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Abstract. We study the transformed path measure arising from the self-interaction of a three-dimensional rownian motion via
an exponential tilt with the Coulomb energy of the occupation measures of the motion by time t . The logarithmic asymptotics
of the partition function were identified in the 1980s by Donsker and Varadhan (Comm. Pure Appl. Math. 505 (1983) 505–528)
in terms of a variational formula. Recently (Brownian occupations measures, compactness and large deviations (2014) Preprint)
a new technique for studying the path measure itself was introduced, which allows for proving that the normalized occupation
measure asymptotically concentrates around the set of all maximizers of the formula. In the present paper, we show that likewise
the Coulomb functional of the occupation measure concentrates around the set of corresponding Coulomb functionals of the
maximizers in the uniform topology. This is a decisive step on the way to a rigorous proof of the convergence of the normalized
occupation measures towards an explicit mixture of the maximizers, derived in (Mean-field interaction of Brownian occupation
measures, II: A rigorous construction of the Pekar process. Preprint). Our methods rely on deriving Hölder-continuity of the
Coulomb functional of the occupation measure with exponentially small deviation probabilities and invoking the large deviation
theory developed in (Brownian occupations measures, compactness and large deviations (2014) Preprint) to a certain shift-invariant
functional of the occupation measures.

Résumé. Nous étudions la mesure de trajectoire transformée engendrée par l’auto-interaction d’un mouvement Brownien tridi-
mensionnel en utilisant un biais exponentiel par l’énergie de Coulomb des mesures d’occupation de ce mouvement au temps t . Les
asymptotes logarithmiques de la fonction de partition ont été identifiées dans les années 1980 par Donsker et Varadhan [Comm.
Pure Appl. Math. 505 (1983) 505–528] au moyen d’une formule variationnelle. Récemment, dans (Brownian occupations mea-
sures, compactness and large deviations (2014) Preprint), une nouvelle technique pour étudier la mesure de chemins elle-même a
été introduite. Elle permet de prouver que la mesure d’occupation normalisée se concentre asymptotiquement autour de l’ensemble
des maximums de la formule.

Dans le présent article, nous prouvons que la fonctionnelle de Coulomb de la mesure d’occupation se concentre elle aussi,
dans la topologie uniforme, autour de l’ensemble des fonctionnelles de Coulomb correspondant aux maximums. Ceci représente
une étape décisive vers une preuve rigoureuse de la convergence des mesures d’occupation normalisées vers un mélange explicite
des maximums, dérivée dans (Mean-field interaction of Brownian occupation measures, II: A rigorous construction of the Pekar
process. Preprint). Nos méthodes reposent sur l’obtention de la continuité hölderienne de la fonctionnelle de Coulomb de la mesure
d’occupation avec des probabilités de déviations exponentiellement petites, en invoquant la théorie des grandes déviations déve-
loppée dans (Brownian occupations measures, compactness and large deviations (2014) Preprint) pour une certaine fonctionnelle,
invariante par dćalage, des mesures d’occupation.
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1. Introduction and main results

In this paper, we study a transformed path measure that arises from a mean-field type interaction of a three dimensional
Brownian motion in a Coulomb potential. Under the influence of such a transformed measure, the large-t behavior of
the normalized occupation measures, denoted by Lt , is of high interest. This is intimately connected to the well-known
polaron problem from statistical mechanics and a full understanding of the behavior of Lt under the aforementioned
transformation is crucial for the analysis of the polaron path measure under “strong coupling”, its effective mass and
justification of mean-field approximations. For physical relevance of this model, we refer to [9]. Some mathematically
rigorous research in this direction began in the 1980s with the analysis of the partition function of Donsker and Varad-
han [5], but it was not until recently that a new technique was developed [7] for handling the actual path measures, and
the main results of the present paper, besides being interesting on their own, make determinant contribution towards a
deeper analysis and a full identification of the limiting distribution of Lt under the transformed path measure.

We start with developing the mathematical layout of the model in Section 1.1, remind on earlier results in Sec-
tion 1.2, present our new progress in Section 1.3 and report on the achievements of [7] in Section 1.4, which plays an
important role in the present context.

1.1. The transformed path measure

We start with the Wiener measure P on � = C([0,∞),R3) corresponding to a 3-dimensional Brownian motion
W = (Wt )t≥0 starting from the origin. We are interested in the transformed path measure

P̂t (dω) = 1

Zt

exp

{
1

t

∫ t

0

∫ t

0
dσ ds

1

|ωσ − ωs |
}
P(dω), ω ∈ �, (1.1)

with the normalizing constant, the partition function,

Zt = E

[
exp

{
1

t

∫ t

0

∫ t

0
dσ ds

1

|Wσ − Ws |
}]

. (1.2)

We remark that the asymptotic behavior of P̂t is determined by those influential paths which make |Wσ − Ws | small,
i.e., the interaction is self-attractive. We also remark that the factor 1

t
in the exponent in (1.1) makes the model

interesting. Indeed, the double-integral in the exponent is of order t2 for paths that stay in a compact region, and
the entropic cost for this behaviour is e−O(t); it relatively easy to suspect that such a behaviour is typical under the
transformed measure. Hence, it is the factor 1

t
that makes the energy and the entropy terms run on the same scale and

still gives the path enough freedom to fluctuate.
Let

Lt = 1

t

∫ t

0
ds δWs (1.3)

be the normalized occupation measure of W until time t . This is a random element of M1(R
3), the space of probability

measures on R
3. Then the path measure P̂t can be written as

P̂t (A) = 1

Zt

E
[
1A exp

{
tH(Lt )

}]
, A ⊂ �,

where

H(μ) =
∫
R3

∫
R3

μ(dx)μ(dy)

|x − y| , μ ∈M1
(
R

3)
, (1.4)

denotes the Coulomb potential energy functional of μ. Hence, P̂t is an exponential tilt of the Coulomb energy function
of Lt with parameter t . It is the goal of this paper to make a contribution to a rigorous understanding of the behavior
of Lt under P̂t .
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For any μ ∈M1(R
3), we define the function

(�μ)(x) =
(

μ �
1

| · |
)

(x) =
∫
R3

μ(dy)

|x − y| ,

which is also sometimes called its Coulomb potential energy functional. In order to avoid misunderstandings,
we will call H(μ) the Coulomb energy and �(μ) the Coulomb functional of μ. Note that H(μ) = 〈μ,�μ〉 =∫
(�μ)(x)μ(dx). We remark that the Coulomb functional of the Brownian occupation measure,

�t(x) = (�Lt)(x) =
∫
R3

Lt(dy)

|x − y| = 1

t

∫ t

0

ds

|Ws − x| , (1.5)

is almost surely finite in R
3.

1.2. Existing results

Donsker and Varadhan [5] studied the asymptotic behavior of Zt resulting in the variational formula

lim
t→∞

1

t
logZt = sup

μ∈M1(R
3)

{
H(μ) − I (μ)

}

= sup
ψ∈H 1(R3)

‖ψ‖2=1

{∫
R3

∫
R3

dx dy
ψ2(x)ψ2(y)

|x − y| − 1

2
‖∇ψ‖2

2

}
= ρ,

(1.6)

with H 1(R3) denoting the usual Sobolev space of square integrable functions with square integrable gradient. Fur-
thermore, we put

I (μ) = 1

2
‖∇ψ‖2

2 (1.7)

if μ has a density ψ2 with ψ ∈ H 1(R3), and I (μ) = ∞ otherwise. Note that both H and I are shift-invariant func-
tionals, i.e., H(μ) = H(μ � δx) and I (μ) = I (μ � δx) for any x ∈R

3.
The above result is a consequence of a large deviation principle (LDP) for Lt under P in M1(R

3), developed by
Donsker and Varadhan [4]. This means, when M1(R

3) is equipped with the usual weak topology, for every open set
G ⊂M1(R

3),

lim inf
t→∞

1

t
logP(Lt ∈ G) ≥ − inf

μ∈G
I (μ), (1.8)

and for any compact set K ⊂M1(R
3),

lim sup
t→∞

1

t
logP(Lt ∈ K) ≤ − inf

μ∈K
I (μ). (1.9)

The above statement is also called a weak large deviation principle since the upper bound (1.9) holds only for compact
subsets. We say that a family of probability distributions satisfies a strong large deviation principle if, along with the
lower bound (1.8), the upper bound (1.9) holds also for all closed sets.

The variational formula (1.6) has been analyzed by Lieb [6]. It turns out that there is a smooth, rotationally sym-
metric and centered maximizer ψ0 which is unique except for spatial translations. In other words, if m denotes the set
of maximizing densities, then

m = {
μ0 � δx : x ∈ R

3}
, (1.10)
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where μ0 is a probability measure with a density ψ2
0 so that ψ0 maximizes the variational problem (1.6). We will

often write μx = μ0 � δx and write ψ2
x for its density.

Given (1.6) and (1.10), we expect the distribution of Lt under the transformed measure P̂t to concentrate around
m and, even more, to converge towards a mixture of spatial shifts of μ0. Such a precise analysis was carried out by
Bolthausen and Schmock [1] for a spatially discrete version of P̂t , i.e., for the continuous-time simple random walk on
Z

d instead of Brownian motion and an interaction potential v : Zd → [0,∞) with finite support instead of the singular
Coulomb potential x �→ 1/|x|. A first key step in [1] was to show that, under the transformed measure, the probability
of the local times falling outside any neighborhood of the maximizers decays exponentially. For its proof, the lack of
a strong LDP for the local times was handled by an extended version of a standard periodization procedure by folding
the random walk into some large torus. Combined with this, an explicit tightness property of the distributions of the
local times led to an identification of the limiting distribution.

However, in the context of the continuous setting with a singular Coulomb interaction, the aforementioned pe-
riodization technique or any standard compactification procedure does not work well to circumvent the lack of a
strong LDP. An investigation of P̂t ◦ L−1

t , the distribution of Lt under P̂t , remained open until a recent result [7]
rigorously justified the above heuristics, leading to the statement

lim sup
t→∞

1

t
log P̂t

{
Lt /∈ U(m)

}
< 0, (1.11)

where U(m) is any neighborhood of m in the weak topology induced by the Prohorov metric, the metric that is induced
by all the integrals against continuous bounded test functions. Hence, (1.11) implies that the distribution of Lt under
P̂t is asymptotically concentrated around m. Since a one-dimensional picture of m is an infinite line, its neighborhood
resembles an infinite tube. Therefore, assertions similar to (1.11) are sometimes called a tube property.

It is worth pointing out that, although (1.11) requires only the weak topology in the statement, its proof is crucially
based on a robust theory of a compactification X̃ of the quotient space

M̃1
(
R

d
)
↪→ X̃

of orbits μ̃ = {μ � δx : x ∈R
d} of probability measures μ on R

d (for any d ≥ 1) under translations and a full LDP for
the distributions of L̃t ∈ M̃1(R

d) embedded in the compactification. In particular, this is based on a topology induced
by a different metric in the compactification X̃ , see Section 1.4 for details and its consequences in the present context.

1.3. Our results: Uniform tube property and regularity of �(Lt)

Let us turn to our main results. We write

�
(
ψ2)

(x) =
∫

dy
ψ2(y)

|x − y|
for functions ψ2, and recall that ψ2

w = ψ2
0 � δw denotes the shift of the maximizer ψ2

0 of the second variational
formula (1.6) by w ∈ R

3. Roughly speaking, we will establish that on the large deviations scale, the Coulomb
functionals �(Lt) under the transformed path measures P̂t stay close to the manifold of Coulomb functionals
�m = {�ψ2

w : w ∈ R
3} acting on the translations of the Pekar maximizers, see Theorem 1.1. This is a first deter-

minant step towards establishing the full conjecture on the convergence of the distributions P̂t ◦ L−1
t towards an

explicit spatial mixture of the maximizers m, see Remark 1. On the way towards proving Theorem 1.1, we also derive
some modulus of continuity of �(Lt), which can be of independent interest in the realm of regularity properties of
local times for stochastic processes.

Here is the statement of our first main result.

Theorem 1.1. For any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf

w∈R3

∥∥�t − �ψ2
w

∥∥∞ > ε
}

< 0. (1.12)
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This is a tube property for �t in the uniform metric, since the ε-neighbourhood of �(m) = {�(ψ2
w) : w ∈ R

3} can
be visualized as a tube around the “line” m. The proof of Theorem 1.1 is given in Section 3.

As a consequence of Theorem 1.1, the Hamiltonian H(Lt ) = 〈Lt ,�Lt 〉 converges in distribution towards the
common Coulomb energy of any member of m and we state this fact as

Corollary 1.2. Under P̂t , the distributions of H(Lt ) converge weakly to the Dirac measure at

H
(
ψ2

0

) =
∫ ∫

R3×R3

ψ2
0 (x)ψ2

0 (y)

|x − y| dx dy.

Let us highlight the core of the proof of Theorem 1.1. An important technical hindrance in the proof of Theorem 1.1
stems from the singularity of the Coulomb potential x �→ 1/|x|, which does not fit within the set up of standard large
deviation theory. This problem was encountered also in [7] for deriving (1.11). As it concerns Lt , this turned out
to be a mild technical issue. Indeed, a simple truncation argument with replacing 1/|x| by its regularized version
1/

√|x|2 + δ2 sufficed to carry over the theory developed in [7] to this singular potential. However, as we need now to
work with �(Lt) in the uniform metric, the singularity of 1/| · | turns out be a more serious problem, since a standard
contraction principle combined with the truncation argument does not work well here. Instead, we need a strategy
that shows a strong regularity property of the random map x �→ �t(x), more precisely, an exponential decay of the
probability that its modulus of continuity deviates from zero. This is our second main result.

Theorem 1.3. For every b > 0,

lim
δ→0

lim sup
t→∞

1

t
logP

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣�t(x1) − �t(x2)
∣∣ ≥ b

}
= −∞. (1.13)

In Section 2, we prove Theorem 1.3. Let us state the following useful corollary to Theorem 1.3, which is also of
independent interest; its proof is also deferred to Section 3.

Corollary 1.4. For any b > 0,

lim sup
t→∞

1

t
logP

{‖�t‖∞ > b
}

< 0.

Concerning the regularity of �t we have a more quantitative result than Theorem 1.3, which we state here be-
cause of its own interest. Indeed, one main step in the proof of Theorem 1.3 is the following (stretched) exponential
integrability.

Proposition 1.5. There are constants ρ > 1, a ∈ (0,1) and β ∈ (0,∞) such that

sup
x1,x2∈R3

|x1−x2|≤1

sup
x∈R3

Ex

[
exp

{
β

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}]
< ∞.

This assertion suffices for our purposes, but it is clear that our proof can be extended to prove a number of more
refined statements about the regularity of �t , like the identification of the exact index of its Hölder continuity, almost
sure limsup and liminf assertions about its modulus of continuity, and local and global laws of iterated logarithms.
Let us remark that this might run prallel to the work of Donsker and Varadhan [3] on the law of iterated logarithm for
one-dimensional Brownian local times.

Remark 1. Let us remark that Theorem 1.1, in combination with Corollaries 1.2 and 1.4, besides their intrinsic
interests on their own right, have proved to be instrumental in proving tightness of the distributions of Lt under P̂t

and their convergence towards an explicit (spatially inhomogeneous) mixture of the maximizers {ψ2
x : x ∈ R

3}, which
resolves the aforementioned “mean-field approximation” of the polaron problem on the level of path measures. This
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has been carried out in [2], and in this context, we refer to Section 2.4 in [2] for a heuristic discussion on the relevance
of the results derived in the present paper.

1.4. Review: Compactness and large deviations

We now turn to the second main ingredient for the proof of Theorem 1.1, which is based on the results derived in
[7]. Since this will play an important role in our proof, we take the opportunity to introduce the main idea in [7] and
review its salient assertions.

Note that the space M1(R
d) of probability measures in R

d fails to be compact in the weak topology, which is
due to several reasons. For instance, the location of the mass can shift away to ∞ as for the sequence (μ � δan)n with
an → ∞, or the mass can be spread thinly and totally disintegrate into dust, like for a sequence of Gaussians with
diverging variance. Similarly, a mixture like μn = 1

2 [μ ∗ δan + μ ∗ δ−an ] can split into two (or more) widely separated
pieces if an → ∞. To compactify this space one should be allowed to “center” each such piece separately, as well as
to allow some mass to be “thinly spread and disappear.” Let

M̃1
(
R

d
) = {

μ̃ : μ ∈ M1
(
R

d
)}

denote the quotient space of orbits μ̃ = {μ � δx : x ∈ R
d} of M1(R

d) under translations. Then intuitively, for any
sequence (μ̃n)n in M̃1(R

d) in the limit, one imagines, an empty, finite or countable collection {αj : j ∈ J } of sub-
probability distributions that are widely separated with total mass

∑
j∈J αj (R

d) = p ≤ 1 and the remaining mass 1−p

having totally disintegrated. For example, let μn be a mixture of three Gaussians, one with mean 0 and variance 1,
one with mean n and variance 1 and one with mean 0 and variance n, each with equal weight 1

3 . Then the limiting
object is the collection {̃α1, α̃1}, where α̃1 is the equivalence class of a Gaussian with variance 1 and weight 1

3 .
This intuition naturally inspires the introduction of the space

X̃ = {
ξ = (̃αj )j∈J : J at most countable, αj ∈M≤1

(
R

d
) ∀j ∈ J

}
of empty, finite or countable collections of orbits {̃αj : j ∈ J } of sub-probability distributions αj having masses pj

with p = ∑
j pj ≤ 1. Note that we have a canonical embedding

M̃1
(
R

d
)
↪→ X̃ .

In the proof of Theorem 1.1, the following results will play an important role.

Theorem 1.6 ([7], Theorem 3.2). There is a metric D on X̃ so that M̃1(R
d) is dense in (X̃ ,D) and any sequence

(μ̃n)n in M̃1(R
d) finds a subsequence which converges in the metric D to some element ξ ∈ X̃ . In other words, X̃ is

the compactification of M̃1(R
d) and also the completion under the metric D of the totally bounded space M̃1(R

d).

Theorem 1.7 ([7], Theorem 4.1). The distribution of the orbits L̃t of the Brownian occupation measures embedded
in the compact metric space (X̃ ,D) satisfy a strong LDP with the rate function

J̃ (ξ) =
∑
j∈J

Ĩ (̃αj ) =
∑
j∈J

I (αj ), ξ = (̃αj )j∈J ∈ X̃ ,

where we recall that I (·) is defined in (1.7) and is shift-invariant and for any α ∈ M≤1(R
d), I (α) is a function only

of the orbit α̃, which we call Ĩ (̃α).

Let us now choose d = 3 and recall the transformed path measure P̂t from (1.1).

Theorem 1.8 ([7], Theorem 5.3). The family of distributions of L̃t under P̂t satisfies a strong LDP in X̃ with rate
function

Ĵ (ξ) = ρ̂ −
∑
j

{∫
R3

∫
R3

1

|x − y|αj (dx)αj (dy) − Ĩ (̃αj )

}
, ξ = {̃αj } ∈ X̃ ,
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and ρ̂ is given by

ρ̂ = sup
ξ∈X̃

∑
j

{∫
R3

∫
R3

ψ2
j (x)ψ2

j (y)

|x − y| dx dy − 1

2

∑
j

‖∇ψj‖2
2

}
(1.14)

and αj (dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ2

j (x)dx ≤ 1.

Let us finally remark that the above theory applies to any shift-invariant functional f of Lt , since f (Lt ) = f̃ (L̃t ) for
an obviously defined lifting f̃ of f to the space of orbits. For example, in Theorem 1.8 the theory was applied to
H(Lt ), recall (1.4). In the present paper, such shift-invariant dependence of ‖�t‖∞ on Lt is exhibited by the simple
identity

‖�t‖∞ = sup
y∈R3

(∫
R3

Lt(dz)

|z − y|
)

= sup
y∈R3

(∫
R3

(Lt � δx)(dz)

|z − y|
)

= ‖�t � δx‖∞ ∀x ∈ R
3,

and is of crucial importance in the context of deriving Theorem 1.1 from the above theory, see the proof of (3.9) in
Section 3.

2. Super-exponential estimate: Proof of Theorem 1.3

For any x ∈ R
3 we will denote by Px the Wiener measure for the Brownian motion W = (Wt)t≥0 starting at x and

by Ex the corresponding expectation and we continue to write P0 = P and E0 = E. First we turn to the proof of
Proposition 1.5, which follows from the following lemma.

Lemma 2.1. For any ε ∈ (0,1/2), if a = 1 − 2ε and ρ = 1
1−ε

, then, for some β ∈ (0,∞),

sup
x1,x2∈R3

|x1−x2|≤1

sup
x∈R3

Ex

[
exp

{
β

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}]
< ∞. (2.1)

Proof. We fix x1, x2 ∈ R
3 with |x1 − x2| ≤ 1 and denote

V (y) = Vx1,x2(y) = 1

|y − x1| − 1

|y − x2| , y ∈R
3,

so that �1(x1) − �1(x2) = ∫ 1
0 V (Ws)ds. Then by Jensen’s inequality,

∣∣∣∣
∫ 1

0
V (Ws)ds

∣∣∣∣ρ ≤
∫ 1

0

∣∣V (Ws)
∣∣ρ ds.

Let us now recall Khas’minski’s lemma (see [11, p. 8], [8]), which states that, if for a function Ṽ ≥ 0,

sup
x∈Rd

Ex

{∫ 1

0
Ṽ (Ws)ds

}
≤ η < 1,

then

sup
x∈Rd

Ex

{
exp

{∫ 1

0
Ṽ (Ws)ds

}}
≤ η

1 − η
< ∞.
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Hence, (2.1) follows for some β ∈ (0,∞) if we show that

sup
x1,x2∈R3 :
|x1−x2|≤1

|x1 − x2|−aρ sup
x∈R3

Ex

[∫ 1

0

∣∣V (Ws)
∣∣ρ ds

]
< ∞. (2.2)

Now let us introduce a generic constant C that does not depend on x, x1, x2, y, nor on any integration variable, and
may change its value from line to line.

We estimate, for any x1, x2 satisfying |x1 − x2| ≤ 1, and a = 1 − 2ε,

∣∣V (y)
∣∣ =||y − x2| − |y − x1||

|y − x1||y − x2| ≤ |x1 − x2|
|y − x1||y − x2|

≤ |x1 − x2|a [|y − x2|1−a + |y − x1|1−a]
|y − x1||y − x2| .

(2.3)

The latter inequality follows from (r + s)1−a ≤ r1−a + s1−a for any r, s ≥ 0. Furthermore, let us estimate the integral

h(y) = hx(y) =
∫ 1

0
dt

e−|x−y|2/2t

t3/2

as follows. Since for any b > 0, the map [1,∞) � z �→ z3/2−be−z is bounded, we can estimate

∫ |y−x|2∧1

0
dt

e−|y−x|2/2t

t3/2
≤ C|y − x|−3−2b

∫ |y−x|2∧1

0
dt e−|y−x|2/2t

( |y − x|2
2t

)3/2+b

tb

≤ C|y − x|−3−2b

∫ |y−x|2∧1

0
dt tb

≤ C|y − x|−3−2b
(|y − x|2 ∧ 1

)1+b
, x, y ∈R

3.

For the remaining integral, we have the upper bound

∫ 1

|y−x|2∧1
dt

e−|y−x|2/2t

t3/2
≤

∫ 1

|y−x|2∧1
dt t−3/2 ≤ [|y − x|2 ∧ 1

]−1/2 − 1.

Combining the preceding two estimates, we obtain that

h(y) =
∫ 1

0
dt

e−|y−x|2/2t

t3/2
≤ C

1

|y − x|(1 + |y − x|)b . (2.4)

Let us now combine (2.3) and (2.4), to get

|x1 − x2|−aρ
Ex

[∫ 1

0

∣∣V (Ws)
∣∣ρ ds

]
= (2π)−3/2

∫
R3

dy|x1 − x2|−aρ
∣∣V̂ (y)

∣∣ρh(y)

≤ C

∫
R3

dy
|y − x2|ρ(1−a) + |y − x1|ρ(1−a)

|y − x1|ρ |y − x2|ρ
1

|y − x|(1 + |y − x|)b .

Taking the symmetry in x1 and x2 into account, we see that (2.2) follows once we have

sup
x1,x2∈R3 :
|x1−x2|≤1

sup
x∈R3

∫
R3

dy

(1 + |y − x|)b
1

|y − x1|ρ × 1

|y − x| × 1

|y − x2|ρa
< ∞.
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For this, we apply Hölder’s inequality to the measure dy

(1+|y−x|)b and the other three functions with parameters

p1,p2,p3 > 1 satisfying 1
p1

+ 1
p2

+ 1
p3

= 1. Hence, it suffices to show that all the integrals

∫
R3

dy

(1 + |y − x|)b
1

|y − x1|ρp1
,

∫
R3

dy

(1 + |y − x|)b
1

|y − x|p2
,

∫
R3

dy

(1 + |y − x|)b
1

|y − x2|ρap3
,

are bounded in x, x1, x2 for proper choices of p1,p2,p3 and b. But this is ensured by requiring b > 3 and p1 < 3/ρ

and p2 = ρp1 (enforcing that p3 = p1ρ/(p1ρ − ρ + 1)) and p3 < 3/aρ. The latter mean that 3(ρ−1)
ρ(3−ρa)

< p1 < 3
ρ

and

are possible as soon as 4 > ρ(1 + a). But this is satisfied for our choices ρ = 1
1−ε

and a = 1 − 2ε, for any ε ∈ (0,1).
This finishes the proof of Lemma 2.1. �

Lemma 2.2. Fix ε ∈ ( 1
3 , 1

2 ) and choose a = 1 − 2ε and ρ = 1
1−ε

as in Lemma 2.1. Then there exists a constant
β1 = β1(ε) > 0 such that the random variable

M =
∫
R3

dx1

∫
R3

dx2 1
{|x1 − x2| ≤ 1

}[
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

]
(2.5)

has a finite expectation under P0.

Proof. By Lemma 2.1 and Fubini’s theorem, it suffices to show that∫ ∫
|x1−x2|≤1

dx1 dx2 E

[
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

]
< ∞. (2.6)

We decompose R
3 ⊂ ⋃∞

n=0{x ∈R
3 : n ≤ |x| < n + 1} and put τn = inf{t > 0 : |Wt | > n − nα} for some α ∈ (0,1).

For any r > 0 and x ∈R
3, we also denote by Br(x) the open Euclidean ball of radius r around x. Then∫ ∫

|x1−x2|≤1
dx1 dx2 E

[
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

]

≤
∞∑

n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2

[
E

{
1{τn>1}

(
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

)}

+E

{
1{τn≤1}

(
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

})]
. (2.7)

The first expectation inside the integrals is handled as follows. We note that, with |x1| ∈ [n,n + 1) and x2 ∈ B1(x1), if
τn > 1, then |Ws − x1| > nα and |Ws − x2| > nα − 1 for any s ∈ [0,1]. Hence, for any n ∈N, on the event {τn > 1},

|�1(x1) − �1(x2)|
|x1 − x2|a ≤ |x1 − x2|

|x1 − x2|1−2ε

∫ 1

0

ds

|Ws − x1||Ws − x2| ≤ c1|x1 − x2|2εn−2α ≤ c1n
−2α.

Hence,

∞∑
n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2 E

{
1{τn>1}

(
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

)}

≤
∞∑

n=0

(
eβ1c

ρ
1 n−2αρ − 1

)
Leb

{
x1 ∈R

3 : |x1| ∈ [n,n + 1)
}
Leb

(
B1(0)

)
. (2.8)

Since the first term is of size O(n−2αρ) and the first Lebesgue measure is of size O(n2), the above sum is finite for
α > 3

2ρ
. Since we chose ε > 1

3 and hence ρ = 1
1−ε

> 3
2 , we can choose some α ∈ (0,1) so that α > 3

2ρ
, as desired.
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Let us now handle the second expectation in (2.7). By the Cauchy–Schwarz inequality and Proposition 1.5, if β1 is
small enough, for any x1, x2 ∈R

3 such that |x1 − x2| ≤ 1,

E

[
1{τn≤1}

{
exp

{
β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}
− 1

}]

≤ P(τn ≤ 1)
1
2 E

[
exp

{
2β1

( |�1(x1) − �1(x2)|
|x1 − x2|a

)ρ}] 1
2

≤ CP

(
max
[0,1]

W > n − nα
) 1

2
,

where C does not depend on x1, x2. Since the last probability is of order e−cn2
, the second sum on n in (2.7) is

obviously finite. This, combined with the finiteness of the sum in (2.8), proves (2.6) and hence finishes the proof of
Lemma 2.2. �

For the proof of Theorem 1.3 we will use the following (multidimensional) estimate of Garsia–Rodemich–Rumsey
[10, p. 60].

Lemma 2.3. Let p(·) and �(·) be strictly increasing continuous functions on [0,∞) so that p(0) = �(0) = 0 and
limt↑∞ �(t) = ∞. If f : Rd → R is continuous on the closure of the ball B2r (z) for some z ∈ R

d and r > 0, then the
bound∫

Br(z)

dx

∫
Br(z)

dy �

( |f (x) − f (y)|
p(|x − y|)

)
≤ M < ∞, (2.9)

implies that

∣∣f (x) − f (y)
∣∣ ≤ 8

∫ 2|x−y|

0
�−1

(
M

γu2d

)
p(du), x, y ∈ Br(z), (2.10)

for some constant γ that depends only on d .

Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The Brownian scaling property implies that

�t(x) = 1

t

∫ t

0

1

|Ws − x| ds =
∫ 1

0

1

|W(ts) − x| ds
D=

∫ 1

0

1

|√tW(s) − x| ds = t−1/2�1
(
xt−1/2)

,

where
D= denotes equality in distribution. Hence, the claim of Theorem 1.3 is equivalent to

lim
δ→0

lim sup
t→∞

1

t
logP

{
sup

x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣�1(x1) − �1(x2)
∣∣ ≥ bt1/2

}
= −∞, b > 0. (2.11)

Now we would like to apply Lemma 2.3. We pick ε ∈ ( 1
3 , 1

2 ) and a = 1 − 2ε and ρ = 1
1−ε

and β = β1 as in
Lemma 2.2 and choose

�(x) = eβ|x|ρ − 1, p(x) = |x|a = |x|1−2ε, f (x) = �1(x). (2.12)

Then �(·), p(·) and f (·) all satisfy the requirements of Lemma 2.3. Furthermore, Lemma 2.2 implies that hypothesis
(2.9) is satisfied if |x1 − x2| ≤ δ and δ > 0 is chosen small enough, where the random variable M is given in (2.5).
Hence, (2.10) implies that for |x1 − x2| ≤ δt−1/2 and all t ≥ 1,

∣∣�1(x1) − �1(x2)
∣∣ ≤ 8

∫ δt−1/2

0
�−1

(
M

γu6

)
p(du) = 8

1 − 2ε

β1/ρ

∫ δt−1/2

0
log

(
1 + M

γu6

)1/ρ

u−2ε du. (2.13)
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For u ∈ (0, δt−1/2] and all sufficiently large t , we estimate

8
1 − 2ε

β1/ρ
log

(
1 + M

γu6

)1/ρ

≤ C

((
log(M ∨ 1)

)1/ρ +
(

log
1

u

)1/ρ)
,

for some constant C that does not depend on t if t is sufficiently large. Hence, the right-hand side of (2.13) is not
larger than

Cδ

(
log(M ∨ 1)

)1/ρ
tε−1/2 + Cδ(log t)ctε−1/2

for some Cδ, c, not depending on t , and Cδ → 0 as δ → 0. Substituting this in (2.13) and recalling that ρ = 1
1−ε

, we
obtain

P

{
sup

x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣�1(x1) − �1(x2)
∣∣ ≥ bt1/2

}

≤ P

{(
log(M ∨ 1)

)1/ρ + (log t)c ≥ b

Cδ

t1−ε

}

≤ P

{
log(M ∨ 1) ≥ bρ

C
ρ
δ

t − C2(log t)cρ)

}
≤ E(M ∨ 1) exp

{
− bρ

C
ρ
δ

t + C2(log t)cρ
}
. (2.14)

Recall that by Lemma 2.2, E(M ∨ 1) < ∞. If we now let t → ∞, followed by δ → 0, the above estimate now implies
(2.11) and therefore Theorem 1.3. �

Corollary 2.4. For any b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P̂t

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣�t(x1) − �t(x2)
∣∣ ≥ b

}
= −∞.

Proof. Let us denote by At,δ the above event inside the probability. Then the Cauchy–Schwarz inequality gives that

1

t
log P̂t {At,δ} ≤ 1

2t
logE

{
e2tH(Lt )

} − 1

t
logE

{
etH(Lt )

} + 1

2

1

t
logP{At,δ}.

While the first two terms have finite large-t limits, by Theorem 1.3 the large-t limit of the third term tends to −∞ as
δ → 0. This proves the corollary. �

3. LDP for �t in the uniform metric: Proof of Theorem 1.1

Recall that we need to show, for any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf

w∈R3

∥∥�t − �ψ2
w

∥∥∞ ≥ ε
}

< 0. (3.1)

We approximate the sup-norm inside the probability via a coarse graining argument as follows. For any δ ∈ (0,1), we
can estimate

inf
w∈R3

∥∥�t − �ψ2
w

∥∥∞ = inf
w∈R3

sup
x∈R3

∣∣�t(x) − (
�ψ2

w

)
(x)

∣∣
≤ sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣�t(x1) − �t(x2)
∣∣

+ inf
w∈R3

sup
z∈δZ3

[∣∣�t(z) − (
�ψ2

w

)
(z)

∣∣ + sup
z̃∈Bδ(z)

∣∣(�ψ2
w

)
(z̃) − (

�ψ2
w

)
(z)

∣∣]. (3.2)
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Note that, for any w ∈R
3 the deterministic function �ψ2

w is uniformly continuous on R
3 and hence

lim
δ↓0

sup
z∈δZ3

sup
z̃∈Bδ(z)

∣∣(�ψ2
w

)
(z̃) − (

�ψ2
w

)
(z)

∣∣ = 0.

Since ε > 0 is arbitrary, the above fact and Corollary 2.4 imply that, to deduce (3.1), it suffices to prove, for any
ε, δ > 0,

lim sup
t→∞

1

t
log P̂t

{
inf

w∈R3
sup

z∈δZ3

∣∣�t(z) − (
�ψ2

w

)
(z)

∣∣ ≥ ε
}

< 0. (3.3)

For any z ∈ δZ3, w ∈ R
3 and any η > 0, we can estimate

∣∣�t(z) − (
�ψ2

w

)
(z)

∣∣ ≤
∫

Bη(z)

ψ2
w(y)

|y − z| dy +
∫

Bη(z)

Lt (dy)

|y − z| +
∣∣∣∣
∫
R3

1{|y − z| ≥ η}
|y − z|

(
Lt(dy) − ψ2

w(y)dy
)∣∣∣∣. (3.4)

The first term can be handled easily. Note that, for any w ∈ R
3, ψw is radially symmetric and ‖ψw‖2 = 1. Hence using

polar coordinates and invoking the dominated convergence theorem we can argue that

lim
η→0

sup
z∈δZ3

∫
Bη(z)

ψ2
w(y)

|y − z| dy = 0. (3.5)

Let us turn to the second term in (3.4). We claim that, for any δ > 0 and η > 0 small enough,

lim sup
t→∞

1

t
log P̂t

{
sup

z∈δZ3

∫
Bη(z)

Lt (dy)

|y − z| ≥ ε

}
< 0. (3.6)

Let us first handle the above event with the Wiener measure P replacing P̂t . Then we can estimate

P

{
sup

z∈δZ3

∫
Bη(z)

Lt (dy)

|y − z| > ε

}
≤

∑
z∈δZ3

|z|≤t2

P

{∫
Bη(z)

Lt (dy)

|y − z| ≥ ε/2

}
+ P

{
sup

z∈δZ3

|z|>t2

∫
Bη(z)

Lt (dy)

|y − z| ≥ ε/2

}
. (3.7)

The second term can be estimated by the probability that the Brownian path, starting at origin, travels a distance t2 − ε

by time t . This probability is of order exp{−ct3} and can be ignored. For the first term we note that a box of size t2 in
R

3 can be covered by O(t6) sub-boxes of side length δ and that the probability is maximal for z = 0. Hence, we can
estimate, with the help of Markov’s inequality, for any β > 0,

∑
z∈δZ3

|z|≤t2

P

{∫
Bη(z)

Lt (dy)

|y − z| > ε/2

}
≤ Ct6

P

{
β

∫ t

0
Vη(Ws)ds > tβε/2

}
≤ Ct6e− ε

2 tβ
E

{
eβ

∫ t
0 Vη(Ws)ds

}
, (3.8)

where Vη(x) = 1{|x|≤η} 1
|x| . Note that, for any β > 0 and some constants c1, c2 independent of η,

sup
y∈R3

Ey

{
β

∫ 1

0
Vη(Ws)ds

}
≤ β

∫
Bη(0)

dx

|x|
∫ 1

0
ps(0, x)ds ≤ βc1

∫
Bη(0)

dx

|x|2 = c2ηβ.

For any fixed β > 0 and η small enough, this is not larger than 1/2, and by Khas’minskii’s lemma [11, p. 8], successive
conditioning and the Markov property,

E
{
eβ

∫ t
0 Vη(Ws)ds

} ≤ 2�t�.



2226 W. König and C. Mukherjee

Then (3.8) and (3.7) imply, for any β > 0,

lim sup
t→∞

1

t
logP

{
sup

z∈δZ3

∫
Bη(z)

Lt (dy)

|y − z| ≥ ε

}
≤ −εβ/2 + log 2.

From this we can deduce (3.6) by choosing β > 0 large enough and invoking Hölder’s inequality as in the proof of
Corollary 2.4. We drop the details to avoid repetition.

Let us turn to the third term on the right hand side of (3.4). Then by (3.5) and (3.6), it suffices to prove that, for
every η, ε > 0,

lim sup
t→∞

1

t
log P̂t {Lt ∈ Fη} < 0, (3.9)

where

Fη =
{
μ ∈M1

(
R

3) : ∀w ∈ R
3 sup

z∈R3

∣∣〈fz,η,μ − ψ2
w

〉∣∣ ≥ ε
}
,

where we put fz,η(y) = 1
|y−z| ∧ 1

η
. We claim that for each η > 0, Fη is a closed set in the weak topology in M1(R

3).

First note that the family Aη = {fz,η : z ∈ R
d} is equicontinuous and uniformly bounded. Hence, for any η > 0, the set

Gη,w =
{
μ ∈M1

(
R

3) : sup
f ∈Aη

∣∣〈f,μ − ψ2
w

〉∣∣ < ε
}

is weakly open and hence

Fη =
⋂

w∈Rd

Gc
η,w

is weakly closed. Furthermore, we note that Fη is shift-invariant, i.e., if μ ∈ Fη, then μ � δx ∈ Fη for any x ∈ R
3. In

other words,

P̂t {Lt ∈ Fη} = P̂t {L̃t ∈ F̃η},
where F̃η = {μ̃ : μ ∈ Fη}, the set of orbits μ̃ = {μ � δx : x ∈ R

3} of members of Fη, is a closed set in M̃1(R
3) ↪→ X̃ ,

and by Theorem 1.6, F̃η is also compact in (X̃ ,D). Then by Theorem 1.8,

lim sup
t→∞

1

t
log P̂t {L̃t ∈ F̃η} ≤ − inf

ξ∈F̃η

Ĵ (ξ).

According to [7, Lemma 5.4], the variational formula in (1.14) attains its maximum only in trivial sequences ξ

consisting of just one single orbit of a probability measure μ(dx) = ψ2(x)dx with ψ a rotationally symmetric,
L2-normalized function, which, by the uniqueness of the variational problem (1.6) (recall (1.10)), must be one of the
maximizers of the formula in (1.6), and ρ = ρ̂. Since F̃η is in particular compact and does not contain such an element
ξ , we have that infξ∈F̃η

Ĵ (ξ) > 0. These two facts imply (3.9) and hence Theorem 1.1.
We end this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. The proof is straightforward and similar to the last line of arguments. Indeed, we note that
for any δ > 0,

P
{‖�t‖∞ > b

} ≤ P

{
sup

|x1−x2|≤δ

∣∣�t(x1) − �t(x2)
∣∣ ≥ b/2

}
+ P

{
sup

x∈δZ3
�t(x) ≥ b/2

}

≤ P

{
sup

|x1−x2|≤δ

∣∣�t(x1) − �t(x2)
∣∣ ≥ b/2

}
+ P

{
sup

x∈δZ3

|x|≤t2

�t(x) ≥ b/2
}

+ P

{
sup

x∈δZ3

|x|>t2

�t(x) ≥ b/2
}
.
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By Theorem 1.3, the first term has a strictly negative exponential rate. The third term can again be neglected since
this is of order exp{−ct3}. Also for the second term, the box of size t2 can be covered by O(t6) sub-boxes of side
length δ. Therefore,

P

{
sup

x∈δZ3

|x|≤t2

�t(x) ≥ b/2
}

≤ Ct6
P

{
�t(0) > b/2

}
.

For any κ > 0,

P
{
�t(0) > b/2

} ≤ e−κbt/2
E

{
exp

{
κ

∫ t

0

ds

|Ws |
}}

.

We choose t > u � 1 and κ > 0 small enough so that
√

uκ � 1 and

α = sup
x∈R3

Ex

{
κ

∫ u

0

ds

|Ws |
}

= E0

{
κ

∫ u

0

ds

|Ws |
}

= 2κ
√

uE

(
1

|W1|
)

� 1.

Then by Khas’minskii’s lemma [11, p. 8],

sup
x∈R3

Ex

{
exp

{
κ

∫ u

0

ds

|Ws |
}}

≤ 1

1 − α
,

and by successive conditioning and the Markov property,

E

{
exp

{
κ

∫ t

0

ds

|Ws |
}}

≤
(

1

1 − α

)t/u

.

Since log(1 + α) ≈ α as α → 0, for any b > 0 and κ > 0 suitably chosen and u large enough,

P
{
�t(0) > b/2

} ≤ exp

{
−κbt

2
+ t

u
log(1 − α)

}

≤ exp

[
−tκ

{
b

2
− 1√

u
c

}]

≤ exp{−tκC̃}

for some C̃ = C̃(u, a, c) > 0. This proves the corollary. �
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