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A micro-macro variational formula for the free energy
of a many-body system with unbounded marks
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Abstract

The interacting quantum Bose gas is a random ensemble of many Brownian bridges
(cycles) of various lengths with interactions between any pair of legs of the cycles.
It is one of the standard mathematical models in which a proof for the famous Bose–
Einstein condensation phase transition is sought for. A qualitative understanding of
the free energy would be helpful, but this is currently far out of reach.

In this paper, we demonstrate a path towards gaining such an understanding for a
simplified version of the model with deterministic boxes instead of Brownian cycles.
This model is a marked Poisson point process with unbounded marks containing
particles and bounded-reach interactions between the particles. Even though it is not
a quantum model, it is close to that in spirit. We derive an explicit and interpretable
variational formula in the thermodynamic limit for the limiting free energy of the
canonical ensemble for any value of the particle density. This formula features all
relevant physical quantities of the model, like the microscopic and the macroscopic
particle densities, together with their mutual and self-energies and their entropies.

The proof method comprises a two-step meso-macro large-deviation approach for
marked Poisson point processes and an explicit distinction into small and large marks;
an application of well-known level-three principles á la Georgii/Zessin is not possible
because of the appearance of macro marks.

The characteristic variational formula enables us to prove a number of properties
of the limiting free energy as a function of the particle density, like differentiability
and explicit upper and lower bounds, and a qualitative picture below and above the
critical threshold (if it is finite). This proves a modified saturation nature of the phase
transition. However, we have not yet succeeded in proving the existence of this phase
transition.
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1 Bosonic systems via point processes: our main purpose

One of the greatest unsolved problems in mathematical physics is a mathematical
understanding of the famous Bose–Einstein condensation (BEC) phase transition in the
interacting quantum Bose gas in the thermodynamic limit at sufficiently low, but positive
temperature. This is a large symmetrised system of N particles in a box of volume
� N ; each particle is equipped with a kinetic energy, and the system is subject to a pair
energy.

Feynman [Fe53] explained and interpreted the Bose gas in terms of a large interacting
ensemble of Brownian cycles of various lengths, in each of which a random number of
particles is spatially organised. The condensate is interpreted as the part of the particles
that lie in very long cycles, i.e., in cycles of lengths that diverge with the particle number,
N . The condensation phase is characterised by the appearance of a macroscopic part of
the particles in these long cycles, i.e., a number of particles that is � N . We call each
cycle with a fixed length microscopic and the ensemble of these cycles the microscopic
part of the system. The prominent BEC conjecture (initiated by Bose’s and Einstein’s
seminal papers in 1924 and 1925) is that, in dimensions d ≥ 3, but not in d ≤ 2, for
sufficiently low temperature (or equivalently, for sufficiently high particle density), this
macroscopic structure indeed would emerge. Furthermore, this emergence is predicted
to be triggered by a saturation effect.

A rigorous mathematical formulation of Feynman’s picture, which goes back to Gini-
bre’s work in the 1960s (see [G70]) is in terms of a Feynman–Kac formula, a random
interacting ensemble of many Brownian cycles of various lengths. This model is some-
times called the interacting quantum Bose gas. A further reformulation step was made
in [ACK11] and describes the system in terms of a random Poisson point process with
marks, the marks being the cycles that start and terminate at the Poisson points, see the
summary in Section A.

In [ACK11], this formulation was taken as the base of the following strategy to prove
the occurrence of BEC in this model:

1. Use the theory of marked random point processes to rewrite the partition function
in terms of the empirical stationary field,

2. adapt and apply large-deviation theory for the ergodic behaviour of random point
processes to find an explicit formula for the limiting free energy,

3. reformulate within the frame of that formula what BEC means,

4. find a criterion under which the occurrence of BEC can be proved.

However, this programme could not be completed in [ACK11]. While a characteristic
formula could be derived as an upper bound for the limiting free energy, a lower bound
could be derived only for sufficiently small particle densities and was in terms of a
slightly different formula, and a correct interpretation of BEC, not to mention a proof
for, could not be attained. The formula is not able to describe a macroscopic structure,
and it was nevertheless unclear if it would be able to yield a formula for the limiting
free energy in general. Furthermore, it seemed out of reach to prove this or to identify
a clear criterion for the emergence of BEC from that formula. We do not know of any
progress since then along this line of research for the interacting Bose gas nor for any
similar interacting model in the thermodynamic limit.

In this paper, we make decisive progress with regard to these open questions in a
slightly simplified model that we introduce here and call a box version of the interacting
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quantum Bose gas. The main difference to the interacting Bose gas is that the marks
are not taken as random Brownian cycles, but as deterministic centred boxes. This
strongly simplifies the complexity of the underlying probability space, but keeps the
most important characteristics of the model: an interacting Poisson point process with
marks of unbounded sizes that have a spatial extent. The model is not a quantum model
(it has nothing to do with the Laplace operator nor with symmetrisation), but it is highly
analogous to the interacting Bose gas, and we firmly believe that it is amenable to a
phase transition that is analogous to BEC. For technical reasons, we decided to use a
Zd-model rather than an Rd-model.

For this model we here derive a characteristic variational formula for its limiting free
energy that is significantly extended and reveals much more and much more explicit
information. We firmly believe that the progress that we make here for this model will
enable us in future work to make an analogous progress for the interacting Bose gas.

One main novelty of our ansatz in this paper is a certain extension of the frame
of the formula, such that both the non-condensate part (the microscopic structure)
and the condensate part (the macroscopic structure) are explicitly seen in the formula,
together with all interaction. This is even a great advantage over the current state
of description of the free (i.e., non-interacting) Bose gas, where the phase transition
is revealed just by detecting a loss of mass in the finite cycles. Instead, we create an
enlargement of the description space in which also the macroscopic part of the gas (if
it exists) is characterised. Indeed, it creates a global environment for the microscopic
marks labelled by a ∈ N, which is the number of copies of the grid Zd that is locally
created by macroscopic boxes. This global environment is fully characterised by the
percentage ψ(a) of the space that is locally covered by precisely a copies of Zd.

This novel extension requires also novelty in the derivation of the formula. Indeed,
because of the appearance of macro-marks, we are not able to make any use of well-
known level-three large deviation principles for the empirical stationary field of the
marked Poisson process, as it was done in [ACK11], based on [GZ93]. Instead, in a first
step, we decompose the box into many meso-boxes with independent, but not identically
distributed, randomnesses, and use an extension of Sanov’s theorem for their mixture,
to obtain a preliminary meso-form of the variational formula. In a second step, we use a
bit of ergodic theory and entropy estimates for finding the final formula by making the
meso-boxes large. We think that this strategy will be useful for analysing many-particle
systems in inhomogeneous environments in general in future.

This approach has a number of advantages. First, we are able to identify the free
energy for any value of the particle density, not only in the non-condensate phase.
Second, this formula possesses always a minimiser, since it has much better continuity
and compactness properties. By exploring these advantages, we succeed in deriving a
number of interesting properties of the limiting free energy, like differentiability and
asymptotics for large and for small particle densities. Furthermore, all objects appearing
in the formula admit clear interpretations and give in particular a clear criterion for
the occurrence of the micro-macro phase transition that is analogous to BEC. However,
we do not prove the present paper that this phase transition indeed occurs. This is
devoted to future work; it seems to require the application of much finer methods to
the variational formula than we are capable of yet. Nevertheless, if we assume that the
transition occurs, then we can prove a very detailed picture; in particular it surprisingly
turns out that it is not a phase transition of saturation type, but quite close.

The organisation of the paper is as follows. In Section 2 we introduce our model,
the box-version of the interacting Bose gas, and state and discuss the main results
of this paper. In Section 3, we explain why the proof of the existence of the phase
transition is difficult, and we give a small literature survey. In Section 4 we derive the
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variational formula describing the limiting free energy, in Section 5 we prove our results
on some analytical properties of the variational formula, and in Section 6 we prove
differentiability of the free energy with respect to the particle density and derive explicit
formulas. In the Appendix, Section A, we recall the work of [ACK11] on the interacting
quantum Bose gas for comparison.

2 The box version of the Bose gas, and main results

In this section, we introduce a simplified model of the well-known interacting Bose
gas and identify its free energy in terms of a characteristic variational formula with
explicit control on the microscopic and the macroscopic components. We introduce the
model in Section 2.1, formulate our identification of its free energy in Section 2.2 and
some results on existence of minimisers in Section 2.3; then we discuss the nature of the
phase transition in Section 2.4, providing it exists.

2.1 The box version of the Bose gas

The model that we are going to introduce has the following characteristics:

• It is defined as a marked Poisson point process in the d-dimensional Euclidean
space.

• Each mark is a particle configuration of k particles for some k ∈ N, centred at the
Poisson point; the density qk of the size-k marks is summable on k ∈ N.

• Any two particles in the system underly a pair interaction with an arbitrary non-
negative interaction functional having compact support.

• We look at the thermodynamic limit, i.e., we have in total precisely N particles in a
box of volume � N .

In these respects, the model is of the same type as the interacting Bose gas, which
we review in Section A. However, the following feature makes the model different:

• The marks are deterministic boxes instead of random Brownian cycles.

We feel that this model is very close in spirit to the interacting Bose as, as both are
interacting marked Poisson point processes, whose marks carry a random number of
particles, organised spatially centered at the Poisson point and having a spatial extent
that is proportional to the size of the mark. We also believe that this model should feature
the same type of phase transition of emergence of macroscopic structures. Admittedly, it
is not a quantum model, since it does not have anything to do with the Laplace operator
nor with symmetrisation, but we consider this as a minor point. Our main points are that
we demonstrate here the virtue of large-deviation theory and variational analysis for an
explicit analysis of the free energy, and our belief that this will lead the way also for the
Bose gas.

We decided to work in the Zd-setting rather than in the Rd-setting, which we consider
a minor difference. We keep the model simple in order to concentrate on our main goal,
the derivation of an interpretable variational formula for the free energy, and not to
overburden the derivation with technicalities.

We consider configurations consisting of points in Zd with marks that are subsets
of Zd. For any k ∈ N write ξ(k)(x) ∈ N0 for the number of points of a configuration with
parameter k at site x ∈ Zd. To each such point we attach a copy of a mark Gk, which is
a deterministic subset of Zd (approaching a large box for large k) with(

[−Lk, Lk]d ∩Zd
)
⊂ Gk ⊂

(
[−Lk − 1, Lk + 1]d ∩Zd

)
and |Gk| = k,
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for some Lk ∈ N0. Hence, the configuration is uniquely determined by the collection
(ξ(k))k∈N with ξ(k) = (ξ(k)(x))x∈Zd . For any fixed k ∈ N, this gives rise to a process of
marked points

ω(k) =
∑
x∈Zd

ξ(k)(x)δ(x,Gk).

We call the elements of x+Gk the particles of the site x and note that several particles
and several points may be at the same site. Then, we consider the particle configuration

ω =
∑
k∈N

ω(k) =
∑
k∈N

∑
x∈Zd

ξ(k)(x)δ(x,Gk)

as superpositions of the configurations of marked points with fixed k. See Figure 1 for
an illustration. We write Ω for the set of all such configurations and equip it with the
usual evaluation sigma algebra.

Figure 1: A realisation of the box version of the Bose gas in a finite container with
Dirichlet boundary conditions.

It will be convenient to use the following notation. For any Λ,Λ′ ⊂ Zd, we denote by

M
(δk)

Λ,Λ′(ω) =
∑
x∈Λ

∑
y∈Λ′

ξ(k)(x)1{y ∈ x+Gk}

the number of particles in Λ′ that are attached to points in Λ via marks of size k. Using
this, we denote by

N
(δk)

Λ (ω) =
1

k
M

(δk)

Λ,Zd
(ω)
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the number of points in Λ with the mark Gk, and we write N (f)

Λ (ω) =
∑
k∈N f(k)N

(δk)

Λ (ω)

for f : N → [0,∞). Specifically, we denote by N (`)

Λ (ω) =
∑
k∈N kN

(δk)

Λ (ω) the number of
particles belonging to points in Λ, that is, we write `(k) = k for the identity map. On the
other hand, we write

Ñ
(δk)

Λ (ω) = M
(δk)

Zd,Λ
(ω)

for the number of particles in Λ that come from marks of size k, and abbreviate ÑΛ(ω) =∑
k∈N Ñ

(δk)

Λ (ω). In general, we write Mx,y, Nx and Ñx instead of M{x},{y}, N{x} and Ñ{x}
respectively.

We introduce a particle-to-particle interaction, including also all self-interactions,
namely

ΦΛ,Λ′(ω) =
∑

x∈Λ,y∈Λ′

∑
k,l∈N

ξ(k)(x)ξ(l)(y)Tx,y(Gk, Gl), Λ,Λ′ ⊂ Zd, (2.1)

where
Tx,y(G,G′) =

∑
i∈G

∑
j∈G′

v(x+ i− y − j), G,G′ ⊂ Zd. (2.2)

Here v : Zd → [0,∞) is some function with compact support. We assume that v is
symmetric in the sense that v(x) = v(−x) for any x. If Λ = {z} is a singleton, then we
write Φz,Λ′ instead of Φ{z},Λ′ , analogously with Λ′. Note that we consider the particles of
different marks of the process ω as different, even though they might be on the same
spot. We also put

v̄ =
∑
i∈Zd

v(i), (2.3)

which is the interaction of a particle at the origin with the deterministic homogeneous
grid Zd.

We now introduce a reference probability measure on the set Ω of point configurations.
More precisely, we denote by P(k) the Poisson point process (PPP) in Zd with intensity
measures qkc, where c is the counting measure on Zd. Then, any point configuration ξ(k)

can be seen as a realisation of an i.i.d. field of Poisson random variables with parameter
qk. Moreover, we denote by P the independent superposition of the PPPs P(k) and
assume that (qk)k∈N is a summable sequence of positive numbers. Using this, any
particle configuration ω can be seen as realisation of a PPP on Zd × {Gk : k ∈ N} with
intensity measure

∑
k∈N(qkc⊗ δGk).

For a finite set Λ ⊂ Zd, we write ΩΛ for the set of restrictions of configurations of
ω ∈ Ω to Λ, i.e., the image of Ω under the projection ω 7→ ωΛ =

∑
x∈Λ

∑
k∈N ξ

(k)(x)δ(x,Gk).
The image measure of P under this projection is denoted by PΛ. We consider zero
Dirichlet boundary conditions in Λ. It is denoted ‘Dir’ and means that all particles of
the marks are contained in Λ. We denote the corresponding probability measure and
partition function by

P
(Dir)

Λ (·) = PΛ(· |MΛ,Λc = 0) and Z(Dir)

N,Λ = E
(Dir)

Λ

[
e−ΦΛ,Λ1l{N (`)

Λ = N}
]
.

We are sure that periodic boundary condition can be used well and will lead to the same
results, but we abstain from including this in our analysis, to avoid a further blow up
of the paper. However, we believe that open boundary conditions (where the points
are restricted to Λ, but the particles may project beyond Λ) will leave to a different
behaviour.

Note that we do not introduce any temperature parameter in this model. Also observe
that relaxing the assumption of v being symmetric would not make the model more
general, since the model remains unchanged when v is replaced by its symmetrised
version i 7→ 1

2 (v(i) + v(−i)).
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As we announced, this model is analogous to the well-known interacting Bose gas at
positive temperature with deterministic boxes instead of Brownian cycles, see Section A
and in particular Proposition A.1.

2.2 Main result: a variational formula for the free energy

We are going to formulate our main result about the limiting free energy of this
model in the thermodynamic limit: a description in terms of a variational formula, valid
for any particle density ρ ∈ (0,∞). We denote byM(s)

1 (Ω) the set of all shift-invariant
probability measures on Ω, where we recall that Ω is the set of configurations of points
on Zd carrying marks in {Gk : k ∈ N}. By

I(P ) = lim
Q↑Zd

1

|Q|
H(PQ|PQ), P ∈M(s)

1 (Ω), (2.4)

we denote the entropy density function with respect to the reference distribution P,
where PQ is the projection of P from Zd to Q (more precisely, from Ω to ΩQ), and the
limit is w.r.t. diverging radius of centred boxes Q. By H(µ|ν) we denote the relative
entropy of a finite measure µ with respect to another one, ν, on a measurable space X ,
defined by

H(µ|ν) = ν(X )− µ(X ) +

∫
X
µ(dx) log

dµ

dν
(x), (2.5)

if µ � ν, and otherwise H(µ|ν) = ∞. According to [G88, GZ93], the limit in (2.4)
exists, and I is an affine and lower-semi-continuous function with compact level sets
{P : I(P ) ≤ α} for any α ∈ R in the topology of local tame convergence, the topology
onM(s)

1 (Ω) that is induced by test integrals against local functions f : Ω → R that are
bounded as |f(ω)| ≤ C(1+N (1l)

Λ (ω)) for some finite Λ ⊂ Zd and some C > 0, for any ω ∈ Ω.
It is an easy exercise to show that the maps P 7→ P (N (`)

0 ) and P 7→ P (Φ0,Zd) are lower
semi-continuous in this topology. We write µ(f) =

∫
f dµ =

∑
x f(x)µ(x) = 〈µ, f〉 for the

integral of a integrable function f with respect to a measure µ on a discrete space.
Here is our main result.

Theorem 2.1. Assume that the k-box densities of the reference PPP satisfy qk = eo(k) as
k → ∞. Fix ρ ∈ (0,∞) and a symmetric interaction functional v : Zd → [0,∞) having a
compact support. Then, for the centred boxes ΛN with volumes N/ρ,

lim
N→∞

1

|ΛN |
logZ(Dir)

N,ΛN
= − inf

ρmi,ρma≥0: ρmi+ρma=ρ
χ(ρmi, ρma), (2.6)

where

χ(ρmi, ρma) = inf
{
ϕ(m,ψ) : m ∈ [0,∞)N, ψ ∈M1(N0),

∑
k∈N

kmk = ρmi,
∑
a∈N0

aψ(a) = ρma

}
,

(2.7)

ϕ(m,ψ) = inf
{ ∑
a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

:

P0, P1, P2, · · · ∈ M(s)

1 (Ω),
∑
a∈N0

ψ(a)Pa(N
(δk)

0 ) = mk ∀k ∈ N
}
. (2.8)

The proof is presented in Section 4. Even though the most important object here
is the empirical stationary field of the reference Poisson point process and I is the
large-deviation rate function for this, we are not using this large-deviation principle
(which is well-known from [G93, GZ93, G94]), but we go via another route. Instead,
we decompose the box ΛN regularly into mesoscopic boxes, neglect all interaction
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between them and apply a large-deviation principle in the spirit of Sanov’s theorem.
Afterwards, we let the mesoscopic box approach Zd and use the spatial ergodic theorem
and compactness arguments. This method can be seen as an alternate route for deriving
the LDP by Georgii/Zessin. Its application is even necessary here because of the
disordered appearance of macroscopic marks.

Let us give now a non-technical interpretation of Theorem 2.1, see Figure 2 for an
illustration. It is important to note that any of the objects appearing in the characteristic
formula on the right-hand sides of (2.7)–(2.8) contains information about the particle
ensemble, even though nothing of this is explicitly formulated nor proved. Making
exact statements would require a two-step limiting procedure and involve auxiliary
parameters.

Figure 2: An environment of three macroscopic boxes, creating regions of various
overlap numbers.

The most prominent quantities are the microscopic particle density, ρmi, and the
macroscopic particle density, ρma, of the configuration, that is, the number of particles
in microscopic, i.e., finite-size, marks Gk, k ∈ N, per unit volume, and the number of
particles in macroscopic marks per unit volume, i.e., in marks of sizes that depend on N
and diverge as N →∞. The mk’s give a more precise information about the microscopic
part; it is the spatial rate of size-k marks. Hence, ρmi =

∑
k kmk is the microscopic
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particle density. Likewise, ψ gives a more precise information about the macroscopic
marks: for any a ∈ N0, the number ψ(a) is the percentage of the volume of the box ΛN in
which precisely a of the macroscopic marks overlap each other. Hence ρma =

∑
a aψ(a)

is the macroscopic particle density.

In analogy of the famous Bose–Einstein condensate phase transition in the analogous
interacting Bose gas, we sometimes refer to the macroscopic marks as to condensate
marks and to their union as to the condensate. This is entirely for analogy reasons and
does not imply any assertion about the physics of the model.

One should see (at least our proof suggests that) ΛN as a regular decomposition
into many large boxes in which the condensate density is constant, and ψ(a) is the
percentage of the number of those boxes in which precisely a condensate marks overlap.
In such a box, the spatial distribution of all the microscopic points is given by the
stationary marked point process distribution Pa. Interestingly, the microscopic particles
are randomly distributed, while the macroscopic ones are deterministic; it is an a-
fold superposition of Zd. The latter builds a condensate environment, in which the
microscopic part of the configuration floats; see Figure 2. The last condition in (2.8) says
that, averaged over all condensate environments, the density of k-sized marks is equal
to mk everywhere.

The first term in the first line of (2.8) is the entropy of the spatial distribution of all
the microscopic points with respect to the reference measure, the second is the internal
energy of all their microscopic marks, the third term is the interaction between the
microscopic particles and the condensate environment (the a marks), and the fourth and
last term is the internal energy of all the macroscopic marks. More precisely, the three
energy terms are the interaction between the origin and the respective remainder.

Then (2.6) says that the main contribution to the partition function comes from those
particle configurations that are represented by the minimising objects, provided they
exist. Therefore, it will be of high importance to get clear information about the existence
or non-existence of minimisers.

Our highest interest is in the question under what conditions a condensate occurs, i.e.,
the question about the existence of a phase transition of condensation type. Condensation
occurs if a minimising configuration (m,ψ) with ψ 6= δ0 exists or if even any minimising
configuration has this property. More about that in Section 2.4.

Before we enter questions about minimisers, let us give a number of properties of I,
ϕ and χ that can be easily deduced from their defining formulas. For m ∈ [0,∞)N, we
denote by Pm the process defined as the reference process P with q replaced by m, by
Im the entropy density function with respect to the process Pm, defined as in (2.4) with
Pm instead of P, and we recall that H(m|q) =

∑
k∈N(qk −mk +mk log mk

qk
). By χ(v=0)(ρ, 0)

we denote the value for the non-interacting model. Let us note that χ(0, 0) is the free
energy for the process restricted to having no marks in the box ΛN , with ΛN ↑ Zd,
extending Theorem 2.1 to the case where ρ = 0 in a natural manner. We write ≤st for
stochastic ordering onM1(N0), i.e., ψ ≤st ψ

′ holds if and only if ψ([a,∞)) ≤ ψ′([a,∞))

for all a ∈ N0.

Lemma 2.2 (Simple properties of I, ϕ and χ). We have the following.

1. The function ϕ is convex jointly in m and ψ.

2. The function χ is convex and continuous jointly in (ρmi, ρma) ∈ [0,∞)2. In particular,
ρ 7→ χ(ρ, 0) is convex.

3. For any m, the function ϕ(m, ·) is non-decreasing in ψ with respect to the stochastic
ordering.

4. The function χ is non-decreasing in ρma.
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5. For any m ∈ [0,∞)N and any P ∈ M(s)

1 (Ω) satisfying P (N
(δk)

0 ) = mk for all k ∈ N,
we have

I(P ) = H(m|q) + Im(P ). (2.9)

In particular, I(Pm) = H(m|q) for any m ∈ [0,∞)N.

6. We have χ(0, 0) = χ(v=0)(0, 0) =
∑
k qk and ∂ρmi

χ(0, 0) = −∞.

7. We have the bounds

χ(v=0)(ρ, 0) + v̄ρ2 ≤ χ(ρ, 0) ≤ χ(v=0)(ρ, 0) + v̄(ρ2 + ρ), ρ ∈ [0,∞), (2.10)

under the assumption 2v(0) ≥ v̄ for the first inequality.

Lemma 2.2 is used in Section 4, but its proof in Section 5.1 is independent and
self-contained.

It is known and a standard task to show that the map

ρ 7→ χ(v=0)(ρ, 0) = inf
m∈[0,∞)N :

∑
k kmk=ρ

H(m|q)

has a phase transition at ρ(v=0)
c =

∑
k kqk, if this series has a finite value. Indeed,

χ(v=0)(·, 0) is positive and strictly decreasing left of ρ(v=0)
c (with slope −∞ at ρ = 0) and

there is a minimiser m, while for supercritical ρ, there is none, and it is constantly equal
to zero.

2.3 Further results: existence and regularity of minimiser(s)

Let us discuss the existence of minimisers in the variational formulas on the right-
hand sides of (2.6), (2.7) and (2.8). First we turn to (2.6). Indeed, we will be proving in
Section 5.2 the following. Recall that we assume that the k-box densities of the reference
PPP satisfy qk = eo(k) as k →∞.

Lemma 2.3. For any ρ ∈ (0,∞), the minimum on the right-hand side of (2.6) is achieved;
more precisely,

inf
ρmi,ρma≥0: ρmi+ρma=ρ

χ(ρmi, ρma) = χ(ρ, 0)

= inf
{
I(P ) + P (Φ0,Zd) : P ∈M(s)

1 (Ω), P (N (`)

0 ) = ρ
}
.

(2.11)

This may be a bit surprising, as it says that the free energy can be described by
exclusively looking at limiting configurations without condensate part, no matter if the
condensation phase transition takes place or not. In particular, the existence of this
phase transition cannot be discussed by exclusively looking at the value of the limiting
free energy.

It is clear that ‘≤’ is trivial in (2.11). We did not find any direct, analytical proof
of Lemma 2.3. Instead, the proof of ‘≥’ uses some inspiration from the proof of Theo-
rem 2.1; it constructs from a constrained partition function with an explicit macro-part
in the configuration a constrained partition function without macro-part, but with in-
creased micro-part, and shows that this manipulation does not increase the latter on the
exponential scale.

In the sequel we will abbreviate χ(ρ) = χ(ρ, 0) for the free energy with particle
density ρ. We turn now to the question about whether or not a minimising particle
configuration exists in terms of the sequence m = (mk)k∈N of the k-mark densities, the
family of marked point processes (Pa)a∈N0

and the distribution ψ of the macro parts.
The answer is positive:
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Lemma 2.4 (Minimisers of ϕ). For any ρ ∈ [0,∞), there is at least one minimiser (m,ψ)

for the variational problem

χ(ρ) = min
{
ϕ(m,ψ) : m ∈ [0,∞)N, ψ ∈M1(N0), ρ =

∑
k∈N

kmk +
∑
a∈N0

aψ(a)
}
, (2.12)

i.e., at least one minimiser (m,ψ) of ϕ defined in (2.8) under the constraint
∑
k∈N kmk +∑

a∈N0
aψ(a) = ρ. Furthermore, there is at least one minimiser (m,ψ) such that ψ has

no more than two atoms.
Additionally, for any (m,ψ), there is at least one minimiser (Pa)a∈N0

for the variational
formula in (2.8).

The proof of the existence of a minimiser is already at the end of Section 4; it is a by-
product of our proof of Theorem 2.1. Along subsequences of approximately minimising
sequences of (m,ψ)’s, the total microscopic particle density

∑
k kmk can in principle

become smaller; there is the possibility of losing mass. However, our proof shows that
such a loss can be dispended with by assigning it to the macro part with the help of some
manipulations on the level of particle configurations. Much more information about
properties of a particular minimiser is provided in Lemma 2.9.

A closer look at all the minimisers, in particular the proof that ψ can be taken as a
Dirac measure or as a mixture of two Dirac measures, is in Section 5.3. It uses convexity
arguments for a reformulation of the characteristic variational formula in (2.12): carrying
out only the infimum over m, making the substitution ρ =

∑
a∈N0

ψ(a)(a+ Pa(N (`)

0 )) and
ρa = Pa(N (`)

0 ), we see (also using Lemma 2.3) that

χ(ρ) = inf
ψ∈M1(N0)

[
v̄
∑
a∈N0

ψ(a)a2 + inf
(ρa)a∈N0

: ρ=
∑
a∈N0

ψ(a)[a+ρa]

∑
a∈N0

ψ(a)[2v̄aρa + χ(ρa)]
]
.

(2.13)
Now we turn to regularity properties of the map m 7→ ϕ(m,ψ):

Lemma 2.5 (Differentiability of ϕ). Fix ψ ∈M1(N0) satisfying
∑
a∈N0

aψ(a) <∞. Then,
for any m ∈ [0,∞)N and for any k satisfying mk > 0, ϕ(·, ψ) is differentiable in mk, and
the partial derivative satisfies

∂mkϕ(m,ψ) = log
mk

qk
+ tk − sup

(Pa)a

log
∑
a∈N0

ψ(a)e−2v̄akPa(e−2Φ(k)

), (2.14)

where the supremum is over all minimisers (Pa)a∈N0
in the formula (2.8) of ϕ(m,ψ) and

tk = T0,0(Gk, Gk) and Φ(k)(ω) =
∑
x∈Zd

∑
l∈N

ξ(l)(x)T0,x(Gk, Gl), (2.15)

are the self-interaction of a k-mark and the interaction between ω and a k-mark at the
origin, i.e., the configuration δ(0,Gk), respectively.

The proof of Lemma 2.5 is in Section 6.1. Let us note that we have no information
about uniqueness or non-uniqueness of minimisers in (2.8), since the entropy density
I is affine hence not strictly convex. With the help of Lemma 2.5 we can derive the
variational equations for minimisers of ϕ(m,ψ):

Lemma 2.6 (Euler–Lagrange equations). Fix ρ ∈ (0,∞), then, for any minimiser (m,ψ)

of (2.12), m satisfies the Euler–Lagrange equations

mk = qkeαk−tk sup
(Pa)a

∑
a∈N0

ψ(a)e−2v̄akPa
(
e−2Φ(k))

, k ∈ N, (2.16)

where α ∈ R is the Lagrange multiplier.
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The proof of Lemma 2.6 is in Section 6.2.

Corollary 2.7 (Differentiability of χ(·, 0)). The map ρ 7→ χ(ρ) = χ(ρ, 0) is differentiable in
(0,∞) with χ′(ρ) = α, the Euler–Lagrange parameter of Lemma 2.6.

The proof of Corollary 2.7 is in Section 6.2. As a consequence, a possible phase
transition (if it exists) cannot be of first order.

Alternatively to the formula in (2.14), in Section 6.3 we present another formula for
the derivative of ϕ with respect to m:

∂mkϕ(m,ψ) = log
mk

qk
− tk + sup

(Pa)a

log
∑
a∈N0

ψ(a)e2v̄akPa(N
(δk)

0 e2Φ(k)

)

mk
. (2.17)

Since we do not use this formula for further study and since a proof would be quite
technical, we decided to restrict to giving a heuristic argument for how to derive (2.17).
Roughly speaking, this strategy goes via a uniform random thinning procedure, while
the proof of (2.14) is via adding a uniformly distributed Poisson point.

2.4 On the phase transition

Let us now discuss the nature of a possible condensation phase transition, assuming
that it exists. This hinges on the minimisers (m,ψ) that we established in Lemma 2.4,
i.e., the minimisers of the problem (2.12) for a given ρ. It is convenient to introduce the
corresponding microscopic and macroscopic particle densities:

ρmi(m) =
∑
k∈N

kmk, ρma(ψ) =
∑
a∈N0

aψ(a), ρmi(m) + ρma(ψ) = ρ. (2.18)

We do not know if ρmi and ρma are independent of the choice of the minimiser (m,ψ).
Actually, we somehow characterised all the minimisers (m,ψ) for a given ρ in the proof
of Lemma 2.4, but have no information about their uniqueness.

The occurrence of a non-trivial macroscopic particle density is characterised by the
existence of a minimiser (m,ψ) such that ρma(ψ) > 0, i.e., ψ 6= δ0. We define the critical
particle density for the emergence of a macroscopic part as follows:

ρc = sup
{
ρ ∈ (0,∞) : (2.12) has a minimiser (m, δ0), i.e., ρmi(m) = ρ

}
. (2.19)

Let us first note that there is indeed a non-condensate phase:

Lemma 2.8 (Positivity of ρc). The critical particle density ρc is positive. More precisely,
ρc ≥ P (N (`)

0 ) for any P ∈ M(s)

1 (Ω) that minimises P 7→ I(P ) + P (Φ0,Zd). In other words,
ρc is not smaller than the smallest minimiser of ρ 7→ χ(ρ).

Note that there is at least one such minimiser P since the level sets of I are compact
and P 7→ P (Φ0,Zd) is lower semi-continuous.

Proof. Note that the existence of a minimiser (m, δ0) in (2.12) is equivalent to the
existence of a minimiser P in (2.11) via taking mk = P (N

(δk)

0 ), see the last sentence in
Lemma 2.4.

Consider the variational formula χ̃(ρ) = inf{I(P ) + P (Φ0,Zd) : P ∈M(s)

1 (Ω), P (N (`)

0 ) ≤
ρ}. For any ρ ≥ 0, this formula possesses a minimising P , since I has compact level
sets and the maps P 7→ P (Φ0,Zd) and P 7→ P (N (`)

0 ) are lower semi-continuous. Indeed, if
(Pn)n∈N is a sequence of admissible approximate minimisers, then (I(Pn))n∈N is bounded,
since Φ0,Zd ≥ 0. Hence, (Pn)n∈N has a convergent subsequence with admissible limit.
By lower semi-continuity of P 7→ I(P ) and P 7→ P (Φ0,Zd), the limit is a minimiser.

Recall from Lemma 2.2(6) that ρ 7→ χ(ρ, 0) = χ(ρ) strictly decays in a neighbourhood
of 0. By convexity, it is even strictly decreasing precisely in the interval (0, ρmin], with
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ρmin being the smallest minimiser of χ. On this interval, χ and χ̃ coincide. Indeed, pick
a minimiser P for χ̃(ρ) satisfying ρ̃ = P (N (`)

0 ) < ρ, then P would be admissible also for
χ(ρ̃) and would imply that χ(ρ̃) ≤ χ̃(ρ) ≤ χ(ρ), which contradicts the strict monotonicity.
Hence, every minimiser P for χ̃(ρ) satisfies P (N (`)

0 ) = ρ and is therefore also a minimiser
for χ(ρ). This implies that ρc ≥ ρmin.

We say that a condensation phase transition occurs if ρc is finite, i.e., if for any
sufficiently large ρ any minimiser (m,ψ) satisfies ρma(ψ) > 0. This notion of a condensate
phase transition is analogous to the famous Bose–Einstein condensation, which is conjec-
tured to occur in dimensions d ≥ 3 (but not in d ∈ {1, 2}), and has been proved to occur
in the non-interacting case where v = 0 (see also Section A). There the dependence on
the dimension is clearly seen to hinge on the summability of kqk over k ∈ N; note that
kqk = (4πβk)−d/2 in the interacting Bose gas. In our model, where we admit an arbitrary
summable sequence (qk)k∈N, the conjecture is suggested that the occurrence of the
phase transition needs the summability of kqk as well. As a consequence, we would see
that in our model the occurrence is not a dimensionality question, but only a summability
question.

In the interacting Bose gas, the condensation phase transition is conjectured to be
of saturation type, by which we mean that the particles organise in a microscopic part
of density ρ ∧ ρc and a condensate of density [ρ − ρc]+, where x+ denotes the positive
part of x. This reflects the understanding that, if we consider increasing ρ, for all small
values, the entire particle cloud is organised in microscopic marks, and as soon as ρ
exceeds ρc, then additional particles are put into the macro part, but the total mass ρc of
the micro part is not changed anymore. Hence, in the box version we might expect that
we should have∑

k∈N

kmk = ρ ∧ ρc and
∑
a∈N0

aψ(a) =
[
ρ− ρc

]
+
, for any minimiser (m,ψ). (2.20)

However, it turns out that this is not the case:

Lemma 2.9 (Qualitative description in case of a phase transition). Assume that ρc is
finite. Then (2.20) is false. Instead, the following is true.

1. There exists ρt ∈ [ρc ∨ 1, ρc + 1) such that

χ(ρt − 1) + (2ρt − 1)v̄ + (ρc − ρt)(χ
′(ρt − 1) + 2v̄) = χ(ρc). (2.21)

2. For any a ∈ N0, for any ρ ∈ [ρc, ρc + 1),

χ(ρ+ a) =

{
ρ−ρc

ρt−ρc
(χ(ρt − 1) + v̄(2ρt − 1)) + ρt−ρ

ρt−ρc
χ(ρc) + 2v̄aρ+ v̄a2 if ρ ≤ ρt,

χ(ρ− 1) + 2v̄(ρ− 1)(a+ 1) + v̄(a+ 1)2 if ρ ≥ ρt.
(2.22)

As a consequence, we have χ′(ρc) = χ′(ρt − 1) + 2v̄.

3. We assume that for any ρ ∈ [0, ρc], there exists a minimiser (mρ, δ0) with density ρ.
Then, for any ρ ∈ [ρc,∞) there is a minimiser (m,ψ) of ϕ with density ρ such that,
for a ∈ N0:

• if ρ ∈ [ρc + a, ρt + a], the minimiser is a proper convex combination of (mρc
, δa)

and (mρt−1, δa+1), with (mρc
, δ0) and (mρt−1, δ0) minimisers at densities ρc

respectively ρt − 1;
• if ρ ∈ [ρt + a, ρc + a + 1], the minimiser is (mρ−a−1, δa+1) with (mρ−a−1, δ0) a

minimiser with density ρ− a− 1.
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4. The microscopic total mass ρmi corresponding to the minimiser (m,ψ) of (3) is
one-periodic in ρ in the interval [ρt − 1,∞). It increases linearly from ρt − 1 to ρc

in [ρt − 1, ρc]. It decreases linearly from ρc to ρt − 1 in [ρc, ρt]. Correspondingly,
the macroscopic total mass ρma corresponding to the minimiser (m,ψ) of (3) is
constant equal to a on [ρt − 1 + a, ρc + a], and increases linearly from a to a+ 1 on
[ρc + a, ρt + a], for any a ∈ N0.

The proof of Lemma 2.9 is in Section 6.4; it uses that, under (2.20), χ(·, 0) can be
shown to be not differentiable in any point of ρc + N, in contradiction to Lemma 2.7.
(1) follows from the facts that χ′(ρc) > (2ρc − 1)v̄ and χ(ρc) ≤ χ(ρc − 1) + (2ρc − 1)v̄.
Furthermore, the analysis of the minimisers of the variational formula that was done in
Section 5.3 is crucial as well.

An illustration of the micro- and macroscopic total masses as functions of ρ is in
Figure 3. In words, as ρ increases from zero to infinity, then, first each optimal strategy
organises all particles in microscopic boxes. If this changes at some finite ρc, then, if ρ
further increases, it is an optimal strategy to cover a certain percentage of the space
with one macroscopic box and to reduce the microscopic particle density linearly in
ρ, until a second critical threshold ρt is reached, at which the whole space is covered
by one macroscopic box. Further increasing ρ, additional microscopic mass is added
without changing the macroscopic part until ρc + 1 is reached. This procedure is then
iterated by further adding macroscopic boxes.

3 Discussion

In Section 3.1 we explain the difficulty in finding a proof for a phase transition, and
in Section 3.2 we mention some related works.

3.1 Does the phase transition occur?

We did not yet touch the most interesting question: under what conditions on (qk)k∈N
and v does the micro-macro phase transition exist that is analogous to BEC, i.e., under
what conditions is ρc finite? We do not give any answer to this question in the present
paper and leave this open problem to future work. But we would like to comment on
that now.

Note that the question about minimisers decomposes into many independent ques-
tions about the existence or non-existence of a minimising (m,ψ) with ψ = δ0 or
ψ 6= δ0. Even though we somehow characterised all the minimisers (m,ψ) in the proof
of Lemma 2.4, all the answers that we can give are summarised in Lemma 2.8. Beyond
this, we are not able to say anything descriptive about the set of ρ’s for which there
is or there is not a minimiser with or without nontrivial macro part, not even whether
or not it is convex, i.e., an interval. One could define another critical density ρ̃c as
the supremum over all ρ such that every minimiser (m,ψ) satisfies ρmi(m) = ρ, then
0 ≤ ρ̃c ≤ ρc. The finiteness of ρ̃c also would imply the existence of a minimising configu-
ration with non-trivial condensate but possibly an additional minimising configuration
without condensate.

One way to attack the question is by looking at the Euler–Lagrange equations for
a possible minimiser and giving arguments in favour or against its existence. The
analogous equation for the free Bose gas (see the end of Section A) reads mk = qkeαk

with some Lagrange multiplier α, subject to the constraint ρ =
∑
k∈N kqkeαk. If

∑
k kqk

is finite, then this is the largest value that can be reached by proper choice of α. The
conclusion is that, for ρ > ρc =

∑
k kqk, there is no Lagrange multiplier α and therefore

no minimiser m, but for ρ ≤ ρc, there is one.
In the box version of the interacting Bose gas, there is always a minimiser (m,ψ)
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Figure 3: Plot of the microscopic total mass ρmi =
∑
k∈N kmk (blue) and the macroscopic

mass ρma =
∑
a∈N aψ(a) (red) as functions of ρ if the critical threshold ρc is finite.

of the variational formula for χ(ρ), but the question is now about the existence of a
minimiser that has no macroscopic part, i.e., is of the form (m, δ0). The characteristic
equation for that reads

mk = qkeαk−tk sup
P
P
(
e−2Φ(k))

, k ∈ N, (3.1)

where the supremum is taken over all minimisers P of I(P ) + P (Φ0,Zd) subject to
ρ =

∑
k∈N kP (N

(δk)

0 ), and the Lagrange multiplier α needs to satisfy ρ =∑
k∈N kqkeαk−tk supP P (e−2Φ(k)

). Recall that tk = T0,0(Gk, Gk) is the self-interaction
of a mark Gk. Note that P may a priori depend on k, since we have no information about
uniqueness of the minimiser P .

The most important difference to the Euler–Lagrange equation for the free Bose
gas is the appearance of the last term, supP P (e−2Φ(k)

). We found no way to utilise this
formula for deriving interesting information about the existence of the phase transition
or other details. It is likely that the critical α for the largest ρ satisfies that the large-k
exponential rate of the summands qkeαk−tk supP P (e−2Φ(k)

) is equal to zero, and then

some explicit information about the second-order term of P (e−2Φ(k)

) is necessary, and
here we do not see any ansatz to identify or derive that.

We remark that the internal interaction of Gk behaves like

tk = v̄k − (C + o(1))k1− 1
d , k →∞, for some C > 0, (3.2)
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where the second-order term comes from boundary effects. This is a clear difference
to the interacting Bose gas, as cycles have no beginning nor an end and therefore no
boundary effect, but the box Gk has, and its internal energy explicitly appears here.

In [BKM22+], a comparable situation, where only interactions within the marks are
considered could partially be solved in this respect. In comparison to (3.1), the term tk
is missing there, and instead of P (e−2Φ(k)

), there is the expectation of a single Brownian
bridge with time interval [0, kβ] with exponential interaction between any two legs, like
in the interacting Bose gas. With the help of an extension of the lace expansion technique
it is proved in [BKM22+] that this expectation behaves, for large k, as eCkk−d/2(1 + o(1))

with C a characteristic quantity, however, only for sufficiently small interaction potential
and only in dimensions d ≥ 5. This (very fine!) asymptotics made it possible to derive
the existence of that phase transition in d ≥ 5.

Another possible route to prove the occurrence of the phase transition might be
to prove that, for some large ρ, for any m ∈ [0,∞)N satisfying

∑
k kmk = ρ, there is

m̃ ∈ [0,∞)N satisfying
∑
k km̃k = ρ− 1 such that ϕ(m, δ0) > ϕ(m̃, δ0) + (2ρ− 1)v̄, where

we note that the right-hand side is equal to ϕ(m̃, δ1). This would show explicitly that
it is not optimal to organise the entire total particle mass in microscopic boxes, but
one part of it in the regular grid Zd and the remaining part (i.e., total mass ρ − 1) in
microscopic boxes. We tried to prove this assertion with the help of several of the
techniques that proved successful in Sections 6.2 and 6.3 for handling derivatives with
respect to m (de-Poissonisation and thinning), but our ansatzes were not fine enough,
partially since we perturbed only with independent processes, which seem to be not well
enough adapted.

There might be a phenomenological connection between the finiteness of ρc and
the uniqueness of minimisers P in the variational formula. Indeed, the conjecture is
tempting that the minimiser P is a Gibbs measure for a related potential, and that the
Gibbs measures are unique precisely in the sub-critical case. However, we have no clue
about existence nor uniqueness of Gibbs measures nor about uniqueness of a minimising
P nor about how this knowledge could help in the analysis of the free energy.

3.2 Literature remarks

Let us give a small survey on the literature on treatments of the Bose gas with the
help of the theories of random point processes and of large deviations.

The starting point of this line of research is the Feynman-Kac formula for N interact-
ing Brownian cycles (bridges) with uniformly distributed starting sites in a box and a
symmetrisation. Using the Markov property, this formula can be turned into a random
ensemble of closed cycles with various lengths and independent starting/terminating
sites. See e.g. [U06a] for a pedagogical explanation. In [ACK11], an additional step is
made by rewriting this ensemble explicitly in terms of an interacting marked Poisson
point process.

It has been noticed in [F91] that the probabilistic concept of a random point process
is highly appropriate. There are some efforts undertaken to construct interacting marked
Gibbs point measures that show the suggested characteristics of the interacting Bose
gas in the thermodynamic limit, however without any clear relation to the limiting free
energy of the partition function of the gas. It is very likely that some of these target
Gibbs measures will sooner or later turn out to describe the microscopic part of the
interacting Bose gas and to be minimisers in a characteristic variational formula as
in [ACK11], but this is widely open. Here we would like to mention H. Zessin and
co-workers and students, see [NPZ13, RZ20]. Also in several papers by H. Tamura and
co-workers, point-process descriptions are employed to gain an understanding of the
Bose gas, see for example [TI06]. In a series of papers by a team around J. Fröhlich
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(see the summary [FKSS20]), various rescalings and limiting regimes of the interacting
Bose gas are examined with mathematically highly involved methods, however these
techniques do not have much to do with point process theory. In [V21], local limits
of the trace of the non-interacting Brownian cycle loop soup towards the Brownian
interlacement process (a Poisson point process on the set of infinitely long Brownian
paths) is proved, which is a non-trivial step towards an understanding of the condensate,
but still far away from handling the free energy. Another work in this vein was recently
done in [AFY19].

However, for handling the thermodynamic limit of such an interacting marked Poisson
point process, there are only very few investigations in the literature. Based on the
theory of so-called level-three large deviation principles, introduced by Donsker and
Varadhan in the 1970s, adaptations to marked Poisson point processes both in Zd and
Rd were developed in [G93, GZ93, G94]. This concept is rather suitable for handling
limiting free energies of partition functions like the one for the interacting Bose gas,
which was also mentioned in these papers, but not carried out. This was done for the first
time in [ACK11], the starting point of the present paper (see Section A for a summary).
There a characteristic variational formula was derived for the limiting free energy, which
reflects and encodes all thermodynamic quantities that are relevant for understanding
the gas, the most prominent of which are the energy and the entropy and the effective
density of the particle configuration. The method used in the present paper does not
rely on that large-deviation principle, but carries out the arguments via another route; it
is very much in spirit of [G93, GZ93, G94]. However, for handling also the macroscopic
part, some new techniques had to be found, and this is one of the new contributions of
the present paper.

The model introduced and studied in the present paper is in the spirit of models that
are called polydisperse mixture models in the physics literature. Recently, in [J20] a
mutually repellent version was studied under the additional assumption of hierarchy of
the droplet configuration, the droplets being deterministic, randomly placed discrete
cubes. The assumption of hierarchy made it possible to derive a formula for the limiting
free energy via a decomposition according to the hierarchies. It is certainly desirable to
overcome this assumption. The method developed in the present paper seems to give a
suitable ansatz to do so in future work.

4 Derivation of the variational formula: proof of Theorem 2.1

In this section, we prove Theorem 2.1. It will be sufficient to prove the assertion for
the restriction to Dirichlet boundary condition, i.e.,

lim inf
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≥ − inf

ρmi,ρma≥0: ρmi+ρma=ρ
χ(ρmi, ρma), (4.1)

lim sup
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≤ − inf

ρmi,ρma≥0: ρmi+ρma=ρ
χ(ρmi, ρma), (4.2)

for centred boxes ΛN with volume N/ρ, where we put

ZN,ΛN ,Dir = EΛN

[
e−ΦΛN,ΛN 1l{N (`)

ΛN
= N}1l{ÑΛc

N
= 0}

]
. (4.3)

We prove (4.1) in Section 4.1 and (4.2) in Section 4.2. Indeed, the assertion of The-
orem 2.1 for zero Dirichlet boundary condition follows since the probability of the
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conditioning event is eo(|ΛN |):

PΛn(ÑΛc
N

= 0) = P
( ⋂
k∈N

{M (δk)

ΛN ,Λc
N

= 0}
)

=
∏
x∈ΛN

∏
k∈N : x+Gk 6⊂ΛN

P(N (δk)

x = 0)

=
∏
k∈N

exp
{
− qk#{x ∈ ΛN : x+Gk 6⊂ ΛN}

}
.

Now it is easy to see that the right-hand side is e−o(|ΛN |), since the cardinality is o(|ΛN |)
for any k ∈ N, and

∑
k qk <∞.

4.1 Proof of the lower bound in Theorem 2.1

Let ρmi, ρma ≥ 0 be given such that ρmi + ρma = ρ. Our goal is to show that, for any
m ∈ [0,∞)N and ψ ∈M1(N0) satisfying

∑
k kmk = ρmi and

∑
a aψ(a) = ρma, that

lim inf
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≥ −ϕ(m,ψ), (4.4)

with ϕ as in (2.8). This implies (4.1).

STEP 1. We reduce the problem to m and ψ having finite support.

We define χ̃(ρmi, ρma) as χ(ρmi, ρma) with the additional constraint that m and ψ must
have finite support. We will show that χ̃(ρmi, ρma) ≤ χ(ρmi, ρma). Pick m = (mk)k∈N
satisfying

∑
k∈N kmk = ρmi, and a probability measure ψ on N0 satisfying

∑
a∈N0

aψ(a) =

ρma. We introduce cut-off versions of m and ψ using large auxiliary parameters K,A ∈ N
by putting m(≤K) = (m1,m2, . . . ,mK , 0, 0, . . . ) and ψ(A) = ψ +

∑
a>A ψ(a)(δ0 − δa). Let us

show that ϕ(m(K), ψ(A)) ≤ ϕ(m(K), ψ) ≤ ϕ(m,ψ) +
∑
k>K qk.

The first inequality comes from Lemma 2.2. For the second one, assume that (Pa)a∈N0

is admissible for the formula for ϕ(m,ψ). Then it is clear that (P (≤K)
a )a∈N0

, with P (≤K)
a

defined from Pa by suppressing all marks with size > K, is admissible for the formula
for ϕ(m(≤K), ψ), furthermore I(P (≤K)

a ) ≤ I(Pa) +
∑
k>K qk, and also the energy terms of

(P (≤K)
a )a∈N0

are not bigger than those of (Pa)a∈N0
.

We deduce that χ̃(
∑
k∈[K] kmk,

∑
a∈[A] aψ(a)) ≤ ϕ(m(≤K), ψ(A)) ≤ ϕ(m,ψ) +

∑
k>K qk.

Letting K,A→∞ and using continuity of χ̃ (see Lemma 2.2) and summability of (qk)k∈N,
we get χ̃(ρmi, ρma) ≤ ϕ(m,ψ). Taking the infimum over m and ψ, we obtain the desired
inequality χ̃(ρmi, ρma) ≤ χ(ρmi, ρma).

STEP 2. We construct a configuration adapted to m and ψ.

Pick m = (mk)k∈N having support included in [K] = {1, . . . ,K} for some K ∈ N
and satisfying

∑
k∈N kmk = ρmi, and a probability measure ψ on N0 having support

included in {0, . . . , A} for some A ∈ N0 with ψ(A) 6= 0 and satisfying
∑
a∈N0

aψ(a) = ρma.
According to Step 1, it is sufficient to prove (4.4) for these m and ψ. In the following,
we consider the (more interesting) case that ψ 6= δ0, i.e., ρma > 0; the remaining case
ρma = 0 needs some minor modifications, whose details we leave to the reader.

Introducing an auxiliary parameter δ ∈ (0, 1), we will show for δ close to zero that

lim inf
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≥ −ϕ(δ)(m,ψ(δ)), (4.5)

where ψ(δ) = ψ + 2δρmi(δA+1 − δA), and

ϕ(δ)(m,ψ) := inf
{ ∑
a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

:

P0, P1, · · · ∈ M(s)

1 (Ω),∀k ∈ N :
∑
a∈N0

ψ(a)Pa(N
(δk)

0 ) ∈ mk(1− δ, 1 + δ)
}
,

(4.6)
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where we interpret 0(1− δ, 1 + δ) as {0}.
To do this, we restrict to a configuration that has a predescribed microscopic part

(depending on m), located well away from the boundary of ΛN , and additionally some
macroscopic points at the origin (whose marks are contained in the box) and no other
points. More precisely, we insert in ZN,ΛN ,Dir the indicator on the event that the
configuration in ΛN has a microscopic random part with N (δk)

ΛN
∈ mk(1− δ, 1 + δ)|ΛN | for

all k ∈ [K], additionally the indicator 1l{N (`)

ΛN\Λ̃N
= 0} on the event that a certain inner

boundary of ΛN is empty of points. Further, we require that the remaining part of the
configuration is equal to ω(ω)

ψ (to be defined later; it depends on ω(≤K)

ΛN
), that has only

points at the origin and completes the entire configuration in such a way that it has
precisely N particles. In other words, we estimate

1l{N (`)

ΛN
= N}1l{ÑΛc

N
= 0} ≥

∏
k∈[K]

1l
{
N

(δk)

Λ̃N
∈ mk(1− δ, 1 + δ)|Λ̃N |

}
× 1l{N (`)

ΛN\Λ̃N
= 0}1l{ω(>K)

Λ̃N
= ω(ω)

ψ },

where Λ̃N is the largest centred box such that x+Gk ⊂ ΛN for all x ∈ Λ̃N and k ∈ [K].
Clearly |Λ̃N | ∼ |ΛN |. Furthermore, we switch from EΛN to E(≤K)

Λ̃N
and note that EΛN =

E
(≤K)

Λ̃N
⊗ EΛN\Λ̃N ⊗ E

(>K)

Λ̃N
and that the expectation of the two last indicators is lower

bounded by e−|ΛN\Λ̃N |
∑
k qke−|ΛN |

∑
k>K qk+o(|Λn|) = e−|ΛN |

∑
k>K qkeo(|ΛN |), since ω(ω)

ψ is

macroscopic and qk = eo(k). This gives that

ZN,ΛN ,Dir ≥ e−|ΛN |
∑
k>K qkeo(|ΛN |)

× E(≤K)

Λ̃N

[
e
−ΦΛ̃N,Λ̃N

(·+ω(ω)
ψ )

∏
k∈[K]

1l
{
N

(δk)

Λ̃N
∈ mk|Λ̃N |(1− δ, 1 + δ)

}]
.

Here is the definition of ω(ω)

ψ . Consider, for all a ∈ [A − 1], the deterministic integers

Na = b|ΛN |ψ([a,∞))c and set ÑA = b|ΛN |ψ([A,∞))c. Then, we define the random
integers

NA =
[(
N −

∑
a∈[A−1]

Na −
∑
k∈[K]

kN
(δk)

Λ̃N

)
∧ ÑA

]
− (K + 1)

and NA+1 = N −
∑
a∈[A]Na −

∑
k∈[K] kN

(δk)

Λ̃N
, and note that

−δρmi + ψ([A,∞)) + o(1) ≤ NA
|ΛN |

≤
((
ψ([A,∞)) + δρmi

)
∧ 1
)

+ o(1),

and 0 ≤ NA+1/|ΛN | ≤ δρmi + o(1). From now on, we assume that 0 < δ ≤ ψ([A,∞))/4ρmi

and that N is sufficiently large such that either Na > K or Na = 0 for all a ∈ [A]. Further,
we put ω(ω)

ψ =
∑
a∈[A+1] : Na 6=0 δ(0,GNa ), i.e., we put at the origin the marks GN1

, . . . , GNA+1

on top of each other. This is a macroscopic configuration (with a possible exception of the
mark GNA+1

) that satisfies the zero-Dirichlet boundary conditions since Na ≤ |ΛN | for all
a ∈ [A+ 1]. Note that, for any a ∈ [A− 2], the number of sites in ΛN that carry precisely
a particles of ω(ω)

ψ is ψ(a)|ΛN |(1 + o(1)). Furthermore, the total number of particles in

the configuration ω + ω(ω)

ψ is equal to N . Note that ω(ω)

ψ depends on ω and is therefore
random.

Now we construct a deterministic macroscopic marked point configuration ωψ(δ) in
ΛN such that the number of sites in ΛN that are covered by precisely a particles from
this configuration is ∼ |ΛN |ψ(δ)(a) as N → ∞, for any a ∈ N0. Indeed, we replace NA
and NA+1 by the deterministic values ÑA = b|ΛN |(ψ([A,∞))c and ÑA+1 = b2δρmi|ΛN |c
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and denote by ωψ(δ) the corresponding macroscopic configuration, with ψ(δ) defined

below (4.5). Since NA ≤ ÑA and NA+1 ≤ ÑA+1, we have

ΦΛ̃N ,Λ̃N
(ω + ω(ω)

ψ ) ≤ ΦΛ̃N ,Λ̃N
(ω + ωψ(δ))

and we can lower bound:

ZN,ΛN ,Dir ≥ e−|ΛN |
∑
k>K qkeo(|ΛN |)Z(δ)

N,Λ̃N
(m,ψ(δ)), (4.7)

where

Z(δ)

N,Λ̃N
(m,ψ) = E

(≤K)

Λ̃N

[
e
−ΦΛ̃N,Λ̃N

(·+ω
ψ(δ) )

∏
k∈[K]

1l
{
N

(δk)

Λ̃N
∈ mk(1− δ, 1 + δ)|Λ̃N |

}]
. (4.8)

Since ψ(δ) ≥st ψ, there are more that N particles in the expectation on the right-hand
side of (4.8) for ψ(δ) in place of ψ, but this is no problem at all. In a small abuse of
notation, we write from now ΛN instead of Λ̃N .

Recall that we picked m = (mk)k∈N with support included in [K] = {1, . . . ,K} for
some K ∈ N, and a probability measure ψ on N0 having support included in {0, . . . , A}
for some A ∈ N0. Steps 3 to 7 are devoted to showing the following result: for any
δ ∈ (0, 1), for any m and ψ having finite support,

lim
N→∞

1

|ΛN |
logZ(δ)

N,ΛN
(m,ψN ) ≥ −ϕ(δ)(m,ψ), δ ∈ (0, 1), (4.9)

with ϕ(δ)(m,ψ) defined in (4.6), and any sequence (ψN )N∈N of measures on N0 such that
ψN ([a,∞)) → ψ([a,∞)) as N → ∞, and ψN ([A + 1,∞)) = 0 for all N . We will conclude
the proof by applying in (4.7) this result with (m,ψ(δ)) instead of (m,ψ) and, in Step 8,
by taking δ to 0.

STEP 3. We decompose ΛN in R-boxes.

Introduce a new large auxiliary parameter R ∈ N and consider the box Q = [−R,R)d∩
Zd. We denote by YN = YN (R) the set of all z ∈ 2RZd such that z + Q ⊂ ΛN . We
decompose the box ΛN into the boxes Qz = z + Q with z ∈ YN . We call the boxes Qz
sometimes mesoboxes. We may assume that ΛN is equal to the union of these boxes,
since otherwise we insert the indicator on the event that the configuration ωP has no
particles in the difference between ΛN and the union (call it Λ̃N ), then we can replace the
interaction in ΛN by the interaction in Λ̃N and can separate the entire expectation into
the probability that the difference is empty and the same expectation with ΛN replaced
by Λ̃N . It is easy to see that the exponential rate of the former vanishes as N → ∞
for any R. Hence, we assume from now that ΛN is equal to the union of the boxes Qz.
Observe that for each a ∈ {0, . . . , A}, the number of boxes Qz that are hit by precisely a
of the macroscopic marks is deterministic and approximately equal to ψN (a)|YN |, where
we already note that |YN | = |ΛN |(2R)−d. It is guaranteed that

lim
N↑∞

1

|YN |
∣∣{z ∈ YN : Qz is hit by precisely a marks}

∣∣ = ψ(a), a ∈ {0, . . . , A}, (4.10)

see Figure 4 for an illustration.

STEP 4. We isolate the Qz’s.

In this step, we further lower bound Z(δ)

N,ΛN
(m,ψN ) in such a way that there is no

mutual interaction between any two different mesoboxes Qz. For this, we insert an
indicator on the event that all the Poisson points are located sufficiently far away from the
boundaries of the Qz. For this sake, we recall that the interaction potential v is assumed

EJP 28 (2023), paper 118.
Page 20/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1014
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variational formula for a many-body system

Figure 4: Illustration for the construction of macroscopic marks. We attach two Poisson
points at the origin with the desired marks indicated by the red and orange boxes. In
this case, we arrive at ψ(0) = 16/25, ψ(1) = 8/25 and ψ(2) = 1/25.

to have bounded support, and pick L > 0 such that v(r) = 0 for any r ∈ Zd \ [−L,L]d.
Pick the box Q̃ = [−R + S,R − S)d ∩ Zd with some S > L+ maxk∈[K] diam(Gk) and put

Q̃z = z + Q̃, assuming that R > 4S. We require that the PPP has no points in the region
z + (Q \ Q̃) = Qz \ Q̃z. Then any two particles in microscopic marks in different Qz’s
have no interaction with each other, and a microscopic particle of a point in Qz has
no interaction with any macroscopic particle that lies in a different Qz. Then the total
energy is now equal to the sum over z of the self-energy of the microscopic marks in
Qz plus their energy with those macroscopic particles that lie in the same Qz plus the
self-energy of the latter particles, plus the energy between the macroscopic particles
in different Qz’s. The total energy coming from macroscopic particles in different boxes
is bounded by some constant (depending on v, d and A) times the number of points
in ΛN whose distance to the boundary their box Qz is smaller than the diameter of
the support of v. This region has a volume that is not larger than a constant times
|ΛN |/R.

We write a(z) ∈ {0, 1, . . . , A} for the number of macroscopic marks that hit Qz. Note
that the cross-energy between a particle in a microscopic mark with all the macroscopic
particles of one such grid is not greater than the number v̄ defined in (2.3); hence this
part of the energy is equal to v̄ times the number of microscopic particles in Qz, i.e.,
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times N (`)

Qz
. Hence, we estimate, on the above indicator,

ΦΛN ,ΛN

(
ω + ωψN

)
≤
∑
z∈YN

Φ̃Q̃(ω(z), a(z)) + C|ΛN |/R,

where C is a constant that depends on d, v and A only, and we introduced the shifted
restriction ω(z) = θ−z(ωQ̃z ) ∈ ΩQ̃, where we recall that θz is the shift operator by z,

and ΩQ̃ denotes the set of all marked point processes with points in Q̃ and marks in
{Gk : k ∈ N}. Also, we introduced the energy functional

Φ̃Q̃(ω, a) = ΦQ̃,Q̃(ω) + 2v̄aN (`)

Q̃
(ω) + |Q|v̄Qa2, ω ∈ ΩQ̃, a ∈ N0, (4.11)

where and v̄Q = 1
|Q|
∑
i,i′∈Q v(i− i′) is a constant that depends only on v and R and we

note that it converges towards v̄ as R→∞.
This gives the estimate, for any sufficiently large N ,

Z(δ)

N,ΛN
(m,ψN ) ≥ e−

C
R |ΛN |E(≤K)

ΛN

[
e
−

∑
z∈YN

Φ̃Q̃(·(z),a(z))

×
[ ∏
k∈[K]

1l
{
N

(δk)

ΛN
∈ |ΛN |mk(1− δ, 1 + δ)

}][ ∏
z∈YN

1l
{
NQz\Q̃z = 0

}]]
.

(4.12)
We can write the event {N (δk)

ΛN
∈ mk|ΛN |(1 − δ, 1 + δ)} as the event {

∑
z N

(δk)

Q̃
(ω(z)) ∈

|ΛN |mk(1 − δ, 1 + δ)}, which is independent of the void event in the end. Also the
interaction term is independent of the void probability. The latter is not smaller than∏
z e−|Q\Q̃|

∑
k∈N qk ≥ e−C|ΛN |/R for any N and R, if C is sufficiently large, depending only

on v, d, K and
∑
k qk.

STEP 5. We rewrite the expectation in terms of an expectation with respect to a crucial
empirical measure.

Now we introduce an empirical measure that we will need for our large-deviations
arguments:

η̃N,R =
1

|YN |
∑
z∈YN

δ(ω(z),a(z)) ∈M1(ΩQ̃ × {0, . . . , A}).

Then we have

Z(δ)

N,ΛN
(m,ψN ) ≥ e−2CR |ΛN |

× E(≤K)

ΛN

[
e−|YN |〈η̃N,R,Φ̃Q̃〉

∏
k∈[K]

1l
{〈
η̃N,R,

1

|Q|
N

(δk)

Q̃

〉
∈ mk(1− δ, 1 + δ)

}]
,

(4.13)

where we wrote shortN (δk)

Q̃
for the map (ω, a) 7→ N

(δk)

Q̃
(ω). Note that, by (4.10), η̃N,R(ΩQ̃×

{a}) is deterministic and converges to ψ(a).

STEP 6. We carry out the large-N asymptotics with the help of large-deviation argu-
ments.

In order to apply a multi-type variant of Sanov’s theorem, we can lower bound (4.13)
further by inserting the indicator on the event AMΛN that for all x ∈ ΛN and k ∈ [K] we
have ξ(k)(x) ≤M . This guarantees that, at each site in ΛN , there are at most M points
for any k ∈ [K]. Then, writing P(≤K,≤M)

ΛN
for the Poisson field P(≤K)

ΛN
conditioned on AMΛN

and Ω(≤K,≤M)

Q̃
for the associated finite state space, the (η̃N,R)N satisfy a large-deviation

principle as N →∞ onM1(Ω(≤K,≤M)

Q̃
× {0, . . . , A}) with scale |ΛN | and rate function

η 7→ IQ,Q̃(η) =
1

|Q|

A∑
a=0

ψ(a)HQ̃(ηa|P(≤K,≤M)

Q̃
),
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if η(Ω(≤K,≤M)

Q̃
× {a}) = ψ(a) for all a ∈ [A], and infinity otherwise. Here, ηa(·) = η(· ×

{a})/η(Ω(≤K,≤M)

Q̃
× {a}) ∈M1(Ω(≤K,≤M)

Q̃
) is the conditional distribution on Ω(≤K,≤M)

Q̃
given

the mark a. For the additional term, coming from the normalization in the conditioning,
we have

1

|ΛN |
logE(≤K)

ΛN

[ ∏
x∈ΛN , k∈[K]

1{ξ(k)(x) ≤M}
]

= −
∑
k∈[K]

(
q(k)− log

M∑
l=0

q(k)l

l!

)
= −CM ,

where the right-hand side tends to zero as M tends to infinity.
Hence, recalling (4.7) and using Varadhan’s lemma, we obtain that

lim inf
N→∞

1

|ΛN |
logZ(δ)

N,ΛN
(m,ψN ) ≥ −2C

R
− CM − ϕ(δ,K,M)

Q,Q̃
(m,ψ), (4.14)

where we recall that the support of m is contained in [K] and we define

ϕ(δ,K,M)

Q,Q̃
(m,ψ) =

1

|Q|
inf
{ ∑
a∈N0

ψ(a)
[
HQ̃(ηa|P(≤K,≤M)

Q̃
) + 〈ηa, Φ̃Q̃(·, a)〉

]
:

η0, η1, · · · ∈ M1(Ω(≤K,≤M)

Q̃
),∀k ∈ [K] :

∑
a∈N0

ψ(a)
〈
ηa,

1
|Q|N

(δk)

Q̃

〉
∈ mk(1− δ, 1 + δ)

}
.

(4.15)

Now, consider also ϕ(δ,K)

Q,Q̃
(m,ψ), which is defined as in (4.15) but with no reference to

M , and let ηε = (ηεa)a∈N0 satisfy the constraints in the definition of ϕ(δ/2,K)

Q,Q̃
(m,ψ) and be

such that

ϕ(δ/2,K)

Q,Q̃
(m,ψ) ≥ 1

|Q|
∑
a∈N0

ψ(a)
[
HQ̃(ηεa|P

(≤K)

Q̃
) + 〈ηεa, Φ̃Q̃(·, a)〉

]
− ε.

Now, for all sufficiently large M , the measure ηε,M , given by ηε conditioned on the event
AMΛN , satisfies the conditions in (4.15) and hence,

ϕ(δ,K,M)

Q,Q̃
(m,ψ) ≤ 1

|Q|
∑
a∈N0

ψ(a)
[
HQ̃(ηε,Ma |P(≤K,≤M)

Q̃
) + 〈ηε,Ma , Φ̃Q̃(·, a)〉

]
.

Then, using the fact that ψ has a finite support and dominated convergence, the right-
hand side converges to 1

|Q|
∑
a∈N0

ψ(a)
[
HQ̃(ηεa|P

(≤K)

Q̃
) + 〈ηεa, Φ̃Q̃(·, a)〉

]
as M tends to

infinity and hence, since ε was arbitrary,

lim sup
M↑∞

ϕ(δ,K,M)

Q,Q̃
(m,ψ) ≤ ϕ(δ/2,K)

Q,Q̃
(m,ψ).

STEP 7. We let Q ↑ Zd.

Note that ϕ(δ,K)

Q,Q̃
(m,ψ) = ϕ(δ,∞)

Q,Q̃
(m,ψ) + |Q̃|

|Q|
∑
k>K qk. Now we consider the limit

as R → ∞ and want to show that lim supR→∞ ϕ(δ,∞)

Q,Q̃
(m,ψ) ≤ ϕ(δ)(m,ψ). Recall that

Q = [−R,R)d ∩Zd and Q̃ = [−R+S,R−S)d ∩Zd for some S > 0, and hence |Q̃|/|Q| → 1

as R → ∞. The main idea is to restrict the infimum in the definition of ϕ(δ,K)

Q,Q̃
(m,ψ)

to those ηa that are the restriction to Q̃ (more precisely, the projection onM1(Ω(≤K)

Q̃
))

of some Pa ∈ M(s)

1 (Ω) satisfying Pa(Φ0,Zd) < ∞, which leads to an upper estimate for
ϕ(δ,∞)

Q,Q̃
(m,ψ). Hence, pick some (Pa)a that are admissible in the definition (4.6) and put

ηa = (Pa)Q̃ = Pa ◦ π−1

Q̃,K
for a ∈ N, where πQ̃,K : Ω → Ω(≤K)

Q̃
is the canonical projection.

Without loss of generality we conceive the ηa as elements of M1(ΩQ̃) without mass
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on configurations with marks of size > K. In particular, (ηa)a then satisfies the last
condition in the definition of ϕ(δ,K)

Q,Q̃
(m,ψ) for all k > K since mk = 0 for these k. Moreover,

(ηa)a is admissible in the definition of ϕ(δ,K)

Q,Q̃
(m,ψ) for all sufficiently large R, since

〈
ηa,

1
|Q|N

(δk)

Q̃

〉
= |Q̃|
|Q| 〈Pa, N

(δk)

0 〉 → 〈Pa, N (δk)

0 〉, as R→∞, a ∈ N0, k ∈ [K],

by stationarity of Pa, where we wrote N (δk)

0 also for the map Ω→ R.
We will show that plugging this family (ηa)a into the functional in the definition of

ϕ(δ,K)

Q,Q̃
(m,ψ) gives, in the limit as R→∞, a value that is not larger than the value of the

functional on the right-hand side of (4.6) for (Pa)a. Minimising over (Pa)a then gives the
desired result.

We first argue that

1

|Q|
〈ηa, Φ̃Q̃(·, a)〉 ≤ 〈Pa,Φ0,Zd〉+ 2v̄a〈Pa, N (`)

0 〉+ v̄a2, a ∈ N0, R > 0. (4.16)

Indeed, the two last terms are easily understood, using stationarity and the above remark
that |Q̃|/|Q| → 1; recall also that v̄Q → v̄ as R → ∞. For understanding the first term
in (4.16), we note that, since v ≥ 0 and hence ΦQ̃,Q̃ ≤ ΦQ,Zd ,

1

|Q|
〈ηa,ΦQ̃,Q̃〉 ≤

1

|Q|
∑
x∈Q
〈Pa, θxΦ0,Zd〉 = 〈Pa,Φ0,Zd〉, R > 0,

by stationarity, where θx is the shift operator by x ∈ Zd. This explains also the first term
in (4.16).

Now we turn to the entropic term and recall (2.4), which gives us that

lim
R→∞

1

|Q|
HQ̃(ηa|PQ̃) = I(Pa), a ∈ N0. (4.17)

This, together with (4.16) gives that

lim sup
R→∞

ϕ(δ,∞)

Q,Q̃
(m,ψ) ≤

∑
a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄a〈Pa, N (`)

0 〉+ v̄a2
]
.

By minimising over (Pa)a, the right-hand side approaches ϕ(δ)(m,ψ). Hence, using (4.14),
we have proved (4.9). Together with (4.7), this yields (4.5).

STEP 8. We take δ to zero.

Recall that (4.5) is in terms of ψ(δ) instead of ψ, where we recall that ψ(δ) = ψ +

2δρma(δA+1−δA). To finish the proof of (4.4), we have to prove that lim supδ↓0 ϕ
(δ)(m,ψ(δ))

≤ ϕ(m,ψ) for m with support in [K] and ψ with support in {0, . . . , A}. Note first
that, trivially, ϕ(δ) ≤ ϕ. Now we show that lim supδ↓0 ϕ(m,ψ(δ)) ≤ ϕ(m,ψ). Pick
P0, P1, . . . , PA ∈M(s)

1 (Ω) admissible in the formula (2.8) for ϕ(m,ψ). Now put PA+1 = PA,
then (Pa)a∈{0,...,A+1} is admissible in the formula (2.8) for ϕ(m,ψ(δ)), since∑
a ψ

(δ)(a)Pa(N
(δk)

0 ) = mk+2δρma[PA+1(N
(δk)

0 )−PA(N
(δk)

0 )] = mk for any k ∈ N. Inserting
this in (2.8) for ϕ(m,ψ(δ)) gives (abbreviating Ξa(P ) = I(P )+P (Φ0,Zd)+2v̄aP (N (`)

0 )+v̄a2),

ϕ(m,ψ(δ)) ≤
∑
a

ψ(δ)(a)Ξa(Pa) =
∑
a

ψ(a)Ξa(Pa) + 2δρma[ΞA+1(PA)− ΞA(PA)].

Taking δ to 0 and then minimising over (Pa)a finishes the proof of (4.4) and hence the
proof of the lower bound in Theorem 2.1.
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4.2 Proof of the upper bound in Theorem 2.1

Now we turn to the proof of (4.2).

STEP 1. We estimate against one maximal cardinality configuration.

Recall that ρ|ΛN | = N and decompose according to the numbers of Poisson points for
any mark size:

ZN,ΛN ,Dir =
∑

l=(lk)k∈N∈NN0 :
∑
k klk=ρ|ΛN |

ZN,ΛN ,Dir(l) (4.18)

with
ZN,ΛN ,Dir(l) = EΛN

[
e−ΦΛN,ΛN 1l{ÑΛc

N
= 0}

∏
k∈N

1l{N (δk)

ΛN
= lk}

]
.

Now we take, for any N , one sequence l(∗,N) = (l(∗,N)

k )k∈N that is maximal for l 7→
ZN,ΛN ,Dir(l) under the constraint

∑
k klk = ρ|ΛN |, and estimate

ZN,ΛN ,Dir ≤ #
{

(lk)k∈[N ] ∈ N
[N ]
0 :

∑
k

klk = N
}
ZN,ΛN ,Dir(l

(∗,N)). (4.19)

It is known that the counting term is not larger than eo(N). It is clear that we can find a
subsequence along which, for some sequence (m∗k)k∈N, we have that 1

|ΛN | l
(∗,N)

k → m∗k for
any k ∈ N. According to Fatou’s lemma, we have that

ρmi =
∑
k∈N

km∗k ∈ [0, ρ], and we put ρma = ρ− ρmi ∈ [0, ρ]. (4.20)

The remainder of the proof shows that

lim sup
N→∞

1

|ΛN |
logZN,ΛN ,Dir(l

(N)) ≤ − inf
ψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma

ϕ(m,ψ), (4.21)

for any m ∈ [0,∞)N satisfying
∑
k∈N kmk = ρmi and any sequence l(N) in NN0 satisfying∑

k kl
(N)

k = N for all N ∈ N, and 1
|ΛN | l

(N)

k → mk for any k ∈ N.

STEP 2. We integrate out macroscopic marks and decompose ΛN in R-boxes.

We introduce a large parameter K ∈ N and introduce the cut-off version of m by
putting m(≤K) = (m1,m2, . . . ,mK , 0, 0, . . . ). We call the marks Gk with k ≤ K microscopic
and the others macroscopic. We write now the expectation over the configuration as
an integration over the part of the configuration that has only microscopic marks,
and an explicit integral for the location of any macroscopic mark. Hereby, we use
that, conditional on {N (δk)

ΛN
= lk}, the lk Poisson points are independent and uniformly

distributed over ΛN , for any k > K and any lk ∈ N. Estimating these Poisson probabilities
against one, this gives

ZN,ΛN ,Dir(l
(N)) ≤ E(≤K)

ΛN
⊗
⊗
k>K

l
(N)
k⊗
j=1

UΛN

[
e−ΦΛN,ΛN

(·+ωX)1l{ÑΛc
N

= 0}
K∏
k=1

1l{N (δk)

ΛN
= l(N)

k }
]
,

(4.22)

where X = (Xk,j)k>K;j=1,...,l
(N)
k

is a collection of independent and uniformly over ΛN

distributed random sites with distribution (and expectation) UΛN and ωX =∑
k>K

∑l
(N)
k
j=1 δ(Xk,j ,Gk) is the superposition of the marked points.

Let us fix a large auxiliary parameter R ∈ N and decompose ΛN regularly into
auxiliary boxes Qz = z +Q = z + [−R,R)d ∩Zd, of radius R centred at z ∈ YN = YN,R =

{z ∈ 2RZd : Qz ⊂ ΛN}. If |ΛN | is not a multiple of |Q| = (2R)d, then cut the overshoot
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away, obtaining a box Λ̃N , which is precisely equal to the disjoint union of the Qz with
z ∈ YN . There are |YN | ∼ |ΛN |/(2R)d such boxes. The volume of the amended box
satisfies 1− CRN−1/d ≤ |Λ̃N |/|ΛN | ≤ 1 for some C that depends only on d. Additionally,
we pick a small δ ∈ (0, 1) and estimate, for any k ∈ [K] and any sufficiently large N ,

1l{N (δk)

ΛN
= l(N)

k } ≤ 1l{N (δk)

Λ̃N
∈ mk|ΛN |[1− δ, 1 + δ]}+ 1l{N (δk)

ΛN\Λ̃N
> δ|ΛN |}.

The expectation of the latter term is easily shown to have an exponential rate equal to
−∞ on the scale |ΛN | for any δ > 0, using the exponential Chebyshev inequality and the
fact that N (δk)

ΛN\Λ̃N
is Poisson-distributed with parameter of surface order of |ΛN |. So far,

we have that, with some arbitrarily large C > 0, for any N large enough,

ZN,ΛN ,Dir(l
(N)) ≤ e−C|ΛN |

+ E(≤K)

ΛN
⊗
⊗
k>K

l
(N)
k⊗
j=1

UΛn

[
e
−ΦΛ̃N,Λ̃N

(·+ωX)
K∏
k=1

1l{N (δk)

Λ̃N
∈ mk|ΛN |[1− δ, 1 + δ]}

]
.

(4.23)

We also used that ΦΛN ,ΛN ≥ ΦΛ̃N ,Λ̃N
.

STEP 3. We cut off overshoot.

We also would like to have that each macroscopic mark Gk centred at Xk,j for k > K

either covers any Qz entirely or does not intersect it. To achieve this, from each of the
macroscopic marks Gk centred at Xk,j cut away the overshoot of the largest union of
the Qz’s that lie in the mark. Also this amendment does not increase the interaction.
We are cutting away only a negligible amount of particles, i.e., a number of particles
that is ≤ |ΛN |δK,R with some δK,R that vanishes as K →∞, for fixed R. In order to see
this, recall that Gk approaches a regular discrete box of cardinality ≈ k and note that
therefore the number of particles in a mark Gk with k > K that we cut away is at most

dk1/ded −
(
dk1/de − 4R

)d
= dk1/ded

[
1−

(
1− 4R

dk1/de

)d]
≤ dk1/ded2d 4R

dk1/de
≤ kδK,R,

with some δK,R as announced. We denote the amended mark centred at Xk,j by G̃k,j .
Let a(z) ∈ N0 denote the number of macroscopic Poisson points Xk,j with k > K and

j ∈ [l(N)

k ] such that its mark G̃k,j centred at Xk,j contains Qz. We then say that Qz is of

type a(z). For any (k, j) with k > K and j ∈ [l(N)

k ], there are |Q|−1|G̃k,j | boxes Qz that are

covered by the amended mark Xk,j + G̃k,j . Hence,

∑
z∈YN

a(z) =
∑
k>K

l
(N)
k∑
j=1

|Q|−1|G̃k,j | ∈ |Q|−1
∑
k>K

l
(N)
k∑
j=1

k
[
1− δK,R, 1

]
= |Q|−1N (Ma)[1− δK,R, 1],

(4.24)
where we write

N (Ma) = N −
∑
k∈[K]

kl(N)

k (4.25)

for the total number of particles in all the macroscopic marks. Recall (4.20) to see that,
for any sufficiently large N ,

N (Ma) ∈ ρ|ΛN |−|ΛN |
( ∑
k∈[K]

kmk

)
[1−δ, 1+δ] = |ΛN |

(
ρma+

∑
k>K

kmk+
( ∑
k∈[K]

kmk

)
[−δ, δ]

)
.

(4.26)

STEP 4. We drop all interaction between any two distinct Qz’s.
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More precisely, for any z, we attach to Qz all interaction that (1) the microscopic
marks at points ∈ Qz have with each other or (2) the microscopic marks ⊂ Qz with
any macroscopic particle ∈ Qz (these appear twice) and (3) the interaction that all the
macroscopic particles in ∈ Qz have with each other. The sum of these three interactions
is not smaller than Φ̃Q(ω(z), a(z)), where

ω(z) = θ−z(ωQz ) ∈ Ω(≤K)

Q , ω ∈ Ω(≤K)

Q ,

is the restriction of ω ∈ Ω to Qz, shifted to Q, and

Φ̃Q(ω, a) = ΦQ,Q(ω) + 2v̄aN (`)

Q̃
(ω) + |Q|v̄Qa2, a ∈ N0, ω ∈ Ω(≤K)

Q , (4.27)

where we introduced v̄Q = 1
|Q|
∑
i,i′∈Q v(i − i′) and used Q̃ = [−R + S,R − S]d ⊂ Q

as defined in Step 7 in Section 4.1 (where S is chosen in such a way that there is
no interaction between particles associated with points in Q̃ and Qc). Recall that
v̄ =

∑
i∈Zd v(i), and N (`)

Q (ω) =
∑
k∈N

∑
x∈Q kξ

(k)(x) is the number of particles in marks
at points in Q in the configuration ω.

We have the following lower bound on the energy:

ΦΛ̃N ,Λ̃N

(
ω + ωX

)
≥
∑
z∈YN

Φ̃Q
(
ω(z), a(z)

)
. (4.28)

Since we have estimated the influence of the macroscopic Poisson points Xk,j with
k > K and j ∈ [l(N)

k ] and their marks in terms of the a(z), we can proceed by taking the
maximum over all these a(z):

ZN,ΛN ,Dir(l
(N)) ≤ e−C|ΛN | + max

(a(z))z∈N
YN
0 :

∑
z a

(z)∈|Q|−1|ΛN |JK,R,δ
E

(≤K)

Λ̃N

[
e
−

∑
z∈YN

Φ̃Q(·(z),a(z))

×
K∏
k=1

1l{N (δk)

Λ̃N
∈ mk|ΛN |[1− δ, 1 + δ]}

]
, (4.29)

where

JK,R,δ :=
[(
ρma+

∑
k>K

kmk−δ
( ∑
k∈[K]

kmk

))
(1−δK,R), ρma+

∑
k>K

kmk+δ
( ∑
k∈[K]

kmk

)]
∩[0, ρ].

(4.30)

STEP 5. We rewrite the expectation in terms of an expectation with respect to a crucial
empirical measure.

Now we introduce the main tool in our large-deviation analysis, the empirical measure
of the subconfigurations in the Qz,

ηN,R(ω, ā) =
1

|YN |
∑
z∈YN

δ(ω(z),a(z)) ∈M1(Ω(≤K)

Q ×N0), ω ∈ ΩΛ̃N
, ā ∈ NYN0 . (4.31)

In terms of ηN,R, we may write∑
z∈YN

Φ̃Q(ω(z), a(z)) = |YN |〈ηN,R(ω, ā), Φ̃Q〉

and

{N (δk)

ΛN
(ω) = lk} =

{
〈ηN,R(ω, ā), N

(δk)

Q 〉 =
lk
|YN |

}
, k ∈ [K], lk ∈ N, ā ∈ NYN0 ,
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where we conceive N
(δk)

Q as the map (ω, a) 7→ N
(δk)

Q (ω) =
∑
x∈Q ξ

(k)(x) if ω =∑
x∈Q

∑
k∈[K] ξ

(k)(x)δ(x,Gk). (Again, we make no notational difference between appli-
cation to ω and its restriction to Q.)

Furthermore, observe that the condition on the a(z) in (4.24) under the maximum can
be written in terms of the projection of ηN,R on the second component. Indeed, denoting
this projection by πN0

(ω, a) = a and recalling that |YN | ∼ |ΛN |/|Q| as N → ∞ and the
asymptotics in (4.26), we see that (4.24) implies

〈ηN,R(ω, ā), πN0
〉 ∈ N (Ma)

|YN |
|Q|−1

[
1− δK,R, 1

]
⊂ JK,R,δ, (4.32)

for any sufficiently large N . Collecting everything so far, this means that

ZN,ΛN ,Dir(l
(N)) ≤ e−C|ΛN |+ max

ā∈NYN0

E
(≤K)

Λ̃N

[
e−|YN |〈ηN,R(·,ā),Φ̃Q〉1l

{
〈ηN,R(·, ā), πN0

〉 ∈ JK,R,δ
}

K∏
k=1

1l
{〈
ηN,R(·, ā),

1

|Q|
N

(δk)

Q

〉
∈ mk[1− δ, 1 + δ]

}]
. (4.33)

In order to employ a Sanov-type large-deviation argument together with Varadhan’s
lemma, in Step 6, we need one more preparatory step. Let us define truncated versions
of the functionals involved in (4.33), i.e.,

Φ̃MQ = Φ̃Q ◦ `M and N
(δk),M
Q = N

(δk)

Q ◦ `M ,

where `M (ω) =
∑
k∈N

∑
x∈Zd ξ

(k)(x)1{ξ(k)(x) ≤M}δ(x,Gk). In particular, replacing Φ̃Q by

Φ̃MQ in (4.33) leads to a further upper bound, by the non-negativity of the potential. In

order to also replace N (δk)

Q by N (δk),M
Q we have to be a bit more careful. We insert into the

expectation on the right-hand side of (4.33) the indicator on the event AΛN ,M that for all
k ∈ [K] we have that (|YN ||Q|)−1

∑
x∈Λ̃N

ξ(k)(x)1{ξ(k)(x) > M} < mkδ plus the indicator
on the counter event Ac

ΛN ,M
. The right-hand side of (4.33) with the indicator on AΛN ,M

can be now be estimated from above by the indicator
∏K
k=1 1l{〈ηN,R(·, ā), 1

|Q|N
(δk)

Q 〉 ∈
mk[1− 2δ, 1 + 2δ]}, which gives

ZN,ΛN ,Dir(l
(N)) ≤ e−C|ΛN | + max

ā∈NYN0

E
(≤K,M)

Λ̃N

[
e−|YN |〈ηN,R(·,ā),Φ̃Q〉1l

{
〈ηN,R(·, ā), πN0〉 ∈ JK,R,δ

}
K∏
k=1

1l
{〈
ηN,R(·, ā),

1

|Q|
N

(δk)

Q

〉
∈ mk[1− 2δ, 1 + 2δ]

}]
+ P(≤K)

Λ̃N
(Ac

ΛN ,M ), (4.34)

where P(≤K,M)

Λ̃N
= P

(≤K)

Λ̃N
◦ (`M )−1 denote the image measure of P(≤K)

Λ̃N
under `M . In words,

the image measure moves all the probability mass of more than M points on a site
towards the empty site. Note that a Cramér-type large deviation principle yields that
the probabilities P(≤K)

Λ̃N
(Ac

ΛN ,M
) have, on the scale |ΛN |, an exponential rate that tends to

minus infinity as M tends to infinity.

STEP 6. We carry out the large-N asymptotics with the help of large-deviation argu-
ments.

Let Ω(≤K,M)

Q = {`M (ω) : ω ∈ Ω(≤K)

Q } = (`M )−1(Ω(≤K)

Q ) and introduce the rate function

M1(Ω(≤K,M)

Q ×N0) 3 η 7→ I(≤K,M)

Q (η) =
1

|Q|
∑
a∈N0

η
(
Ω(≤K,M)

Q × {a}
)
HQ

(
η(·|a)|P(≤K,M)

Q

)
,

(4.35)
where we wrote η(·|a) = η(·× {a})/η(Ω(≤K,M)

Q ×{a}) for the conditional distribution given
the type a.
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Lemma 4.1 (N → ∞). If C and M are large enough, then, for any K,R ∈ N and
δ ∈ (0, 1),

lim sup
N→∞

1

|ΛN |
logZN,ΛN ,Dir(l

(N)) ≤ −ϕ(K,δ,M)

Q (m(≤K), JK,R,δ),

where the interval JK,R,δ is defined in (4.30), and for any J ⊂ [0,∞) and for any
m = (m1, . . . ,mK) ∈ [0,∞)K , we define

ϕ(K,δ,M)

Q (m,J) = inf
{
I(≤K,M)

Q (η) +
〈
η,

1

|Q|
Φ̃Q

〉
: η ∈M1(Ω(≤K,M)

Q ×N0),

∀k ∈ [K] :
〈
η,

1

|Q|
N

(δk)

Q

〉
∈ mk[1− 2δ, 1 + 2δ], 〈η, πN0〉 ∈ J

}
.

(4.36)

Proof. We need a large-deviation principle (LDP) for ηN,R as N →∞. By the properties
of a PPP, if ω is an Ω(≤K,M)

Λ̃N
-valued random variable under P(≤K,M)

Λ̃N
, the family (ω(z))z∈YN

is an i.i.d. sequence with values in the finite space Ω(≤K,M)

Q with distribution P(≤K,M)

Q , the

distribution of the projection of the image of the marked reference PPP P under `M to
Ω(≤K,M)

Q . However, these ω(z)’s come with disordered values a(z), such that an application
of the usual Sanov theorem is not possible. We use a variant of Sanov’s theorem with a
countable number of types of distributions labeled by a ∈ N0. This says that ηN,R(ω, ā)

satisfies onM1(Ω(≤K,M)

Q ×N0) an LDP with speed |ΛN | and rate function I(≤K,M)

Q defined
in (4.35).

Let us give some explanations, as we actually do not know an explicit reference for
this LDP. Consider the N0-projection πN0

ηN,R of ηN,R, then (4.34) may be written as

ZN,ΛN ,Dir(l
(N)) ≤ e−C|ΛN | + sup

ψ∈M1(N0) :
∑
a∈N0

aψ(a)∈JK,R,δ
max
ā∈NYN0

E
(≤K,M)

Λ̃N

[
e−|YN |〈ηN,R(·,ā),Φ̃Q〉

[ K∏
k=1

1l
{〈
ηN,R(·, ā),

1

|Q|
N

(δk)

Q

〉
∈ mk[1− 2δ, 1 + 2δ]

}
1l{πN0ηN,R(·, ā) = ψ}

]
+P(≤K)

Λ̃N
(AΛN ,M ).

For any fixed ψ, on the event {πN0
ηN,R(·, ā) = ψ}, the measure ηN,R is the empirical

measure of |YN | independent random variables (ω(z), a(z)). Furthermore, for any a ∈ N0,
the second argument a(z) is equal to a for ∼ |YN |ψ(a) of them. Hence, ηN,R is a convex
combination of empirical measures indexed by a ∈ N0 mixed according to ψ, each of
which satisfies Sanov’s theorem, i.e., an LDP on the scale |YN | with rate function equal
to the entropy with respect to the reference distribution, P(≤K,M)

Q . Since the state space
is also finite, this implies the LDP on the scale |ΛN | ∼ |YN ||Q| for ηN,R with rate function
equal to the convex combination in (4.35).

Finally, since ΦQ is upper semicontinuous, we may apply the upper-bound part of
Varadhan’s lemma and obtain the assertion of the lemma, also noting that the infimum
over ψ such that

∑
a ψ(a)a ∈ JK,R,δ of the infimum over η satisfying πN0η = ψ can be

summarised as the infimum over η such that 〈η, πN0〉 ∈ JK,R,δ.

STEP 7. We relax the restrictions of the constraints and on the boundedness of the mark
size.

Recall that ρma was defined in (4.20) and the interval JK,R,δ in (4.30).

Lemma 4.2 (M,K →∞ and δ → 0). For any R ∈ (0,∞) and m = (mk)k∈N ∈ [0,∞)N,

lim inf
K→∞,δ→0

lim inf
M→∞

ϕ(K,δ,M)

Q (m(≤K), JK,R,δ) ≥ inf
ψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma

ϕQ(m,ψ), (4.37)
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where

ϕQ(m,ψ) = inf
{ ∑
a∈N0

ψ(a)
[ 1

|Q|
HQ(ηa|PQ) +

1

|Q|
〈ηa,ΦQ,Q〉+ 2v̄a

1

|Q|
〈ηa, N (`)

Q̃
〉+ v̄Qa

2
]

:

η0, η1, · · · ∈ M1(ΩQ),
∑
a∈N0

ψ(a)
1

|Q|
〈ηa, N (δk)

Q 〉 = mk ∀k ∈ N
}
.

(4.38)

Proof. First we isolate the a-dependence by substituting ψ(a) = η(Ω(≤K,M)

Q × {a}) and

ηa(·) = η(·×{a})/η(Ω(≤K,M)

Q ×{a}), then we see that ϕ(K,δ,M)

Q (m(≤K), J) can be reformulated
as

ϕ(K,δ,M)

Q (m(≤K), J) = inf
{ ∑
a∈N0

ψ(a)
[

1
|Q|HQ(ηa|P(≤K,M)

Q ) + 1
|Q| 〈ηa,ΦQ,Q〉+ 2v̄a 1

|Q| 〈ηa, N
(`)

Q̃
〉

+ v̄Qa
2
]

: η0, η1, · · · ∈ M1(Ω(≤K,M)

Q ), ψ ∈M1(N0),
∑
a∈N0

aψ(a) ∈ J,

∑
a∈N0

ψ(a) 1
|Q| 〈ηa, N

(δk)

Q 〉 ∈ mk[1− 2δ, 1 + 2δ] ∀k ∈ [K]
}
.

Now use this for J = JK,R,δ and pick L large enough such that an insertion of the
constraint

∑
a∈N0

a2ψ(a) ≤ L in the right-hand side does not change its value for anyM >

0, K ∈ N and δ ∈ (0, 1). Pick, for any M > 0, K ∈ N and δ ∈ (0, 1), an (approximative)
minimiser (ψ(K,δ,M), (η(K,δ,M)

a )a∈N0
) for this variational problem.

Now, first pick a sequence (Mn)n∈N such that Mn →∞ and pick some accumulation
point (ψ(K,δ), (η(K,δ)

a )a∈N0
) for the family (ψ(K,δ,Mn), (η(K,δ,Mn)

a )a∈N0
)n∈N. Then, we can view

η(K,δ,Mn)
a as an element ofM1(Ω(≤K)

Q ) that puts zero mass on configuration of particles

with more than M points on any site in Q. However, the reference measure P(≤K,Mn)

Q

puts additional weight on empty sites coming from configurations with more than Mn

points on individual sites. Computing explicitly this extra mass using the entropic worst
case, where η(K,δ,Mn)

a is concentrated on the empty configuration, we have that

HQ(η(K,δ,Mn)

a |P(≤K,Mn)

Q ) = HQ(η(K,δ,Mn)

a |P(≤K)

Q ) + εn

with some εn → 0 as n → ∞. Now we use that HQ(·|P(≤K)

Q ) has compact level sets, a
fact that is proved in the proof of Sanov’s theorem, since this is a good rate function.
Further, the map η 7→ 〈η,N (δk)

Q 〉 is continuous on the level sets of HQ(·|P(≤K)

Q ) for any

k ∈ N. Also the map (ψ, (ηa)a∈N0) 7→
∑
a∈N0

ψ(a) 1
|Q| 〈ηa, N

(δk)

Q 〉 is continuous on the set

where
∑
a∈N0

a2ψ(a) ≤ L. In particular, (ψ(K,δ), (η(K,δ)
a )a∈N0

) is then admissible in the set
on the right-hand side of (4.36), where M =∞, and the functional that is minimised on
the right-hand side of (4.36), where M =∞, is lower semi-continuous.

Finally, we can also pick sequences (Kn)n∈N and (δn)n∈N such that Kn → ∞ and
δn ↓ 0 as n → ∞ and select some accumulation point ψ for the family (ψ(Kn,δn))n∈N.
Then

∑
a∈N0

aψ(a) = ρma, since
⋂
δ∈(0,1) JK,R,δ = {ρma +

∑
k>K kmk}, and η(Kn,δn)

a can be
seen as an element ofM1(ΩQ) that puts zero mass on configuration of particles with
marks of size > Kn. However, the reference measure PQ puts some weight on sites
with marks of size > Kn and in particular, HQ(η(Kn,δn)

a |P(≤Kn)

Q ) = HQ(η(Kn,δn)
a |PQ). We

can again use that HQ(·|PQ) has compact level sets and hence, we find, jointly for all
a ∈ N0 satisfying ψ(a) > 0, a subsequence of η(Kn,δn)

a as n→∞ with limit ηa ∈M1(ΩQ).
For notational convenience, we assume that (ψ(Kn,δn), (η(Kn,δn)

a )a∈N) converges towards
(ψ, (ηa)a∈N). (We tacitly dropped all a with ψ(a) = 0 from this sequence, which gives a
lower bound for the functional.)
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Then we see that (ψ, (ηa)a∈N0
) is admissible in the set on the right-hand side of (4.38)

using the continuity of the map η 7→ 〈η,N (δk)

Q 〉 on the level sets of HQ(·|PQ), and

(ψ, (ηa)a∈N0) 7→
∑
a∈N0

ψ(a) 1
|Q| 〈ηa, N

(δk)

Q 〉 on the set where
∑
a∈N0

a2ψ(a) ≤ L. Again,
using that the functional that is minimised on the right-hand side of (4.38) is lower
semi-continuous, we arrive at the desired result.

STEP 8. We let Q ↑ Zd.
Here we will be using the spatial ergodic theorem and the definition of the limiting

entropy density I defined in (2.4). Recall the notation of Theorem 2.1.

Lemma 4.3 (Q ↑ Zd). For any m = (mk)k∈N ∈ [0,∞)N and any ρma ∈ [0,∞),

lim inf
Q↑Zd

inf
ψ∈M1(N0) :

∑
a aψ(a)=ρma

ϕQ(m,ψ) ≥ inf
ψ∈M1(N0) :

∑
a aψ(a)=ρma

ϕ(m,ψ). (4.39)

Proof. Fix a large number L > 0 such that the insertion of the condition
∑
a ψ(a)a2 ≤ L

in the two infima in (4.39) does not change anything in the values of the infima, and
note that these two infima range over a compact set. Hence, it will be sufficient to
prove (4.39) for a fixed ψ, i.e., we will show only that lim infQ↑Zd ϕQ(m,ψ) ≥ ϕ(m,ψ). We
may assume that ϕQ(m, ρma) is bounded as Q ↑ Zd along the sequence of Qn’s that we
consider, otherwise there is nothing to be shown.

Let a small ε > 0 be given, and assume that (ηQ,a)a∈N0 is, for any Q, an ε-approximate
minimiser in the formula in the right-hand side of (4.38). We construct now a measure
P (Q)
a ∈ M(s)

1 (Ω) as follows. Recall that Zd is decomposed into the sets Qz = z +Q with
z ∈ 2RZd, and put in each of the Qz’s an independent copy of a configuration with

distribution equal to ηQ,a. We write the arising distribution as η⊗2RZd

Q,a . Now put

P (Q)

a =
1

|Q|
∑
z∈Q

η⊗2RZd

Q,a ◦ θ−1
z ∈M

(s)

1 (Ω).

We want to show that P (Q)
a has a converging subsequence as Q ↑ Zd. For this we will be

using that the level sets of I are compact. For using this, we need to show that I(P (Q)
a ) is

bounded in Q. This goes as follows. We have that

I(P (Q)

a ) = inf
Q̃⊂Zd

1

|Q̃|
HQ̃

(
(P (Q)

a )Q̃
∣∣PQ̃)

≤ 1

|Q|
HQ

(
(P (Q)

a )Q
∣∣PQ) ≤ 1

|Q|
∑
z∈Q

1

|Q|
HQ

(
(η⊗2RZd

Q,a ◦ θ−1
z )Q

∣∣PQ) =
1

|Q|
HQ(ηQ,a|PQ),

using the definition of I (the infimum ranges over all centred boxes Q̃), the convexity
of HQ and the shift-invariance of the reference measure, P. Put P (Q) =

∑
a∈N0

ψ(a)P (Q)
a .

For any a ∈ N such that ψ(a) > 0, we therefore have that

I(P (Q)

a ) ≤ 1
ψ(a)

∑
ã∈N0

ψ(ã)I(P (Q)

ã ) ≤ 1
ψ(a)

∑
ã∈N0

ψ(ã) 1
|Q|HQ(ηQ,ã|PQ) ≤ 1

ψ(a)

(
ϕ(≤K,δ)
Q (m,ψ) + ε

)
,

since the energy terms are nonnegative and (ηQ,a)a∈N0
is an ε-approximate minimiser,

and ϕ(≤K,δ)
Q (m,ψ) is bounded in Q. Since this upper bound is bounded in Q ⊂ Zd, we now

know that P (Q)
a has a convergent subsequence as Q ↑ Zd. The topology used is the one

that is induced by the test integrals against any local and tame function, i.e., against
any function Ω→ R that depends only on some bounded box Λ ⊂ Zd and can in absolute
value be upper estimated against a constant plus a constant times N (1)

Λ , the number of
points in Λ.

EJP 28 (2023), paper 118.
Page 31/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1014
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variational formula for a many-body system

Denote the limit by Pa and put P =
∑
a∈N0

ψ(a)Pa. By lower semicontinuity and
affinity of I, we see that

I(P ) ≤ lim inf
Q↑Zd

∑
a∈N0

ψ(a)
1

|Q|
HQ(ηa|P(≤K)

Q ). (4.40)

Note that, by shift-invariance of P (Q), and since the maps P 7→ 〈P,N (δk)

0 〉 are continu-
ous for any k ∈ N, we have

〈P,N (δk)

0 〉 = mk ∀k ∈ N,

and in particular, P is admissible in the formula in (2.8). Now we turn to analogous
estimates for the remaining terms in the first line of (4.38), where the last term is
harmless. For the last-but-one term, note that, for all a ∈ N0, we have that

〈Pa, N (`)

0 〉 ≤ lim inf
Q↑Zd

1

|Q|
〈ηQ,a, N (`)

Q̃
〉, (4.41)

where we note that lim infQ↑Zd |Q̃|/|Q| = 1. In order to see (4.41), note that, for any
K ∈ N, since P (Q)

a → Pa and N (δk)

0 is local and tame,〈
Pa,

∑
k∈[K]

kN
(δk)

0

〉
= lim
Q↑Zd

〈
P (Q)

a ,
∑
k∈[K]

kN
(δk)

0

〉
;

furthermore, for any box Q,〈
P (Q)

a ,
∑
k∈[K]

kN
(δk)

0

〉
≤ 〈P (Q)

a , N (`)

0 〉 =
1

|Q|

〈
P (Q)

a , N (`)

Q 〉 =
1

|Q|

〈
ηQ,a, N

(`)

Q

〉
,

where we used the shift invariance of P (Q)
a . Now make K →∞ on the left-hand side of

the one-but-last display to get the assertion.
In a similar fashion we show for the second term in the first line of (4.38) that

〈Pa,Φ0,Zd〉 ≤ lim inf
Q↑Zd

1

|Q|
〈ηQ,a,ΦQ,Q〉, a ∈ N0, (4.42)

where 1
|Q| 〈ηQ,a,ΦQ,Q〉 = 1

|Q|
∑
z∈Q〈ηQ,a,Φz,Q〉. For this, we approximate Φz,Q from

below with local tame functions. First note that for all a ∈ N0, z ∈ Q, bounded
Λ ⊂ Zd and S,K ∈ N, we have that Φz,Q ≥ Φ(Λ,S,K)

z,Q , where Φ(Λ,S,K)

z,Q = Φz,Q1{N (1)

Λ+z ≤
S}
∏
k>K 1{N

(δk)

Λ+z = 0} is a local and tame function since marks have a maximal cardinal-
ity K and the number of points involved is bounded by S. Further,

1

|Q|
∑
z∈Q
〈ηQ,a,Φ(Λ,S,K)

z,Q 〉 − 〈P (Q)

a ,Φ(Λ,S,K)

0,Zd
〉 =

1

|Q|
∑
z∈Q

[
〈ηQ,a,Φ(Λ,S,K)

z,Q 〉 − 〈η⊗2RZd

Q,a ,Φz,Zd〉
]

= − 1

|Q|
∑
z∈Q
〈η⊗2RZd

Q,a ,Φ(Λ,S,K)

z,Zd\Q〉.

Now, since the marks have a maximal cardinality K and the support of v is assumed to
be finite, there exists a bounded set Λ ⊂ Zd such that

1

|Q|
∑
z∈Q
〈η⊗2RZd

Q,a ,Φ(Λ,S,K)

z,Zd\Q〉 =
1

|Q|
∑

z∈Q : Λ+z 6⊂Q

[
〈η⊗2RZd

Q,a ,Φ(Λ,S,K)

z,Zd\Q〉
]
≤ |z∈Q : Λ+z 6⊂Q|

|Q| (KS)2v̄,

which tends to zero as Q tends to Zd.
Now, since Φ(Λ,S,K)

0,Zd
is local and tame, we have

lim inf
Q↑Zd

P (Q)

a (Φ(Λ,S,K)

0,Zd
) = Pa(Φ(Λ,S,K)

0,Zd
).
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Letting Λ tend to Zd und S,K tend to infinity we arrive at the desired result.
Collecting (4.40), (4.41) and (4.42) shows that∑

a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]
≤ ε+ lim inf

Q↑Zd
ϕQ(m,ψ).

Since ϕ(m,ψ) is not larger than the left-hand side (since P is admissible in (2.8)), we
arrived at the claim.

STEP 9. We finish the proof of the upper bound in Theorem 2.1.

We apply first (4.19) (recalling that the counting term is not larger than eo(N)) and
then Lemma 4.1, to see that, for any box Q and any K ∈ N and δ ∈ (0, 1),

lim sup
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≤ −ϕ(K,δ)

Q (m∗,(≤K), JK,R,δ). (4.43)

Here we recall that m∗ was defined via a convergent subsequence, and ρma via Fatou’s
lemma, see (4.20).

Using Lemma 4.2 for the limits K → ∞ and δ ↓ 0 and then Lemma 4.3 for the
limit Q ↑ Zd, the left-hand side of (4.43) can also be estimated against
− infψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma
ϕ(m∗, ψ).

Since the latter is obviously not larger than the right-hand side of (2.6) (we have∑
k∈N km

∗
k + ρma = ρ from (4.20)), this finishes the proof of the upper bound in Theo-

rem 2.1, (4.2).
As a by-product of the preceding proof, we now also have a proof of the first part of

Lemma 2.4.

Proof of the first part of Lemma 2.4. Using again that the infimum
infψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma
ϕ(m∗, ψ) can be restricted to some compact set by adding

the constraint
∑
a∈N0

ψ(a)a2 ≤ L for some large L, and using lower semicontinuity, we
see that this infimum has a minimiser.

Then, from Step 9 and the lower bound in Theorem 2.1, we have, for m∗ and ρma

constructed in (4.20) and ψ taken as a minimiser of ϕ(m∗, ·) under
∑
a∈N0

ψ(a)a = ρma,

ϕ(m∗, ψ) ≤ − lim sup
N→∞

1

|ΛN |
logZN,ΛN ,Dir ≤ − lim inf

N→∞

1

|ΛN |
logZN,ΛN ,Dir

≤ inf
ρmi,ρma : ρmi+ρma=ρ

χ(ρmi, ρma),

that is, (m∗, ψ) is a minimiser.

Another by-product of the preceding proof of Theorem 2.1 is the following characteri-
sation of ϕ. Fix ψ ∈ M1(N0) with

∑
a aψ(a) <∞. With a cutting parameter A ∈ N, put

ψ(A) = ψ +
∑
a>A ψ(a)(δ0 − δa), as in Step 1 of Section 4.1. Pick Na = |ΛN |ψ(A)([a,∞))

for a ∈ [A]. Then ωψ(A) =
∑A
a=1 δ(0,GNa ) is a (non-random!) distribution of macroscopic

boxes whose rescaled empirical measure approaches ψ in the limit N →∞, followed by
A→∞. We recall that E(≤K) denotes expectation with respect to the restriction of the
reference process to Ω(≤K), the set of point processes with marks G1, . . . , GK only.

Lemma 4.4. For any m ∈ [0,∞)N and ψ ∈M1(N0),

ϕ(m,ψ) = − lim
A,K→∞, δ↓0

lim
N→∞

1

|ΛN |
logZ(A,K,δ)

N,ΛN
(m,ψ), (4.44)

where

Z(A,K,δ)

N,ΛN
(m,ψ) = E

(≤K)

ΛN

[
e
−ΦΛN,ΛN

(·+ω
ψ(A) )

∏
k∈[K]

1l{N (δk)

ΛN
∈ mk|ΛN |(1− δ, 1 + δ)}

]
, (4.45)

and ΛN is a centred box with volume N/ρ, and ρ =
∑
k∈N kmk +

∑
a∈N ψ(a)a.
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Proof. The proofs of the upper and the lower bound of (4.44) are versions of the proofs
of the upper and lower bounds in Theorem 2.1 that we detailed in Sections 4.1 and 4.2,
respectively. We decided not to give details, but let us hint for the lower bound at Steps 1
and 8 of Section 4.1 and at (4.9), and we give now some few exemplary hints for the
upper bound.

In the proof of the upper bound, we now need to incorporate the following two main
changes: (1) instead of the (random) macroscopic potential ωX in (4.22), here we have
the (deterministic) ωψ(A) , and (2) the target upper bound is now in terms of one fixed ψ
instead of an infimum over many such functions.

Indeed, that proof shows that the right-hand side of (4.23) is not larger than the
right-hand side of (4.29) when the maximum over all the vectors (a(z))z is replaced by
just the vector that is induced by ωψ, after applying the cutting procedure described in
Steps 2 and 3. In particular, for a given small ε > 0 and R large enough, the empirical
measure ηN,R(ω) defined in (4.31) lies in the set Aε(ψ(A)) = {η : |η(2)(a) − ψ(A)(a)| ≤
ε∀a ∈ {0, . . . , A}}, where η(2) denotes the marginal measure of η on N0. Hence, we arrive
at (4.33) for Z(A,K,δ)

N,ΛN
(m,ψ) instead of ZN,ΛN ,Dir(l

(N)) on the left-hand side and with the
indicator on {〈ηN,R(ω), πN0〉 ∈ JK,R,δ} on the right-hand side replaced by the indicator
on {ηN,R(ω) ∈ Aε(ψ(A))}.

Now we apply large-deviations arguments as in the proof of Lemma 4.1 and obtain

lim sup
N→∞

1

|ΛN |
logZ(A,K,δ)

N,ΛN
(m,ψ) ≤ −ϕ(K,δ)

Q (m(≤K),Aε(ψ(A))), (4.46)

where ϕ(K,δ)

Q (m,A) is defined analogously to (4.36) with 〈η, πN0〉 ∈ J replaced by η(2) ∈ A
for A ⊂M1(N0).

The remainder of the proof is, as in Section 4.2, to let Q ↑ Zd, K → ∞ and δ, ε ↓ 0

and A → ∞ to see that in these limits, the right-hand side of (4.46) is not larger than
−ϕ(m,ψ). The details are left to the reader.

5 Analysis of the variational formulas

We prove Lemma 2.2 in Section 5.1, Lemma 2.3 in Section 5.2 and Lemma 2.4 in
Section 5.3.

5.1 Properties of I, ϕ and χ: proof of Lemma 2.2

STEP 1. ϕ is convex.

Proof. The claim is that, for any m,m′ ∈ [0,∞)N, ψ, ψ′ ∈M1(N0) and any λ ∈ [0, 1],

ϕ(λm+ (1− λ)m′, λψ + (1− λ)ψ′) ≤ λϕ(m,ψ) + (1− λ)ϕ(m′, ψ′).

Indeed, pick families (Pa)a∈N0 and (P ′a)a∈N0 admissible respectively in the formulas (2.8)

of ϕ(m,ψ) and of ϕ(m′, ψ′). Take P̃a = λψ(a)
λψ(a)+(1−λ)ψ′(a)Pa + (1−λ)ψ′(a)

λψ(a)+(1−λ)ψ′(a)P
′
a, then for

any k ∈ N: ∑
a∈N0

(λψ(a) + (1− λ)ψ′(a))P̃a(N
(δk)

0 ) = λmk + (1− λ)m′k,

hence (P̃a)a∈N0
is admissible in the formula (2.8) of ϕ(λm + (1 − λ)m′, λψ + (1 − λ)ψ′).

Using affinity of I, we get:

ϕ(λm+(1− λ)m′, λψ + (1− λ)ψ′)

≤
∑
a∈N0

(λψ(a) + (1− λ)ψ′(a))
[
I(P̃a) + P̃a(Φ0,Zd) + 2v̄aP̃a(N (`)

0 ) + v̄a2
]
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= λ
∑
a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

+ (1− λ)
∑
a∈N0

ψ′(a)
[
I(P ′a) + P ′a(Φ0,Zd) + 2v̄aP ′a(N (`)

0 ) + v̄a2
]
.

We conclude by taking the infimum over the families (Pa)a∈N0 and (P ′a)a∈N0 .

We now show the monotonicity of ϕ in ψ with respect to stochastic ordering.

STEP 2. For any m ∈ [0,∞)N, we have ϕ(m,ψ) ≤ ϕ(m,ψ′) for any ψ,ψ′ ∈M1(N0) such
that ψ ≤st ψ

′.

Proof. Pick a family (Pa)a∈N0
admissible in the definition of ϕ(m,ψ′). Since ψ ≤st ψ

′,
there exists π ∈M1(N0 ×N0) with marginals ψ′ and ψ and such that π(a, b) > 0 implies
a ≥ b. Observe that∑

a∈N0

ψ′(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

=
∑

(a,b)∈N2
0

π(a, b)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

≥
∑

(a,b)∈N2
0

π(a, b)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄bPa(N (`)

0 ) + v̄b2
]

=
∑
b∈N0

ψ(b)
[
I(P̃b) + P̃b(Φ0,Zd) + 2v̄bP̃b(N

(`)

0 ) + v̄b2
]
,

where P̃b =
∑
a∈N0

π(a,b)
ψ(b) Pa and we used that I is an affine function. Also note that for

any k ∈ N,∑
b∈N0

ψ(b)P̃b(N
(δk)

0 ) =
∑

(a,b)∈N2
0

π(a, b)Pa(N
(δk)

0 ) =
∑
a∈N0

ψ′(a)Pa(N
(δk)

0 ) = mk,

so (P̃b)b∈N0
is admissible in the definition of ϕ(m,ψ). Hence the inequality ϕ(m,ψ′) ≥

ϕ(m,ψ) follows via a minimisation over (Pa)a∈N0
.

Now we turn to the decomposition of the relative entropy. We recall that

H(m|q) =
∑
k∈N

(
qk −mk +mk log

mk

qk

)
, m ∈ [0,∞)N0 . (5.1)

STEP 3. We have that I(P ) = H(m|q) + Im(P ), where mk = P (N
(δk)

0 ) and Im(P ) is
defined as in (2.4), with P replaced by Pm, the marked Poisson point process with q

replaced by m.

Proof. This formula follows from the fact that, for all finite Λ b Zd,

HΛ(PΛ|PΛ) = |Λ|
∑
k∈N

(
qk −mk +mk log

mk

qk

)
+HΛ(PΛ|PmΛ ),

where we recall that PΛ is the projection of P on the set of configurations in the set Λ,
and we write now HΛ for the entropy on the setM1(ΩΛ). Now use (2.4).

Now we turn to the upper bound for χ(ρ) = χ(ρ, 0). Recall that χ(v=0)(ρ, 0) =

inf{H(m|q) : m ∈ [0,∞)N,
∑
k kmk = ρ} is the free energy of the non-interacting model.

STEP 4. We can upper bound χ as χ(ρ) ≤ χ(v=0)(ρ, 0) + v̄ρ2 + v̄ρ for any ρ ∈ [0,∞).
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Proof. Fix ρ ∈ [0,∞) and take some m ∈ [0,∞)N, such that
∑
k∈N kmk = ρ. Consider

the reference process Pm ∈M(s)

1 (Ω) with q replaced by m. It has density Pm(N (`)

0 ) = ρ,
relative entropy I(Pm) = H(m|q) and energy

Pm(Φ0,Zd) =
∑
y∈Zd

∑
k,l∈N

Em
[
ξ(k)(0)ξ(l)(y)

]
T0,y(Gk, Gl)

=
∑

y∈Zd, k,l∈N : (y,l) 6=(0,k)

mkmlT0,y(Gk, Gl) +
∑
k∈N

(m2
k +mk)T0,0(Gk, Gk)

=
∑
y∈Zd

∑
k,l∈N

mkmlT0,y(Gk, Gl) +
∑
k∈N

mktk,

where we used the independence of the Poisson point process of ξ(k)(x) in k and x. Now,
for the first summand, we carry out the summation over y and recall that v̄ =

∑
y∈Zd v(y)

and |Gk| = k and |Gl| = l. This gives

Pm(Φ0,Zd) = v̄
∑
k,l∈N

mkmlkl +
∑
k∈N

mktk = v̄ρ2 +
∑
k∈N

mktk,

and hence,
ϕ(m, δ0) ≤ H(m|q) + v̄ρ2 +

∑
k∈N

mktk.

Using tk ≤ kv̄ and minimising over m, the claim follows.

STEP 5. χ(0) = H(0|q) =
∑
k∈N qk and χ′(0) = −∞.

Proof. The first statement is clear since only the void process P fits the constraint
P (N (`)

0 ) = 0. Next, using Step 4 we see that

χ(εk) ≤ ϕ(εδk, δ0) ≤ H(εδk|q) + v̄(εk)2 + tkε, k ∈ N, ε ∈ (0, 1).

Furthermore, H(εδk|q) =
∑
l∈N ql − ε+ ε log ε

qk
, so that

χ(εk)− χ(0)

εk
≤ 1

k
log

ε

qk
+O(1), ε ↓ 0,

which implies the second statement.

STEP 6. χ(·, ·) is convex and in particular also ρ 7→ χ(ρ) is convex. Further, χ(·, ·) is
non-decreasing in ρma and χ is continuous in [0,∞)2.

Proof. The convexity of χ follows from Step 1. It implies that χ is continuous on the
interior of its domain, i.e., on (0,∞) × (0,∞), and that ρ 7→ χ(0, ρ) and ρ 7→ χ(ρ, 0) are
continuous on (0,∞). The latter is also continuous at 0 since lim infρ↓0 χ(ρ) ≥ χ(0) =∑
k qk. Indeed, note that χ(ρ) ≥ χ(v=0)(ρ, 0), which tends to χ(v=0)(0, 0) =

∑
k qk = χ(0) as

ρ ↓ 0, as can be shown using standard variational calculus. This gives the desired result.
From Step 2 we have that χ is non-decreasing in ρma. This implies continuity of χ at

any point (ρ, 0) with ρ ∈ [0,∞), since it is upper semi-continuous there by convexity, and
the lower semicontinuity follows from

lim inf
(ρmi,ρma)→(ρ,0)

χ(ρmi, ρma) ≥ lim inf
ρmi→ρ

χ(ρmi, 0) = χ(ρ, 0).

For ρ ∈ [0,∞), it is evident that

χ(0, ρ) = χ(0) + inf
ψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρ
v̄a2ψ(a).
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Now, for any (ρmi, ρma) ∈ [0,∞)2 we have, by dropping two of the three energy terms,

χ(ρmi, ρma) ≥ χ(v=0)(ρmi)+ inf
ψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma

v̄a2ψ(a) = χ(v=0)(ρmi)−χ(0)+χ(0, ρma).

We deduce that for ρ ∈ [0,∞),

lim inf
(ρmi,ρma)→(0,ρ)

χ(ρmi, ρma) ≥ χ(0, ρ).

Hence the continuity of χ at (0, ρ) follows, which finishes the proof of the continuity
of χ.

Let us also point out that for fixed m, the map ρma 7→
infψ∈M1(N0) :

∑
a∈N0

aψ(a)=ρma
ϕ(m,ψ) is convex and non-decreasing, and for fixed ψ, the

map ρmi 7→ infm∈[0,∞)N,
∑
k∈N kmk=ρmi

ϕ(m,ψ) is convex. Also the version χ̃ of χ with the
infimum ranging over compactly supported m and ψ (defined in Step 1 in Section 4.1) is
convex and continuous in each coordinate.

STEP 7. If 2v(0) ≥ v̄, i.e., v(0) ≥
∑
z∈Zd\{0} v(z), then ϕ(m, δ0) ≥ H(m|q)+v̄ρ2 for any ρ ∈

[0,∞) and any m ∈ [0,∞)N satisfying
∑
k kmk = ρ. In particular, χ(ρ) ≥ χ(v=0)(ρ, 0) + v̄ρ2.

Proof. Pick any P ∈ M(s)

1 (Ω) satisfying P (N
(δk)

0 ) = mk for any k ∈ N. In particular,
P (N (`)

0 ) = ρ = P (Ñ0). Now we use that P (Φ0,Zd) =
∑
z∈Zd v(z)P (Ñ0Ñz), where Ñx

denotes the number of particles located at x. Indeed, using the shift-invariance of P , we
see that

P (Φ0,Zd) =
∑

k∈N,i∈Gk

∑
z∈Zd

v(z)P
(
N

(δk)

0 Ñi+z
)

=
∑

k∈N,i∈Gk

∑
z∈Zd

v(z)P
(
N

(δk)

−i Ñz
)

=
∑
z∈Zd

v(z)P (Ñ0Ñz).

Hence, we have

P (Φ0,Zd) =
∑
z∈Zd

v(z)P (Ñ0Ñz)

= v(0)P (Ñ2
0 ) +

∑
z∈Zd\{0}

v(z)

2
P
(
(Ñ0 + Ñz)

2 − Ñ2
0 − Ñ2

z

)
=

∑
z∈Zd\{0}

v(z)

2
P
(
(Ñ0 + Ñz)

2
)

+
(
v(0)−

∑
z∈Zd\{0}

v(z)
)
P (Ñ2

0 ).

Now use the Cauchy–Schwarz inequality to estimate P (Ñ2
0 ) ≥ P (Ñ0)2 = ρ2 and P ((Ñ0 +

Ñz)
2) ≥ P (Ñ0+Ñz)

2 = 4ρ2, to deduce that P (Φ0,Zd) ≥ v̄ρ2. Here we used our assumption
on v. This implies that ϕ(m, δ0) = H(m|q) + Im(P ) + v̄ρ2 ≥ H(m|q) + v̄ρ2, using Step 3
and the non-negativity of Im(P ). Proceeding with the infimum over all m satisfying∑
k kmk = ρ, we obtain that χ(ρ) ≥ χ(v=0)(ρ) + v̄ρ2.

This finishes the proof of Lemma 2.2.

5.2 Existence of minimising ρmi and ρma: proof of Lemma 2.3

In this section we prove that ‘≥’ in (2.11) holds; this implies that Lemma 2.3 holds.
For this sake, fix a small threshold ε > 0 and pick ρmi and ρma = ρ − ρmi such that

inf χ ≥ −ε + χ(ρmi, ρma). Then pick ψ ∈ M1(N0) satisfying
∑
a∈N0

aψ(a) = ρma, and
m = (mk)k∈N satisfying

∑
k kmk = ρmi such that

χ(ρmi, ρma) ≥ −2ε+ ϕ(m,ψ).
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Note that, by Step 1 in Section 4.1, we may and shall assume that m and ψ have compact
supports contained in [K] = {1, . . . ,K} and {0, . . . , A}, respectively, for some K ∈ N and
A ∈ N0.

Using part of the proof of the lower bound of Theorem 2.1 (see Lemma 4.4 or
alternatively (4.9) and Step 8 in Section 4.1), we see that

ϕ(m,ψ) ≥ − lim
δ↓0

lim inf
N→∞

1
|ΛN | logE(≤K)

ΛN

[
e−ΦΛN,ΛN

(·+ωψ)
∏
k∈[K]

1l{N (δk)

ΛN
∈ mk|ΛN |(1− δ, 1 + δ)}

]
,

(5.2)
where ωψ =

∑A
a=1 δ(0,GNa ), and (Na)a∈[A] is any deterministic non-increasing sequence

in N (depending on N ) such that Na
|ΛN | −→N→∞

ψ([a,∞)) for all a ∈ [A]. In particular, the

marks in ω have size at most K, and
∑
a∈[A]Na ∼ ρma|ΛN |.

For simplicity, we assume now that Na = (2La+1)d are d-th powers of odd integers for
a ∈ [A] and we observe that GNa = [−La, La]∩Zd. We pick now some K̃ = (2L+ 1)d > K

with some integer L and note that GK̃ = [−L,L]d ∩Zd. We also assume that 2L+ 1 is a
divisor of each of the numbers 2L1 + 1, . . . , 2LA + 1.

Now we replace the configuration ω + ωψ by the configuration ω̃ =

ω +
∑
a∈[A]

∑
x∈(2L+1)Zd∩GNa

δ(x,G
K̃

). In words, we re-organise all the particles in the A
boxes with cardinalities N1, . . . , NA into a number of boxes of side length 2L without
changing any of the locations of the particles. For any a ∈ [A], these smaller boxes are
mutually disjoint and their union is GNa . In this way, we add to the PPP ω the marked
point process with Ñ =

∑
a∈[A]Na/K̃ points and mark GK̃ at each of these points. In

particular, the energy remains unchanged, i.e.,

ΦΛN ,ΛN (ω + ωψ) = ΦΛN ,ΛN (ω̃).

Introducing m̃ = (m̃k)k∈N by putting m̃k = mk for k ∈ [K], and m̃K̃ = ρma/K̃ and

m̃k = 0 for k ∈ N \ ([K] ∪ {K̃}), we have that
∑
k km̃k = ρ. Note that N

(δ
K̃

)

ΛN
(ω̃) = Ñ =∑

a∈[A]Na/K̃ ∈ m̃K̃ |ΛN |(1− δ, 1 + δ) for any large N .
We now insert the configuration ω̃ instead of ω + ωψ and conceive ω̃ as the random

variable under P(≤K̃)

ΛN
instead of P(≤K)

ΛN
. We drop the fixation of the locations of the points

with marksGK̃ and keep only the event that no mark of cardinalitiesK+1,K+2, . . . , K̃−1

appears, precisely Ñ points of cardinality K̃ appear, located precisely at the mentioned
locations. Denote by p the probability of this. Then we upper estimate the indicator on

this event by
∏K̃
k=K+1 1l{N (δk)

ΛN
∈ m̃k|ΛN |(1− δ, 1 + δ)}. Therefore, we obtain that

E
(≤K)

ΛN

[
e−ΦΛN,ΛN

(·+ωψ)
∏
k∈[K]

1l{N (δk)

ΛN
) ∈ mk|ΛN |(1− δ, 1 + δ)}

]
≤ E(≤K̃)

ΛN

[
e−ΦΛN,ΛN

∏
k∈[K̃]

1l{N (δk)

ΛN
∈ m̃k|ΛN |(1− δ, 1 + δ)}

]1

p
,

(5.3)

where

p =
( K̃−1∏
k=K+1

Poiqk|ΛN |(0)
)

Poiq
K̃
|ΛN |(Ñ)

Ñ !

|ΛN |Ñ
≥ exp

{
− |ΛN |

K̃∑
k=K+1

qk

}
q
|ΛN |(ρma/K̃+o(1))

K̃
,

where we recall that N (δk)

ΛN
is Poisson-distributed with parameter qk|ΛN |, and the quotient

is the probability to put these Ñ points at particular places in ΛN . This shows that, for
all sufficiently large N ,

1

p
≤ exp

{
|ΛN |

[ ∑
k>K

qk + o(1) +
ρma

K̃
log qK̃

}
≤ e|ΛN |ηK,K̃ ,
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with some ηK,K̃ > 0 that vanishes as K, K̃ → ∞, since qk = eo(k) as k → ∞. Now we
apply Lemma 4.4 (note that we do not have to make K → ∞ nor A → ∞ for m and ψ

having compact supports) to see that

lim sup
δ↓0

lim sup
N→∞

1

|ΛN |
log(r.h.s. of (5.3)) ≤ −ϕ(m̃, δ0) + ηK,K̃ .

Now recall that
∑
k∈N km̃k = ρ and hence (m̃, 0) is admissible in the variational formula

for χ(ρ, 0), so we have

inf χ ≥ −2ε+ ϕ(m,ψ) ≥ −2ε+ ϕ(m̃, δ0)− ηK,K̃ ≥ −2ε+ χ(ρ, 0)− ηK,K̃ .

Taking K, K̃ →∞ and ε ↓ 0, we get inf χ ≥ χ(ρ, 0), which finishes the proof of Lemma 2.3.

5.3 Minimisers of ϕ: proof of Lemma 2.4

Recall from the end of Section 4.2 that we proved already the existence of a minimiser
(m,ψ) of ϕ with density ρ =

∑∞
a=0 aψ(a) +

∑∞
k=1 kmk.

STEP 1. For any (m,ψ), there exists at least one minimising family (Pa)a∈N0
for the

variational formula (2.8) in the definition of ϕ(m,ψ).

Proof. Note that the level sets of I are compact in the local tame topology and the
map P 7→ P (N

(δk)

0 ) is continuous in this topology, and the three other functionals in
the first line of (2.8) are lower semi-continuous. The difficulty now lies in the fact
that the mapping (Pa)a∈N0

7→
∑∞
a=0 ψ(a)Pa(N

(δk)

0 ) is a priori only lower semi-continuous.
However, for any A > 0,

∑
a>A

ψ(a)Pa(N
(δk)

0 ) ≤ 1

2v̄A

∞∑
a=0

ψ(a)2v̄aPa(N (`)

0 ) ≤ 1

2v̄A
Ξ
(
(Pa)a

)
, (5.4)

where Ξ
(
(Pa)a

)
:=
∑∞
a=0 ψ(a)

[
I(Pa) + 2v̄aPa(N (`)

0 ) + a2v̄
]
. Now, assume that (P (n)

a )a is an
approximate minimiser for ϕ(m,ψ), where

∑∞
a=0 ψ(a)P (n)

a (N
(δk)

0 ) = mk for all k, n. That
is, limn→∞ Ξ

(
(P (n)
a )a

)
= ϕ(m,ψ). Then, (I(P (n)

a ))n is bounded for any a. Hence, we have
a subsequence, which we call also P (n) for convenience, such that limn→∞ P (n)

a = Pa for
any a. By lower semicontinuity of Ξ, we have that Ξ

(
(Pa)a

)
≤ ϕ(m,ψ). In particular, for

any k, a, we have that limn→∞ P (n)
a (N (k)

0 ) = Pa(N (k)

0 ). Now, it is easy to see, using (5.4),
that for any k we have that

∑∞
a=0 ψ(a)Pa(N (k)

0 ) = mk. Hence, (Pa)a is indeed a minimiser
in the formula (2.8).

STEP 2.
χ(ρ+ a) ≤ χ(ρ, a) ≤ χ(ρ) + 2v̄aρ+ v̄a2, ρ ∈ [0,∞), a ∈ N0.

Proof. The first inequality comes from Lemma 2.3. For the second one note that for
any m such that

∑
k∈N kmk = ρ, we have χ(ρ, a) ≤ ϕ(m, δa) = ϕ(m, δ0) + 2v̄aρ + v̄a2,

according to the definitions. Now take the infimum over m.

Now we turn to a closer analysis of the crucial variational problem in (2.12). Recall
that Lemma 2.4 claims the existence of a minimiser; it was proved at the end of Section 4.
We say that (m,ψ) has density ρ if

∑
k∈N kmk +

∑
a∈N0

aψ(a) = ρ.

STEP 3. For any ρ ∈ [0,∞), there is a minimiser (m,ψ) of ϕ with density ρ such that ψ
has at most two atoms. If χ(·) is strictly convex at ρ, then there is even a minimiser such
that ψ has precisely one atom.
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Proof. Fix ρ ≥ 0 and a minimiser (m,ψ) of ϕ with density ρ. Consider an associated
minimising family of associated processes (Pa)a∈N0

and denote ma = (Pa(N
(δk)

0 ))k∈N and
ρa = ρmi(m

a) = Pa(N (`)

0 ). We have that ρ =
∑
a∈N0

ψ(a)(ρa + a).
Now use Step 2 and the definition of χ to see that

χ(ρa + a) ≤ χ(ρa) + 2v̄aρa + v̄a2

≤ ϕ(ma, δa) = ϕ(ma, δ0) + 2v̄aρa + v̄a2

≤ I(Pa) + Pa(Φ0,Zd) + 2v̄aρa + v̄a2, a ∈ N0.

(5.5)

Furthermore, use the minimality of (Pa)a∈N0
and of (m,ψ) and then the convexity of χ(·)

to see that∑
a∈N0

ψ(a)
[
I(Pa) + Pa(Φ0,Zd) + 2v̄aρa + v̄a2

]
= ϕ(m,ψ) = χ(ρ) ≤

∑
a∈N0

ψ(a)χ(ρa + a).

(5.6)
In view of (5.5), there is in fact equality everywhere in (5.6). Using this and (5.5), we
get for a ∈ supp(ψ):

χ(ρa + a) = χ(ρa) + 2v̄aρa + v̄a2, (5.7)

and ma is a minimiser in the definition of χ(ρa, 0). Moreover, we have the equality
χ(ρ) =

∑
a∈N0

ψ(a)χ(ρa + a).
Now we treat the cases of strict and non-strict convexity of χ(·) at ρ separately:

• If χ(·) is strictly convex at ρ, then the equality χ(ρ) =
∑
a∈N0

ψ(a)χ(ρa + a) in the
convexity inequality implies that ρa + a = ρ for any a ∈ supp(ψ). Therefore, for any
such a, (5.7) shows that (ma, δa) is a minimiser of ϕ with density ρ.

• If χ(·) is not strictly convex at ρ, then it is affine on a non-trivial interval containing
ρ in its interior. We denote by Iaff(ρ) the biggest such interval. Then ρa + a ∈ Iaff(ρ)

for all a ∈ supp(ψ). Recall that ρ =
∑
a∈N0

ψ(a)(ρa + a), so we can pick a1 and a2 in
supp(ψ) such that ρa1

+ a1 ≤ ρ ≤ ρa2
+ a2. Then we can build a minimiser (m,ψ)

with density ρ by taking a suitable convex combination of (ma1 , δa1
) and (ma2 , δa2

),
using affinity of χ(·) on Iaff(ρ). Then ψ has no more than two atoms.

This finishes the proof.

As a complement, let us generalise the above result to give a full description of the
minimisers of ϕ at given density.

STEP 4. Description of all the minimisers (m,ψ) of ϕ.

First we consider the case that χ(·) is strictly convex at ρ. Consider a ∈ N. If a ≤ ρ
and χ(ρ− a) + 2v̄a(ρ− a) + v̄a2 = χ(ρ) denote by M(ρ, a) the set of all the minimisers of
ϕ(·, 0) at density ρ− a. Otherwise, put M(ρ, a) = ∅. By convexity of ϕ, M(ρ, a) is convex
(possibly a singleton or empty). Then it is easy to see from the proof of Step 3 that the
convex hull of the set of all the (m, δa) with a ∈ N0 and m ∈M(ρ, a) is equal to the set of
minimisers of ϕ with density ρ, i.e., any minimiser with density ρ is a convex combination
of over a of such pairs, and conversely any convex combination aver a of such pairs is a
minimiser with density ρ.

Now we consider the case that χ(·) is affine on a non-trivial segment J = [ρ1, ρ2]

and this segment is maximal for this property. Consider, for fixed a ∈ N0, the set
M̃(J, a) of all the m ∈ [0,∞)N such that ρmi(m) + a ∈ J , ϕ(m, δ0) = χ(ρmi(m)) and
χ(ρmi(m)) + 2v̄aρmi(m) + v̄a2 = χ(ρmi(m) + a). Again by convexity of ϕ, every M̃(J, a) is
convex. The densities of the pairs (m, δa) lie in J , on which χ(·) is affine. Then, for any
ρ ∈ [ρ1, ρ2], any minimiser of ϕ with density ρ is a convex combination over a of the pairs
(m, δa) with m ∈ M̃(a, J), such that the resulting average density is ρ. Conversely, any
combination over a of such pairs is a minimiser at density the average density of the
combination.
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6 Differentiability and phase transition

We prove the differentiability of ϕ(·, ψ) (Lemma 2.5) in Section 6.1, the Euler–
Lagrange equation (Lemma 2.6) and the differentiability of χ(·) (Corollary 2.7) in Sec-
tion 6.2, we give an alternative formula for the derivative of ϕ(·, ψ) in Section 6.3, and
we discuss the nature of the possible phase transition (Lemma 2.9) in Section 6.4.

6.1 Differentiability of ϕ: proof of Lemma 2.5

In this section, we give the proof of Lemma 2.5, i.e., of the differentiability of the
map m 7→ ϕ(m,ψ) for fixed ψ ∈M1(N0). We are not going to carry out this proof using
the variational formula, but we will be starting from the characterisation of ϕ(m,ψ) in
Lemma 4.4 in terms of the exponential rate of a restricted partition function. We fix
m ∈ [0,∞)N an ψ ∈M1(N0).

STEP 1. For any k ∈ N and small ε > 0, we derive an alternate approximate variational
formula for ϕ(m+ εδk, ψ).

Proof. We put ρma =
∑
a∈N0

aψ(a) and ρ =
∑
a aψ(a) +

∑
l lml. Take ε > 0 and put

m(ε) = m+ εδk. We apply (4.44) for m(ε) instead of m and with ρ+ εk instead of ρ. On
the right-hand side, we replace N by N(ε) = N(1 + εk/ρ) and note that the box ΛN is
the same box with (N, ρ) replaced by (N(ε), ρ+ εk).

We now derive an alternative variational formula as an upper bound for the right-hand
side of (4.44) by explicitly carrying out the integration over the ε|ΛN | additional Poisson
points with mark Gk and describing their influence on the expectation as a functional of
the empirical stationary distribution of the Poisson process. (For better readability, we
drop the integer-part brackets b·c in the following.) For this, we are going to use that
the Poisson points of the reference process ω(k)

P , given their number, are i.i.d. uniformly
over ΛN distributed sites.

Indeed, assuming that K > k and δ < mk/2, in (4.45) for Z(A,K,δ)

N(ε),ΛN
(m(ε), ψ), we

carry out the expectation with respect to P(k) by first taking the Poisson probability
Poiqk|ΛN |(lk) for having lk ∈ [mk(ε)− δ,mk(ε) + δ]|ΛN | Poisson points with mark Gk, then
handling lk − εΛN of them again as the number of Poisson points in the process ω(k)

P

and treating the remaining ε|ΛN | of them as i.i.d. uniformly over ΛN distributed sites

X1, . . . , Xε|ΛN |, each of which carries the mark Gk. We write ω(k)

U =
∑ε|ΛN |
i=1 δ(Xi,Gk) for

the arising marked random point process under the measure U⊗εΛNΛN
, where we recall

that UΛN denotes the uniform distribution on ΛN . This implies that

Z(A,K,δ)

N(ε),ΛN
(m(ε), ψ) = E

(≤K)

ΛN
⊗ U⊗ε|ΛN |ΛN

[
e
−ΦΛN,ΛN

(·+ω
ψ(A)+ω

(k)
U )

K∏
j=1

1l{|N (δj)

ΛN
−mj |ΛN || ≤ δ|ΛN |}

] [mk(ε)+δ]|ΛN |∑
lk=[mk(ε)−δ]|ΛN |

Poiqk|ΛN |(lk)

Poiqk|ΛN |(lk − εΛN |)
.

(6.1)

The large-N asymptotics of last term is easily identified. Indeed, for any summand lk,

lim sup
δ↓0

lim sup
N→∞

− 1

|ΛN |
log

Poiqk|ΛN |(lk)

Poiqk|ΛN |(lk − ε|ΛN |)
≤ ε
[

log
mk + ε

qk
+
mk

ε
log

mk + ε

mk
− 1
]

∼ ε log
mk

qk
, ε ↓ 0,

(6.2)
and an analogous estimate is derived for the limit inferior. This explains the first term on
the right-hand side of (2.14).

Next, we split the energy according to the contributions from ωP and ω(k)

U and the
remainder. For this, we extend our notation for the energy from a self-energy to a mutual
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energy by putting

Φ(↔)

Λ,Λ(ω, ω̃) =
∑
x,y∈Λ

∑
l,l̃∈N

ξ(l)(x)ξ̃(l̃)(y)Tx,y(Gl, Gl̃), ω, ω̃ ∈ Ω,

where ξ(l)(x) is the number of ω-points in x having mark Gl, and ξ̃(l)(x) is the number of
ω̃-points in x having mark Gl. Note that Φ(↔)

Λ,Λ is linear in each of the two arguments and

that ΦΛ,Λ(ω + ω̃) = ΦΛ,Λ(ω) + 2Φ(↔)

Λ,Λ(ω, ω̃) + ΦΛ,Λ(ω̃) for any ω, ω̃ ∈ Ω. Then we see that

ΦΛN ,ΛN

(
ω + ωψ(A) + ω(k)

U

)
= ΦΛN ,ΛN

(
ω + ωψ(A)

)
+ ΦΛN ,ΛN (ω(k)

U ) + 2Φ(↔)

ΛN ,ΛN

(
ω + ωψ(A) , ω(k)

U

)
.

(6.3)

The first term on the right-hand side is equal to the energy of the original, unperturbed
configuration. The one-but-last term is equal to the sum of the internal energies of
the ε|ΛN | marks Gk at the sites X1, . . . , Xε|ΛN | (i.e., tkε|ΛN | where we recall that tk =

T0,0(Gk, Gk)) plus the mutual interaction between any two of these marked points δ(Xi,Gk);
that is,

tkε|ΛN | ≤ ΦΛN ,ΛN (ω(k)

U ) ≤ tkε|ΛN |+ 2
∑

1≤i<j≤ε|ΛN |

Φ(↔)

ΛN ,ΛN
(δ(Xi,Gk), δ(Xj ,Gk))

≤ tkε|ΛN |+ Ck,v
∑

1≤i<j≤ε|ΛN |

1l{|Xi −Xj | ≤ dk},
(6.4)

with some constants Ck,v and dk, depending only on k, v and the dimension d.
By ΛaN we denote the part of ΛN in which precisely a grids overlap. Let us introduce

the volume Λ̃ = {x ∈ Λ: x+Gk + supp(v) ⊂ Λ} ⊂ Λ containing all points in Λ such that
their k-marks do not interact with Λc. Then, on the event {X1, . . . , Xε|ΛN | ∈ Λ̃N}, the last
term of the right-hand side of (6.3) can be expressed as

Φ(↔)

ΛN ,ΛN

(
ω + ωψ(A) , ω(k)

U

)
=

ε|ΛN |∑
i=1

fΛN (Xi), with

fΛ(x) = Φ(↔)

Λ,Λ

(
θx(ω), δ(0,Gk)

)
+ v̄k

∑
a

a1l{x ∈ Λa},
(6.5)

where we recall the shift operator θx by x ∈ Zd. We note that, for each i ∈ {1, . . . , ε|ΛN |},
each of the k particles of δ(Xi,Gk) has the interaction v̄ with each of the a grids in the area
ΛaN in which precisely a of the macroscopic grids overlap, for a ∈ N0. Let us examine the
expectation over ω(k)

U in (6.1), conditional on ω + ωψ(A) .
We start by deriving a lower bound. We first claim that

U⊗ε|ΛN |ΛN

[
e
−2Φ

(↔)
ΛN,ΛN

(ω+ω
ψ(A) ,ω

(k)
U )−ΦΛN,ΛN

(ω
(k)
U )]

UΛ̃N
[e−2fΛN ]ε|ΛN |e−tkε|ΛN |

≥ e−ε|ΛN |(εC+log(|Λ̃N |/|ΛN |)), (6.6)

where C does not depend on ω, ωψ(A) ,ΛN , A and ε. To see this, we start by inserting the

indicator on the event {X1, . . . , Xε|ΛN | ∈ Λ̃N} and use (6.5) to bound

U⊗ε|ΛN |ΛN

[
e
−2Φ

(↔)
ΛN,ΛN

(ω+ω
ψ(A) ,ω

(k)
U )−ΦΛN,ΛN

(ω
(k)
U )]

≥
(
|Λ̃N |
|ΛN |

)ε|ΛN |
U⊗ε|ΛN |

Λ̃N

[
e−2

∑ε|ΛN |
i=1 fΛN

(Xi)−ΦΛN,ΛN
(ω

(k)
U )
]

≥
(
|Λ̃N |
|ΛN |

)ε|ΛN |
e−tkε|ΛN |U⊗ε|ΛN |

Λ̃N

[
e
−2

∑ε|ΛN |
i=1 fΛN

(Xi)−Ck,v
∑

1≤i<j≤ε|ΛN |
1l{|Xi−Xj |≤dk}],
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where we also used (6.4). Next, we use Jensen’s inequality to see that

U⊗ε|ΛN |
Λ̃N

[
e−2

∑ε|ΛN |
i=1 fΛN

(Xi)e−Ck,v
∑
i<j 1l{|Xi−Xj |≤dk}

]
U⊗ε|ΛN |

Λ̃N

[
e−2

∑ε|ΛN |
i=1 fΛN

(Xi)
]

≥ exp
{
− Ck,v

∑
i<j

ÛN (|Xi −Xj | ≤ dk)
}

≥ exp
{
− Ck,vε2|ΛN |2ÛN (|X1 −X2| ≤ dk)

}
,

where we wrote ÛN for the measure with density e−2
∑ε|ΛN |
i=1 fΛN

(Xi) with respect to
U⊗ε|ΛN |

Λ̃N
, properly normalised. In the last term, ÛN (|X1 −X2| ≤ dk), using the product

structure of this measure, one can carry out the integration with respect to X3, X4, . . . ,

Xε|ΛN | in the numerator and in the denominator, and they cancel each other. Given
X1, the integration over X2 is limited to the dk-box around X1, which implies that
ÛN (|X1 −X2| ≤ dk) is of order 1/|ΛN | as N → ∞. Indeed, by dropping fΛN (X2) in the
exponent in the numerator,

ÛN (|X1 −X2| ≤ dk) =
U⊗2

Λ̃N

(
e−2fΛN

(X1)−2fΛN
(X2)1l{|X1 −X2| ≤ dk}

)
UΛ̃N

(e−2fΛN
(X))2

≤ ddk

|Λ̃N |
UΛ̃N

(
e−2fΛN

(X)
)−1 ≤ ddk

|Λ̃N |
exp

{
2UΛ̃N

(fΛN (X))
}
,

where we again used Jensen’s inequality in the last step. Finally, using the fact that the
particle number in ω is subject to a constraint in (6.1), we have that

UΛ̃N
(fΛN (X)) = |Λ̃N |−1

∑
x∈Λ̃N

Φ(↔)

ΛN ,ΛN

(
θx(ω), δ(0,Gk)

)
+ v̄k

∑
a

aψ(A)(a)

≤ v̄k
K∑
l=1

l(ml + δ) + v̄k
∑
a

aψ(a) ≤ v̄k(ρ+ δK2).

Thus we have proved (6.6).
Next, we introduce the empirical stationary field of a point process ω with parameters

a ∈ {0, . . . , A}:

R(a)

ΛN
(ω) = |ΛaN |−1

∑
x∈ΛaN

δθx(ω) and RΛN =

A∑
a=0

|ΛaN |
|ΛN |

R(a)

ΛN
.

Then, we can represent

UΛ̃N
(e−2fΛN

(X)) =

A∑
b=0

|Λ̃aN |
|Λ̃N |

e−2v̄ak
〈
R(a)

Λ̃N
(ω), e

−2Φ
(k)
ΛN

〉
,

where Φ(k)

ΛN
(ω) = Φ(↔)

ΛN ,ΛN
(ω, δ(0,Gk)) denotes the interaction of a marked configuration ω

in ΛN with the origin, carrying a mark Gk. In particular, since there is a maximal size of
the marks, the mapping P 7→

〈
P, e−2Φ(k)〉

is continuous. From now on we can carry out
the same steps as we did in the proof of Theorem 2.1 for performing the limit as N →∞,
followed by δ ↓ 0, which implies

lim inf
δ↓0

lim inf
N→∞

1

|ΛN |
logZ(A,K,δ)

N(ε),ΛN
(m(ε), ψ) ≥ −ε log

mk

qk
− εtk − ϕK,A,ε(m,ψ)−O(ε2),

(6.7)
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where O(ε2) is independent of A, we used limN→∞ |ΛN |/|Λ̃N | = 1, and

ϕK,A,ε(m,ψ) = inf
{ A∑
a=0

ψ(A)(a)
[
I(≤K)(Pa) + Pa(Φ0,Zd) + 2v̄aPa(N (`)

0 ) + v̄a2
]

− ε log
( A∑
a=0

ψ(A)(a)e−2v̄akPa(e−2Φ(k)

)
)

: P0, P1, P2, · · · ∈ M(s)

1 (Ω(≤K)),

A∑
a=0

ψ(A)(a)Pa(N
(δl)

0 ) = ml ∀l ≤ K
}
, A,K ∈ N ∪ {∞}.

(6.8)

Further, for K →∞ and A→∞, ϕK,A,ε(m,ψ) converges to ϕ∞,∞,ε(m,ψ).
Before we make the connection to ϕ(m+ εδk, ψ), we first derive also an upper bound

for Z(A,K,δ)

N(ε),ΛN
(m(ε), ψ). For this, instead of (6.6) we claim that

U⊗ε|ΛN |ΛN

[
e
−2Φ

(↔)
ΛN,ΛN

(ω+ω
ψ(A) ,ω

(k)
U )−ΦΛN,ΛN

(ω
(k)
U )]

UΛN [e−2f̃ΛN ]ε|ΛN |e−tkε|ΛN |
≤ 1, (6.9)

where f̃Λ(x) = 1{x ∈ Λ̃}Φ(↔)

Λ,Λ

(
θx(ω), δ(0,Gk)

)
+ v̄k

∑
a a1l{x ∈ Λa}. Indeed, this follows

from the lower bound in (6.4) and the fact that Φ(↔)

ΛN ,ΛN

(
ω+ωψ(A) , ω(k)

U

)
≥
∑ε|ΛN |
i=1 f̃ΛN (Xi).

Then, using the same steps as in the lower bound, with slide changes in the approxima-
tions, we arrive at

lim sup
K,L→∞

lim sup
δ↓0

lim sup
N→∞

1

|ΛN |
logZ(A,K,δ)

N(ε),ΛN
(m(ε), ψ) ≤ −ε log

mk

qk
− εtk − ϕ∞,∞,ε(m,ψ).

(6.10)
Finally, recall that, according to Lemma 4.4, the left-hand side is equal to −ϕ(m +

εδk, ψ). Hence, combining the lower and upper bounds in (6.7) and (6.10) we have that∣∣∣ϕ(m+ εδk, ψ)−
(
ε log

mk

qk
+ εtk + ϕ∞,∞,ε(m,ψ)

)∣∣∣ ≤ O(ε2), ε > 0.

This is the announced approximate variational formula for ϕ(m+ εδk, ψ).

STEP 2. For any k ∈ N, the right-derivative of mk 7→ ϕ(m,ψ) satisfies ‘≤’ in (2.14).

Proof. As in the preceding step, we fix k ∈ N and m ∈ [0,∞)N satisfying mk > 0. Observe
that ϕ(m,ψ) is by definition equal to ϕ∞,∞,0(m,ψ) defined in (6.8). Hence, we obtain for
the directional right-derivative

∂
+

mk
ϕ(m,ψ) := lim sup

ε↓0
ε−1
(
ϕ(m+ εδk, ψ)− ϕ(m,ψ)

)
≤ log

mk

qk
+ tk − log

∑
a∈N0

ψ(a)e−2v̄akPa(e−2Φ(k)

),
(6.11)

by plugging in any minimiser (Pa)a of the formula (2.8) of ϕ(m,ψ) into the infimum on
the right-hand side of (6.7). Since this upper bound holds for any such minimiser, we
arrive at the claimed upper bound in (2.14) for the right-derivative.

STEP 3. For any k ∈ N, the right-derivative of mk 7→ ϕ(m,ψ) satisfies also the opposite
inequality in (2.14).

Proof. We pick a minimiser (P (ε)

b )b∈N0
for the infimum on the right-hand side of (6.7).

Then, as ε ↓ 0, each family (P (ε)

b )ε>0 with b ∈ N0 possesses at least one accumulation

point P̃b, by non-negativity of each of the minimised terms and compactness of the
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level sets of I. Using the bounded-convergence theorem
∑
a ψ(a)P (ε)

a also converges to∑
a ψ(a)P̃a in the local tame topology. Since the map P 7→ P (N

(δl)

0 ) is continuous, (P̃b)b∈N0

is admissable in the variational formula for ϕ(m,ψ). Again by lower semicontinuity,
(P̃b)b∈N0

is a minimiser for that formula, and we obtain the following lower bound for the
right-derivative:

∂+
mk
ϕ(m,ψ) := lim inf

ε↓0
ε−1
(
ϕ(m+ εδk, ψ)− ϕ(m,ψ)

)
≥ log

mk

qk
+ tk + lim inf

ε↓0

[
− log

∑
b∈N0

ψ(b)e−2v̄bkP (ε)

b (e−2Φ(k)

)
]

≥ log
mk

qk
+ tk − log

∑
b∈N0

ψ(b)e−2v̄bkP̃b(e
−2Φ(k)

)

≥ log
mk

qk
+ tk − sup

(Pa)a

log
∑
b∈N0

ψ(b)e−2v̄bkPb(e
−2Φ(k)

),

(6.12)

where the supremum is on all minimisers (Pa)a in the formula for ϕ(m,ψ). In the third
line, we used first Fatou’s lemma and then the local tame convergence with an additional
spatial-truncation for e−2Φ(k)

, see our argument around (6.13) below for details. Now
we see that both right-hand sides of (6.12) and (6.11) coincide, and we have proved the
lower bound in (6.12) for the right-derivative instead of the derivative.

So far, we have proved that the right-derivative of mk 7→ ϕ(m,ψ) exists and is given
by the right-hand side of (6.12).

STEP 4. ϕ(·, ψ) is differentiable, and (6.12) holds.

Proof. By convexity, see Lemma 2.2(1), it suffices to show that ∂+
mk
ϕ(m,ψ) is left-

continuous in mk. Take a sequence (εn)n∈N in (0, 1) that converges to zero as n→∞, and
take a sequence (P (εn)

b )b∈N0 , n ∈ N, of minimisers for the formula (2.8) of ϕ(m− εnδk, ψ)

that asymptotically optimises the term
∑
b∈N0

ψ(b)e−2v̄bkPb(e
−2Φ(k)

). Again by the com-
pactness of the level sets of I and by lower-semicontinuity of P 7→ I(P ) + P (Φ) and con-
tinuity of P 7→ P (N

(δl)

0 ) for any l ∈ N, we see that, along some subsequence, (P (εn)

b )b∈N0

converges as n→∞ towards some (P̃b)b∈N0
, and the latter is minimal in the formula for

ϕ(m,ψ). Now we see that

lim inf
n→∞

[
− logP (εn)

b (e−2Φ(k)

)
]
≥ − log P̃b(e

−2Φ(k)

), (6.13)

Indeed, for any centred box Q, we introduce Φ(k)

Q (ω) as the interaction between δ(0,Gk)

with all the particles that belong to points in Q. It is a local bounded functional, and we
have Φ(k)

Q (ω) ≤ Φ(k)(ω), hence:

P̃b(e
−2Φ

(k)
Q ) = lim

n→∞
P (εn)

b (e−2Φ
(k)
Q ) ≥ lim sup

n→∞
P (εn)

b (e−2Φ(k)

).

Letting Q→ Zd, we get

P̃b(e
−2Φ(k)

) ≥ lim sup
n→∞

P (εn)

b (e−2Φ(k)

),

implying (6.13). Further, using first (6.11) and then (6.13) together with the asymptotic
optimality, we have that

∂+
mk
ϕ(m,ψ) ≤ log

mk

qk
+ tk − log

∑
b∈N0

ψ(b)e−2v̄bkP̃b(e
−2Φ(k)

) ≤ lim inf
n→∞

∂+
mk
ϕ(m− εnδk, ψ)

≤ lim sup
n→∞

∂+
mk
ϕ(m− εnδk, ψ) ≤ ∂+

mk
ϕ(m,ψ),
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where the last inequality comes from the monotonicity of mk 7→ ∂+
mk
ϕ̃(m,ψ). This

concludes the proof of the left-continuity of mk 7→ ∂+
mk
ϕ̃(m,ψ) as desired.

This ends the proof of Lemma 2.5. Let us draw a corollary from the preceding proof:

Lemma 6.1. For any sequence (εK)K∈N in (0,∞) tending to zero, the map P 7→
P (e−2Φ(k)

) is continuous in the local tame topology on the set of all P ∈ M(s)

1 (Ω) such
that

∑
l≥K lP (N (`)

0 ) ≤ εK for any K ∈ N.

Proof. The upper semicontinuity was shown below (6.13). In order to prove the lower
semicontinuity, we obtain a lower bound for P (e−2Φ(k)

) by inserting the indicator on the
event ∩l∈N{M (δl)

Qc,Vk
= 0} that no particle attached to a point outside the box Q lies in

Vk = Gk + supp(v). On this event, we can replace Φ(k) by Φ(k)

Q (ω), the interaction between
δ(0,Gk) with all the particles that belong to points in Q. This gives

P (e−2Φ(k)

) ≥ P
(
e−2Φ

(k)
Q

∏
l∈N

1l{M (δl)

Qc,Vk
= 0}

)
≥ P (e−2Φ

(k)
Q )− P

( ⋃
l∈N

{M (δl)

Qc,Vk
6= 0}

)
.

Now we estimate

P
( ⋃
l∈N

{M (δl)

Qc,Vk
6= 0}

)
≤
∑
z∈Vk

∑
l∈N

∑
x∈Qc : z∈x+Gl

P (N (δl)

x ) 6= 0)

≤
∑
z∈Vk

∑
l∈N

∑
x∈Qc∩(z−Gl)

P (N (δl)

x )

≤
∑
z∈Vk

∑
l∈N

|Qc ∩ (z −Gl)|P (N
(δl)

0 )

≤
∑
z∈Vk

∑
l>KQ

lP (N
(δl)

0 ) ≤ |Vk| εKQ ,

where we picked a large KQ ∈ N such that Qc ∩ (z − Gl) is empty for any z ∈ Vk and
any l ≤ KQ. Since we can choose KQ such that KQ → ∞ as Q ↑ Zd, and since εK → 0

as K →∞, we see that P
(⋃

l∈N{M
(δl)

Qc,Vk
6= 0}

)
vanishes uniformly in these P as Q ↑ Zd.

This makes it easy to finish the proof.

6.2 Differentiability of χ: proofs of Lemma 2.6 and Corollary 2.7

In this section, we prove Lemma 2.6 and Corollary 2.7, i.e., the Euler–Lagrange
analysis of the minimiser m of ϕ(m,ψ) defined in (2.8), and the resulting differentiability
of χ(·).
Lemma 6.2 (Positivity of minimising m). Fix ρ ∈ (0,∞) and ψ ∈ M1(N0) with ρma =∑
a∈N0

aψ(a) ∈ [0, ρ) and assume that m = (mk)k∈N is a minimiser of ϕ(·, ψ) under the
assumption that

∑
k∈N kmk = ρ− ρma = ρmi. Then mk > 0 for any k ∈ N.

Proof. This is a well-known argument that is based on the fact that the slope of x 7→
x log x at zero is equal to −∞. Recall from lemma 2.2 that I(P ) = H(m|q) + Im(P ) for
any P ∈ M(s)

1 (Ω) satisfying P (N
(δk)

0 ) = mk for any k ∈ N, where we wrote Im for the
entropy density function I defined in (2.4) with q replaced by m, where we recall that

H(m|q) =
∑
k∈N

(
qk −mk +mk log

mk

qk

)
(6.14)

is the relative entropy of m with respect to q.
As usual, the convention 0 log 0 = 0 is in force and makes m 7→ H(m|q) continuous

coordinate-wise in [0,∞)N. If now m is a minimiser of ϕ(·, ψ) under the constraint
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∑
k kmk = ρmi and has a zero mk = 0, then one can construct m̃ from m by putting some

small positive mass δ at k (i.e., δ = m̃k) and subtracting at some k̃ with mk̃ > 0 some mass
in such a way that

∑
l lm̃l = ρmi. The resulting entropy difference is H(m|q)−H(m̃|q) =

δ(C − log δ) for some C, depending on mk̃ and qk̃ and qk. For δ sufficiently small, this is
positive. Since ∂mk [ϕ(m,ψ)−H(m|q)] is finite, as we have seen in Lemma 2.5, we see
that ϕ(m̃, ψ) < ϕ(m,ψ) for sufficiently small δ > 0, in contradiction to the minimality
of m.

We employ the Euler–Lagrange formalism only for perturbations in the direction m
and keep ψ fixed. We thus solve the following system of equations

∂mk

[
ϕ(m,ψ)− α

∑
l∈N

lml

]
= 0, k ∈ N, (6.15)

where α ∈ R is the Lagrange multiplier, to be adjusted such that the constraint∑
k≥1 kmk = ρmi is satisfied. Clearly, the conclusion is then that

αk = ∂mkϕ(m,ψ), k ∈ N. (6.16)

By Lemma 2.5, this finishes the proof of Lemma 2.6.
Now we can also give the proof of Corollary 2.7:
Fix ρ ∈ (0,∞). We show that χ(·) is differentiable with χ′(ρ) = α, the Euler–Lagrange

multiplier of Lemma 2.6.
According to Lemma 2.4, we can take a minimiser (m,ψ) of ϕ with density ρ. Then,

using Lemma 6.2, mk > 0 for any k ∈ N and using Lemma 2.5, mk 7→ ϕ(m,ψ) is
differentiable. According to the Euler–Lagrange equations in (6.16), there is some α
such that ∂mkϕ(m,ψ) = αk for any k ∈ N. As χ(·) is convex, it has left- and right-
derivatives at ρ. Note that, for ε→ 0,

χ(ρ+ εk) ≤ ϕ(m+ εδk, ψ) = ϕ(m,ψ) + αkε+ o(ε) = χ(ρ) + αkε+ o(ε).

Using this first for ε ↓ 0 and then for ε ↑ 0, we get

χ′+(ρ) ≤ α and χ′ −(ρ) ≥ α.

By convexity, χ′ −(ρ) ≤ χ′+(ρ), hence we get that χ(·) is differentiable at ρ with derivative
equal to α = 1

k∂mkϕ(m,ψ).

6.3 An alternate formula for the derivative

Let us give a brief heuristic derivation of the formula in (2.17) for the derivative of
m 7→ ϕ(m,ψ). We will do this only for ψ = δ0. We are sure that a full proof can be given
using Lemma 4.4 and arguments similar to those that we carried out in the proof of
Lemma 2.5 in Section 6.2.

We start from the formula for ϕ(m, δ0) as the negative exponential rate of

ZN,ΛN (m) = E
[
e−ΦΛN,ΛN

(ωP)
∏
k∈N

1l{N (δk)

ΛN
(ωP) = mk|ΛN |}

]
= e−H(m|q)|ΛN |

⊗
k∈N

U⊗mkΛN
ΛN

[
e−ΦΛN,ΛN

(ωU)
]
.

(6.17)

(For simplicity, we do not introduce auxiliary parameters A,K and δ for this heuristics.)
Now take m̃,m ∈ [0,∞)N such that m̃k ≤ mk for all k ∈ N. Let K be the set of indices

k such that m̃k < mk. Let us first state a general formula that writes ZN,ΛN (m̃) as a
thinning of ZN,ΛN (m). We will see the process with k-densities m̃k as a thinning of the
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process with k-densities mk. Let us write the expectation with respect to the reference
PPP by first sampling the Poisson number of points with marks Gk for each k and then
sampling the locations with the uniform distribution UΛN on ΛN . We use the symbol

ω̃U =
∑
k∈N

∑m̃k|ΛN |
i=1 δ(Xk,i,Gk) for the arising marked random point process under the

measure
⊗

k∈N U
⊗m̃k|ΛN |
ΛN

, and we use the analogous notation if m̃ is replaced by m. We
define for any k ∈ K a random uniform subset Bk of the index set [mk|ΛN |] with size
(mk − m̃k)|ΛN |. The law of Bk is denoted by Bk, and the point process that is selected by

(Bk)k∈K is denoted by ωB. Then the distribution of ω̃U under
⊗

k∈N U
⊗m̃k|ΛN |
ΛN

is equal to

the distribution of ωU − ωB under
⊗

k∈N U
⊗mk|ΛN |
ΛN

⊗
⊗

k∈K Bk. Hence, asymptotically as
N →∞, we obtain

ZN,ΛN (m̃) = e−H(m̃|q)|ΛN |
⊗
k∈N

U⊗m̃k|ΛN |ΛN

[
e−ΦΛN,ΛN

(ω̃U)
]

= e−H(m̃|q)|ΛN |
⊗
k∈N

U⊗mk|ΛN |ΛN
⊗
⊗
k∈K

Bk
[
e−ΦΛN,ΛN

(ωU−ωB)
]

= e−(H(m̃|q)−H(m|q))|ΛN |E
[⊗
k∈K

Bk
[
e−ΦΛN,ΛN

(ωP−ωB)
] ∏
k∈N

1l{N (δk)

ΛN
(ωP) = mk|ΛN |}

]
.

(6.18)
Now we compute the left-derivative of ϕ(m, δ0) using formula (6.18) for a special

choice of m̃. We fix k ∈ N. We assume mk > 0, take a small ε and put m̃ = m(ε) = m−εδk.
Formula (6.18) gives:

ZN,ΛN (m(ε)) = e−(H(m(ε)|q)−H(m|q))|ΛN |

× E
[
B(ε)

k

[
e−ΦΛN,ΛN

(ωP−ωB)
]∏
l∈N

1l{N (δl)

ΛN
(ωP) = ml|ΛN |}

]
,

where B(ε)

k is the uniform law over all subsets of [mk|ΛN |] of size ε|ΛN |. Explicitly, ωB =∑ε|ΛN |
i=1 δ(Xk,Ui ,Gk), where U1, . . . , Uε|ΛN | are picked according to U⊗ε|ΛN |[mk|ΛN |], conditioned on

the event {∀i 6= j, Ui 6= Uj}. Note that the probability of the latter has an exponential rate
that is o(ε) as ε goes to 0. Hence we will assume that we can remove this conditioning,
with a cost e|ΛN |o(ε): for the upper bound, this is immediate; but the lower bound requires
some fine work, we do not elaborate on that.

Observe that

ΦΛN ,ΛN (ωP − ωB) = ΦΛN ,ΛN (ωP)− 2Φ(↔)

ΛN ,ΛN
(ωP, ωB) + ΦΛN ,ΛN (ωB).

Furthermore, we also assume in this heuristics that all the boxes Ui+Gk for i ∈ [ε|ΛN |] do
not overlap each other (we demonstrated in Section 6.2 how to control the complement
of this event). Then ΦΛN ,ΛN (ωB) = εtk|ΛN |. Therefore, we can proceed with

ZN,ΛN (m(ε)) = e−(H(m(ε)|q)−H(m|q))|ΛN |e−εtk|ΛN |e|ΛN |o(ε)

× E
[
e−ΦΛN,ΛN

(ωP)U
⊗ε|ΛN |
[mk|ΛN |]

[
e
2Φ

(↔)
ΛN,ΛN

(ωP,ωB)]∏
l∈N

1l{N (δl)

ΛN
(ωP) = ml|ΛN |}

]
.

(6.19)

Now we introduce the empirical individual field

R◦ΛN (ω) = 1
mk|ΛN |

mk|ΛN |∑
i=1

δθXk,i (ω) = 1
mk|ΛN |

∑
x∈ΛN

ξ(k)(x)δθx(ω) = 1
|ΛN |

∑
x∈ΛN

N
(δk)

0 (θx(ω))
mk

δθx(ω),

which is the Palm version of the empirical stationary field RΛN that we introduced in the
proof of Theorem 2.1. Then we have that

U⊗ε|ΛN |[mk|ΛN |]
[
e
2Φ

(↔)
ΛN,ΛN

(ωP,ωB)]
=
(
U[mk|ΛN |]

[
e
2Φ

(↔)
ΛN,ΛN

(ωP,δ(Xk,U ,Gk))
])ε|ΛN |
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=
(〈
R◦ΛN (ωP), e

2Φ
(k)
ΛN

〉)ε|ΛN |
=
(〈
RΛN (ωP),

N
(δk)

0

mk
e
2Φ

(k)
ΛN

〉)ε|ΛN |
.

Proceeding as in Section 6.1, we get:

ϕ(m(ε), δ0) = −ε log
mk

qk
+ εtk + o(ε)

+ inf
{
I(P ) + P (Φ0,Zd)− ε log

P (N
(δk)

0 e2Φ(k)

)

mk
: P ∈M(s)

1 (Ω), P (N
(δk)

0 ) = mk ∀k ∈ N
}
.

Likewise, we obtain:

∂−mkϕ(m, δ0) = log
mk

qk
− tk + sup

P
log

P (N
(δk)

0 e2Φ(k)

)

mk
,

where the maximum is taken over all minimisers P in the definition of ϕ(m, δ0). This
ends our heuristic derivation of (2.17) for ψ = δ0.

6.4 Qualitative description in case of a phase transition: proof of Lemma 2.9

In this section, we prove Lemma 2.9. Recall that we assume that ρc is finite. Also
recall that (2.13) is an alternative representation of χ as defined in (2.7), and that the
minimisers ψ coincide.

STEP 1. We have the following alternative representation of the free energy

χ(ρ) = inf
{ ∑
a∈N0

ψ(a)[χ(ρa) + 2v̄aρa + v̄a2] :

ψ ∈M1(N0), (ρa)a∈N0
∈ [0, ρc]N0 ,

∑
a∈N0

ψ(a)[ρa + a] = ρ
}
.

(6.20)

In other words, the epigraph of χ(·) is the convex hull of the epigraphs of the functions

fa : [a, ρc + a]→ [0,∞), ρ+ a 7→ χ(ρ) + 2v̄aρ+ v̄a2, a ∈ N0, ρ ∈ [0,∞).

Furthermore, we can restrict in (6.20) to (ρa)a∈N0
∈ [0, ρc]× [ρc − 1, ρc]N.

Proof. Based on the considerations made in the proof of Step 3 in Section 5.3, we
see that formula (6.20) coincides with formula (2.13), when we let (ρa)a∈N0 ∈ [0,∞)N0 .
Further, we see from the argument presented around (5.7) that χ(ρa) admits a minimiser
(ma, δ0), and hence, ρa ≤ ρc for any a ∈ N by definition of ρc. Hence the formula (6.20)
follows. We rewrite it as

χ(ρ) = inf
{ ∑
a∈N0

ψ(a)fa(ρ̃a) : ψ ∈M1(N0), (ρ̃a)a∈N0
∈ [0,∞)N0 ,

∀a ∈ N, ρ̃a ∈ [a, ρc + a],
∑
a∈N0

ψ(a)ρ̃a = ρ
}
.

(6.21)

Now, observe that Step 2 in Section 5.3 implies that a ≤ b implies fa(ρ) ≤ fb(ρ) whenever
this is defined. Therefore, using convexity of the fa’s, we can restrict in (6.21) to
ρ̃0 ∈ [0, ρc] and ρ̃a ∈ [ρc + a − 1, ρc + a] when a ∈ N. Correspondingly, in (6.20) we can
restrict to (ρa)a∈N0

∈ [0, ρc]× [ρc − 1, ρc]N.

STEP 2. The saturation hypothesis (2.20) is false.
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Proof. Observe that, if the saturation hypothesis (2.20) were true, then for any minimiser
in the (6.20) at density ρ ≥ ρc, we would have ρa = ρc for any a, since

∑
a∈N0

ψ(a)ρa =

ρ−
∑
a∈N0

ψ(a)a = ρ− ρma = ρ− [ρ− ρc]+ = ρc and ρa ≤ ρc. So from (6.20) we have

χ(ρ) = χ(ρc) + 2v̄(ρ− ρc)ρc + v̄ inf
{ ∑
a∈N0

ψ(a)a2 : ψ ∈M1(N0),
∑
a∈N0

ψ(a)a = ρ− ρc

}
.

Evaluating the infimum explicitly, one sees that χ is a non-trivial polygon line on [ρc,∞)

(it is equal to χsat defined in next step) and thus not differentiable. This contradicts
Corollary 2.7.

STEP 3. χ′(ρc) > (2ρc − 1)v̄.

Proof. Let us define χsat : R+ → R+ coinciding with χ(·) on [0, ρc], and equal on [ρc,∞) to
the linear polygon line interpolating the values χsat(ρc+a)=fa(ρc+a)=χ(ρc)+2v̄aρc+v̄a2,
for a ∈ N0. The graph of χsat is depicted in Figure 5. Observe that χsat is obtained by
choosing ψ = δa and ρa = ρc in (6.20), so by convexity of χ(·), we have χsat(ρ) ≥ χ(ρ).
Also note that χsat is convex, since N0 3 a 7→ χsat(ρc + a) is convex, χsat(ρ) = χ(ρ) on
[0, ρc] and χsat(ρ) ≥ χ(ρ).

Now, assume that χ′(ρc) ≤ (2ρc − 1)v̄. Our goal is then to show that χsat = χ. For this,
note that for any ρ ∈ [ρc − 1, ρc], we have

χsat(ρ+ 1) = χ(ρc) + (2ρc + 1)(ρ+ 1− ρc)v̄

= χ(ρc) + (2ρc − 1)(ρ− ρc)v̄ + (2ρ+ 1)v̄

≤ χ(ρc) + χ′(ρc)(ρ− ρc) + (2ρ+ 1)v̄

≤ χ(ρc) + χ′(ρ)(ρ− ρc) + (2ρ+ 1)v̄

≤ χ(ρ) + (2ρ+ 1)v̄,

using the assumption in line three and convexity of χ(·) in lines four and five. Using this,
for any a ∈ N, we derive

χsat(ρ+ a) = χsat(ρ+ 1) + (2(a− 1)ρ+ (a2 − 1))v̄

≤ χ(ρ) + (2ρ+ 1)v̄ + (2(a− 1)ρ+ (a2 − 1))v̄

= χ(ρ) + (2ρ+ a)v̄a.

Now, using this and convexity of χsat, we have for any ρ ∈ [0,∞] that

χsat(ρ) ≤
∑
a∈N0

ψ(a)χsat(ρa + a) ≤
∑
a∈N0

ψ(a)[χ(ρa) + 2v̄aρa + v̄a2],

for any ψ ∈ M1(N0), (ρa)a∈N0
∈ [0, ρc] × [ρc − 1, ρc]N such that

∑
a∈N0

ψ(a)[ρa + a] = ρ.
But, taking the infimum over such ψ and (ρa)a∈N0

, we see that χsat(ρ) ≤ χ(ρ) for any ρ,
by (6.20).

As a consequence χ and χsat coincide and thus χ is non-differentiable at any ρc + a,
for a ∈ N, which contradicts Corollary 2.7.

So far, we have derived that

(2ρc − 1)v̄ < χ′(ρc) ≤ (2ρc + 1)v̄,

where the second inequality comes from the convexity of χ and from χ(ρc + 1) ≤
χ(ρc) + (2ρc + 1)v̄, according to Step 2 in Section 5.3.
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Figure 5: Illustrations of χsat and χ. The graph of χsat is given by the red continuous
line in [0, ρc] and continued by the blue dashed line segments to the right of ρc. The
grey dotted lines are the graphs of the functions fa : [a, ρc + a] → [0,∞), fa(ρ + a) =

χ(ρ) + 2v̄aρ+ v̄a2 for a ∈ {1, . . . , 4}. The four blue dashed lines are the segments joining
the points (ρc + a − 1, fa−1(ρc + a − 1)), for a ∈ {1, . . . , 5}. Observe that χsat is not
differentiable in ρc +N. The graph of χ coincides with the graph of χsat on [0, ρc]. Then it
is continued by the alternating solid black line segments and grey dotted segments. The
left-most black line is the tangent both, to χ in (ρc, χ(ρc)) and to f1 in ρt ∈ [ρc, ρc +1). The
graph of χ coincides with this tangent line on [ρc, ρt], with f1 on [ρt, ρc + 1]. Analogous
assertions hold on [ρc + a, ρt + a] and [ρt + a, ρc + a+ 1] for a ∈ {2, 3, 4, 5}.

STEP 4. There exists ρt ∈ [ρc ∨ 1, ρc + 1) such that

χ(ρt − 1) + (2ρt − 1)v̄ + (ρc − ρt)(χ
′(ρt − 1) + 2v̄) = χ(ρc)

i.e.
f1(ρt) + (ρc − ρt)f

′
1(ρt) = χ(ρc).

Proof. We consider the function

g(ρ) = χ(ρ− 1) + (2ρ− 1)v̄ + (ρc − ρ)(χ′(ρ− 1) + 2v̄),

defined on [1,∞). If ρc ≥ 1, note that g(ρc) = χ(ρc − 1) + (2ρc − 1)v̄ ≥ χ(ρc) and
g(ρc + 1) = χ(ρc) + (2ρc − 1)v̄ − χ′(ρc) < χ(ρc), where we used Step 2 in Section 5.3 and
Step 3 above.
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Applying the intermediate value theorem on [ρc, ρc + 1] to g (which is continuous
since χ′, the derivative of a differentiable convex function, is continuous), we obtain the
existence of ρt ∈ [ρc, ρc + 1) such that g(ρt) = χ(ρc). If ρc < 1, we may also apply the
intermediate value theorem to g on the interval [1, ρc + 1], using that χ′(0) = −∞.

Now, we define χ̄ as on the right-hand side of (2.22), i.e., for ρ ∈ [0, ρc], χ̄(ρ) = f0(ρ) =

χ(ρ), and, for any a ∈ N0 and ρ ∈ [ρc, ρc + 1],

χ̄(ρ+ a) =

{
ρt−ρ
ρt−ρc

fa(ρc + a) + ρ−ρc

ρt−ρc
fa+1(ρt + a+ 1) if ρ ≤ ρt,

fa+1(ρ+ a) if ρ ≥ ρt.

Our aim is to show that χ = χ̄. First observe that χ̄(ρ) is obtained by some particular
choice in (6.20), so χ̄(ρ) ≥ χ(ρ). Also note that for any ρ ≥ ρt − 1, for any a ∈ N0,

χ̄(ρ+ a) = χ̄(ρ) + 2v̄aρ+ v̄a2. (6.22)

Figure 5 depicts the graph of χ̄, which will turn out in the end of the proof to be
identical with χ.

STEP 5. The function χ̄ is convex.

Proof. χ̄ is obviously convex on the intervals [ρc + a, ρt + a] and [ρt + a, ρc + a + 1] for
a ∈ N0. The only difficulty is to show that ∂−χ̄ ≤ ∂+χ̄ at ρc + a and ρt + a, for all a ∈ N0.
Using (6.22), it is enough to show this for a = 0.

First, we have, using convexity of χ(·, 0) and Step 2 in Section 5.3:

∂−χ̄(ρc, 0) = ∂−ρmi
χ(ρc, 0) ≤ ∂+

ρmi
χ(ρc, 0) ≤ χ(ρt)− χ(ρc)

ρt − ρc

≤ χ(ρt − 1) + (2ρt − 1)v̄ − χ(ρc)

ρt − ρc
= ∂+χ̄(ρc).

Secondly, by convexity of ρ 7→ χ(ρ− 1) + (2ρ− 1)v̄, we have for all ρ ∈ [ρt, ρc + 1],

χ̄(ρt) + ∂−χ̄(ρt)(ρ− ρt) = χ(ρt − 1) + (2ρt − 1)v̄ + (ρ− ρt)(χ
′(ρt − 1) + 2v̄)

≤ χ(ρ− 1) + (2ρ− 1)v̄ = χ̄(ρ),

and therefore ∂−χ̄(ρt) ≤ ∂+χ̄(ρt).

STEP 6. χ(ρ) + 2v̄aρ+ v̄a2 ≥ χ̄(ρ+ a) for any ρ ∈ [ρc − 1, ρc] and any a ∈ N.

Proof. It is enough to prove this for a = 1 in regard of (6.22). Then, if ρ ∈ [ρt − 1, ρc], we
actually have the equality by definition of χ̄. The case when ρ ∈ [ρc − 1, ρt − 1] follows
from the definition of ρt and the convexity of χ(·).

Now the proof of point (3) in Lemma 2.9 easily follows. Indeed, from Steps 5 and 6
and (6.20), we deduce that χ̄ ≤ χ; the details of this are the same as the ones of Step 3.
Hence, the functions χ and χ̄ coincide. The observation that χ′(ρc) = χ′(ρt − 1) + 2v̄ is
immediate using the continuity of χ′.

The point (4) in Lemma 2.9 is straight forward.
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A The interacting quantum Bose gas

For comparison to the model and the results of this paper, let us recall here the
interacting Bose gas and the description of its free energy from the viewpoint of random
point processes using large-deviation analysis. We are citing from [ACK11], to which we
also refer for more references.

We consider an interacting bosonic many-body system in a large box in Rd at positive
temperature 1/β ∈ (0,∞) with fixed particle density ρ ∈ (0,∞) in the thermodynamic
limit. Denote by

HN = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj |), x1, . . . , xN ∈ Rd,

the N -particle Hamilton operator with kinetic energy and pair-interaction given by an
interaction functional v : [0,∞)→ [0,∞] satisfying some properties that we state later.
Since we do not want to exclude the possibility that v has a singularity at 0 satisfying
limr↓0 v(r) =∞, we cannot include the self-interactions; furthermore we register each
pair of particles only once. We are interested in bosons and introduce a symmetrisation,
i.e., we project the operator HN on the set of symmetric, i.e., permutation invariant,
wave functions. Furthermore, we consider the particle system at positive temperature
1/β ∈ (0,∞) in a centred box Λ ⊂ Rd with some boundary conditions, to be detailed
also later. In other words, we consider the trace of the operator e−βHN in Λ with
symmetrisation:

Z(bc)

N (β,Λ) = Tr(bc)

Λ,+(e−βHN ),

where the index + denotes the symmetrisation. This is the so-called partition function of
the system, the main object of the study in this model. We introduce the particle density
ρ ∈ (0,∞), the number of particles per unit volume. Fix a centred box ΛN of volume N/ρ,
and consider the free energy,

f(β, ρ) = − 1

β
lim
N→∞

1

|ΛN |
logZ(bc)

N (β,ΛN ).

The existence of this limit and the fact that it is independent of the boundary condition
are well-known for many decades, but an explicit or even interpretable formula is still
lacking, with the exception of the main result of [ACK11], which holds only for all small
ρ, see below.

In brevity, let us state here the main conjecture about the occurrence of Bose–Einstein
condensation (BEC) : One expects that, in dimensions d ≥ 3 but not in dimensions
d ∈ {1, 2}, the map ρ 7→ f(β, ρ) has a non-analyticity at some unique ρc(β) ∈ (0,∞).
However, much more interesting than this fact is the underlying interpretation and
explanation in terms of the underlying particle process; see below.

In [ACK11], a description of the model in terms of a marked PPP was developed. The
marks are here random cycles of Brownian motions. See Figure 6 for an illustration of
the marked point process.

For k ∈ N, let
ω(k)

P =
∑
x∈ξ(k)

P

δ(x,Bx) and ωP =
∑
k∈N

ω(k)

P ,

then ωP is the independent superposition of PPPs ω(k)

P over k ∈ N on Rd × Ck, where the
mark space Ck is the set of continuous functions [0, kβ]→ Rd. The intensity measure νk
of ω(k)

P is given by

νk(dx,df) =
1

k
Leb(dx)⊗ µ(kβ)

x,x (df), (A.1)
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Figure 6: Illustration of a realisation of the Bose gas with 14 particles (grey and black
bullets), organised in three Brownian bridges, attached to three Poisson points (black
bullets). The red cycle has six particles, the blue and green ones each four.

where µ(β)
x,y is the unnormalised canonical measure for a Brownian bridge from x to y

on the time interval [0, β]; for x = y it has total mass equal to (4πβ)−d/2. Alternatively,
we can think of ω(k)

P as of an independently marked PPP on Rd, based on some standard
homogeneous PPP ξ(k)

P on Rd, and a family (Bx)
x∈ξ(k)

P

of i.i.d. marks, given ξ(k)

P . The

intensity of ξ(k)

P is

qk =
1

k
µ(kβ)

x,x (Ck) =
1

(4πβ)d/2k1+d/2
. (A.2)

Elements f of the mark space Ck have the length `(f) = k, which should also be seen
as the number of particles in the mark. Indeed, a cycle f ∈ Ck contains the k particles
f(β), f(2β), f(3β), . . . , f(kβ). Conditionally on `(Bx) = k, Bx is in distribution equal to a
Brownian bridge with time horizon [0, kβ], starting and ending at x. Put

q =
∑
k∈N

qk = (4πβ)−d/2ζ(1 + d/2), (A.3)

where ζ is the Riemann zeta function. We denote by Ω the state space of ωP, i.e., the
set of all marked point processes ω =

∑
x∈ξ δ(x,fx) with point set ξ ⊂ Rd and marks

fx ∈ C =
⋃
k∈N Ck, starting and ending at x. We call the sites fx(kβ) with k ∈ N0 the

particles of ω; each point x ∈ ξ has precisely `(fx) particles.
We introduce a functional on Ω that expresses the pair interaction between any two

particles belonging to a mark in Λ ⊂ Rd. Define the interaction between Λ and Λ′ ⊂ Rd
by

ΦΛ,Λ′(ω) =
∑

x∈ξ∩Λ,y∈ξ∩Λ′

Tx,y(fx, fy), ω ∈ Ω, (A.4)

where we abbreviate

Tx,y(fx, fy) =
1

2

`(fx)∑
i=1

`(fy)∑
j=1

1l{(x,i)6=(y,j)}V (fx,i, fy,j) x, y ∈ ξ, fx, fy ∈ C, (A.5)
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and fx,i(·) = fx((i − 1)β + ·)|[0,β] is the i-th leg of a function fx ∈ C, and V (f, g) =∫ β
0
v(|f(s)− g(s)|) ds. Denote by

N (`)

Λ (ω) =
∑
x∈ξ∩Λ

`(fx) (A.6)

the number of particles in the cloud in marks whose suspension point lies in Λ. We
are going to consider three different boundary conditions in the box Λ: periodic, zero
Dirichlet and open boundary condition, written ‘per’, ‘Dir’ and ‘∅’ (the latter means that
the Poisson points belong to Λ, but the particles do not have to). The first two boundary
conditions are reflected in the definition of the Brownian bridges; they actually need
to be adapted, which also necessitates adaptations in the intensity qk and in the mark
measure µ(βk)

x,x . We write the superscript ‘bc’ to express the boundary condition and P(bc)

Λ

and E(bc)

Λ for the corresponding distribution and expectation of the marked PPP. The
following is Proposition 1.1 in [ACK11].

Proposition A.1 (Rewrite in terms of the marked PPP). Fix β ∈ (0,∞). Let v : [0,∞) →
(−∞,∞] be measurable and bounded from below and let Λ ⊂ Rd be measurable with
finite volume (assumed to be a torus for periodic boundary condition). Then, for any
N ∈ N, and bc ∈ {∅,per,Dir},

Z(bc)

N (β,Λ) = e|Λ|q
(bc)

E
(bc)

Λ

[
e−ΦΛ,Λ(ωP)1l{N (`)

Λ (ωP) = N}
]
. (A.7)

That is, up the non-random term |Λ|q(bc), the partition function is equal to the expec-
tation over the Boltzmann factor e−ΦΛ,Λ of a marked PPP restricted to a fixed total length
of marks of the particles. Here we see the motivation for the box-version of the model
that we introduced in Section 2: the marks that are here random Brownian cycles are
boxes in the box-version.

Now that we have revealed a characterisation of the free energy in terms of a
point process with Brownian cycles as marks, we can give another, more descriptive,
interpretation of BEC: for sufficiently large ρ, a main part of the contribution to the
expectation on the right-hand side of (A.7) should come from realisations of the point
process in which a number � N of particles (i.e., a macroscopic part of the N particles)
are in long cycles, i.e., in cycles whose lengths depend on N and diverge as N →∞.

Now we explain how to use large-deviation theory to derive asymptotic assertions in
the thermodynamic limit, i.e., in the limit N →∞ with the box Λ = ΛN having volume
equal to N/ρ. This has much to do with ergodic theory. Let θx : Rd → Rd denote the
shift operator by x ∈ Rd; we extend it to an operator θx : Ω → Ω, where the shifts
are performed with respect to the suspension points and their associated marks. By
M(s)

1 (Ω) we denote the set of all shift-invariant probability measures on Ω; note that the
distribution P of the reference process ωP belongs toM(s)

1 (Ω). We write U = [−1/2, 1/2]d

for the centred unit box.
Next, we introduce an entropy term. For probability measures µ, ν on some measur-

able space, we write

H(µ|ν) =

{∫
f log f dν if f = dµ/dν exists,

∞ otherwise,
(A.8)

for the relative entropy of µ with respect ν. It will be clear from the context which
measurable space is used. It is easy to see and well-known that H(µ|ν) is nonnegative
and that it vanishes if µ = ν. Now we introduce the entropy density function

I(P ) = lim
N→∞

1

|ΛN |
H
(
PΛN

∣∣PΛN

)
, P ∈M(s)

1 (Ω), (A.9)
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where we write PΛ for the projection of P to Λ, i.e., the image measure of P under the
map ω 7→ ω|Λ =

∑
x∈ξ∩Λ δ(x,fx). According to [GZ93, Prop. 2.6], the limit in (A.9) exists,

and I is an affine and lower-semi-continuous function with compact level sets in the
topology of local tame convergence. It turns out there that I is the rate function of a
crucial large deviations principle for the family of the stationary empirical fields, which
we do not write out here explicitly.

We introduce an important variational formula:

χ(ρ) = inf
{
I(P ) + P (ΦU,Rd) : P ∈M(s)

1 (Ω), P (N (`)

U ) = ρ
}
, (A.10)

where we write P (f) =
∫
f dP = 〈P, f〉 for the integral of a function f with respect to

a measure P . This formula ranges over shift-invariant marked point processes P and
has three crucial components: the entropic distance I(P ) between P and the reference
measure P, the interaction term P (ΦU,Rd) and the effective particle density per unit
volume P (N (`)

U ). The main result of [ACK11] that we are interested in here is the
following.

Theorem A.2 (Theorem 1.2 in [ACK11]). Let v : [0,∞) → [0,∞] be measurable such
that v(r) ≤ Ar−h for some A ∈ (0,∞) and some h ∈ (d,∞) and all sufficiently large
r, and assume that lim inft↓0 v(r) > 0 and that α(v) =

∫
Rd
v(|x|) dx is finite. Then,

for any β, ρ ∈ (0,∞) such that (4πβ)−d/2 < ρeβρα(v), and for any boundary condition
bc ∈ {∅,Dir,per},

lim inf
N→∞

1

|ΛN |
logZ(bc)

N (β,ΛN ) ≥ q − χ(ρ). (A.11)

This is only a small part of what we are able to prove for the box-version in Section 2.
We conjecture that a great deal of that results are true also here. In particular, we
conjecture that (A.11) and the complementary inequality ≤ hold true for any ρ ∈ (0,∞).
Furthermore, we believe that BEC can be characterised in terms of existence of minimis-
ers, analogously to the box-version. See Figure 7 for illustrations of the two phases in
terms of Brownian cycle ensembles.

Figure 7: Illustration of a subcritical (low ρ) Bose gas without condensate (left) and
supercritical (large ρ) Bose gas with additional condensate (red) (right).

The main difficulty in the proof of ≤ in (A.11) is the discontinuity of the functional
P 7→ P (N (`)

U ); it is only semi-continuous from below. This could be partially overcome by

EJP 28 (2023), paper 118.
Page 56/58

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1014
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variational formula for a many-body system

another main result of [ACK11]: for sufficiently small ρ, the corresponding upper bound
holds with χ(ρ) replaced by the same formula with the condition P (N (`)

U ) = ρ replaced
by P (N (`)

U ) ≤ ρ; however, this formula is not expected to be accurate at all for large ρ.
Furthermore, it was proved in [ACK11] that (A.11) holds with this formula instead of
χ(ρ). It is not deep to show that both formulas coincide for small ρ, so the main message
from [ACK11] is that the free energy is expressed in terms of the natural variational
formula χ(ρ), if ρ is sufficiently small.

We are confident that what we learnt from the present paper about the box version
of the Bose gas will be helpful for a future study of the interacting Bose gas. Indeed, we
expect that its free energy can be eventually described in terms of a similar two-space
variational formula, using marked point process as in [ACK11] (the marks being the
finite-length loops) and a novel homogenous random environment, consisting of a family
of infinitely long interlacements that interact with the loops and with themselves. Hence,
the space that needs to be added to the marked point process is expected to be indexed
by some much more detailed space than justN0; presumably by the set of point measures
on infinitely long interlacements. However, the precise formulation and the entropic
contribution coming from this new, yet unknown, ingredient lies in the dark for now.

Let us briefly discuss BEC in the free Bose gas, where no interaction is present, i.e.,
v = 0. In this case, the formula in (A.10) drastically reduces to the formula

χ(v=0)(ρ) = inf
{
H(m|q) : m ∈ [0,∞)N,

∑
k∈N

kmk = ρ
}
, (A.12)

where H(m|q) =
∑
k(qk − mk + mk log mk

qk
) is the relative entropy of the sequence m

with respect to q. Compare to the remark at the end of Section 2.2 on χ(v=0)(ρ) and the
phase transition that it undergoes as a function of ρ. Indeed, a possible minimiser m
is characterised by the Euler–Lagrange equation mk = qkeαk for k ∈ N, where α ∈ R
is the Lagrange multiplier. In order to meet the constraint

∑
k kmk = ρ, certainly

α needs to be non-positive, and the largest value ρ that can be achieved by this is
ρc(β) =

∑
k kqk = (4πβ)−d/2ζ(d/2) (compare to (A.3)), which is finite precisely in d ≥ 3.

Hence, this is the critical value for existence of a minimiser, i.e., the critical threshold
for the occurrence of BEC. The understanding is that, for ρ > ρc(β), it is not possible to
arrange all the microscopic particles in finite-size cycles, and all the remainder is the
condensate. However, it gives no mathematical expression for the condensate.
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