

Weierstrass Institute for **Applied Analysis and Stochastics**

M. Kantner, M. Mittnenzweig and T. Koprucki

Modeling and simulation of electrically driven quantum light sources From classical device physics to open quantum systems

Semiconductor Nanophotonics SFB 787 Leibniz Association

Motivation

Semiconductor quantum optics is on the leap from the lab to real world applications. In order to advance the **development of novel devices** such as quantum light sources and nanolasers based on semiconductor quantum dots embedded in dielectric micro-cavities, device engineers will need simulation tools that combine classical device physics with cavity quantum electrodynamics. We connect the fields of semi-classical semiconductor transport theory and the theory of open quantum systems to meet this requirement.

Current spreading in an oxide-confined pn-diode

• site-controlled QD nucleation above oxide aperture via buried stressor

optical activity of parasitic QDs Ο rapid lateral curent spreading above Ο oxide (no bulk recombination)

Hybrid quantum-classical modeling approach

Comprehensive multi-scale simulation approach for QD-based devices for quantum optics: Self-consistent coupling of **drift-diffusion system** (semi-classical charge carrier transport) with **Lindblad master equation** for dissipative QD-photon system: Spatially resolved current flow in realistic semiconductor device geometries and quantum optics out of one box!

Hybrid quantum classical model $-\nabla \cdot \varepsilon \nabla \phi = q \left(C + p - n + Q(\rho) \right)$ $\partial_t n - \frac{1}{q} \nabla \cdot \mathbf{j}_n = -R - S_n(\rho; n, p, \phi)$ $\partial_t p + \frac{1}{q} \nabla \cdot \mathbf{j}_p = -R - S_p(\rho; n, p, \phi)$ $\partial_t \rho = -\frac{i}{\hbar} [H, \rho] + \mathcal{D}(n, p, \phi) \rho$

• modified doping profile \Rightarrow electrical pumping of single QDs

Strittmatter et al., *Appl. Phys. Lett.* **100**, 093111 (2012) Unrau et al., *Appl. Phys. Lett.* **101**, 211119 (2012) Kantner et al., *IEEE Trans. Electron Dev.* **63**, 2036 (2016)

Consistency with (non-)equilibrium thermodynamics

Consistency with fundamental laws of (non-)equilibrium thermodynamics is considered as a guiding principle for the formulation of the quantum-classical system. By construction, the system satisfies the **conservation of charge** and thermodynamic principles such as **microscopic reversibility** in the thermodynamic equilibrium and the second law of thermodynamics.

minimize (hybrid) grand potential in 0 thermodynamic equilibrium

$$\Phi = \mathcal{F}(n, p, \rho) - \mu_{eq} \int_{\Omega} d^3 r \left(n - p - Q(\rho) \right)$$

(quantum) detailed balance relation

 $\mathcal{D}(n_{\mathrm{eq}}, p_{\mathrm{eq}}, \phi_{\mathrm{eq}})\rho_{\mathrm{eq}} = 0$

entropy production rate

$$\dot{\mathcal{S}}_{\text{tot}} = \frac{1}{T} \int_{\Omega} d^3 r \, (\mu_c - \mu_v) \, R + \frac{1}{qT} \int_{\Omega} d^3 r \, (\mathbf{j}_n \cdot \nabla \mu_c + \mathbf{j}_p \cdot \nabla \mu_v) \\ + k_B \, \text{tr} \left(\left[\log \rho - \beta H \right] \mathcal{D}_0 \rho \right) \\ + k_B \, \text{tr} \left(\left[\log \rho - \log \rho_e^*(n, p, \phi) \right] \mathcal{D}_e(n, p, \phi) \rho \right) \\ + k_B \, \text{tr} \left(\left[\log \rho - \log \rho_h^*(n, p, \phi) \right] \mathcal{D}_h(n, p, \phi) \rho \right)$$

 $\partial_t z = (\mathbb{J}(z) - \mathbb{K}(z)) D\mathcal{F}(z)$ • gradient structure

Kantner, Mittnenzweig, Koprucki, Phys. Rev. B 92, 205301 (2017) Kantner, Mielke, Mittnenzweig, Rotundo (submitted 2018)

Simulation results

contact: Markus Kantner • Weierstrass Institute for Applied Analysis and Stochastics • Mohrenstr. 39, 10117 Berlin, Germany • phone: +49 (30) 20372-504 • kantner@wias-berlin.de