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2 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIG1. Introdution and main resultsIn this paper, we study a probabilisti model for interating bosons at positive temperature in thethermodynami limit with positive partile density. See Setion 1.4 for the physial bakground.1.1. The model. The main objet is the following symmetrised sum of Brownian bridge expetations,
Z(bc)
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1

N !
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}]
. (1.1)Here µ(bc,β)

x,y is the anonial Brownian bridge measure with boundary ondition bc ∈ {∅,per,Dir},time horizon β > 0 and initial point x ∈ Λ and terminal point y ∈ Λ, and the sum is on permutations
σ ∈ SN of 1, . . . , N . (We write µ(f) for the integral of f with respet to the measure µ.) Theinteration potential v : R → [0,∞] is measurable, deays su�iently fast at in�nity and is possiblyin�nite lose to the origin. Our preise assumptions on v appear prior to Theorem 1.2 below. Weassume that Λ is a measurable subset of R

d with �nite volume.The boundary ondition bc = ∅ refers to the standard Brownian bridge, whereas for bc = Dir, theexpetation is on those Brownian bridge paths whih stay in Λ over the time horizon [0, β]. In the aseof periodi boundary ondition, bc = per, we onsider Brownian bridges on the torus Λ = (R/LZ)dwith side length L.Our main motivation to study the quantity Z(bc)

N (β,Λ) is the fat that, for both periodi and Dirihletboundary onditions, it is related to the N -body Hamilton operator
H(bc)

N,Λ = −
N∑

i=1

∆(bc)

i +
∑

1≤i<j≤N

v(|xi − xj|), x1, . . . , xn ∈ Λ, bc ∈ {Dir,per} (1.2)where ∆(bc)

i stands for the Laplaian with b boundary ondition. More preisely, Z(bc)

N (β,Λ) is equalto the trae of the projetion of the operator exp {−βH(bc)

N,Λ} to the set of symmetri (i.e., permutationinvariant) funtions (Rd)N → R. This statement is proven via the Feynman-Ka formula, see [G70℄ or[BR97℄. Hene, we all Z(bc)

N (β,Λ) a partition funtion.It is the main purpose of this paper to derive a variational expression for the limiting free energy
f (bc)(β, ρ) = −

1

β
lim

N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
), (1.3)where |ΛLN

| = N/ρ, for any β, ρ ∈ (0,∞), any d ∈ N and any bc ∈ {∅,per,Dir}. The existene ofthe thermodynami limit in (1.3) with bc ∈ {per,Dir} under suitable assumptions on the interationpotential v an be shown by standard methods, see, e.g., [Rue69, Th. 3.58℄ and [Rob71℄. However, upto the best of our knowledge, there is no useful identi�ation or haraterisation of f (bc)(β, ρ) availablein the literature. We also give new proofs for the independene of the value of the free energy on theboundary onditions, whih is another novelty.Our approah and the remainder of Setion 1 an be summarized as follows. Sine any permutationdeomposes into yles, and using the Markov property, the family of the N bridges in (1.1) deomposesinto yles of various lengths, i.e., into bridges that start and end at the same site, whih is uniformlydistributed over Λ. We oneive these initial-terminal sites as the points of a standard Poisson pointproess on R
d and the yles as marks attahed to these points; see Setion 1.2 for the relevant notation.In Proposition 1.1 below we rewrite Z(bc)

N (β,Λ) in terms of an expetation over a referene proess, themarked Poisson point proess ωP.In Setion 1.3, we present our results on the large-N asymptotis of Z(bc)

N (β,Λ) when Λ is a entredube of volume N/ρ. Indeed, in Theorem 1.2, its exponential rate is bounded from above and below interms of two variational formulas that range over marked shift-invariant point proesses and optimise



FREE ENERGY OF MANY-PARTICLE SYSTEMS 3the sum of an energy term and an entropy term. These bounds are shown to oinide for any �xed
ρ if β is su�iently small, and for any �xed β if ρ is su�iently small. The main value and noveltyof these representations is the expliit desription of the interplay between entropy, interation andsymmetrisation of the system. We think that these formulas, even in the ase where our two boundsdo not oinide, are expliit enough to serve as a basis for future deeper investigations of propertieslike phase transitions.The physial interpretation, motivation and relevane are disussed in Setion 1.4.1.2. Representation of the partition funtion. In this setion, we introdue our representationof the partition funtion Z(bc)

N (β,Λ) for eah boundary ondition bc ∈ {∅,per,Dir} in terms of anexpetation over a marked Poisson point proess. The main result of this setion is Proposition 1.1.We have to introdue some notation.We begin with the mark spae. The spae of marks is de�ned as
E(bc) =

⋃

k∈N

C(bc)

k,Λ , bc ∈ {∅,per,Dir}, (1.4)where, for k ∈ N, we denote by Ck = C(∅)

k,Λ the set of ontinuous funtions f : [0, kβ] → R
d satisfying

f(0) = f(kβ), equipped with the topology of uniform onvergene. Moreover, C(Dir)

k,Λ , resp. C(per)

k,Λ , is thespae of ontinuous funtions in Λ, resp. on the torus Λ = (R/LZ)d, with time horizon [0, kβ]. Wesometimes all the marks yles. By ℓ : E(bc) → N we denote the anonial map de�ned by ℓ(f) = kif f ∈ C(bc)

k,Λ . We all ℓ(f) the length of f ∈ E. When dealing with the empty boundary ondition, wesometimes drop the supersript ∅.We onsider spatial on�gurations that onsist of a loally �nite set ξ ⊂ R
d of partiles, and to eahpartile x ∈ ξ we attah a mark fx ∈ E(bc)satisfying fx(0) = x. Hene, a on�guration is desribed bythe ounting measure

ω =
∑

x∈ξ

δ(x,fx)on R
d × E for the empty boundary ondition, resp. on Λ × E(bc) for bc ∈ {per,Dir}.We now introdue three marked Poisson point proesses for the three boundary onditions. The onefor the empty ondition will later serve as a referene proess and is introdued separately �rst.Referene proess.Consider on C = C1 the anonial Brownian bridge measure

µ(∅,β)
x,y (A) = µ(β)

x,y(A) =
Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C measurable. (1.5)Here B = (Bt)t∈[0,β] is a Brownian motion in R

d with generator ∆, starting from x under Px. Then
µ(β)

x,y is a regular Borel measure on C with total mass equal to the Gaussian density,
µ(β)

x,y(C) = gβ(x, y) =
Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e

− 1
4β

|x−y|2
. (1.6)We write P

(β)
x,y = µ(β)

x,y/gβ(x, y) for the normalized Brownian bridge measure on C. Let
ωP =

∑

x∈ξP

δ(x,Bx),be a Poisson point proess on R
d ×E with intensity measure equal to ν whose projetion onto R

d ×Ckis equal to
νk(dx,df) =

1

k
Leb(dx) ⊗ µ(kβ)

x,x (df), k ∈ N. (1.7)



4 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGAlternatively, we an oneive ωP as a marked Poisson point proess on R
d, based on some Poissonpoint proess ξP on R

d, and a family (Bx)x∈ξP of i.i.d. marks, given ξP. The intensity of ξP is
q =

∑

k∈N

qk, with qk =
1

(4πβ)d/2k1+d/2
, k ∈ N. (1.8)Conditionally given ξP, the length ℓ(Bx) is an N-valued random variable with distribution (qk/q)k∈N,and, given ℓ(Bx) = k, Bx is in distribution equal to a Brownian bridge with time horizon [0, kβ],starting and ending at x. Let Q denote the distribution of ωP and denote by E the orrespondingexpetation. Hene, Q is a probability measure on the set Ω of all loally �nite ounting measures on

R
d × E.Proesses for Dirihlet and periodi boundary onditions.For Dirihlet boundary ondition, one restrits the Brownian bridges to not leaving the set Λ. Considerthe measure

µ(Dir,β)
x,y (A) =

Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ C(Dir)

1,Λ measurable, (1.9)whih has total mass
g(Dir)

β (x, y) = µ(Dir,β)
x,y (C(Dir)

1,Λ ) =
Px(B[0,β] ⊂ Λ;Bβ ∈ dy)

dy
. (1.10)For periodi boundary ondition, the marks are Brownian bridges on the torus Λ = (R/LZ)d. Theorresponding path measure is denoted by µ(per,β)

x,y ; its total mass is equal to
g(per)

β (x, y) = µ(per,β)
x,y (C(per)

Λ ) =
∑

z∈Zd

gβ(x, y + zL) = (4πβ)−d/2
∑

z∈Zd

e
− |x−y−zL|2

4β . (1.11)For periodi and Dirihlet boundary onditions (1.8) is replaed by
q(bc) =

N∑

k=1

q(bc)

k , with q(bc)

k =
1

k|Λ|

∫

Λ
dx g(bc)

kβ (x, x). (1.12)Note that this weight depends on Λ and on N . We introdue the Poisson point proess ωP =∑
x∈ξP

δ(x,Bx) on Λ×E(bc) with intensity measure ν(bc) whose projetions on Λ×C(bc)

k,Λ with k ≤ N areequal to ν(bc)

k (dx,df) = 1
kLebΛ(dx) ⊗ µ(bc,kβ)

x,x (df) and are zero on this set for k > N . We do not label
ωP nor ξP with the boundary ondition nor with N ; ξP is a Poisson proess on Λ with intensity measure
q(bc) times the restrition LebΛ of the Lebesgue measure to Λ. By Q(bc) and E(bc) we denote probabilityand expetation with respet to this proess. Conditionally on ξP, the lengths of the yles Bx with
x ∈ ξP are independent and have distribution (q(bc)

k /q(bc))k∈{1,...,N}; this proess has only marks withlengths ≤ N . A yle Bx of length k is distributed aording to
P

(bc,kβ)
x,x (df) =

µ(bc,kβ)
x,x (df)

g(bc)

kβ (x, x)
. (1.13)We now formulate our �rst main result, a presentation of the partition funtion de�ned in (1.1)in Λ ⊂ R

d with |Λ| < ∞ and boundary ondition bc ∈ {∅,per,Dir}. We write 〈P,F 〉 for theexpetation of a funtion F with respet to a probability measure P . We introdue a funtional on
Ω that expresses the interation between partiles in Λ ⊂ R

d, more preisely, between their marks.De�ne the Hamiltonian HΛ : Ω → [0,∞] by
HΛ(ω) =

∑

x,y∈ξ∩Λ

Tx,y(ω), where ω =
∑

x∈ξ

δ(x,fx) ∈ Ω, (1.14)



FREE ENERGY OF MANY-PARTICLE SYSTEMS 5where we abbreviate
Tx,y(ω) =

1

2

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
v(|fx(iβ + s) − fy(jβ + s)|) ds, ω ∈ Ω, x, y ∈ ξ. (1.15)The funtion HΛ(ω) summarises the interation between di�erent marks of the point proess andbetween di�erent legs of the same mark; here we all the restrition of a mark fx to the interval

[iβ, (i + 1)β)] with i ∈ {0, . . . , ℓ(fx) − 1} a leg of the mark. Denote by
N (ℓ)

Λ (ω) =
∑

x∈ξ∩Λ

ℓ(fx) (1.16)the total length of the marks of the partiles in Λ ⊂ R
d (whose marks may be not ontained in Λ).Proposition 1.1 (Rewrite in terms of the marked Poisson proess). Fix β ∈ (0,∞). Let v : [0,∞) →

(−∞,∞] be measurable and bounded from below and let Λ ⊂ R
d be measurable with �nite volume(assumed to be a torus for periodi boundary ondition). Then, for any N ∈ N, and bc ∈ {∅,per,Dir},

Z(bc)

N (β,Λ) = e|Λ|q(bc)
E

(bc)
[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]
. (1.17)That is, up the non-random term |Λ|q(bc), the partition funtion is equal to the expetation over theBoltzmann fator e−HΛ of a marked Poisson proess with �xed total length of marks of the partiles.1.3. The limiting free energy. In this setion, we present our major result, the identi�ation of thelimiting free energy de�ned in (1.3) in terms of an expliit variational formula, see Theorem 1.2. We�rst introdue some notation.De�ne the shift operator θy : R

d → R
d as θy(x) = x− y. We extend it to a shift operator on markedon�gurations by

θy(ω) =
∑

x∈ξ

δ(x−y,fx) =
∑

x∈ξ−y

δ(x,fx+y), for ω =
∑

x∈ξ

δ(x,fx).By Pθ we denote the set of all shift-invariant probability measures on Ω. The distribution Q of theabove marked Poisson point referene proess ωP belongs to Pθ.De�ne Φβ : Ω → [0,∞] by
Φβ(ω) =

∑

x∈ξ∩U

∑

y∈ξ

Tx,y(ω), (1.18)where Tx,y(ω) was de�ned in (1.15), and U = [−1
2 ,

1
2 ]d denotes the entred unit box. The quantity

Φβ(ω) desribes all the interations between di�erent legs of marks of ω, when at least one of the marksis attahed to a point in U .Next, we introdue an entropy term. For probability measures µ, ν on some measurable spae, wewrite
H(µ | ν) =

{∫
f log f dν if f = dµ

dν exists,
∞ otherwise, (1.19)for the relative entropy of µ with respet ν. It will be lear from the ontext whih measurable spaeis used. It is easy to see and well-known that H(µ | ν) is nonnegative and that it vanishes if and onlyif µ = ν. Now we set

Iβ(P ) = lim
N→∞

1

|ΛN |
H

(
PΛN

∣∣∣ QΛN

)
, P ∈ Pθ, (1.20)where we write PΛ for the projetion of P to Λ, i.e., the image measure of P under

ω 7→ ω|Λ =
∑

x∈ξ∩Λ

δ(x,fx), for ω =
∑

x∈ξ

δ(x,fx). (1.21)



6 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGThe limit in (1.20) is along entred boxes ΛN with diverging volume. Aording to [GZ93, Prop. 2.6℄,the limit in (1.20) exists, and Iβ is a lower semiontinuous funtion with ompat level sets in thetopology of loal onvergene, see Lemma 3.3 below. It turns out there that Iβ is the rate funtion ofa ruial large-deviations priniple for the family of the stationary empirial �elds, whih is one of theimportant objets of our analysis and will be introdued at the beginning of Setion 3.Now we introdue two important variational formulas. For any β, ρ ∈ (0,∞), de�ne
χ(≤)(β, ρ) = inf

{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}
, (1.22)

χ(=)(β, ρ) = inf
{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 = ρ
}
. (1.23)These formulas range over shift-invariant marked proesses P . They have three omponents: theentropi distane Iβ(P ) between P and the referene proess Q, the interation term 〈P,Φβ〉 and theondition 〈P,N (ℓ)

U 〉 = ρ, respetively ≤ ρ. Obviously, χ(≤) ≤ χ(=). Sine all the maps P 7→ Iβ(P ),
P 7→ 〈P,Φβ〉 and P 7→ 〈P,N (ℓ)

U 〉 are easily seen to be lower semiontinuous and sine the level sets of
Iβ are ompat, it is lear that the in�mum on the right-hand side of (1.22) is attained and is thereforea minimum. However, this is not at all lear for (1.23); this question lies muh deeper and has somerelation to the question about Bose-Einstein ondensation, see the disussion in Setion 1.4.Now we speify our assumptions on the partile interation potential v.Assumption (v): We assume that v : [0,∞) → [0,∞] is measurable and tempered, that is, there are
h > d,A ≥ 0 and R0 > 0 suh that v(t) ≤ At−h for t ∈ [R0,∞). Additionally, we assume that theintegral

α(v) =

∫

Rd

v(|x|) dxis �nite and that lim infr→0 v(r) > 0.We now present variational haraterisations for upper and lower bounds for the exponential rate ofthe partition funtion. We denote by ΛL = [−L
2 ,

L
2 ]d the entred box in R

d with volume Ld.Theorem 1.2. Let LN = (N
ρ )1/d, suh that ΛLN

has volume N/ρ. Let v satisfy Assumption (v).Denote
Dv =

{
(β, ρ) ∈ (0,∞)2 : (4πβ)−d/2 ≥ ρeβρα(v)

}
. (1.24)Then, for any β, ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},

lim sup
N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≤

ζ(1 + d
2)

(4πβ)d/2
− χ(≤)(β, ρ), (1.25)

lim inf
N→∞

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≥

ζ(1 + d
2)

(4πβ)d/2
−

{
χ(≤)(β, ρ) if (β, ρ) ∈ Dv,

χ(=)(β, ρ) if (β, ρ) /∈ Dv,
(1.26)where ζ(m) =

∑∞
k=1 k

−m denotes the Riemann zeta funtion.Note that the �rst term on the right, ζ(1 + d
2)/(4πβ)d/2 , is equal to the total mass q, the sum ofthe qk de�ned in (1.8). The proof of Theorem 1.2 is in Setions 3.2 (proof of (1.25)) and 3.3 (proof of(1.26)) for empty boundary onditions, and in Setion 3.4 for the other two.The assumptions ∫

Rd v(|x|) dx < ∞ and lim infr→0 v(r) > 0 are only neessary for our proof of thelower bound in (1.26). In the proof of the upper bound in (1.25), it is allowed that v takes the value
+∞ on a set of positive measure (orresponding to hard ore repulsion) and also that v ≡ 0 (thenon-interating ase); see disussion in Setion 1.5.As an obvious orollary we now identify the free energy de�ned in (1.3) in the high temperaturephase and in the low-density phase.



FREE ENERGY OF MANY-PARTICLE SYSTEMS 7Corollary 1.3 (Free energy). Fix (β, ρ) ∈ Dv. Then, for any bc ∈ {∅,Dir,per}, the free energyintrodued in (1.3) is given by
f(β, ρ) = f (bc)(β, ρ) = −

1

β

ζ(1 + d
2 )

(4πβ)d/2
+

1

β
min

{
Iβ(P ) + 〈P,Φβ〉 : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}
. (1.27)A by-produt of the proof of the lower bound of (1.26), see Corollary 3.5, we have the followingupper bound on the free energy.Lemma 1.4. For any β, ρ ∈ (0,∞), and for bc ∈ {∅,Dir,per},

f (bc)(β, ρ) = lim sup
N→∞

−
1

β

1

|ΛLN
|
logZ(bc)

N (β,ΛLN
) ≤

ρ

β
log

(
ρ(4πβ)

d
2

)
+ ρ2α(v). (1.28)1.4. Relevane and disussion. One of the most prominent open problem in mathematial physisis the understanding of Bose-Einstein ondensation (BEC), a phase transition in a mutually repellentmany-partile system at positive, �xed partile density, if a su�iently low temperature is reahed.That is, a marosopi part of the system ondenses to a state whih is highly orrelated and oherent.The �rst experimental realization of BEC was only in 1995, and it has been awarded with a Nobelprize. In spite of an enormous researh ativity, this phase transition has withstood a mathematialproof yet. Only partial suesses have been ahieved, like the desription of the free energy of theideal, i.e., non-interating, system (already ontained in Bose's and Einstein's seminal paper in 1925)or the analysis of mean-�eld models (e.g. [T90, DMP05℄) or the analysis of dilute systems at vanishingtemperature [LSSY05℄ or the proof of BEC in lattie systems with half-�lling [LSSY05℄. However,the original problem for �xed positive partile density and temperature is still waiting for a promisingattak. Not even a tratable formula for the limiting free energy was known yet that ould serve as abasis for a proof of BEC. The main purpose of the present paper is to provide suh a formula.The mathematial desription of bosons is in terms of the symmetrised trae of the negative exponen-tial of the orresponding Hamiltonian times the inverse temperature. The symmetrisation reates longrange orrelations of the interating partiles making the analysis an extremely hallenging endeavour.The Feynman-Ka formula gives, in a natural way, a representation in terms of an expansion withrespet to the yles of random paths. It is onjetured by Feynman [Fe53℄ that BEC is signalled bythe deisive appearane of a marosopi amount of `in�nite' yles, i.e., yles whose lengths divergewith the number of partiles. This phenomenon is also signalled by a loss of probability mass in thedistribution of the `�nite' yles. See [Sü93℄ and [Sü02℄ for proofs of this oinidene in the ideal Bosegas and some mean-�eld models. A di�erent line of researh is studying the e�et of the symmetrisationin random permutation and random partition models, see [Ver96℄, [BCMP05℄, [AD08, AK08, A09℄, orin spatial random permutation models going bak to [F91℄ and extended in [BU09℄.In the present paper, we address the original problem of a mutually repellent many-partile systemat �xed positive partile density and temperature and derive an expliit variational expression for thelimiting free energy. More preisely, we prove upper and lower bounds, whih oinide in the high-temperature phase respetively low density phase. The formula yields deep inside in the yle strutureof the random paths appearing in the Feynman-Ka formula. In partiular, it opens up a new way toanalyse the struture of the yles at any temperature and density, also in the low-temperature phase,where our two bounds di�er. In future work, we intend to analyse the onjetured phase transition inthat variational formula and to link it to BEC.The methods used in the present paper are mainly probabilisti. Our starting point is the well-knownFeynman-Ka formula, whih translates the partition funtion in terms of an expetation over a largesymmetrised system of interating Brownian bridge paths. In a seond step, whih is also well-known,we redue the ombinatorial omplexity by onatenating the bridges, using the symmetrisation. Thenovelty of the present approah is a reformulation of this system in terms of an expetation with respet



8 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGto a marked Poisson point proess, whih serves as a referene proess. This is a Poisson proess in thespae R
d to whose partiles we attah yles alled marks, starting and ending at that partile. Thesymmetrisation is re�eted by an a priori distribution of yle lengths. The interation between theBrownian partiles are enoded as interation between the marks in an exponential funtional. Thepartile density is desribed by a ondition on the total length of the marks in the unit box.Approahes to Bose gases using point proesses have oasionally been used in the past (see [F91℄and the referenes therein) and also reently in [Raf09℄, but systems with interations have not yetbeen onsidered using this tehnique, to the best of our knowledge.The greatest adavantage of this approah is that it is amenable to a large-deviations analysis. Theentral objet here is the stationary empirial �eld of the marked point proess, whih ontains allrelevant information and satis�es a large-deviations priniple in the thermodynami limit. For somelass of interating systems, this diretion of researh was explored in [GZ93, G94℄. In the presentpaper, we apply these ideas to the more di�ult ase of the interating Bose gas. The hallenge here isthat the interation involves the spatial points and the details of the marks. Modulo some error terms,we express the interation and the mark length ondition in terms of a funtional of the stationaryempirial �eld. Formally using Varadhan's lemma, we obtain a variational formula in the limit.However, due to a lak of ontinuity in the funtionals that desribe the interation and the marklengths, the upper and lower bounds derived in this way, may di�er in general. (At su�iently hightemperature, we overome this problem by additional e�orts and establish a formula for the limit.)This e�et is not a tehnial drawbak of the method, but lies at the heart of BEC.In Theorem 1.2, we formulate the limiting free energy in terms of a minimising problem for randomshift-invariant marked point proesses with interation under a onstraint on the total length of themarks per unit volume. Both formulas in our upper and lower bounds in Theorem 1.2 are formulated interms of random point �elds having �nitely long yles as marks. The onept used in the present paperis not able to inorporate in�nitely long yles nor to quantify their ontribution to the interation. Inthe proof of our lower bound of the free energy, we drop the interations involving any yle longer thana parameter R that is eventually sent to in�nity, and in our proof of the upper bound we even dropthese yles in the probability spae. As a result, our two formulas register only `�nitely long' yles.Their total marosopi ontribution is represented by the term 〈P,N (ℓ)

U 〉, and the one of the `in�nitelylong' yles by the term ρ − 〈P,N (ℓ)

U 〉. In this way, the long yles are only indiretly present in ouranalysis: in terms of a `loss of mass', the di�erene between the partile density ρ and the total massof short yles. Physially speaking, this di�erene is the total mass of a ondensate of the partiles.The values of the two formulas χ(≤)(β, ρ) and χ(=)(β, ρ) di�er if `in�nitely long' yles do havesome deisive ontribution in the sense that the optimal point proess(es) P in χ(≤)(β, ρ) satis�es
〈P,N (ℓ)

U 〉 < ρ. We onjeture that the question whether or not the optimal P in χ(≤)(β, ρ) has a lossof probability mass of in�nitely long yles is intimately related with the question whether or not
χ(≤)(β, ρ) = χ(=)(β, ρ) and that this question is in turn deisively onneted with the question whetheror not BEC appears. This is in aordane with Süt®'s work [Sü93, Sü02℄. The onjeture is that, forgiven β and in d ≥ 3, if ρ is su�iently small, then it is satis�ed, and for su�iently large ρ it is notsatis�ed. The latter phase is onjetured to be the BEC phase. Future work will be devoted to ananalysis of this question.Here is an abstrat su�ient riterion for χ(≤)(β, ρ) = χ(=)(β, ρ).Lemma 1.5. Fix β ∈ (0,∞). If there exists a minimiser P̂ of the variational problem infP∈Pθ

(Iβ(P )+

〈P,Φβ〉) satisfying ρ̂ := 〈P̂ ,N (ℓ)

U 〉 <∞, then, for any ρ ∈ (0, ρ̂),
χ(≤)(β, ρ) = χ(=)(β, ρ). (1.29)



FREE ENERGY OF MANY-PARTICLE SYSTEMS 9Proof. Pik ρ < ρ̂. Let P be a minimiser in the formula for χ(≤)(β, ρ), i.e., of inf{Iβ(P )+Φβ(P ) : P ∈

Pθ, 〈P,N
(ℓ)

U 〉 ≤ ρ}. If 〈P,N (ℓ)

U 〉 would be smaller than ρ, then an appropriate onvex ombination, P̃ ,of P and P̂ would satisfy 〈P̃ ,N (ℓ)

U 〉 ∈ (〈P,N (ℓ)

U 〉, ρ] and Iβ(P̃ ) + Φβ(P̃ ) < Iβ(P ) + Φβ(P ). This wouldontradit the minimising propery of P . Hene, 〈P,N (ℓ)

U 〉 = ρ, and therefore P minimises also theformula for χ(=)(β, ρ). �1.5. The non-interating ase. Let us ompare our results to the non-interating ase. Indeed,[A09, Thm. 2.1℄ says that, in the ase v ≡ 0, the identi�ation of the limiting free energy in (1.27)holds for any β, ρ ∈ (0,∞). To see this, we have to argue a bit, and we will only sketh the argument.Expliitly, after some elementary manipulations, one sees that [A09, Thm. 2.1℄ amounts to
f(β, ρ) = −

1

β

ζ(1 + d
2 )

(4πβ)d/2
+

1

β
inf

λ∈ℓ1(N) :
P

k kλk≤1
J(λ), (1.30)where we reall that q was de�ned in (1.8), and we put

J(λ) =
∑

k∈N

qk + ρH(λ | q) + ρ
∑

k∈N

λk log ρ− ρ
∑

k∈N

λk.Now we rewrite the minimum on the right-hand side of (1.27) in a similar form by splitting N (ℓ)

U into∑
k∈N

kNk, where
Nk,Λ(ω) = #{x ∈ ξ ∩ Λ: ℓ(fx) = k} (1.31)and Nk = Nk,U is the number of partiles in the unit box U whose yles have length k (and areallowed to leave U). Then we may write

inf
{
Iβ(P ) : P ∈ Pθ, 〈P,N

(ℓ)

U 〉 ≤ ρ
}

= inf
λ∈ℓ1(N) :

P
k kλk≤1

inf
P∈Pθ : λ(P )=λ

Iβ(P ),where λ(P ) = 1
ρ(〈P,Nk〉)k∈N. In order to see that (1.30) oinides with (1.27) for v = 0, one only hasto hek that J(λ) = infP∈Pθ : λ(P )=λ Iβ(P ) for any λ ∈ ℓ1(N) satisfying ∑

k kλk ≤ 1.We do not o�er an analytial proof of this fat, but instead a probabilisti one, whih makes use ofthe large-deviations priniple in Lemma 3.3 below for the stationary empirial �eld RΛL,ωP
introduedin (3.2) with rate funtion Iβ. Observe that the mapping P 7→ λ(P ) is ontinuous as a funtion fromthe set of all P ∈ Pθ satisfying 〈P,N (ℓ)

U 〉 ≤ ρ into the sequene spae ℓ1(N). Hene, by the ontrationpriniple (see [DZ98, Thm. 4.2.1℄), the sequene (λ(RΛL,ωP
))L>0 satis�es a large-deviations priniplewith rate funtion λ 7→ infP∈Pθ : λ(P )=λ Iβ(P ). By uniqueness of rate funtions, it su�es to showthat this sequene satis�es the priniple with rate funtion J . We now indiate how to derive this byexpliit alulation.Introdue

MΛ =
{
λ ∈ [0, 1]N :

∑

k

kλk ≤ 1,∀k ∈ N : λk|Λ|ρ ∈ N0

}
,and for λ ∈MΛ, we alulate

Q

(
λ
(
RΛ,ωP

)
= λ

)
= Q

(
∀k ∈ N : 〈RΛ,ωP

,Nk〉 = ρλk

)
= Q

(
∀k ∈ N : #(ξ(k)

P ∩ Λ) = ρ|Λ|λk

)
,where ξ(k)

P = {x ∈ ξP : fx ∈ Ck} is the set of those Poisson points with yle of length k. Sine thePoisson proesses ξ(k)

P , k ∈ N, are independent with intensity qk, we an proeed with
Q

(
λ
(
RΛ,ωP

)
= λ

)
=

∏

k∈N

Q
(
#(ξ(k)

P ∩ Λ) = ρ|Λ|λk

)
=

∏

k∈N

(
e−|Λ|qk

(|Λ|qk)ρ|Λ|λk

(ρ|Λ|λk)!

)
.Using Stirling's formula, we get from here that

1

|ΛL|
log Q

(
λ
(
RΛL,ωP

)
= λ

)
∼ −J(λ), λ ∈MΛL

, as L→ ∞.



10 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGFrom here, it is easy to �nish the proof of the large-deviations priniple for (λ
(
RΛL,ωP

))L>0 with ratefuntion J . This �nishes the proof of (1.27) for any β, ρ ∈ (0,∞) in the noninterating ase v ≡ 0.The well-known Bose-Einstein phase transition in the free energy was made expliit in the analysisof the right-hand side of (1.30) in [A09℄. It was shown there that
f(β, ρ) = −

1

β

1

(4πβ)d/2
×

{∑
k∈N

e−αk

kd/2+1 + (4πβ)d/2ρα for ρ(4πβ)d/2 < ζ(d
2),

ζ(1 + d
2) for ρ(4πβ)d/2 ≥ ζ(d

2),
(1.32)where α is the unique root of ρ = (4πβ)−d/2

∑
k∈N

e−αk

kd/2 . Note that ζ(d
2) = ∞ in d ∈ {1, 2}, hene thereis no phase transition in these dimensions. The �rst line in (1.32) orresponds to the ase where theminimiser λ in (1.30) sati�es ∑

k kλk = 1, i.e., no `in�nitely long' yles ontribute to the free energy,and the seond line to the ase ∑
k kλk < 1. Hene, the Bose-Einstein phase transition is preisely atthe point where the variational formula in (1.30) with `≤' starts di�ering from the formula with `='.2. Rewrite of the partition funtionIn this setion, we give the proof of Proposition 1.1.As a �rst step, we give a representation of Z(bc)

N (β,Λ) in terms of an expansion with respet to theyles of the permutations in (1.1). This is well-known and goes bak to Feynman 1955.We denote the set of all integer partitions of N by
PN =

{
λ = (λk)k ∈ N

N

0 :
∑

k

kλk = N
}
. (2.1)The numbers λk are alled the oupation numbers of the integer partition λ. Any integer partition λof N de�nes a onjugay lass of permutations of 1, . . . ,N having exatly λk yles of length k for any

k ∈ N. The term in (1.1) after the sum on σ depends only on this lass. Hene, we replae this sumby a sum on integer partitions λ ∈ PN and ount the permutations in that lass. For any of theseyles of length k, we integrate out over all but one of the starting and terminating points of all the
k Brownian bridges belonging to that yle and use the Markov property to onatenate them. Thisgives the i-th (with i = 1, . . . , λk) bridge B(k,i) with time horizon [0, kβ], starting and terminating ata site, whih is uniformly distributed over Λ. The family of these bridges B(k,i) is independent, and
B(k,i) has distribution P

(bc,kβ)

Λ , where we de�ne
P

(bc,β)

Λ (df) =

∫
Λ dxµ(bc,β)

x,x (df)∫
Λ dx g(bc)

β (x, x)
. (2.2)The expetation will be denoted by E

(bc,β)

Λ .For λ ∈ PN , de�ne
G(λ)

N,β =
1

2

N∑

k1,k2=1

λk1∑

i1=1

λk2∑

i2=1

k1−1∑

j1=0

k2−1∑

j2=0

1l(k1,i1,j1)6=(k2,i2,j2)

∫ β

0
ds v

(
|B(k1,i1)(j1β + s) −B(k2,i2)(j2β + s)|

)
.(2.3)In words, Gλ

N,β is the total interation between di�erent bridges B(k1,i1) and B(k2,i2) and betweendi�erent legs of the same bridge B(k,i).Lemma 2.1 (Cyle expansion). For any N ∈ N,
Z(bc)

N (β,Λ) =
∑

λ∈PN

( ∏

k∈N

[ ∫
Λ dx g(bc)

kβ (x, x)
]λk

λk! kλk

)⊗

k∈N

(
E

(bc,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
. (2.4)



FREE ENERGY OF MANY-PARTICLE SYSTEMS 11Proof. We are going to split every permutation on the right-hand side of (1.1) into a produt of itsyles. Assume that a permutation σ ∈ SN has preisely λk yles of length k, for any k ∈ {1, . . . ,N}.Then ∑N
k=1 kλk = N . The orresponding Brownian bridges may be renumbered B(k,i)

j with k ∈ N,
i = 1, . . . , λk and j = 1, . . . , k. Then the measure ∫

Λ dx1 . . .
∫
Λ dxN

⊗N
i=1 µ

(bc,β)
xi,xσ(i)

splits into anaording produt, whih an be written, after a proper renumbering of the indies, as
N∏

k=1

λk∏

i=1

k−1∏

j=0

∫

Λ
dx(i)

k,j+1

⊗

k∈N

λk⊗

i=1

k−1⊗

j=0

µ(bc,β)

x
(i)
k,j ,x

(i)
k,j+1

, where x(i)

k,0 = x(i)

k,k. (2.5)Denote by f1 ⋄· · ·⋄fk the onatenation of f1, . . . , fk, i.e., f1 ⋄· · · ⋄fk((i−1)β+s) = fi(s) for s ∈ [0, β].Note that the Markov property of the anonial Brownian bridge measures implies the onatenationformula
µ(bc,kβ)

x,x (d(f1 ⋄ · · · ⋄ fk)) =

∫

(Λ)k−1

dx1 · · · dxk−1

k⊗

i=1

µ(bc,β)
xi−1,xi

(dfi), x0 = xk = x. (2.6)Now we integrate out over x(i)

k,2, . . . , x
(i)

k,k for any k ∈ N and i = 1, . . . , λk. In this way, we obtain thatwe may replae the bridges B(k,i)

j under the measure
N⊗

k=1

λk⊗

i=1

( ∫

Λ
dx(i)

k µ
(bc,kβ)

x
(i)
k ,x

(i)
k

)by the bridges B(k,i) = B(k,i)

1 ⋄ · · · ⋄B(k,i)

k under the measure
N⊗

k=1

[ ∫

Λ
dx g(bc)

kβ (x, x)
]λk(

E
(bc,kβ)

Λ

)⊗λk .Summarising, we get
Z(bc)

N (β,Λ) =
∑

λ∈PN

A(λ)

N !

N∏

k=1

[ ∫

Λ
dx g(bc)

kβ (x, x)
]λk ⊗

k∈N

(
E

(bc,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
,where A(λ) = #

{
σ ∈ SN : σ has λk yles of length k,∀k ∈ N

} is size of the onjugay lass for theinteger partition λ ∈ PN . Standard ounting arguments (see [C02, Th. 12.1℄) give
A(λ) =

N !
∏N

k=1(λk!kλk)
,and onlude the proof. �Now we explain our rewrite of the partition sum in terms of the marked Poisson point proessintrodued in Setion 1.2, i.e., we prove Proposition 1.1. The main idea is to replae the sum overinteger partitions in Lemma 2.1 by an expetation with respet to the marked Poisson point proessunder onditions on the mark events. We restrit to the ase of empty boundary onditions; the othertwo require only notational hanges.It will be onvenient to write the proess ωP as the superposition

ωP =
∑

k∈N

ω(k)

P , where ω(k)

P =
∑

x∈ξ
(k)
P

δ(x,Bx), (2.7)and ω(k)

P is the Poisson proess on R
d × Ck with intensity measure νk de�ned in (1.7). The proesses

ω(k)

P are independent.Proof of Proposition 1.1. We start from Lemma 2.1. Pik an integer partition λ ∈ PN withoupation number λk satisfying ∑N
k=1 kλk = N , and abbreviate the number of yles of λ by m =
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∑N

k=1 λk. For any k ∈ N, the family (B(k,i))i=1,...,λk
under the measure (P(kβ)

Λ )⊗λk has the samedistribution as the family of marks (Bx)
x∈ξ

(k)
P

of the onditional Poisson proess ω(k)

P given {#(ξ(k)

P ∩Λ) =

λk}. Considering the produt measure ⊗
k∈N

(P(kβ)

Λ )⊗λk is equivalent to onsidering the superpositionof the onditional proesses ω(k)

P with k ∈ N.Hene, we have preisely m Poisson points in Λ. For any k ∈ N, onditional on {#(ξ(k)

P ∩ Λ) = λk},the set ξ(k)

P ∩ Λ has the same distribution as the set of starting points, {B(k,1)(0), . . . , B(k,λk)(0)}. Aomparison of (1.14)-(1.15) with (2.3) shows that the interation term G(λ)

N,β must be replaed by theHamiltonian HΛ(ωP). Hene,
⊗

k∈N

(
E

(kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
= E

[
e−HΛ(ωP)

∣∣∣∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk

]
.We see in an elementary way that

E

[
e−HΛ(ωP)

∣∣∣∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk

]

= E

[
e−HΛ(ωP)1l{∀k ∈ N, #(ξ(k)

P ∩ Λ) = λk}
∣∣∣#(ξP ∩ Λ) = m

]∏
k∈N

λk!

m!
qm

∏

k∈N

(qk)
−λk ,

(2.8)where q and the qk are de�ned in (1.8). Let us summarise all the terms involving λk from (2.4) and(2.8) (noting that gβ(x, x) = (4πβk)−
d
2 ):

( ∏

k∈N

(4πβk)−
d
2
λk |Λ|λk

λk! kλk

)
×

∏
k∈N

λk!

m!
qm

∏

k∈N

(qk)
−λk = |Λ|m

qm

m!
.We denote by Nk,Λ(ω) = #{x ∈ Λ: ℓ(fx) = k} and NΛ(ω) = #(ξ ∩ Λ) the number of partiles in

Λ (whose marks do not have to be ontained in Λ) with mark length equal to k, respetively witharbitrary mark length. Then we get
ZN (β,Λ) =

N∑

m=1

|Λ|m
qm

m!

∑

λ∈PN,P
k λk=m

E

[
e−HΛ(ωP)1l{∀k ∈ N, Nk,Λ(ωP) = λk}

∣∣∣NΛ(ωP) = m
]
. (2.9)Note that the event {NΛ(ωP) = m} has probability |Λ|m qm

m! exp{−|Λ|q}. Hene
ZN (β,Λ) = e|Λ|q

N∑

m=1

∑

λ∈PN,P
k λk=m

E

[
e−HΛ(ωP)1l{∀k ∈ N, Nk,Λ(ωP) = λk}1l{NΛ(ωP) = m}

]
. (2.10)Note that the events {∀k ∈ N, Nk,Λ(ωP) = λk} ∩ {NΛ(ωP) = m} are a deomposition of the event

{N (ℓ)

Λ (ωP) = N}. Hene, the assertion in (1.17) follows.
�3. Large-deviations arguments: proof of Theorem 1.2In this setion we prove Theorem 1.2 by applying large-deviations arguments to the representationof the partition funtion in Proposition 1.1. In Setions 3.1�3.3 we arry out the proof for emptyboundary ondition, and in Setion 3.4 we show how to trae the other two boundary onditions bakto this ase. In Setion 3.1 we introdue the main objet of our analysis, the stationary empirial�eld with respet to the marked Poisson proess ωP, and we rewrite the partition funtion in termsof this �eld. We also formulate and explain the main steps of the proof, among whih the ruiallarge-deviations priniple for that �eld. In Setions 3.2 and 3.3 we prove the upper and lower bounds,respetively, for empty boundary ondition.



FREE ENERGY OF MANY-PARTICLE SYSTEMS 133.1. The stationary empirial �eld. Our analysis is based on a large-deviations priniple for thestationary empirial �eld, de�ned as follows. For any ξ ⊂ R
d and for any entred box Λ ⊂ R

d, let
ξ(Λ) be the Λ-periodi ontinuation of ξ ∩Λ. Analogously, we de�ne the Λ-periodi ontinuation of therestrition of the on�guration ω to Λ as

ω(Λ) =
∑

z∈Zd

∑

x∈ξ∩Λ

δ(x+Lz,fx) if ω =
∑

x∈ξ

δ(x,fx) ∈ Ω, (3.1)where L is the side length of the entered ube Λ. Then the stationary empirial �eld is given by
RΛ,ω =

1

|Λ|

∫

Λ
dy δθy(ω(Λ)), ω ∈ Ω, (3.2)where the shift operator θy : R

d → R
d is de�ned by θy(x) = x−y. It is lear that RΛ,ω is a shift-invariantprobability measure on Ω, i.e., it is an element of Pθ.Now we express N (ℓ)

Λ (ω) in terms of RΛ,ω. Reall that U denotes the entred unit box.; we write ΛLfor Λ.Lemma 3.1. For any entred box Λ ⊂ R
d with |Λ| > 1, and any ω ∈ Ω,

|Λ|
〈
RΛ,ω,N

(ℓ)

U

〉
= N (ℓ)

Λ (ω).Proof. The assertion follows from [GZ93, Remark 2.3(1)℄, however we give a diret proof withoutusing Palm measures. Let L > 1 be suh that Λ = ΛL = [−L
2 ,

L
2 ]d. We alulate

|Λ|
〈
RΛ,ω, N

(ℓ)

U

〉
=

∫

Λ
dz N (ℓ)

U

(
θz(ω(Λ))

)
=

∑

x∈ξ(Λ)

∫

Λ
dz 1lU−x(z)ℓ(fx)

=
∑

x∈ξ(Λ)
x∈Λ+U

ℓ(fx)|Λ ∩ (U − x)|

= N (ℓ)

Λ (ω) +
∑

x∈ξ(Λ)∩((Λ+U)\Λ)

ℓ(fx)|Λ ∩ (U − x)|

+
∑

x∈ξ∩Λ

ℓ(fx)
(
|Λ ∩ (U − x)| − 1

)
.It remains to show that the sum of the two last sums is equal to zero. Note that the last sum an berestrited to x ∈ ξ ∩ (Λ \ ΛL−1). We use the fat that for eah point x ∈ ξ ∩ (Λ \ ΛL−1) there existsa olletion of points in ξ(Λ) ∩ (ΛL+1 \ Λ), with the same mark of x. Indeed, there exists a positiveinteger m(x) ≤ d and a set {x′1, . . . , x′m(x)}, suh that x′i ∈ ξ(Λ) ∩ (Λ + U) \ Λ, x′i = x + Lzi for some

zi ∈ Z
d and ∑m(x)

i=1 |Λ ∩ (U − x′i)| = 1 − |Λ ∩ (U − x)|. Notie that
⋃

x∈ξ∩(Λ\ΛL−1)

m(x)⋃

i=1

x′i = ξ(Λ) ∩ ((Λ + U) \ Λ),and fx = fx′
i
, for any i ≤ m(x). Hene

∑

x∈ξ(Λ)∩((Λ+U)\Λ)

ℓ(fx)|Λ ∩ (U − x)| =
∑

x∈ξ∩Λ

ℓ(fx)
(
1 − |Λ ∩ (U − x)|

)
.

�Now we express the interation Hamiltonian in terms of integrals of the stationary empirial �eldagainst suitable funtions; more preisely, we give lower and upper bounds. In the following lowerbound, it is important that this funtional is loal and bounded; this will be ahieved up to a smallerror only.



14 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGFix large trunation parameters M,R and K and introdue ξ(≤K) = {x ∈ ξ : ℓ(fx) ≤ K} for ω ∈ Ωand
Φ(R,M,K)

β (ω) =
∑

x∈ξ(≤K)∩U

∑

y∈ξ(≤K)∩ΛR

T (M)
x,y (ω), (3.3)where ΛR = [−R

2 ,
R
2 ]d and

T (M)
x,y (ω) =

1

2

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
vM (|fx(iβ + s) − fy(jβ + s)|) ds,and where vM (r) = (v ∧M)(r) = min{v(r),M}. Reall that NΛ(ω) = #(ξ ∩ Λ) denotes the partilenumber in a measurable set Λ ⊂ R

d.Lemma 3.2 (Hamiltonian bounds). Fix any entred box Λ = ΛL.(i) For any M,R,K,S ∈ (1,∞), and for L ≥ R+ 2,
HΛ(ω) ≥ |Λ|

〈
RΛ,ω,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉
− CNΛL\ΛL−R−2

(ω), ω ∈ Ω, (3.4)where C = 2dβMK2rS, and r depends only on R and d.(ii)
HΛ(ω) ≤ |Λ|

〈
RΛ,ω,Φβ

〉
, ω ∈ Ω, (3.5)Proof of (i). Estimate

|Λ|
〈
RΛ,ω,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉
=

∫

Λ
dzΦ(R,M,K)

β (θz(ω(Λ)))1l{NΛR
(θz(ω(Λ))) ≤ S}

≤

∫

Λ
dz

∑

x∈ξ
(≤K)
(Λ)

∩(U−z)

∑

y∈ξ
(≤K)
(Λ)

∩(ΛR−z)

T (M)
x,y (ω(Λ))1l{#(ξ(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}

=
∑

x,y∈ξ
(≤K)
(Λ)

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y

T (M)
x,y (ω(Λ))

∫

Λ∩(U−x)∩(ΛR−y)
dz 1l{#(ξ(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}.

(3.6)
Observe that the integral over z is not larger than one. Now we split the last sum into the sums on
(x, y) ∈ Λ2 and the remainder. For (x, y) ∈ Λ2, we may replae T (M)

x,y (ω(Λ)) by T (M)
x,y (ω) and estimate itagainst Tx,y(ω). Hene, l.h.s. of (3.6) ≤ HΛ(ω) + Ψ(R,M,K,S)

Λ (ω),where the remainder term is
Ψ(R,M,K,S)

Λ (ω)

=
∑

x,y∈ξ
(≤K)
Λ

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

T (M)
x,y (ω(Λ))

∫

Λ∩(U−x)∩(ΛR−y)
dz 1l{#(ξ(≤K)

(Λ) ∩ (ΛR − z)) ≤ S}

≤
1

2
βMK2

∑

x,y∈ξ
(≤K)
Λ

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

1l{∃ z ∈ Λ ∩ (U − x) ∩ (ΛR − y) : #(ξ(≤K)

Λ ∩ (ΛR − z)) ≤ S}

≤
1

2
βMK2

∑

x,y∈ξ
(≤K)
(Λ)

,x∈Λ+U,

y∈Λ+ΛR,x∈ΛR+1+y,(x,y)/∈Λ2

1l{#(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S}.



FREE ENERGY OF MANY-PARTICLE SYSTEMS 15The sum over (x, y) /∈ Λ2 is split into the sum over x ∈ (Λ + U) \ Λ, y ∈ Λ + ΛR and x ∈ Λ + U, y ∈
(Λ + ΛR) \ Λ. Reall that Λ = ΛL and that L ≥ R + 1. The ondition x ∈ ΛR+1 + y implies that inboth ases y is summed over a subset of ΛL+R+2 \ ΛL−R−1. Hene,

Ψ(R,M,K,S)

Λ (ω) ≤
1

2
βMK2

×
∑

y∈ξ
(≤K)
(Λ)

∩(ΛL+R+2\ΛL−R−1)

#{x ∈ ξ(≤K)

(Λ) ∩ (ΛR+1 + y) : #(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S}.Now we show that the ounting fator is not larger than rS, where r depends only on R and thedimension d. Indeed, over ΛR+1 + y with r boxes ∆1, . . . ,∆r of diameter (R− 1)/2, then
#

{
x ∈ξ(≤K)

Λ ∩ (ΛR+1 + y) : #(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S
}

≤
r∑

i=1

#{x ∈ ξ(≤K)

(Λ) ∩ ∆i : #(ξ(≤K)

(Λ) ∩ (ΛR−1 + x)) ≤ S)

≤
r∑

i=1

#{x ∈ ξ(≤K)

(Λ) ∩ ∆i : #(ξ(≤K)

(Λ) ∩ ∆i) ≤ S)}

≤ rS,sine ∆i ⊂ ΛR−1 + x if x ∈ ∆i. This gives
Ψ(R,M,K,S)

Λ (ω) ≤
1

2
βMK2rSNΛL+R+2\ΛL−R−1

(ω(Λ)) ≤ 2dβMK2rSNΛL\ΛL−R−2
(ω),and �nishes the proof of (i).Proof of (ii). In a similar way as in (3.6), one sees that, for any ω ∈ Ω,

|Λ|
〈
RΛ,ω,Φβ

〉
=

∑

x,y∈ξ(Λ)

Tx,y(ω(Λ)) |Λ ∩ (U − x)|

= HΛ(ω) +
∑

x,y∈ξ∩Λ

Tx,y(ω(Λ))
(
|Λ ∩ (U − x)| − 1

)

+
∑

x,y∈ξ(Λ) : x∈ΛL+1,(x,y)/∈Λ2

Tx,y(ω(Λ)) |Λ ∩ (U − x)|.

(3.7)
It remains to show that the sum of the two last sums is nonnegative. Note that the sum on x in the�rst sum may be restrited to x ∈ ξ ∩ (Λ \ΛL−1). For eah suh x and for any y ∈ ξ ∩Λ, there exist apositive integer m(x) ≤ d and a set {x′1, y′1, . . . , x′m(x), y

′
m(x)}, suh that x′i ∈ ξ(Λ) ∩ΛL+1, x′i = x+Lziand y′i = y + Lzi for some zi ∈ Z

d, and
m(x)∑

i=1

|Λ ∩ (U − x′i)| = |Λ ∩ (U − x)| − 1.Then Tx,y(ω(Λ)) = Tx′,y′(ω(Λ)) by Λ-periodiity of ω(Λ). This shows that the sum of the two last sumsin (3.7) is nonnegative, whih �nishes the proof of (ii). �Reall that LN = (N/ρ)d. Applying Lemmas 3.1 and 3.2(i) to the representation in Proposition 1.1,we obtain, for any R,M,K,S > 0, the upper bound
ZN (β,ΛLN

) ≤ e|ΛLN
|q
E

[
exp

{
− |ΛLN

|
〈
RΛLN

,ωP
,Φ(R,M,K)

β 1l{NΛR
≤ S}

〉}

× exp
{
CNΛLN

\ΛLN−R−2
(ωP)

}
1l{〈RΛLN

,ωP
,N (ℓ)

U 〉 = ρ}
]
, N ∈ N,

(3.8)



16 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGand, using Lemmas 3.1 and 3.2(ii), the lower bound
ZN (β,ΛLN

) ≥ e|ΛLN
|q
E

[
e
−|ΛLN

|〈RΛLN
,ωP

,Φβ〉1l{〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ}
]
, N ∈ N. (3.9)The main point of introduing the stationary empirial �eld is that the family (RΛL,ωP

)L>0 satis�esa large-deviations priniple on Pθ, whih is known from the work by Georgii and Zessin. On Pθ weonsider the following topology. A measurable funtion g : Ω → R is alled loal if it depends onlyon the restrition of ω to some bounded open ube, and it is alled tame if |g| ≤ c(1 +NΛ) for somebounded open ube Λ and some onstant c ∈ R
+. We endow the spae Pθ with the topology τL of loalonvergene, de�ned as the smallest topology on Pθ suh that the mappings P 7→ 〈P, g〉 are ontinuousfor any g ∈ L, where L denotes the linear spae of all loal tame funtions. It is lear that the map

P 7→ 〈P,NU 〉 is τL-ontinuous; however, the map P 7→ 〈P,N (ℓ)

U 〉 is only lower semiontinuous.Lemma 3.3 (Large deviations for RΛL,ωP
). The family of measures RΛL,ωP

satis�es, as L → ∞, alarge-deviations priniple in the topology τL with speed |ΛL| and rate funtion Iβ : Pθ → [0,∞] de�nedin (1.20). The funtion Iβ is a�ne and lower τL-semiontinuous and has τL-ompat level sets.Proof. This is [GZ93, Theorem 3.1℄. �Our goal is to apply Varadhan's lemma to the expetations on the right hand sides of (3.8) and(3.9). In onjuntion with the large-deviations priniple of Lemma 3.3, this formally suggests thatboth (1.25) and (1.26) should be valid, as we explain now. Indeed, �rst onsider (3.9) and note thatthe map P 7→ 〈P,Φβ〉 has the proper ontinuity property for the appliation of the lower bound halfof Varadhan's lemma. If one neglets the fat that the ondition 〈P,N (ℓ)

U 〉 = ρ does not de�ne an openset of P 's, then one easily formally obtains (1.26) from (3.9).Now we onsider (3.8). Assume that the term NΛLN
\ΛLN−R−2

(ωP) is a negligible error term and thattaking the trunation parameters R,M,K and S to in�nity will �nally turn Φ(R,M,K)

β 1l{NΛR
≤ S}〉into Φβ. The funtional P 7→ 〈P,Φ(R,M,K)

β 1l{NΛR
≤ S}〉 has the su�ient ontinuity property for theappliation of the upper bound half of Varadhan's lemma. However, the funtional P 7→ 〈P,N (ℓ)

U 〉is not upper semiontinuous. Hene, the equality 〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ is turned into the inequality
〈P,N (ℓ)

U 〉 ≤ ρ in the resulting variational formula. Therefore, one easily formally obtains (1.25) from(3.8). In partiular, our upper and lower bounds in Theorem 1.2 may di�er. For small β resp. small
ρ, we improve the proof in Lemma 3.4 and ahieve a oinidene of upper and lower bounds, but thishas nothing to do with large-deviations arguments.The lak of upper semiontinuity of the funtional P 7→ 〈P,N (ℓ)

U 〉 auses serious tehnial problemsin the proof of the lower bound, sine the ondition 〈P,N (ℓ)

U 〉 = ρ must be approximated by some openondition.In Lemma 3.2, we already estimated away all the interation involving yles of length > K, and inthe proof of the lower bound we will restrit the on�guration spae to marks with lengths ≤ K. Thisis why our variational formulas spot only the presene of `�nitely long' yles.3.2. The upper bound for empty boundary ondition. In this setion, we prove the upper boundin (1.25) for bc = ∅. Aording to (3.8), it will be su�ient to prove
lim sup

R,M,K,S→∞
lim sup
N→∞

1

|ΛLN
|
log E

[
exp

{
− |ΛLN

|
〈
RΛLN

,ωP
,Φ(R,M,K)

β 1l{NΛR
≤ S}

〉}

× exp
{
CNΛLN

\ΛLN−R−2
(ωP)

}
1l{〈RΛLN

,ωP
,N (ℓ)

U 〉 = ρ}
]
≤ −χ(≤)(β, ρ).

(3.10)An outline of the proof is as follows. We separate �rst the two exponential terms from eah otherwith the help of Hölder's inequality. The latter term will turn out to be a negligible error term. The



FREE ENERGY OF MANY-PARTICLE SYSTEMS 17funtional that appears in the �rst exponent turns out to be loal and bounded. Sine its integralagainst a probability measure P is a τL-ontinuous and bounded funtion of P , Varadhan's lemmaan be applied and expresses the limit superior in terms of the variational formula for the trunatedversions of the interation funtionals. The indiator on the event {〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ} is estimatedagainst the indiator on its losure, whih is the same set with `≤' instead of `='. In this way, weobtain an upper bound against a trunated version of the variational formula −χ(≤)(β, ρ). By lettingthe trunation parameters go to in�nity, this formula onverges to −χ(≤)(β, ρ).Let us turn to the details. We abbreviate RN = RΛLN
,ωP

.We pik η ∈ (0, 1) and start from (3.8), then Hölder's inequality gives
ZN (β,ΛLN

) ≤ e|ΛLN
|q
E

[
e−

1
1−η

|ΛLN
|〈RN ,Φ

(R,M,K)
β 1l{NΛR

≤S}〉1l{〈RN ,N
(ℓ)

U 〉 ≤ ρ}
]1−η

× E

[
e

1
η
CNΛLN

\ΛLN−R−2
(ωP)

]η
;

(3.11)note that we also estimated `= ρ' against `≤ ρ' in the indiator. The seond term on the right handside of (3.11) is easily estimated using the fat that NΛLN
\ΛLN −R−2

is a Poisson random variable withparameter q × |ΛLN
\ ΛLN−R−2| and that this parameter is of surfae order Ld−1

N = o(|ΛN |). Hene,the expetation is estimated
E

[
e

1
η
CNΛLN

\ΛLN−R−2
(ωP)

]η
= e−ηq|ΛLN

\ΛLN−R−2| exp
{
ηeC/ηq|ΛLN

\ ΛLN−R−2|
}
≤ eo(|ΛLN

|).We turn to the �rst term on the right hand side of (3.11). It turns out that Φ(R,M,K)

β 1l{NΛR
≤ S} isbounded. In fat,

Φ(R,M,K)

β (ω)1l{NΛR
(ω) ≤ S} ≤

1

2
Mβ

[ ∑

x∈U∩ξ

ℓ(fx)
∑

y∈ΛR∩ξ

ℓ(fy) +
( ∑

x∈U∩ξ

ℓ(fx)
)2]

1l{NΛR
(ω) ≤ S}

≤MβK2S2. (3.12)Furthermore, it is easily seen that it is also loal. Therefore, the map
P 7→

〈
P,Φ(R,M,K)

β 1l{NΛR
≤S}

〉is bounded and ontinuous on Pθ with respet to the topology τL. Now we an apply a variant ofVaradhan's lemma [DZ98, Thm. 4.3.1℄ in onjuntion with the large-deviations priniple of Lemma 3.3,to obtain that
lim sup
N→∞

1

|ΛLN
|
log E

[
exp

{
−

1

1 − η
|ΛLN

|
〈
RN ,Φ

(R,M,K)

β 1l{NΛR
≤ S}

〉}
1l{〈RN ,N

(ℓ)

U 〉 ≤ ρ}
]

≤ − inf
P∈Pθ : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) +

1

1 − η
〈P,Φ(R,M,K)

β 1l{NΛR
≤ S}〉

)
,

(3.13)sine the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 ≤ ρ} is losed.It remains to prove that
lim inf

R,M,K→∞,η↓0
lim inf
S→∞

inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,S,η(P )

)
≥ inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + F (P )

)
, (3.14)where we used the abbreviations F (P ) = 〈P,Φβ〉 and FM,R,K,S,η(P ) = 1

1−η 〈P,Φ
(R,M,K)

β 1l{NΛR
≤ S}〉.Fix M,R,K > 0 and η ∈ (0, 1) and pik a sequene Sn → ∞ and some Qn satis�ng 〈Qn,N

(ℓ)

U 〉 ≤ ρsuh that
Iβ(Qn) + FM,R,K,Sn,η(Qn) < inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)
+

1

n
. (3.15)



18 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGBy ompatness of the level sets of Iβ , we may assume that the limiting measure Q = limn→∞Qn existsin Pθ, where the limit is taken along some suitable subsequene. Notie further that 〈Q,N (ℓ)

U 〉 ≤ ρ byFatou's lemma. Fix any large S > 0, then for n su�iently large,
inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(
Iβ(P ) + FM,R,K,Sn,η(P )

)
> Iβ(Qn) + FM,R,K,Sn,η(Qn) −

1

n

≥ Iβ(Qn) + FM,R,K,S,η(Qn) −
1

n
,

(3.16)where the seond inequality uses the monotoniity of FM,R,K,S,η in S. Now send n → ∞ and usethe lower semi-ontinuity of Iβ and the ontinuity of FM,R,K,S,η, to get that the limit inferior of theright hand side of (3.16) is larger or equal to Iβ(Q) + FM,R,K,S,η(Q). Sending S → ∞ and using themonotone onvergene theorem, we arrive at
lim inf
S→∞

inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,S,η(P )) ≥ inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,∞,η(P )). (3.17)In a similar way one proves that
lim inf

R,M,K→∞,η↓0
inf

P : 〈P,N
(ℓ)
U 〉≤ρ

(Iβ(P ) + FM,R,K,∞,η(P )) ≥ inf
P : 〈P,N

(ℓ)
U 〉≤ρ

(
Iβ(P ) + F (P )

)
,whih implies (3.14) and ends the proof of (3.10).3.3. The lower bound for empty boundary ondition. In this setion, we prove the lower boundin (1.26) for bc = ∅. Aording to (3.9), it will be su�ient to prove

lim inf
N→∞

1

|ΛLN
|
log E

[
e
−|ΛLN

|〈RΛLN
,ωP

,Φβ〉1l{〈RΛLN
,ωP
,N (ℓ)

U 〉 = ρ}
]
≥ −χ(=)(β, ρ). (3.18)We follow the standard strategy of hanging the measure so that untypial events beome typial, andontrolling the Radon-Nikodym density by means of MMillan's theorem. However, for our problemwe have to overome two major di�ulties. First, the map P 7→ 〈P,Φβ〉 is not upper semiontinuous,and seond, the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 = ρ} appearing in the indiator is not open. This set indueslong-range orrelations not only between the points of the proess, but also between their marks.Therefore, the results of [GZ93℄ annot be applied diretly, but some ideas of [G94℄ an be adapted.Our strategy is as follows. In Lemma 3.7, we replae the ondition 〈P,N (ℓ)

U 〉 = ρ by the ondition
|〈P,N (ℓ)

U 〉−ρ| < δ for some small δ and ontrol the replaement error. This ondition beomes an openondition when restriting the mark spae E to a ut-o� version. A restrition of Pθ in Lemma 3.8makes the map P 7→ 〈P,Φβ〉 ontinuous. In order to apply MMillan's theorem to the transformedpoint proess, an ergodi approximation is arried out in Lemma 3.10.Let us turn to the details. First, we prepare for relaxing the ondition `= ρ' to `≈ ρ' in the followingstep, whih is of independent interest. Bounding the quotient ZN+1/ZN of partition funtions is oftenthe key step to prove the equivalene of the anonial ensemble with the grand anonial ensemble,where the partile number is not �xed but governed by the mean. In the following, we give a lowerbound in our ase, whih will also imply a non-trivial upper bound for the limiting free energy. Ourproof is arried out in the setting of the yle expansion introdued in Setion 2 and is independent ofthe reformulation in terms of the marked Poisson point proess.Lemma 3.4. For any N ∈ N and any measurable set Λ ⊂ R
d,

ZN+1(β,Λ)

ZN (β,Λ)
≥ (4πβ)−

d
2

|Λ|

N + 1
e−Nβα(v)/|Λ|, (3.19)where we reall that α(v) =

∫
Rd v(|x|) dx.



FREE ENERGY OF MANY-PARTICLE SYSTEMS 19Proof. The strategy is as follows. We start with the yle expression for the partition funtion
Zl. We then add a partile, i.e., an additional yle of length one, and ontrol the hanges in theombinatorial fator and in the energy. Here our assumption ∫

Rd v(|x|) dx < ∞ allows to bound theadditional interation energy.We abbreviate ZN (β,Λ) by ZN in this proof. Reall (2.1). Aording to Lemma 2.1, the ylerepresentation of the partition funtion reads
ZN =

∑

λ∈PN

F1(λ)F2(λ), (3.20)with the ombinatorial and interation part
F1(λ) =

N∏

k=1

(4πβk)−dλk/2|Λ|λk

λk!kλk
and F2(λ) =

( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β

]
.De�ne the injetion

T : PN → PN+1, T (λ) = λ̃ with λ̃k =

{
λ1 + 1 if k = 1

λk if k ≥ 2.All the terms in (3.20) are nonnegative, hene we may estimate
ZN+1 ≥

∑

eλ∈PN+1 : eλ1≥1

F1(λ̃)F2(λ̃) =
∑

λ∈PN

F1(T (λ))F2(T (λ))

=
∑

λ∈PN

F1(T (λ))

F1(λ)

F2(T (λ))

F2(λ)
F1(λ)F2(λ).

(3.21)The �rst quotient on the right hand side of (3.21) is bounded from below as follows
F1(T (λ))

F1(λ)
= (4πβ)−d/2 |Λ|

λ1 + 1
≥ (4πβ)−d/2 |Λ|

N + 1
. (3.22)The seond quotient is estimated via Jensen's inequality as follows. Reall that B(k,i)

(j−1)β+s is theBrownian bridge of the j-th leg of the i-th yle of length k, 1 ≤ i ≤ λk.
F2(T (λ)) = E

(β)

Λ ⊗
( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β exp

{
−

∑

k∈N

λk∑

i=1

k∑

j=1

∫ β

0
v(|Bs −B(k,i)

(j−1)β+s|) ds
}]

≥
( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,β exp

{
−

∑

k∈N

λk∑

i=1

k∑

j=1

∫ β

0
E

(β)

Λ

[
v(|Bs −B(k,i)

(j−1)β+s|)
]
ds

}]
.

(3.23)Given λ ∈ PN and k ∈ N, i ∈ {1, . . . , λk}, j ∈ {1, . . . , k}, we write f(s) := B(k,i)

(j−1)β+s, and we estimatethe expetation in the exponent as follows.
E

(β)

Λ (v(|Bs − f(s)|) =
1

|Λ|

∫

Λ
dx

∫

Λ
dy

gs(x, y)v(|y − f(s)|)gβ−s(y, x)

gβ(x, x)

=
1

|Λ|

∫

Λ
dy v(|y − f(s)|)

∫

Λ
dx

(gβ−s(y, x)gs(x, y)

gβ(y, y)

) gβ(y, y)

gβ(x, x)

=
1

|Λ|

∫

Λ
dy v(|y − f(s)|),

(3.24)sine, beause of gβ(x, x) = gβ(y, y), the integral over x is exatly 1. An upper bound follows easilybeause the interation potential is nonnegative, i.e.,
E

(β)

Λ (v(|Bs − f(s)|) ds =
1

|Λ|

∫

Λ
dy v(|y − f(s)|) ≤

1

|Λ|

∫

Rd

v(|x|) dx =
1

|Λ|
α(v). (3.25)



20 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGUsing this in (3.23), we get
F2(T (λ)) ≥

( N⊗

k=1

(
E

(kβ)

Λ

)⊗λk
)[

e−G
(λ)
N,βe

−
P

k∈N

Pλk
i=1

Pk
j=1 β 1

|Λ|
α(v)

]
= F2(λ)e

−Nβ
|Λ|

α(v)
.Using this and (3.22) in (3.21), the assertion follows. �Now we draw two orollaries. First, we give an upper bound for the free energy, introdued in (1.3).Reall that ΛLN

is the entred box with volume N/ρ.Corollary 3.5 (Upper bound for the free energy). For any β, ρ ∈ (0,∞),
lim sup
N→∞

−
1

β

1

|ΛLN
|
logZN (β,ΛLN

) ≤
ρ

β
log

(
ρ(4πβ)

d
2

)
+ ρ2α(v).Proof. We use Lemma 3.4 iteratively, to get

ZN (β,ΛLN
) =

N−1∏

l=0

Zl+1(β,ΛLN
)

Zl(β,ΛLN
)

≥
N−1∏

l=0

(
(4πβ)−

d
2
1

ρ
e−βα(v)ρ

)
=

(
(4πβ)−

d
2
1

ρ
e−βα(v)ρ

)NThe assertion follows by taking lim supN→∞− 1
β

1
|ΛLN

| log. �Corollary 3.6. Fix (β, ρ) ∈ Dv. Then, for any N, Ñ ∈ N satisfying Ñ ≤ N ,
E

[
e
−HΛLN

(ωP)
1l{N (ℓ)

ΛLN
(ωP) = N}

]
≥ E

[
e
−HΛLN

(ωP)
1l{N (ℓ)

ΛLN
(ωP) = Ñ}

]
.In partiular, the map Ñ 7→ Z eN (β,ΛLN

) is inreasing in Ñ ∈ {1, . . . ,N}.Proof. Observe that, for l < N , by Lemma 3.4,
Zl+1(β,ΛLN

)

Zl(β,ΛLN
)

≥ (4πβ)−
d
2
|ΛLN

|

l + 1
e−lβα(v)/|ΛLN

| ≥ (4πβ)−
d
2
1

ρ
e−βρα(v) ≥ 1,where the last step follows from (β, ρ) ∈ Dv. Hene, for any Ñ ∈ N satisfying Ñ ≤ N , we have

ZN (β,ΛLN
) ≥ Z eN (β,ΛLN

). Now use Proposition 1.1 to �nish. �OpennessAs we already mentioned, some of the tehnial di�ulties for the appliation of Varadhan's lemmaome from the fat that the set {P ∈ Pθ : 〈P,N (ℓ)

U 〉 = ρ} is not open. This problem will be taken areof in the following lemma: we derive a lower bound for the right-hand side in (3.9) in terms of thesame expetation, where the strit ondition = ρ is replaed by the ondition ∈ (ρ− δ, ρ+ δ), for some
δ > 0. Though this set is not open in Pθ, it will be open after restriting Ω to some ut-o� version
Ω(K,R), whih we will introdue a bit later.Lemma 3.7. Fix β, ρ ∈ (0,∞). We abbreviate RN (ω) = RΛLN

,ω for ω ∈ Ω. Fix δ ∈ (0, ρ). Then forany N ∈ N,
E

[
e
−HΛLN

(ωP)
1l{〈RN (ωP), N (ℓ)

U 〉 = ρ}
]

≥
(C1 ∧ C2)

δ|ΛLN
|

2δ|ΛLN
| + 2

E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ + δ)}
]
,

(3.26)where C1 = 1 ∧
(
e−(ρ+δ)βα(v)(4πβ)−d/2 1

ρ+δ

) and C2 = e
− q

ρ−δ .



FREE ENERGY OF MANY-PARTICLE SYSTEMS 21Proof. De�ne the subset
Pl =

{
P ∈ Pθ : 〈P,N (ℓ)

U 〉 =
l

|ΛLN
|

}of probability measures. Abbreviate
Y (1)

l = E

[
e
−HΛLN

(ωP)
1lPl

(RN (ωP))
]
, (3.27)

Y (2)

l = E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1lPl
(RN (ωP))

]
. (3.28)Notie that, sine N/|ΛLN

| = ρ, the left-hand side of (3.26) is equal to Y (1)

N , while the expetation onthe right-hand side is equal to ∑

l∈N : (ρ−δ)|ΛLN
|<l<(ρ+δ)|ΛLN

|

Y (2)

l .We now estimate the quotients Y (1)

l+1/Y
(1)

l , respetively Y (2)

l+1/Y
(2)

l , from below and above. More preisely,we show, for any l ∈ N0,
Y (1)

l+1 ≥ C1Y
(1)

l if (ρ− δ)|ΛLN
| < l ≤ ρ|ΛLN

|, (3.29)and
Y (2)

l ≥ C2Y
(2)

l+1 if ρ|ΛLN
| ≤ l < (ρ+ δ)|ΛLN

|. (3.30)The proof of (3.29) follows from Lemma 3.4, ombined with Proposition 1.1. Now we prove (3.30).We �nd a map T : Pl+1 → Pl that desribes a thinning proedure with the parameter p = l
l+1 . Tothis end, we introdue a probability kernel K from Ω to Ω by putting K(ω, ·) equal to the distributionof ω(η) =

∑
x∈ξ ηxδ(x,fx) =

∑
x∈ξ(η) δ(x,fx), where ω =

∑
x∈ξ δ(x,fx) ∈ Ω, and, given ω, (ηx)x∈ξ is aBernoulli sequene with parameter p. The mapping

T : Pl+1 → Pl, T (P ) = PK, (3.31)desribes the distribution of what is left from a on�guration with distribution P after deleting eahpartile independently with probability p. Given P ∈ Pl+1, it follows, writing Eη for the expetationwith respet to (ηx)x∈ξ,
〈T (P ), N (ℓ)

U 〉 =

∫

Ω
P (dω)

∫

Ω
K(ω,dω̃)N (ℓ)

U (ω̃) =

∫

Ω
P (dω) Eη

[
N (ℓ)

U

(∑

x∈ξ

ηxδ(x,fx)

)]

=

∫

Ω
P (dω) Eη

[ ∑

x∈ξ∩U

ηxℓ(fx)
]

= p〈P,N (ℓ)

U 〉 =
l

l + 1
〈P,N (ℓ)

U 〉 =
l

|ΛLN
|
,whih shows that T : Pl+1 → Pl is well de�ned. Sine T removes partiles, and therefore energy, theestimate

〈P,Φβ〉 ≥ 〈T (P ),Φβ〉, P ∈ Pl+1, (3.32)follows easily. Inequality (3.32) gives the estimate
Y (2)

l+1 ≤ E

[
e−|ΛLN

|〈T (RN (ωP)),Φβ〉1lPl
(T (RN (ωP)))

]

=

∫

Pl

e−|ΛLN
|〈P,Φβ〉

dQ ◦ R−1
N ◦ T −1

dQ ◦ R−1
N

(P ) Q ◦ R−1
N (dP ),

(3.33)where we reall that Q and E are the distribution of and expetation with respet to the marked Poissonproess ωP, and we oneive RN as a map Ω → Pθ; note that RN depends only on the on�gurationin ΛLN
.Now we identify the orresponding Radon-Nikodym density ϕN = dQ ◦ R−1

N ◦ T −1/dQ ◦ R−1
N on theimage RN (Ω). We laim that

ϕN (RN (ω)) = p#(ξ∩ΛLN
)e(1−p)q|ΛLN

|, ω ∈ Ω. (3.34)



22 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGThis is shown as follows. Note that ϕN is the density of T (RN (ωP)) with respet to RN (ωP) and that
T (RN (ωP)) has the distribution of RN (ω(η)

P ). Reall that the partile proess ξP ∩ ΛLN
is a standardPoisson proess on ΛLN

with intensity q|ΛLN
|, and ξ(η)

P ∩ ΛLN
has intensity pq|ΛLN

|. It is standardthat the right-hand side of (3.34) is the density of ξ(η)

P ∩ΛLN
with respet to ξP∩ΛLN

. But this impliesthat (3.34) holds, as we have, for any nonnegative measurable test funtion g : P → [0,∞],
∫
g(P ) Q ◦ T (RN )−1(dP ) = E

[
g(T (RN (ωP)))

]
= E

[
Eη

[
g(RN (ω(η)

P ))
]]

= E
[
p#(ξ∩ΛLN

)e(1−p)q|ΛLN
|g(RN (ωP))

]

=

∫
g(P )p#(ξ∩ΛLN

)e(1−p)q|ΛLN
|
Q ◦ R−1

N (dP ).Note that, for (ρ− δ)|ΛLN
| < l ≤ ρ|ΛLN

|,
ϕN (RN (ω)) ≤ e(1−p)q|ΛLN

| = e
q

l+1
|ΛLN

| ≤ e
q

ρ−δ , ω ∈ Ω.Hene, from (3.33) we have
Y (2)

l+1 ≤ e
q

ρ−δ

∫

Pl

e−|ΛLN
|〈P,Φβ〉Q ◦ R−1

N (dP ) = e
q

ρ−δY (2)

l ,and thus the estimate (3.30).Now we �nish the proof of the lemma subjet to (3.29) and (3.30). By Lemma 3.2(ii), we have
Y (1)

N ≥ Y (2)

N and thereforel.h.s. of (3.26) = Y (1)

N ≥
1

2δ|ΛLN
| + 2

( ∑

(ρ−δ)|ΛLN
|<l≤ρ|ΛLN

|

Y (1)

N +
∑

ρ|ΛLN
|<l<(ρ+δ)|ΛLN

|

Y (2)

N

)
.For (ρ− δ)|ΛLN

| < l ≤ ρ|ΛLN
| the estimate (3.29) gives

Y (1)

N ≥ C1Y
(1)

N−1 ≥ · · · ≥ C
δ|ΛLN

|

1 Y (1)

l ≥ C
δ|ΛLN

|

1 Y (2)

l ,beause C1 ≤ 1, where we again used Lemma 3.2(ii). On the other hand, for ρ|ΛLN
| < l < (ρ+δ)|ΛLN

|the estimate (3.30) gives
Y (2)

N ≥ C2Y
(2)

N+1 ≥ · · · ≥ C
δ|ΛLN

|

2 Y (2)

l ,where we used C2 < 1. Therefore
Y (1)

N ≥
(C1 ∧ C2)

δ|ΛLN
|

2δ|ΛLN
| + 2

∑

(ρ−δ)|ΛLN
|<l<(ρ+δ)|ΛLN

Y (2)

l = r.h.s. of (3.26), (3.35)whih �nishes the proof of the lemma. �As a onlusion of Lemma 3.7 we have the following lower bound, for any su�iently large N ∈ N.
ZN (β,ΛLN

) ≥ e|ΛLN
|(q−Cδ)

E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
, (3.36)for any δ ∈ (0, ρ

2 ) and some C depending only on β, ρ and v. Furthermore, if (β, ρ) ∈ Dv, then we anombine Lemma 3.7 with Corollary 3.6 to get, for any ρ̃ ∈ (0, ρ] and any δ ∈ (0, eρ
2 ), for any su�ientlylarge N ∈ N,

ZN (β,ΛLN
) ≥ e|ΛLN

|(q−Cδ)
E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ̃− δ, ρ̃+ δ)}
]
. (3.37)Hene, in order to prove both bounds in (1.26), it is enough to prove

lim inf
δ↓0

lim inf
N→∞

1

|ΛLN
|
log E

[
e−|ΛLN

|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
≥ −χ(=)(β, ρ), (3.38)for any β, ρ ∈ (0,∞), sine χ(≤)(β, ρ) = infeρ∈(0,ρ) χ

(=)(β, ρ).



FREE ENERGY OF MANY-PARTICLE SYSTEMS 23Restrition of the mark spaeWe will approximate the mark spae E by the ut-o� version
E(K,R) :=

K⋃

k=1

Ck,R, where Ck,R :=
{
f ∈ Ck : sup

s∈[0,kβ]
|f(s) − f(0)| ≤ R

}
.Let Ω(K,R) denote the set of loally �nite point measures on R

d×E(K,R). De�ne the anonial projetion
πK,R : Ω → Ω(K,R) by

πK,R(ω) = ω(K,R) =
∑

x∈ξ : fx∈E(K,R)

δ(x,fx).On Ω(K,R) we onsider the Poisson point proess
ω(K,R)

P = πK,R(ωP) =
∑

x∈ξP : Bx∈E(K,R)

δ(x,Bx) (3.39)as the referene proess. The distribution of ω(K,R)

P is denoted Q(K,R), its intensity measure is ν(K,R) =∑K
k=1 ν

(K,R)

k , where ν(K,R)

k is the restrition of νk to Ω(K,R); see (1.7). By I(K,R)

β we denote the ratefuntion with respet to ω(K,R)

P , that is, I(K,R)

β is de�ned as Iβ in (1.20) with ωP replaed by ω(K,R)

P . Ifthere is no onfusion possible, we identify the set Pθ(Ω
(K,R)) of shift-invariant marked random point�elds on Ω(K,R) with the set of those P ∈ Pθ = Pθ(Ω) that are onentrated on Ω(K,R). A variant ofLemma 3.3 gives that (R

ΛL,ω
(K,R)
P

)L>0 satis�es the large-deviations priniple with rate funtion I(K,R)

β .Observe that R
ΛL,ω

(K,R)
P

= RΛL,ωP
◦ π−1

K,R. Hene, aording to the ontration priniple, we have theidenti�ation
I(K,R)

β (P ) = inf{Iβ(Q) : Q ∈ Pθ, Q ◦ π−1
K,R = P}, (3.40)sine the map Q 7→ Q ◦ π−1

K,R is ontinuous.For a while, we keep K and R �xed. Now we work on the expetation on the right-hand side of(3.9). We obtain a lower bound by requiring that RΛLN
,ωP

be onentrated on Ω(K,R). On this event,we may replae RΛLN
,ωP

by R
ΛLN

,ω
(K,R)
P

, and we may replae the expetation E with respet to thePoisson proess ωP by the expetation E(K,R) with respet to ω(K,R)

P . We write RN for R
ΛLN

,ω
(K,R)
P

inthe following. Hene, we an extend (3.36) by
ZN (β,ΛLN

) ≥ e|ΛLN
|(q−Cδ)

E
(K,R)

[
e−|ΛLN

|〈RN ,Φβ〉1l{〈RN ,N
(ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
. (3.41)Notie that {P ∈ Pθ(Ω

(K,R)) : 〈P,N (ℓ)

U 〉 ∈ (ρ − δ, ρ + δ)} is an open set. In order to apply the lowerbound of Varadhan's lemma to the right-hand side, we need to have that the map P 7→ 〈P,Φβ〉 isupper semiontinuous. This will be ahieved by a further restrition proedure.ContinuityWe prove the ontinuity of the map P 7→ 〈P,Φβ〉 on the following suitable subset of measures. For
r ∈ (0,∞), put

Γr =
{
ω ∈ Ω(K,R) : Tx,y(ω) ≤ r ∀x, y ∈ ξ, and |x− y| ≥

1

r
for all distint x, y ∈ ξ

}
, (3.42)where Tx,y(ω) was de�ned in (1.15). Denote

Pθ,r :=
{
P ∈ Pθ(Ω

(K,R)) : P (Γr) = 1
}
.In the following lemma we use that the map t 7→ td−1 sups≥t−2R v(s) is integrable, whih easily followsfrom the temperedness assumption in Assumption (v).Lemma 3.8. For any r > 0, the map P 7→ 〈P,Φβ〉 is ontinuous on the set Pθ,r.



24 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGProof. We adapt the proof of the lower bound in [G94, Thm. 2℄. Reall that πn : Ω → Ω2n denotesthe projetion πn(ω) =
∑

x∈ξ∩Λ2n
δ(x,fx) on the box Λ2n = [−n, n]d. For any P let Pn := P ◦ π−1

n . Let
P and a net (P (α))α∈D be in Pθ,r suh that P (α) onverges to P (in the topology τL). Then we have,for any n ∈ N and α ∈ D,

|〈P,Φβ〉 − 〈P (α),Φβ〉|

≤ |〈P,Φβ − Φβ ◦ πn〉| + |〈P (α) − P,Φβ ◦ πn〉| + sup
α∈D

|〈P (α),Φβ − Φβ ◦ πn〉|

≤ |〈P (α) − P,Φβ ◦ πn〉| + 2 sup
eP∈Pθ,r

〈P̃ , |Φβ − Φβ ◦ πn|〉.

(3.43)Observe that the last term on the right-hand side vanishes as n → ∞ sine Φβ ◦ πn onverges to Φβuniformly on Γr. Indeed, for ω ∈ Γr estimate
Φβ(ω) − Φβ

(
πn(ω)

)
=

∑

x∈U∩ξ

∑

y∈ξ∩Λc
2n

Tx,y(ω) ≤
1

2

∑

x∈U∩ξ

∑

y∈ξ∩Λc
2n

K2β sup
s≥|x−y|−2R

v(s), (3.44)where we also used that ℓ(fx) ≤ K and sups∈[0,βℓ(fx)] |fx(s)−fx(0)| ≤ R for any x ∈ ξ, sine ω ∈ Ω(K,R).Sine |x− y| ≥ 1
r for any distint x, y ∈ ξ, the upper bound is not larger than

K2βCr,R

∫ ∞

n
td−1 sup

s≥t−2R
v(s) dt,for some Cr,R depending only on r and R. Now use that map t 7→ td−1 sups≥t−2R v(s) is integrable.For any n, the �rst term on the right-hand side of (3.43) vanishes asymptotially sine the net

(P (α))α∈D onverges to P , and Φβ ◦ πn is loal and bounded on Γr. �Ergodi approximationAs a preparation for the onstrution of an ergodi approximation, we now show that any P with �niteenergy is tempered, that is, the expetation of the square of the mean-partile density is �nite. Herewe use the assumption that lim infr↓0 v(r) > 0, whih is part of Assumption (v). Hene, we may pik
R∗ > 0 and ζ > 0 suh that v(|x|) ≥ ζ for all |x| ≤ R∗.Lemma 3.9 (Temperedness). Fix K,R ∈ N, and let P ∈ Pθ(Ω

(K,R)) with 〈P,Φβ〉 <∞. Then
〈P,N2

U 〉 <∞ and 〈P, (N (ℓ)

U )2〉 <∞.Proof. We may assume that R∗ < 1
2 . Therefore, we obtain a lower bound for 〈P,Φβ〉 by restritingthe sums on x, y to x, y ∈ ΛR∗/4 = [−R∗

4 ,
R∗

4 ]d and by dropping all the parts of the yles exept forthe �rst one:
〈P,Φβ〉 =

1

2

∫
P (dω)

∑

x∈ξ∩U,y∈ξ

ℓ(fx)−1∑

i=0

ℓ(fy)−1∑

j=0

1l{(x,i)6=(y,j)}

∫ β

0
v(|fx(iβ + s) − fy(jβ + s)|) ds

≥
1

2

∫
P (dω)

∑

x,y∈ξ∩ΛR∗/4

1l{x 6= y}

∫ β

0
v(|fx(s) − fy(s)|) ds.

(3.45)De�ne, for any ω ∈ Ω(K,R) and x ∈ ξ,
τx(ω) = inf{s ∈ [0, β] : |fx(s) − x| > R∗/4} ∧ δ. (3.46)Note that |x − y| ≤ R∗/2 on the right-hand side of (3.45). Sine v(|x|) ≥ ζ for all |x| ≤ R∗, eahintegral on the right hand side of (3.45) an be estimated from below as follows.

∫ β

0
v(|fx(s)− fy(s)|) ds ≥

∫ τx(ω)∧τy(ω)

0
v(|fx(s)− fy(s)|) ds ≥ ζ (τx(ω) ∧ τy(ω)), x ∈ ξ(k), y ∈ ξ(k′).



FREE ENERGY OF MANY-PARTICLE SYSTEMS 25We get a further lower bound in (3.45) by inserting the indiator on the event {τx = δ = τy}:
〈P,Φβ〉 ≥

δζ

2

∫
P (dω)#

{
(x, y) ∈

(
ξ ∩ ΛR∗/4

)2
: x 6= y, τx = δ = τy

}
.Sine the event {τx = δ} is dereasing for dereasing δ and its probability tends to one as δ ↓ 0, theabove ounting variable tends to the number of distint pairs in ξ∩ΛR∗/4. Hene, for some su�ientlysmall δ > 0, we have

〈P,Φβ〉 ≥
δζ

4

∫
P (dω)#

{
(x, y) ∈

(
ξ ∩ ΛR∗/4

)2
: x 6= y

}
≥
δζ

8

〈
P,N2

ΛR∗/4

〉
.Hene, if 〈P,Φβ〉 is �nite, then, by shift-invariane of P , also 〈P,N2

Λ〉 is �nite for any bounded box Λ.Sine P is onentrated on on�gurations with bounded leg length, also 〈P, (N (ℓ)

Λ )2〉 is �nite for anybounded box Λ. �Now we approximate any probability measure on Ω(K,R) with an ergodi measure. De�ne
ψR(t) :=

{
sups≥t−2R v(s) if t ≥ 3R,

v(R) if t ∈ [0, 3R].
(3.47)Reall from Assumption (v) that ψR(t) = O(t−h) for some h > d.Lemma 3.10 (Ergodi approximation). Fix K,R ∈ N and ε > 0. Then, for any P ∈ Pθ(Ω
(K,R))satisfying I(K,R)

β (P ) + Φβ(P ) < ∞ and for any neighborhood V of P in Pθ(Ω
(K,R)), there exists anergodi measure P̃ ∈ V and some r > 0 suh that P̃ (Γr) = 1, and 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and

I(K,R)

β (P̃ ) ≤ I(K,R)

β (P ) + ε.Proof. This is similar to [G94, Lemma 5.1℄. Reall that Pn denotes the projetion of P on Ωn,the on�guration spae on the box Λ2n = [−n, n]d. Sine 〈P,Φβ〉 < ∞, and as Φβ ≥ 0, we have
〈Pn,Φβ〉 < ∞. Hene limr→∞ Pn(Γr) = 1, for any n ∈ N. Therefore, we an hoose a sequene
r(n) → ∞ suh that limn→∞ Pn(Γr(n)) = 1. Set m = n+ 3R. Denote by P̂ (n) the probability measureunder whih the partile on�gurations in the (up to the boundary, disjoint) boxes Λm + 2mk, with
k ∈ Z

d, are independent and distributed as P ′
n := Pn(· | Γr(n)). In partiular, no points are ontainedin the orridors (Λm\Λn) + 2mk.We now put

P (n) =
1

|Λm|

∫

Λm

P̂ (n) ◦ θz dz.It is then lear that P (n) ∈ Pθ. A standard argument shows that P (n) is ergodi; see, e.g., [G88,Theorem 14.12℄. Sine Γr(n) is shift invariant, and P̂ (n)(Γr(n)) = 1, it also follows that P (n)(Γr(n)) = 1.We laim that P̃ = P (n) with n su�iently large, satis�es the requirements. For this, we have to showthat (1) lim supn→∞ Iβ(P (n)) ≤ Iβ(P ), (2) lim supn→∞〈P (n),Φβ〉 ≤ 〈P,Φβ〉, and �nally (3) the net
(P (n))n∈N onverges to P (in the topology τL).The proof of (1) an be found in the proof of [G94, Lemma 5.1℄.Now we turn to the proof of (2). First note that

〈P (n),Φβ〉 =
1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω )

∑

x∈ξ∩(U−z)

∑

y∈ξ

Tx,y(ω), (3.48)where we reall the notation in (1.15). The sum on y in (3.48) will be split in the sum over y ∈ ξ ∩Λnand the remainder. The �rst sum is handled as follows. As x, y both belong to Λn, the measure P̂ (n)
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n. Furthermore, sine Tx,y(ω) ≥ 0, the integration with respet to P ′

n may beestimated against the integration with respet to P (·)/Pn(Γr(n)). This gives
1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λn

Tx,y(ω)

≤
1

Pn(Γr(n))

1

|Λm|

∫

Λm

dz

∫
P (dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ

Tx,y(ω).Now use the shift invariane of P and reall that limn→∞ Pn(Γr(n)) = 1 to see that the last expressionapproahes 〈P,Φβ〉.Now we onsider the remainder sum in (3.48), where y is summed over ξ ∩ Λc
m. Observe that

|x− y| ≥ 3R, hene we may estimate
Tx,y(ω) ≤ βK2ψR(|x− y|) ≤ βK2 sup

x : |x|≤|z|+1
ψR(|x− y|) ≤ βK2ψR(|y| − |z| − 1)where in the last inequality we used the fat that |x− y| ≥ |x| − |y| and that ψR(·) is non-inreasing.Now we distinguish to whih of the boxes Λn + 2km, with k ∈ Z

d, the point y belongs (reall that theon�gurations in these boxes are independent). Hene for any z ∈ Λm, we have that
∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω)

≤ βK2
∑

k∈Zd\{0}

∫

Ωn

P ′
n(dω(1))

∫

Ωn

P ′
n(dω(2))#(ξ(1) ∩

(
U − z)

) ∑

y∈(ξ(2)∩Λn)+2km

ψR(|y| − |z| − 1)

≤
βK2

Pn(Γr(n))2
〈P,NU 〉〈P,NΛn〉

∑

k∈Zd\{0}

ψR(2|k|m −m− |z| − 1),where we estimated integrals with respet to P ′
n against integrals with respet to P/Pn(Γr(n)) twie,and used the shift invariane of P . Now we use Assumption (v) and obtain a onstant C (dependingonly on R) suh that ψR(t) ≤ Ct−h for any t ≥ 0. Using this in the last display gives that

∫
P̂ (n)(dω)

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω)

≤
βK2C2d

Pn(Γr(n))2
〈P,NU 〉

2nd
∑

k∈Zd\{0}

(2|k|m−m− |z| − 1)−h.Now add the fator 1/|Λm| and integrate over z ∈ Λm. Pik some l = l(n) suh that l ∼ n and
nd(n − l)−h → 0 as n → ∞ and split the integral on z ∈ Λm into the integrals on z ∈ Λl and on theremainder. Then it is easy to see that

lim
n→∞

1

|Λm|

∫

Λm

dz

∫
P̂ (n)(dω )

∑

x∈ξ∩(U−z)

∑

y∈ξ∩Λc
m

Tx,y(ω) = 0.Now we have shown (2), i. e., that lim supn→∞〈P̂ (n),Φβ〉 ≤ 〈P,Φβ〉.For the proof of (3), we pik f ∈ L. Using an a�ne transformation, if neessary, we may assumethat f = f(· ∩ ∆) and |f | ≤ N∆ for some bounded measurable ∆ ⊂ R
d. To estimate the di�erene of
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|P (n)(f) − P (f)| we integrate over the box Λm and get

|P (n)(f) − P (f)| ≤
1

|Λm|

∫

Λm

dx 1l{x+ ∆ ⊂ Λm}
∣∣Pn(f ◦ θx | Γr(n)) − P (f ◦ θx)

∣∣

+
1

|Λm|

∫

Λm

dx 1l{x+ ∆ 6⊂ Λm}
∣∣P̂ (n)(N∆+x) + P (N∆+x)

∣∣.
(3.49)Now P (N∆+x) ≤ |∆|µ(P )

Pn(Γr(n))
, where µ(P ) <∞ is the intensity of P . In the same way we obtain

P̂ (n)(N∆+x) = Pn(N∆+xmod 2m+1 | Γr(n)) ≤
|∆|µ(P )

Pn(Γr(n))
.Hene the seond term on the right hand side of (3.49) is not larger than the volume of {x ∈ Λm : x+

∆ 6⊂ Λm} (whih is of surfae order of Λm) times O(|Λm|−1), i.e., it vanishes. Conerning the �rstterm on the right hand side of (3.49), we estimate
∣∣Pn(f ◦ θx | Γr(n)) − P (f ◦ θx)

∣∣

≤
∣∣∣

1

Pn(Γr(n))
− 1

∣∣∣Pn(N∆+x; Γr(n)) + Pn(N∆+x; Γc
r(n))

≤ |∆|µ(P )
∣∣∣

1

Pn(Γr(n))
− 1

∣∣∣ + P (N2
∆)1/2(1 − Pn(Γr(n)))

1/2.By Lemma 3.9, P (N2
∆) is �nite, hene the right-hand side vanishes as n→ ∞. Therefore, also the �rstterm on the right hand side of (3.49) vanishes, and we onlude that (3) holds. �Final step: proof of the lower bound in (1.26):Now we an �nish the proof of the lower bound in (1.26). Reall that it is su�ient to prove (3.38) forany β, ρ ∈ (0,∞), to get both lower bounds in (1.26). Fix K,R ∈ N and δ ∈ (0, ρ). We start from theright-hand side of (3.41). Fix ε > 0, and pik P ∈ Pθ(Ω

(K,R)) satisfying I(K,R)

β (P ) + 〈P,Φβ〉 < ∞ and
|〈P,N (ℓ)

U 〉 − ρ| < δ. By Lemma 3.10, we may �x some r > 0 and some ergodi measure P̃ ∈ Pθ(Ω
(K,R))satisfying |〈P,N (ℓ)

U 〉 − ρ| < δ and 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and I(K,R)

β (P̃ ) ≤ I(K,R)

β (P ) + ε and P̃ (Γr) = 1.Sine I(K,R)

β (P̃ ) <∞, for N large enough there is a density f (K,R)

N of the projetion P̃LN
of P̃ to Ω(K,R)

LNwith respet to the projetion Q
(K,R)

LN
of the restrited marked Poisson point proess Q(K,R) to ΩLN

,where we reall that ΩLN
is the set of restritions of on�gurations in Ω to ΛLN

, and Ω(K,R)

LN
is de�nedanalogously. We oneive RN as a map RN,· : ΩLN

→ Pθ(Ω
(K,R)). Now introdue the event

CN =
{
ω ∈ Ω(K,R)

LN
: 〈RN,ω,Φβ〉 ≤ 〈P̃ ,Φβ〉 + ε,

1

|ΛLN
|
log f (K,R)

N (ω) ≤ I(K,R)

β (P̃ ) + ε
}
. (3.50)Then we an estimate

E
(K,R)

[
e−|ΛN |〈RN ,Φβ〉1l{|〈RN , N

(ℓ)

U 〉 − ρ| < δ}
]

=

∫

Ω
(K,R)
LN

dQ(K,R)

LN
e−|ΛN |〈RN ,Φβ〉1l{|〈RN ,N

(ℓ)

U 〉 − ρ| < δ}

≥

∫

CN

P̃LN
(dω)

1

f (K,R)

N (ω)
e−|ΛN |〈RN ,Φβ〉1l{|〈RN ,N

(ℓ)

U 〉 − ρ| < δ}

≥ e−|ΛLN
|(I

(K,R)
β ( eP )+ε)e−|ΛLN

|(〈 eP ,Φβ〉+ε)P̃LN

(
CN ∩ {ω ∈ Ω(K,R)

LN
: |〈RN ,N

(ℓ)

U 〉 − ρ| < δ}
)
. (3.51)



28 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGThe ontinuity of the map P 7→ 〈P,Φβ〉 (see Lemma 3.8), the law of large numbers and MMillan'stheorem imply that
P̃LN

(
{ω ∈ Ω(K,R)

LN
: |〈RN,ω, N

(ℓ)

U 〉 − ρ| < δ, 〈RN,ω ,Φβ〉 ≤ 〈P̃ ,Φβ〉 + ε,

1

|ΛLN
|
log f (K,R)

N (ω) ≤ I(K,R)

β (P̃ ) + ε}
)
→ 1 as N → ∞.Using this in (3.51) and this in (3.41), we arrive at

lim inf
N→∞

1

|ΛLN
|
logZN (β,ΛLN

) ≥ q − δ − I(K,R)

β (P̃ ) − ε− 〈P̃ ,Φβ〉 − ε. (3.52)Now reall that 〈P̃ ,Φβ〉 ≤ 〈P,Φβ〉 + ε and I(K,R)

β (P̃ ) ≤ Iβ(P ) + ε. Now we an let ε ↓ 0 and take thein�mum over P , to obtain
lim inf
N→∞

1

|ΛLN
|
logZN (β,ΛLN

) ≥ q − δ − inf
P∈Pθ(Ω(K,R)) : |〈P,N

(ℓ)
U 〉−ρ|<δ

{
I(K,R)

β (P ) + 〈P,Φβ〉
}Our last step is to approah the variational formula χ(=)(β, ρ) on the right-hand side of (1.26) bythe �nite-K and �nite-R versions.Lemma 3.11 (Removing the ut-o�). For any δ ∈ (0, ρ),

lim sup
K,R→∞

inf
P∈Pθ(Ω(K,R)) : |〈P,N

(ℓ)
U 〉−ρ|<δ

{
I(K,R)

β (P ) + 〈P,Φβ〉
}

≤ inf
P∈Pθ(Ω): 〈P,N

(ℓ)
U 〉=ρ

{
Iβ(P ) + 〈P,Φβ〉

}
= χ(=)(β, ρ).

(3.53)Proof. Fix P ∈ Pθ satisfying 〈P,N (ℓ)

U 〉 = ρ and Iβ(P )+Φβ(P ) <∞. For K,R ∈ N, onsider PK,R =

P ◦π−1
K,R. Then we have PK,R(Ω(K,R)) = 1 and 〈PK,R,N

(ℓ)

U 〉 = 〈P, πK,R ◦N (ℓ)

U 〉 ↑ 〈P,N (ℓ)

U 〉 for K,R → ∞by the monotonous onvergene theorem. Hene, for K and R su�iently large, |〈PK,R,N
(ℓ)

U 〉− ρ| < δ.Observe that 〈PK,R,Φβ〉 ≤ 〈P,Φβ〉 sine Φβ ≥ 0. By (3.40), we have I(K,R)

β (PK,R) ≤ Iβ(P ). Finally,observe that the in�mum over P suh that |〈P,N (ℓ)

U 〉 − ρ| < δ is obviously not larger than the in�mumover P satisfying 〈P,N (ℓ)

U 〉 = ρ. �3.4. Proof of Theorem 1.2 for Dirihlet and periodi boundary onditions. In this setion,we show how to adapt the proof of Theorem 1.2 for empty boundary onditions to obtain the prooffor Dirihlet and periodi boundary onditions. Let us make a ouple of obvious observations. First,the restrition of the periodised Brownian bridge measure on paths that do not leave the box Λ equalsthe Brownian bridge measure with Dirihlet boundary onditions, i.e.,
µ(per,kβ)

x,x |
C
(Dir)
k,Λ

= µ(Dir,kβ)
x,x .Hene, it is easy to see that q(Dir) ≤ q(per) and that

Z(Dir)

N (β,Λ) ≤ ZN (β,Λ) ≤ Z(per)

N (β,Λ), (3.54)sine the Feynman-Ka formula for Z(Dir)

N ontains only those paths that stay in Λ all the time withthe same distribution as under whih they appear in the formula for Z(per)

N . Hene, it will be su�ientto prove the upper bound in (1.25) for Z(per)

N and the lower bound in (1.26) for Z(Dir)

N only.We start with the representation of Z(Dir)

N and Z(per)

N given in Proposition 1.1. The �rst step isto show that the weights q(bc) onverge to q =
∑

k∈N
qk. For notational reasons, we now write q(bc)

Λfor q(bc); however notie that it depends on N . Reall that ΛLN
is the entred box with side length

LN = (N/ρ)1/d.
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lim

N→∞
q(bc)

ΛLN
= q. (3.55)Proof. (a) First we onsider periodi boundary onditions. Then we have

q(per)

ΛLN
= (4πβ)−d/2

N∑

k=1

1

k1+d/2

∑

z∈Zd

e
− |z|2

4kβ
L2

N . (3.56)Sine the sum on k = 1, . . . , N and z = 0 onverges towards (4πβ)−d/2
∑∞

k=1
1

k1+d/2 = q, we only haveto show that ∑N
k=1

1
k1+d/2

∑
z∈Zd\{0} e−

|z|2

4kβ
L2

N vanishes as N → ∞.Using an approximation with an integral, one sees that, for some c ∈ (0,∞), only depending on d,
∑

z∈Zd\{0}

e−a|z|2 ≤ ca−d/2 for all a ∈ (0,∞).Using this with a = L2
N/(4βk), we see that ∑

z∈Zd\{0} e−
|z|2

4kβ
L2

N is of order kd/2L−d
N . Using that N isof order Ld

N and applying the harmoni series, we see that ∑N
k=1

1
k1+d/2

∑
z∈Zd\{0} e−

|z|2

4kβ
L2

N is of order
L−d

N logLN and therefore vanishes as N → ∞.(b) Now we onsider Dirihlet boundary onditions. For any M ∈ N and δ ∈ (0, 1), we get, for anysu�iently large N ,
q(Dir)

ΛLN
=

1

|ΛLN
|

N∑

k=1

1

k

∫

ΛLN

dxµ(kβ)
x,x

(
B[0,kβ] ⊂ ΛLN

)
≥

M∑

k=1

1

k

1

|ΛLN
|

∫

(1−δ)ΛLN

dxµ(kβ)
x,x

(
B[0,kβ] ⊂ ΛLN

)
.(3.57)It is easy to see that, in the limit N → ∞, the integrand µ(kβ)

x,x (B[0,kβ] ⊂ ΛLN
) tends to µ(kβ)

0,0 (1l) =

(4πkβ)−d/2, uniformly in x ∈ (1 − δ)ΛLN
and k ∈ {1, . . . ,M}. Hene,

lim inf
N→∞

q(Dir)

ΛLN
≥

M∑

k=1

1

k
(4πkβ)−d/2 |(1 − δ)ΛLN

|

|ΛLN
|

,whih tends to q as M → ∞ and δ ↓ 0.
�Proof of the upper bound for periodi boundary ondition.We ontinue to write Λ for ΛLN

, where LN = (N/ρ)1/d. We adapt the proof of the upper bound inSetion 3.2 for periodi boundary onditions. The main idea is to drop all the paths that reah theboundary of the box Λ and to use that their distribution is equal to the one under the free Brownianbridge measure. Let us introdue, for parameters r ∈ (0, 1) and R̃ ∈ (0,∞), the random variable
N (ℓ, eR)

rΛ (ω) =
∑

x∈ξ∩rΛ

ℓ(fx)1l
{

sup
s∈[0,βℓ(fx)]

|fx(s) − fx(0)| ≤ R̃
}
, (3.58)the total length of the marks of partiles starting in rΛ that stay within distane ≤ R̃ from theirstarting sites. Furthermore, let

H ( eR)

rΛ (ω) =
∑

x,y∈ξ∩rΛ

Tx,y(ω)1l
{

sup
s∈[0,βℓ(fx)]

|fx(s) − fx(0)| ≤ R̃
}

1l
{

sup
s∈[0,βℓ(fy)]

|fy(s) − fy(0)| ≤ R̃
}
,be the Hamiltonian in (1.14) restrited to paths starting in rΛ and traveling no further than R̃. Notethat, for N large enough (depending only on r and R̃), suh paths do never reah the boundary of Λ



30 STEFAN ADAMS, ANDREA COLLEVECCHIO AND WOLFGANG KÖNIGand therefore have the same distribution under the periodised Brownian bridge measure as under thefree one or the one with Dirihlet boundary ondition. Hene, we estimate
E

(per)

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]
≤ E

(per)

[
e−H

( eR)
rΛ (ωP)1l{N (ℓ, eR)

rΛ (ωP) ≤ N}
]

= E
(Dir)

[
e−H

( eR)
rΛ (ωP)1l{N (ℓ, eR)

rΛ (ωP) ≤ N}
]

≤ E

[
e−H

( eR)
rΛ (ωP)1l{N (ℓ, eR)

rΛ (ωP) ≤ N}
]
,

(3.59)where `(per)' and `(Dir)' refer to the box Λ. Therefore, we an use the same method as in Setion 3.2,the only two di�erenes being that Λ is replaed by rΛ and that we deal solely with paths that donot travel further than R̃. That is, we have two additional trunation parameters r and R̃. It isstraightforward to see that adapted versions of Lemmas 3.1 and 3.2 hold and that the proof given inSetion 3.2 applies verbatim as well. Finally, one takes the limits R̃ → ∞ and r ↑ 1 in the resultingvariational formula, whih is the same as the proof of (3.17).Proof of the lower bound for Dirihlet boundary onditions.We ontinue to write Λ for ΛLN
, where LN = (N/ρ)1/d. The strategy for Dirihlet boundary onditionsis as follows. First we pik some ε ∈ (0, 1

2) and onsider Λ̃ = (1 − ε)Λ and ∂Λ = Λ \ Λ̃. The ideais to require that ∂Λ reeives no partile and that the marks of all partiles in Λ̃ have length ≤ Kand spatial extension ≤ R. In this way, we get a lower estimate against the trunated version of thePoisson proess on Λ̃ rather than on L. The only di�erene to the proof for empty boundary onditionis then that Lemma 3.7, whih was given before the introdution of the trunation, now has to beproved with the presene of the trunation, whih requires some adaptation. Every other step of theproof is literally the same for Λ instead of Λ̃, whih means that in the end of the proof, the parameter
ε has to be sent to 0, whih is extremely simple.Let us ome to the details. We �rst show that there exist c > 0 and CK,R > 0 suh that, for any
N,R,K ∈ N,

E
(Dir)

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]
≥ e−εc|Λ|e−CK,R|Λ|

E
(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
, (3.60)where CK,R → 0 as R→ ∞ and afterwards K → ∞. This is done as follows. Estimate

E
(Dir)

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}
]

= E

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}1l{∀x ∈ ξP ∩ Λ: Bx([0, βℓ(Bx)]) ⊂ Λ}
]

≥ E

[
e−HΛ(ωP)1l{N (ℓ)

Λ (ωP) = N}1l{∀x ∈ ξP ∩ Λ̃ : Bx ∈ E(K,R)}

× 1l{∀x ∈ ξP ∩ Λ: Bx([0, βℓ(Bx)]) ⊂ Λ}1l{N∂Λ(ωP) = 0}
]

= E

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}1l{N∂Λ(ωP) = 0}1l{ωP

(
Λ̃ ×

(
E(K,R)

)c)
= 0}

]
.

(3.61)
Independene of the events in the indiators givesr.h.s. of (3.61) = E

(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
Q(N∂Λ(ωP) = 0)Q

(
ωP(Λ̃ ×

(
E(K,R)

)c
) = 0

)

= E
(K,R)

[
e−HeΛ(ωP)1l{N (ℓ)

eΛ (ωP) = N}
]
e−q|∂Λ|e−ν(eΛ×(E(K,R))c), (3.62)
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(
E(K,R)

)c
) are Poisson distributed with respetive parameters q|∂Λ| and

ν(Λ̃ × (E(K,R))c). We estimate q|∂Λ| ≤ cε|Λ| for some c > 0 and
ν(Λ̃ ×

(
E(K,R)

)c
) ≤ |Λ̃|

∞∑

k=K+1

qk
k

+ |Λ̃|
K∑

k=1

µ(kβ)

0,0

(
max

s∈[0,βk]
|Bs| > R

)
≤ |Λ|CK,R, (3.63)with some CK,R that vanishes as R→ ∞ and afterwards K → ∞. Hene, we have got (3.60).Now we need a version of Lemma 3.7 for trunated point proesses, i.e., we need to show that, forany R,K ∈ N and for any δ ∈ (0, ρ), for all su�iently large N ,

E
(K,R)

[
e−HΛ(ωP)1l{〈RN (ωP), N (ℓ)

U 〉 = ρ}
]

≥
(C1 ∧C2)

δ|Λ|

2δ|Λ| + 2
E

(K,R)

[
e−|Λ|〈RN (ωP),Φβ〉1l{〈RN (ωP),N (ℓ)

U 〉 ∈ (ρ− δ, ρ+ δ)}
]
,

(3.64)where C1 and C2 may depend on R and K.Sine Lemma 3.4 was used in the proof of Lemma 3.7, we �rst need a trunated version of Lemma 3.4.For this we onsider the trunated version of ZN (β,Λ):
Z(K,R)

N (β,Λ) =
∑

λ∈PN :
PK

k=1 kλk=N

K∏

k=1

(q(R)

k,Λ)λk |Λ|λk

λk!kλk

K⊗

k=1

(
E

(R,kβ)

Λ

)⊗λk
[
e−G

(λ)
N,β

]
, (3.65)where

q(R)

k,Λ =
1

|Λ|

∫

Λ
dxµ(kβ)

x,x

(
max

s∈[0,βk]
|Bs −B0| ≤ R

)
,and where E

(R,kβ)

Λ is the expetation with respet to the probability measure
P

(R,kβ)

Λ (df) =

∫
Λ dxµ(kβ)

x,x

(
df1l{maxs∈[0,βk] |fs − f0| ≤ R}

)

|Λ|q(R)

Λ

.All steps in the proof of Lemma 3.4 are easily adapted, but the estimate in (3.25) needs a slightlydi�erent argument. We now estimate
E

(R,β)

Λ (v(|Bs − f(s)|) =
1

q(R)

Λ |Λ|

∫

Λ
dxEx

[
v(|Bs − f(s)|)1l{ max

0≤s≤β
|Bs −B0| ≤ R}, Bβ ∈ dx

]
/dx

≤
(4πβ)−d/2

q(R)

Λ |Λ|

∫

Λ
dx

∫

Λ
dy

gs(x, y)v(|y − f(s)|)gβ−s(y, x)

gβ(x, x)
.Now we an proeed as in (3.24)-(3.25) and obtain that E

(R,β)

Λ (v(|Bs − f(s)|) ≤ α(v)(4πβ)−d/2

q
(R)
Λ |Λ|

. Hene,we get the following trunated version of Lemma 3.4:
Z(K,R)

N+1 (β,Λ)

Z(K,R)

N (β,Λ)
≥

|Λ|

N + 1
exp

(
−
Nβα(v)(4πβ)−d/2

|Λ|q(R)

Λ

)
. (3.66)Using this instead of Lemma 3.4 in the proof of Lemma 3.7, we get the trunated version (3.64) ofLemma 3.7 with C2 as before and with C1 replaed by

C(R)

1 = 1 ∧
q(R)

Λ

ρ+ δ
exp

(
−

(ρ+ δ)βα(v)(4πβ)−d/2

q(R)

Λ

)
.The remaining proof of the lower bound is exatly as in the ase of empty boundary ondition, with

Λ̃ instead of Λ. This slight di�erene vanishes in the end when taking ε ↓ 0.Aknowledgement. We thank an anonymous referee whose detailed omments helped us to �xtwo tehnial points in the proofs.
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