulli

sequence with parameter p. The mapping

T : Pl+1 → Pl , T (P ) = PK,(3.31)

describes the distribution of what is left from a configuration with distribution P

after deleting each particle independently with probability p. Given P ∈ Pl+1, it
follows, writing Eη for the expectation with respect to (ηx)x∈ξ ,〈

T (P ),N
(�)
U

〉= ∫


P (dω)

∫


K(ω,dω̃)N
(�)
U (ω̃)

=
∫


P (dω)Eη

[
N

(�)
U

(∑
x∈ξ

ηxδ(x,fx)

)]

=
∫


P (dω)Eη

[ ∑
x∈ξ∩U

ηx�(fx)

]

= p
〈
P,N

(�)
U

〉= l

l + 1

〈
P,N

(�)
U

〉= l

|�LN
| ,

which shows that T : Pl+1 → Pl is well defined. Since T removes particles, and
therefore energy, the estimate

〈P,�β〉 ≥ 〈T (P ),�β〉, P ∈ Pl+1,(3.32)

follows easily. Inequality (3.32) gives the estimate

Y
(2)
l+1 ≤ E

[
e−|�LN

|〈T (RN(ωP)),�β 〉1Pl
(T (RN(ωP)))

]
(3.33)

=
∫

Pl

e−|�LN
|〈P,�β 〉 dQ ◦ R

−1
N ◦ T −1

dQ ◦ R
−1
N

(P )Q ◦ R
−1
N (dP ),

where we recall that Q and E are the distribution of and expectation with respect to
the marked Poisson process ωP, and we conceive RN as a map  → Pθ ; note that
RN depends only on the configuration in �LN

.
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Now we identify the corresponding Radon–Nikodym density ϕN = dQ ◦ R
−1
N ◦

T −1/dQ ◦ R
−1
N on the image RN(). We claim that

ϕN(RN(ω)) = p#(ξ∩�LN
)e(1−p)q|�LN

|, ω ∈ .(3.34)

This is shown as follows. Note that ϕN is the density of T (RN(ωP)) with respect
to RN(ωP) and that T (RN(ωP)) has the distribution of RN(ω

(η)
P ). Recall that the

particle process ξP ∩ �LN
is a standard Poisson process on �LN

with intensity

q|�LN
|, and ξ

(η)
P ∩ �LN

has intensity pq|�LN
|. It is standard that the right-hand

side of (3.34) is the density of ξ
(η)
P ∩ �LN

with respect to ξP ∩ �LN
. But this

implies that (3.34) holds, as we have, for any nonnegative measurable test function
g : P → [0,∞],∫

g(P )Q ◦ T (RN)−1(dP ) = E[g(T (RN(ωP)))] = E
[
Eη

[
g
(
RN

(
ω

(η)
P
))]]

= E
[
p#(ξP∩�LN

)e(1−p)q|�LN
|g(RN(ωP))

]
=
∫


p#(ξ∩�LN
)e(1−p)q|�LN

|g(RN(ω))Q(dω).

Note that, for (ρ − δ)|�LN
| < l ≤ ρ|�LN

|,
ϕN(RN(ω)) ≤ e(1−p)q|�LN

| = eq/(l+1)|�LN
| ≤ eq/(ρ−δ), ω ∈ .

Hence, from (3.33) we have

Y
(2)
l+1 ≤ eq/(ρ−δ)

∫
Pl

e−|�LN
|〈P,�β 〉Q ◦ R

−1
N (dP ) = eq/(ρ−δ)Y

(2)
l ,

and thus the estimate (3.30).
Now we finish the proof of the lemma subject to (3.29) and (3.30). By Lem-

ma 3.2(ii), we have Y
(1)
N ≥ Y

(2)
N and therefore

left-hand side of (3.26)

= Y
(1)
N ≥ 1

2δ|�LN
| + 2

×
( ∑

(ρ−δ)|�LN
|<l≤ρ|�LN

|
Y

(1)
N + ∑

ρ|�LN
|<l<(ρ+δ)|�LN

|
Y

(2)
N

)
.

For (ρ − δ)|�LN
| < l ≤ ρ|�LN

| the estimate (3.29) gives

Y
(1)
N ≥ C1Y

(1)
N−1 ≥ · · · ≥ C

δ|�LN
|

1 Y
(1)
l ≥ C

δ|�LN
|

1 Y
(2)
l ,

because C1 ≤ 1, where we again used Lemma 3.2(ii). On the other hand, for
ρ|�LN

| < l < (ρ + δ)|�LN
| the estimate (3.30) gives

Y
(2)
N ≥ C2Y

(2)
N+1 ≥ · · · ≥ C

δ|�LN
|

2 Y
(2)
l ,
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where we used C2 < 1. Therefore

Y
(1)
N ≥ (C1 ∧ C2)

δ|�LN
|

2δ|�LN
| + 2

∑
(ρ−δ)|�LN

|<l<(ρ+δ)|�LN

Y
(2)
l

(3.35)
= right-hand side of (3.26),

which finishes the proof of the lemma. �

As a conclusion of Lemma 3.7 we have the following lower bound for any
sufficiently large N ∈ N:

ZN(β,�LN
) ≥ e|�LN

|(q−Cδ)

× E
[
e−|�LN

|〈RN(ωP),�β 〉(3.36)

× 1
{〈
RN(ωP),N

(�)
U

〉 ∈ (ρ − δ, ρ + δ)
}]

,

for any δ ∈ (0,
ρ
2 ) and some C depending only on β,ρ and v. Furthermore, if

(β,ρ) ∈ Dv , then we can combine Lemma 3.7 with Corollary 3.6 to get, for any
ρ̃ ∈ (0, ρ] and any δ ∈ (0,

ρ̃
2 ), for any sufficiently large N ∈ N,

ZN(β,�LN
) ≥ e|�LN

|(q−Cδ)

× E
[
e−|�LN

|〈RN(ωP),�β 〉(3.37)

× 1
{〈
RN(ωP),N

(�)
U

〉 ∈ (ρ̃ − δ, ρ̃ + δ)
}]

.

Hence, in order to prove both bounds in (1.26), it is enough to prove

lim inf
δ↓0

lim inf
N→∞

1

|�LN
| logE

[
e−|�LN

|〈RN(ωP),�β 〉

× 1
{〈
RN(ωP),N

(�)
U

〉 ∈ (ρ − δ, ρ + δ)
}]

(3.38)

≥ −χ(=)(β, ρ),

for any β,ρ ∈ (0,∞), since χ(≤)(β, ρ) = infρ̃∈(0,ρ) χ
(=)(β, ρ).

Restriction of the mark space. We will approximate the mark space E by the
cut-off version

E(K,R) :=
K⋃

k=1

Ck,R where Ck,R :=
{
f ∈ Ck : sup

s∈[0,kβ]
|f (s) − f (0)| ≤ R

}
.

Let (K,R) denote the set of locally finite point measures on R
d × E(K,R). Define

the canonical projection πK,R : → (K,R) by

πK,R(ω) = ω(K,R) = ∑
x∈ξ : fx∈E(K,R)

δ(x,fx).
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On (K,R) we consider the Poisson point process

ω
(K,R)
P = πK,R(ωP) = ∑

x∈ξP : Bx∈E(K,R)

δ(x,Bx)(3.39)

as the reference process. The distribution of ω
(K,R)
P is denoted Q(K,R), its inten-

sity measure is ν(K,R) = ∑K
k=1 ν

(K,R)
k , where ν

(K,R)
k is the restriction of νk to

(K,R); see (1.7). By I
(K,R)
β we denote the rate function with respect to ω

(K,R)
P ,

that is, I
(K,R)
β is defined as Iβ in (1.20) with ωP replaced by ω

(K,R)
P . If there is

no confusion possible, we identify the set Pθ (
(K,R)) of shift-invariant marked

random point fields on (K,R) with the set of those P ∈ Pθ = Pθ () that are
concentrated on (K,R). A variant of Lemma 3.3 gives that (R

�L,ω
(K,R)
P

)L>0

satisfies the large-deviations principle with rate function I
(K,R)
β . Observe that

R
�L,ω

(K,R)
P

= R�L,ωP ◦ π−1
K,R . Hence, according to the contraction principle, we

have the identification

I
(K,R)
β (P ) = inf{Iβ(Q) :Q ∈ Pθ ,Q ◦ π−1

K,R = P },(3.40)

since the map Q �→ Q ◦ π−1
K,R is continuous.

For a while, we keep K and R fixed. Now we work on the expectation on the
right-hand side of (3.9). We obtain a lower bound by requiring that R�LN

,ωP be

concentrated on (K,R). On this event, we may replace R�LN
,ωP by R

�LN
,ω

(K,R)
P

,

and we may replace the expectation E with respect to the Poisson process ωP by
the expectation E(K,R) with respect to ω

(K,R)
P . We write RN for R

�LN
,ω

(K,R)
P

in the

following. Hence, we can extend (3.36) by

ZN(β,�LN
) ≥ e|�LN

|(q−Cδ)

× E(K,R)[e−|�LN
|〈RN,�β 〉(3.41)

× 1
{〈
RN,N

(�)
U

〉 ∈ (ρ − δ, ρ + δ)
}]

.

Notice that {P ∈ Pθ (
(K,R)) : 〈P,N

(�)
U 〉 ∈ (ρ − δ, ρ + δ)} is an open set. In order

to apply the lower bound of Varadhan’s lemma to the right-hand side, we need to
have that the map P �→ 〈P,�β〉 is upper semicontinuous. This will be achieved
by a further restriction procedure.

Continuity. We prove the continuity of the map P �→ 〈P,�β〉 on the following
suitable subset of measures. For r ∈ (0,∞), put

�r =
{
ω ∈ (K,R) :Tx,y(ω) ≤ r ∀x, y ∈ ξ,

(3.42)

and |x − y| ≥ 1

r
for all distinct x, y ∈ ξ

}
,
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where Tx,y(ω) was defined in (1.15). Denote

Pθ,r := {
P ∈ Pθ

(
(K,R)) :P(�r) = 1

}
.

In the following lemma we use that the map t �→ td−1 sups≥t−2R v(s) is integrable,
which easily follows from the temperedness assumption in Assumption (v).

LEMMA 3.8. For any r > 0, the map P �→ 〈P,�β〉 is continuous on the set
Pθ,r .

PROOF. We adapt the proof of the lower bound in [14], Theorem 2. Recall
that πn : → 2n denotes the projection πn(ω) = ∑

x∈ξ∩�2n
δ(x,fx) on the box

�2n = [−n,n]d . For any P let Pn := P ◦ π−1
n . Let P and a net (P (α))α∈D be in

Pθ,r such that P (α) converges to P (in the topology τL). Then we have, for any
n ∈ N and α ∈ D,∣∣〈P,�β〉 − 〈

P (α),�β

〉∣∣
≤ |〈P,�β − �β ◦ πn〉| +

∣∣〈P (α) − P,�β ◦ πn

〉∣∣
(3.43)

+ sup
α∈D

∣∣〈P (α),�β − �β ◦ πn

〉∣∣
≤ ∣∣〈P (α) − P,�β ◦ πn

〉∣∣+ 2 sup
P̃∈Pθ,r

〈P̃ , |�β − �β ◦ πn|〉.

Observe that the last term on the right-hand side vanishes as n → ∞ since �β ◦πn

converges to �β uniformly on �r . Indeed, for ω ∈ �r estimate

�β(ω) − �β(πn(ω)) = ∑
x∈U∩ξ

∑
y∈ξ∩�c

2n

Tx,y(ω)

(3.44)

≤ 1

2

∑
x∈U∩ξ

∑
y∈ξ∩�c

2n

K2β sup
s≥|x−y|−2R

v(s),

where we also used that �(fx) ≤ K and sups∈[0,β�(fx)]|fx(s) − fx(0)| ≤ R for any

x ∈ ξ , since ω ∈ (K,R). Since |x − y| ≥ 1
r

for any distinct x, y ∈ ξ , the upper
bound is not larger than

K2βCr,R

∫ ∞
n

td−1 sup
s≥t−2R

v(s) dt,

for some constant Cr,R that depends only on r and R. Now use that mapping
t �→ td−1 sups≥t−2R v(s) is integrable.

For any n, the first term on the right-hand side of (3.43) vanishes asymptotically
since the net (P (α))α∈D converges to P , and �β ◦ πn is local and bounded on �r .

�
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Ergodic approximation. As a preparation for the construction of an ergodic
approximation, we now show that any P with finite energy is tempered, that is,
the expectation of the square of the mean-particle density is finite. Here we use the
assumption that lim infr↓0 v(r) > 0, which is part of Assumption (v). Hence, we
may pick R∗ > 0 and ζ > 0 such that v(|x|) ≥ ζ for all |x| ≤ R∗.

LEMMA 3.9 (Temperedness). Fix K,R ∈ N, and let P ∈ Pθ (
(K,R)) with

〈P,�β〉 < ∞. Then

〈P,N2
U 〉 < ∞ and

〈
P,
(
N

(�)
U

)2〉
< ∞.

PROOF. We may assume that R∗ < 1
2 . Therefore, we obtain a lower bound

for 〈P,�β〉 by restricting the sums on x, y to x, y ∈ �R∗/4 = [−R∗
4 , R∗

4 ]d and by
dropping all the parts of the cycles except for the first one,

〈P,�β〉 = 1

2

∫
P(dω)

∑
x∈ξ∩U,y∈ξ

�(fx)−1∑
i=0

�(fy)−1∑
j=0

1{(x,i) �=(y,j)}

×
∫ β

0
v
(|fx(iβ + s)

(3.45)
− fy(jβ + s)|)ds

≥ 1

2

∫
P(dω)

∑
x,y∈ξ∩�R∗/4

1{x �= y}
∫ β

0
v
(|fx(s) − fy(s)|)ds.

Define, for any ω ∈ (K,R) and x ∈ ξ ,

τx(ω) = inf{s ∈ [0, β] : |fx(s) − x| > R∗/4} ∧ δ.(3.46)

Note that |x − y| ≤ R∗/2 on the right-hand side of (3.45). Since v(|x|) ≥ ζ for
all |x| ≤ R∗, each integral on the right-hand side of (3.45) can be estimated from
below as follows:∫ β

0
v
(|fx(s) − fy(s)|)ds ≥

∫ τx(ω)∧τy(ω)

0
v
(|fx(s) − fy(s)|)ds

≥ ζ
(
τx(ω) ∧ τy(ω)

)
, x ∈ ξ (k), y ∈ ξ (k′).

We get a further lower bound in (3.45) by inserting the indicator on the event
{τx = δ = τy}

〈P,�β〉 ≥ δζ

2

∫
P(dω)#{(x, y) ∈ (ξ ∩ �R∗/4)

2 :x �= y, τx = δ = τy}.
Since the event {τx = δ} is decreasing for decreasing δ and its probability tends to
one as δ ↓ 0, the above counting variable tends to the number of distinct pairs in
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ξ ∩ �R∗/4. Hence, for some sufficiently small δ > 0, we have

〈P,�β〉 ≥ δζ

4

∫
P(dω)#{(x, y) ∈ (ξ ∩ �R∗/4)

2 :x �= y} ≥ δζ

8
〈P,N2

�R∗/4
〉.

Hence, if 〈P,�β〉 is finite, then, by shift-invariance of P , also 〈P,N2
�〉 is finite for

any bounded box �. Since P is concentrated on configurations with bounded leg
length, also 〈P, (N

(�)
� )2〉 is finite for any bounded box �. �

Now we approximate any probability measure on (K,R) with an ergodic mea-
sure. Define

ψR(t) :=
{ sup

s≥t−2R

v(s), if t ≥ 3R,

v(R), if t ∈ [0,3R].
(3.47)

Recall from Assumption (v) that ψR(t) = O(t−h) for some h > d .

LEMMA 3.10 (Ergodic approximation). Fix K,R ∈ N and ε > 0. Then, for
any P ∈ Pθ (

(K,R)) satisfying I
(K,R)
β (P ) + �β(P ) < ∞ and for any neigh-

borhood V of P in Pθ (
(K,R)), there exists an ergodic measure P̃ ∈ V and

some r > 0 such that P̃ (�r) = 1, and 〈P̃ ,�β〉 ≤ 〈P,�β〉 + ε and I
(K,R)
β (P̃ ) ≤

I
(K,R)
β (P ) + ε.

PROOF. This is similar to [14], Lemma 5.1. Recall that Pn denotes the pro-
jection of P on n, the configuration space on the box �2n = [−n,n]d . Since
〈P,�β〉 < ∞, and as �β ≥ 0, we have 〈Pn,�β〉 < ∞. Hence limr→∞ Pn(�r) =
1, for any n ∈ N. Therefore, we can choose a sequence r(n) → ∞ such that
limn→∞ Pn(�r(n)) = 1. Set m = n + 3R. Denote by P̂ (n) the probability measure
under which the particle configurations in the (up to the boundary, disjoint) boxes
�m + 2mk, with k ∈ Z

d , are independent and distributed as P ′
n := Pn(·|�r(n)). In

particular, no points are contained in the corridors (�m \ �n) + 2mk.
We now put

P (n) = 1

|�m|
∫
�m

P̂ (n) ◦ θz dz.

It is then clear that P (n) ∈ Pθ . A standard argument shows that P (n) is ergodic (see,
e.g., [12], Theorem 14.12). Since �r(n) is shift invariant and P̂ (n)(�r(n)) = 1, it also
follows that P (n)(�r(n)) = 1. We claim that P̃ = P (n) with n sufficiently large, sat-
isfies the requirements. For this, we have to show that (1) lim supn→∞ Iβ(P (n)) ≤
Iβ(P ), (2) lim supn→∞〈P (n),�β〉 ≤ 〈P,�β〉, and finally (3) the net (P (n))n∈N

converges to P (in the topology τL).
The proof of (1) can be found in the proof of [14], Lemma 5.1.
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Now we turn to the proof of (2). First note that〈
P (n),�β

〉= 1

|�m|
∫
�m

dz

∫
P̂ (n)(dω)

∑
x∈ξ∩(U−z)

∑
y∈ξ

Tx,y(ω),(3.48)

where we recall the notation in (1.15). The sum on y in (3.48) will be split in the
sum over y ∈ ξ ∩ �n and the remainder. The first sum is handled as follows. As
x, y both belong to �n, the measure P̂ (n) can be replaced by P ′

n. Furthermore,
since Tx,y(ω) ≥ 0, the integration with respect to P ′

n may be estimated against the
integration with respect to P(·)/Pn(�r(n)). This gives

1

|�m|
∫
�m

dz

∫
P̂ (n)(dω)

∑
x∈ξ∩(U−z)

∑
y∈ξ∩�n

Tx,y(ω)

≤ 1

Pn(�r(n))

1

|�m|
∫
�m

dz

∫
P(dω)

∑
x∈ξ∩(U−z)

∑
y∈ξ

Tx,y(ω).

Now use the shift invariance of P and recall that limn→∞ Pn(�r(n)) = 1 to see that
the last expression approaches 〈P,�β〉.

Now we consider the remainder sum in (3.48), where y is summed over ξ ∩�c
m.

Observe that |x − y| ≥ 3R, hence we may estimate

Tx,y(ω) ≤ βK2ψR(|x − y|) ≤ βK2 sup
x : |x|≤|z|+1

ψR(|x − y|)

≤ βK2ψR(|y| − |z| − 1),

where in the last inequality we used the fact that |x−y| ≥ |x|−|y| and that ψR(·) is
nonincreasing. Now we distinguish to which of the boxes �n + 2km, with k ∈ Z

d ,
the point y belongs (recall that the configurations in these boxes are independent).
Hence for any z ∈ �m, we have that∫

P̂ (n)(dω)
∑

x∈ξ∩(U−z)

∑
y∈ξ∩�c

m

Tx,y(ω)

≤ βK2
∑

k∈Zd\{0}

∫
n

P ′
n

(
dω(1)) ∫

n

P ′
n

(
dω(2))#(ξ (1) ∩ (U − z)

)
× ∑

y∈(ξ (2)∩�n)+2km

ψR(|y| − |z| − 1)

≤ βK2

Pn(�r(n))2 〈P,NU 〉〈P,N�n〉
∑

k∈Zd\{0}
ψR(2|k|m − m − |z| − 1),

where we estimated integrals with respect to P ′
n against integrals with respect to

P/Pn(�r(n)) twice, and used the shift invariance of P . Now we use Assumption (v)
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and obtain a constant C (depending only on R) such that ψR(t) ≤ Ct−h for any
t ≥ 0. Using this in the last display gives that∫

P̂ (n)(dω)
∑

x∈ξ∩(U−z)

∑
y∈ξ∩�c

m

Tx,y(ω)

≤ βK2C2d

Pn(�r(n))2 〈P,NU 〉2nd
∑

k∈Zd\{0}
(2|k|m − m − |z| − 1)−h.

Now add the factor 1/|�m| and integrate over z ∈ �m. Pick some l = l(n) such
that l ∼ n and nd(n − l)−h → 0 as n → ∞ and split the integral on z ∈ �m into
the integrals on z ∈ �l and on the remainder. Then it is easy to see that

lim
n→∞

1

|�m|
∫
�m

dz

∫
P̂ (n)(dω)

∑
x∈ξ∩(U−z)

∑
y∈ξ∩�c

m

Tx,y(ω) = 0.

Now we have shown (2), that is, that lim supn→∞〈P̂ (n),�β〉 ≤ 〈P,�β〉.
For the proof of (3), we pick f ∈ L. Using an affine transformation, if necessary,

we may assume that f = f (· ∩ �) and |f | ≤ N� for some bounded measurable
� ⊂ R

d . To estimate the difference of |P (n)(f )−P(f )| we integrate over the box
�m and get∣∣P (n)(f ) − P(f )

∣∣
≤ 1

|�m|
∫
�m

dx 1{x + � ⊂ �m}∣∣Pn

(
f ◦ θx |�r(n)

)− P(f ◦ θx)
∣∣(3.49)

+ 1

|�m|
∫
�m

dx 1{x + � �⊂ �m}∣∣P̂ (n)(N�+x) + P(N�+x)
∣∣.

Now P(N�+x) ≤ |�|μ(P )
Pn(�r(n))

, where μ(P ) < ∞ is the intensity of P . In the same
way we obtain

P̂ (n)(N�+x) = Pn

(
N�+x mod 2m+1|�r(n)

)≤ |�|μ(P )

Pn(�r(n))
.

Hence the second term on the right-hand side of (3.49) is not larger than the volume
of {x ∈ �m :x + � �⊂ �m} (which is of surface order of �m) times O(|�m|−1),
that is, it vanishes. Concerning the first term on the right-hand side of (3.49), we
estimate ∣∣Pn

(
f ◦ θx |�r(n)

)− P(f ◦ θx)
∣∣

≤
∣∣∣∣ 1

Pn(�r(n))
− 1

∣∣∣∣Pn

(
N�+x;�r(n)

)+ Pn

(
N�+x;�c

r(n)

)
≤ |�|μ(P )

∣∣∣∣ 1

Pn(�r(n))
− 1

∣∣∣∣+ P(N2
�)1/2(1 − Pn

(
�r(n)

))1/2
.
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By Lemma 3.9, P(N2
�) is finite, hence the right-hand side vanishes as n → ∞.

Therefore, also the first term on the right-hand side of (3.49) vanishes, and we
conclude that (3) holds. �

Final step: Proof of the lower bound in (1.26). Now we can finish the proof
of the lower bound in (1.26). Recall that it is sufficient to prove (3.38) for any
β,ρ ∈ (0,∞), to get both lower bounds in (1.26). Fix K,R ∈ N and δ ∈ (0, ρ).
We start from the right-hand side of (3.41). Fix ε > 0, and pick P ∈ Pθ (

(K,R))

satisfying I
(K,R)
β (P ) + 〈P,�β〉 < ∞ and |〈P,N

(�)
U 〉 − ρ| < δ. By Lemma 3.10,

we may fix some r > 0 and some ergodic measure P̃ ∈ Pθ (
(K,R)) satisfying

|〈P,N
(�)
U 〉 − ρ| < δ and 〈P̃ ,�β〉 ≤ 〈P,�β〉 + ε and I

(K,R)
β (P̃ ) ≤ I

(K,R)
β (P ) +

ε and P̃ (�r) = 1. Since I
(K,R)
β (P̃ ) < ∞, for N large enough there is a density

f
(K,R)
N of the projection P̃LN

of P̃ to 
(K,R)
LN

with respect to the projection Q(K,R)
LN

of the restricted marked Poisson point process Q(K,R) to LN
, where we recall

that LN
is the set of restrictions of configurations in  to �LN

, and 
(K,R)
LN

is

defined analogously. We conceive RN as a map RN,· :LN
→ Pθ (

(K,R)). Now
introduce the event

CN =
{
ω ∈ 

(K,R)
LN

: 〈RN,ω,�β〉 ≤ 〈P̃ ,�β〉 + ε,

(3.50)
1

|�LN
| logf

(K,R)
N (ω) ≤ I

(K,R)
β (P̃ ) + ε

}
.

Then we can estimate

E(K,R)[e−|�N |〈RN ,�β 〉1
{∣∣〈RN,N

(�)
U

〉− ρ
∣∣< δ

}]
=
∫


(K,R)
LN

dQ(K,R)
LN

e−|�N |〈RN ,�β 〉1
{∣∣〈RN,N

(�)
U

〉− ρ
∣∣< δ

}
≥
∫
CN

P̃LN
(dω)

1

f
(K,R)
N (ω)

e−|�N |〈RN ,�β 〉1
{∣∣〈RN,N

(�)
U

〉− ρ
∣∣< δ

}
(3.51)

≥ e
−|�LN

|(I (K,R)
β (P̃ )+ε)

e−|�LN
|(〈P̃ ,�β 〉+ε)

× P̃LN

(
CN ∩ {

ω ∈ 
(K,R)
LN

:
∣∣〈RN,N

(�)
U

〉− ρ
∣∣< δ

})
.

The continuity of the map P �→ 〈P,�β〉 (see Lemma 3.8), the law of large num-
bers and McMillan’s theorem imply that

P̃LN

({
ω ∈ 

(K,R)
LN

:
∣∣〈RN,ω,N

(�)
U

〉− ρ
∣∣< δ, 〈RN,ω,�β〉 ≤ 〈P̃ ,�β〉 + ε,

1

|�LN
| logf

(K,R)
N (ω) ≤ I

(K,R)
β (P̃ ) + ε

})
→ 1,
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as N → ∞. Using this in (3.51) and this in (3.41), we arrive at

lim inf
N→∞

1

|�LN
| logZN(β,�LN

) ≥ q − δ − I
(K,R)
β (P̃ ) − ε − 〈P̃ ,�β〉 − ε.(3.52)

Now recall that 〈P̃ ,�β〉 ≤ 〈P,�β〉 + ε and I
(K,R)
β (P̃ ) ≤ Iβ(P ) + ε. Now we can

let ε ↓ 0 and take the infimum over P , to obtain

lim inf
N→∞

1

|�LN
| logZN(β,�LN

)

≥ q − δ − inf
P∈Pθ ((K,R)) : |〈P,N

(�)
U 〉−ρ|<δ

{
I

(K,R)
β (P ) + 〈P,�β〉}.

Our last step is to approach the variational formula χ(=)(β, ρ) on the right-hand
side of (1.26) by the finite-K and finite-R versions.

LEMMA 3.11 (Removing the cut-off). For any δ ∈ (0, ρ),

lim sup
K,R→∞

inf
P∈Pθ ((K,R)) : |〈P,N

(�)
U 〉−ρ|<δ

{
I

(K,R)
β (P ) + 〈P,�β〉}

(3.53)
≤ inf

P∈Pθ () : 〈P,N
(�)
U 〉=ρ

{Iβ(P ) + 〈P,�β〉} = χ(=)(β, ρ).

PROOF. Fix P ∈ Pθ satisfying 〈P,N
(�)
U 〉 = ρ and Iβ(P ) + �β(P ) < ∞. For

K,R ∈ N, consider PK,R = P ◦ π−1
K,R . Then we have PK,R((K,R)) = 1 and

〈PK,R,N
(�)
U 〉 = 〈P,πK,R ◦ N

(�)
U 〉 ↑ 〈P,N

(�)
U 〉 for K,R → ∞ by the monotonous

convergence theorem. Hence, for K and R sufficiently large, |〈PK,R,N
(�)
U 〉 −

ρ| < δ. Observe that 〈PK,R,�β〉 ≤ 〈P,�β〉 since �β ≥ 0. By (3.40), we have

I
(K,R)
β (PK,R) ≤ Iβ(P ). Finally, observe that the infimum over P such that

|〈P,N
(�)
U 〉 − ρ| < δ is obviously not larger than the infimum over P satisfying

〈P,N
(�)
U 〉 = ρ. �

3.4. Proof of Theorem 1.2 for Dirichlet and periodic boundary conditions. In
this section, we show how to adapt the proof of Theorem 1.2 for empty boundary
conditions to obtain the proof for Dirichlet and periodic boundary conditions. Let
us make a couple of obvious observations. First, the restriction of the periodized
Brownian bridge measure on paths that do not leave the box � equals the Brownian
bridge measure with Dirichlet boundary conditions, that is,

μ(per,kβ)
x,x |C(Dir)

k,�

= μ(Dir,kβ)
x,x .

Hence, it is easy to see that q(Dir) ≤ q(per) and that

Z
(Dir)
N (β,�) ≤ ZN(β,�) ≤ Z

(per)
N (β,�),(3.54)
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since the Feynman–Kac formula for Z
(Dir)
N contains only those paths that stay in �

all the time with the same distribution as under which they appear in the formula
for Z

(per)
N . Hence, it will be sufficient to prove the upper bound in (1.25) for Z

(per)
N

and the lower bound in (1.26) for Z
(Dir)
N only.

We start with the representation of Z
(Dir)
N and Z

(per)
N given in Proposition 1.1.

The first step is to show that the weights q(bc) converge to q =∑
k∈N qk . For nota-

tional reasons, we now write q
(bc)
� for q(bc); however notice that it depends on N .

Recall that �LN
is the centered box with side length LN = (N/ρ)1/d .

LEMMA 3.12. Let bc ∈ {Dir,per}. Then

lim
N→∞q

(bc)
�LN

= q.(3.55)

PROOF. (a) First we consider periodic boundary conditions. Then we have

q
(per)
�LN

= (4πβ)−d/2
N∑

k=1

1

k1+d/2

∑
z∈Zd

e−|z|2/(4kβ)L2
N .(3.56)

Since the summand for z = 0 converges toward (4πβ)−d/2∑∞
k=1

1
k1+d/2 = q , we

only have to show that
∑N

k=1
1

k1+d/2

∑
z∈Zd\{0} e−|z|2/(4kβ)L2

N vanishes as N → ∞.
Using an approximation with an integral, one sees that, for some c ∈ (0,∞),

only depending on d ,∑
z∈Zd\{0}

e−a|z|2 ≤ ca−d/2 for all a ∈ (0,∞).

Using this with a = L2
N/(4βk), we see that

∑
z∈Zd\{0} e−|z|2/(4kβ)L2

N is of order

kd/2L−d
N . Using that N is of order Ld

N and applying the harmonic series, we see

that
∑N

k=1
1

k1+d/2

∑
z∈Zd\{0} e−|z|2/(4kβ)L2

N is of order L−d
N logLN and therefore van-

ishes as N → ∞.
(b) Now we consider Dirichlet boundary conditions. For any M ∈ N and δ ∈

(0,1), we get, for any sufficiently large N ,

q
(Dir)
�LN

= 1

|�LN
|

N∑
k=1

1

k

∫
�LN

dx μ(kβ)
x,x

(
B[0,kβ] ⊂ �LN

)
(3.57)

≥
M∑

k=1

1

k

1

|�LN
|
∫
(1−δ)�LN

dx μ(kβ)
x,x

(
B[0,kβ] ⊂ �LN

)
.

It is easy to see that, in the limit N → ∞, the integrand μ
(kβ)
x,x (B[0,kβ] ⊂ �LN

)

tends to μ
(kβ)
0,0 (1) = (4πkβ)−d/2, uniformly in x ∈ (1−δ)�LN

and k ∈ {1, . . . ,M}.
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Hence,

lim inf
N→∞ q

(Dir)
�LN

≥
M∑

k=1

1

k
(4πkβ)−d/2 |(1 − δ)�LN

|
|�LN

| ,

which tends to q as M → ∞ and δ ↓ 0. �

Proof of the upper bound for periodic boundary condition. We continue to
write � for �LN

, where LN = (N/ρ)1/d . We adapt the proof of the upper bound
in Section 3.2 for periodic boundary conditions. The main idea is to drop all the
paths that reach the boundary of the box � and to use that their distribution is
equal to the one under the free Brownian bridge measure. Let us introduce, for
parameters r ∈ (0,1) and R̃ ∈ (0,∞), the random variable

N
(�,R̃)
r� (ω) = ∑

x∈ξ∩r�

�(fx)1
{

sup
s∈[0,β�(fx)]

|fx(s) − fx(0)| ≤ R̃
}
,(3.58)

the total length of the marks of particles starting in r� that stay within distance
≤ R̃ from their starting sites. Furthermore, let

H
(R̃)
r� (ω) = ∑

x,y∈ξ∩r�

Tx,y(ω)1
{

sup
s∈[0,β�(fx)]

|fx(s) − fx(0)| ≤ R̃
}

× 1
{

sup
s∈[0,β�(fy)]

|fy(s) − fy(0)| ≤ R̃
}
,

be the Hamiltonian in (1.14) restricted to paths starting in r� and traveling no
further than R̃. Note that, for N large enough (depending only on r and R̃), such
paths will never reach the boundary of � and therefore have the same distribution
under the periodized Brownian bridge measure as under the free one or the one
with Dirichlet boundary condition. Hence, we estimate

E(per)[e−H�(ωP)1
{
N

(�)
� (ωP) = N

}]
≤ E(per)[e−H

(R̃)
r� (ωP)1

{
N

(�,R̃)
r� (ωP) ≤ N

}]
(3.59)

= E(Dir)[e−H
(R̃)
r� (ωP)1

{
N

(�,R̃)
r� (ωP) ≤ N

}]
≤ E

[
e−H

(R̃)
r� (ωP)1

{
N

(�,R̃)
r� (ωP) ≤ N

}]
,

where “(per)” and “(Dir)” refer to the box �. Therefore, we can use the same
method as in Section 3.2, the only two differences being that � is replaced by
r� and that we deal solely with paths that do not travel further than R̃. That is,
we have two additional truncation parameters r and R̃. It is straightforward to
see that adapted versions of Lemmas 3.1 and 3.2 hold and that the proof given
in Section 3.2 applies verbatim as well. Finally, one takes the limits R̃ → ∞ and
r ↑ 1 in the resulting variational formula, which is the same as the proof of (3.17).
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Proof of the lower bound for Dirichlet boundary conditions. We continue to
write � for �LN

, where LN = (N/ρ)1/d . The strategy for Dirichlet boundary
conditions is as follows. First we pick some ε ∈ (0, 1

2) and consider �̃ = (1 − ε)�

and ∂� = � \ �̃. The idea is to require that ∂� receives no particle and that the
marks of all particles in �̃ have length ≤ K and spatial extension ≤ R. In this way,
we get a lower estimate against the truncated version of the Poisson process on �̃

rather than on L. The only difference to the proof for empty boundary condition
is then that Lemma 3.7, which was given before the introduction of the truncation,
now has to be proved with the presence of the truncation, which requires some
adaptation. Every other step of the proof is literally the same for � instead of �̃,
which means that in the end of the proof, the parameter ε has to be sent to 0, which
is extremely simple.

Let us come to the details. We first show that there exist c > 0 and CK,R > 0
such that, for any N,R,K ∈ N,

E(Dir)[e−H�(ωP)1
{
N

(�)
� (ωP) = N

}]
(3.60)

≥ e−εc|�|e−CK,R |�|E(K,R)[e−H�̃(ωP)1
{
N

(�)

�̃
(ωP) = N

}]
,

where CK,R → 0 as R → ∞ and afterward K → ∞. This is done as follows.
Estimate

E(Dir)[e−H�(ωP)1
{
N

(�)
� (ωP) = N

}]
= E

[
e−H�(ωP)1

{
N

(�)
� (ωP) = N

}
× 1{∀x ∈ ξP ∩ � :Bx([0, β�(Bx)]) ⊂ �}]

≥ E
[
e−H�(ωP)1

{
N

(�)
� (ωP) = N

}
1
{∀x ∈ ξP ∩ �̃ :Bx ∈ E(K,R)}(3.61)

× 1{∀x ∈ ξP ∩ � :Bx([0, β�(Bx)]) ⊂ �}1{N∂�(ωP) = 0}]
= E

[
e−H�̃(ωP)1

{
N

(�)

�̃
(ωP) = N

}
1{N∂�(ωP) = 0}

× 1
{
ωP
(
�̃ × (

E(K,R))c)= 0
}]

.

Independence of the events in the indicators gives

right-hand side of (3.61)

= E(K,R)[e−H�̃(ωP)1
{
N

(�)

�̃
(ωP) = N

}]
Q
(
N∂�(ωP) = 0

)
(3.62)

× Q
(
ωP
(
�̃ × (

E(K,R))c)= 0
)

= E(K,R)[e−H�̃(ωP)1
{
N

(�)

�̃
(ωP) = N

}]
e−q|∂�|e−ν(�̃×(E(K,R))c),

since N�̃(ωP) and ωP(�̃ × (E(K,R))c) are Poisson distributed with respective pa-
rameters q|∂�| and ν(�̃× (E(K,R))c). We estimate q|∂�| ≤ cε|�| for some c > 0
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and

ν
(
�̃ × (

E(K,R))c)
≤ |�̃|

∞∑
k=K+1

qk

k
+ |�̃|

K∑
k=1

μ
(kβ)
0,0

(
max

s∈[0,βk]|Bs | > R
)

(3.63)

≤ |�|CK,R,

with some CK,R that vanishes as R → ∞ and afterward K → ∞. Hence, we have
got (3.60).

Now we need a version of Lemma 3.7 for truncated point processes, that is,
we need to show that, for any R,K ∈ N and for any δ ∈ (0, ρ), for all sufficiently
large N ,

E(K,R)[e−H�(ωP)1
{〈
RN(ωP),N

(�)
U

〉= ρ
}]

≥ (C1 ∧ C2)
δ|�|

2δ|�| + 2
(3.64)

× E(K,R)[e−|�|〈RN(ωP),�β 〉

× 1
{〈
RN(ωP),N

(�)
U

〉 ∈ (ρ − δ, ρ + δ)
}]

,

where C1 and C2 may depend on R and K .
Since Lemma 3.4 was used in the proof of Lemma 3.7, we first need a truncated

version of Lemma 3.4. For this we consider the truncated version of ZN(β,�),

Z
(K,R)
N (β,�)

= ∑
λ∈PN :

∑K
k=1 kλk=N

K∏
k=1

(q
(R)
k,�)λk |�|λk

λk!kλk
(3.65)

×
K⊗

k=1

(
E

(R,kβ)
�

)⊗λk [e−G(λ)
N,β ],

where

q
(R)
k,� = 1

|�|
∫
�

dx μ(kβ)
x,x

(
max

s∈[0,βk]|Bs − B0| ≤ R
)
,

and where E
(R,kβ)
� is the expectation with respect to the probability measure

P
(R,kβ)
� (df ) =

∫
� dx μ

(kβ)
x,x (df 1{maxs∈[0,βk]|fs − f0| ≤ R})

|�|q(R)
�

.
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All steps in the proof of Lemma 3.4 are easily adapted, but the estimate in (3.25)
needs a slightly different argument. We now estimate

E
(R,β)
�

(
v
(|Bs − f (s)|))

= 1

q
(R)
� |�|

∫
�

dx Ex

[
v
(|Bs − f (s)|)1{ max

0≤s≤β
|Bs − B0| ≤ R

}
,Bβ ∈ dx

]/
dx

≤ (4πβ)−d/2

q
(R)
� |�|

∫
�

dx

∫
�

dy
gs(x, y)v(|y − f (s)|)gβ−s(y, x)

gβ(x, x)
.

Now we can proceed as in (3.24), (3.25) and obtain that E
(R,β)
� (v(|Bs − f (s)|) ≤

α(v)(4πβ)−d/2

q
(R)
� |�| . Hence, we get the following truncated version of Lemma 3.4:

Z
(K,R)
N+1 (β,�)

Z
(K,R)
N (β,�)

≥ |�|
N + 1

exp
(
−Nβα(v)(4πβ)−d/2

|�|q(R)
�

)
.(3.66)

Using this instead of Lemma 3.4 in the proof of Lemma 3.7, we get the truncated
version (3.64) of Lemma 3.7 with C2 as before and with C1 replaced by

C
(R)
1 = 1 ∧ q

(R)
�

ρ + δ
exp

(
−(ρ + δ)βα(v)(4πβ)−d/2

q
(R)
�

)
.

The remaining proof of the lower bound is exactly as in the case of empty
boundary condition, with �̃ instead of �. This slight difference vanishes in the
end when taking ε ↓ 0.

Acknowledgment. We thank an anonymous referee whose detailed comments
helped us to fix two technical points in the proofs.

REFERENCES

[1] ADAMS, S. (2009). Large deviations for empirical path measures in cycles of integer partitions.
Preprint.

[2] ADAMS, S. and DORLAS, T. (2008). Asymptotic Feynman–Kac formulae for large sym-
metrised systems of random walks. Ann. Inst. H. Poincaré Probab. Statist. 44 837–875.
MR2453847

[3] ADAMS, S. and KÖNIG, W. (2008). Large deviations for many Brownian bridges with
symmetrised initial-terminal condition. Probab. Theory Related Fields 142 79–124.
MR2413267

[4] BENFATTO, G., CASSANDRO, M., MEROLA, I. and PRESUTTI, E. (2005). Limit theorems for
statistics of combinatorial partitions with applications to mean field Bose gas. J. Math.
Phys. 46 033303, 38. MR2125575

[5] BETZ, V. and UELTSCHI, D. (2009). Spatial random permutations and infinite cycles. Comm.
Math. Phys. 285 469–501. MR2461985

[6] BRATTELI, O. and ROBINSON, D. W. (1981). Operator Algebras and Quantum-Statistical
Mechanics II, 2nd ed. Springer, New York. MR611508

[7] CHARALAMBIDES, C. A. (2002). Enumerative Combinatorics. Chapman and Hall, Boca Ra-
ton, FL. MR1937238

[8] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036

http://www.ams.org/mathscinet-getitem?mr=2453847
http://www.ams.org/mathscinet-getitem?mr=2413267
http://www.ams.org/mathscinet-getitem?mr=2125575
http://www.ams.org/mathscinet-getitem?mr=2461985
http://www.ams.org/mathscinet-getitem?mr=611508
http://www.ams.org/mathscinet-getitem?mr=1937238
http://www.ams.org/mathscinet-getitem?mr=1619036


728 S. ADAMS, A. COLLEVECCHIO AND W. KÖNIG

[9] DORLAS, T. C., MARTIN, P. A. and PULE, J. V. (2005). Long cycles in a perturbed mean field
model of a boson gas. J. Stat. Phys. 121 433–461. MR2185335

[10] FEYNMAN, R. P. (1953). Atomic theory of the λ transition in Helium. Phys. Rev. 91 1291–
1301.

[11] FICHTNER, K.-H. (1991). On the position distribution of the ideal Bose gas. Math. Nachr. 151
59–67. MR1121197

[12] GEORGII, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruyter Studies in Math-
ematics 9. de Gruyter, Berlin. MR956646

[13] GEORGII, H.-O. and ZESSIN, H. (1993). Large deviations and the maximum entropy principle
for marked point random fields. Probab. Theory Related Fields 96 177–204. MR1227031

[14] GEORGII, H.-O. (1994). Large deviations and the equivalence of ensembles for Gibbsian par-
ticle systems with superstable interaction. Probab. Theory Related Fields 99 171–195.
MR1278881

[15] GINIBRE, J. (1971). Some applications of functional integration in statistical mechanics. In
Statistical Mechanics and Quantum Field Theory (C. de Witt and R. Storaeds, eds.) 327–
427. Gordon and Breach, New York.

[16] LIEB, E. H., SEIRINGER, R., SOLOVEJ, J. P. and YNGVASON, J. (2005). The Mathemat-
ics of the Bose Gas and Its Condensation. Oberwolfach Seminars 34. Birkhäuser, Basel.
MR2143817

[17] RAFLER, M. (2009). Gaussian Loop- and Polya processes: A point process approach. Ph.D.
thesis, Univ. Potsdam.

[18] RUELLE, D. (1969). Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York.
MR0289084

[19] ROBINSON, D. W. (1971). The Thermodynamic Pressure in Quantum Statistical Mechanics.
Lecture Notes in Physics 9. Springer, Berlin. MR0432122

[20] SÜTŐ, A. (1993). Percolation transition in the Bose gas. J. Phys. A 26 4689–4710. MR1241339
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