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Numerical Methods for Coupled
Population Balance Systems Applied
to the Dynamical Simulation of
Crystallization Processes

Robin Ahrens, Zahra Lakdawala, Andreas Voigt, Viktoria Wiedmeyer,
Volker John, Sabine Le Borne, Kai Sundmacher

Abstract Uni- and bi-variate crystallization processes are considered that are
modeled with population balance systems (PBSs). Experimental results for
uni-variate processes in a helically coiled flow tube crystallizer are presented.
A survey on numerical methods for the simulation of uni-variate PBSs is
provided with the emphasis on a coupled stochastic-deterministic method. In
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this method, the equations of the PBS from computational fluid dynamics are
solved deterministically and the population balance equation is solved with
a stochastic algorithm. With this method, simulations of a crystallization
process in a fluidized bed crystallizer are performed that identify appropriate
values for two parameters of the model such that considerably improved
results are obtained than reported so far in the literature. For bi-variate
processes, the identification of agglomeration kernels from experimental data
is briefly discussed. Even for multi-variate processes, an efficient algorithm
for evaluating the agglomeration term is presented that is based on the fast
Fourier transform (FFT). The complexity of this algorithm is discussed as
well as the number of moments that can be conserved.

1.1 Introduction: Modeling of Crystallization Processes
with Population Balance Systems

Solid state processing is an important part of the industrially relevant produc-
tion as about 70% of products of the chemical and pharmaceutical industry
are sold as solids. An important part of this processing is crystallization of
solid materials from liquid solutions. Fundamental and applied research in
this area of crystallization will lead to improved process performance with
less energy consumption as well as more efficient material utilization. Also
the product quality and specifications like size and its distribution, shape,
and agglomeration degree have to be considered in more detail, as many
process steps are dependent on such characteristics [44]. The DFG priority
programme 1679 “Dynamic simulation of inter-connected solid processes”
addressed many of the current issues and our particular contribution has
been the investigation of different important aspects of continuous crystal-
lization processes. As solid-liquid systems are complex and challenging in
many ways and fluid flow and particles interact in a variety of fashions, the
numerical methods had to be extended and new tools had to developed to
simulate crystallization in a better way. We focus here on relevant phenomena
of crystal growth of multi-faceted crystals as well as on crystal agglomera-
tion with two specifically developed model experiments working with selected
well-understood model substances.

Crystallization processes are often modeled in terms of a crystal popula-
tion instead of considering the behavior of each individual crystal. Utilizing
macroscopic conservation laws, one derives a system of coupled equations for
the population, a so-called population balance system (PBS), that describes
an averaged behavior of the crystals.

We consider crystallization processes within a moving incompressible fluid,
which occur, e.g., in pipes or batch crystallizers. It is assumed that the sus-
pension of the crystals is dilute such that the impact of the crystals on the
fluid flow is negligible. Then, the first two conservation laws are the balance
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of the linear momentum and the conservation of mass for the fluid flow, which
are modeled by the incompressible Navier–Stokes equations

∂tu−∇ ·
(
ρ

η
∇u
)

+ (u · ∇)u +∇p = f in (0, tend)×Ω,

∇ · u = 0 in (0, tend)×Ω.
(1.1)

In (1.1), tend [s] is a final time, Ω ⊂ R3 is a bounded domain, which is
assumed to be constant in the whole time interval, u [m/s] is the velocity
field, p [Pa] is the pressure, f [m/s2] represents forces acting on the fluid,
ρ [kg/m3] is the density of the fluid, and µ [kg/m s] is the dynamic viscosity of
the fluid. Often, the body forces possess the form f = (0, 0, g)T with g [m/s2]
being the gravitational acceleration.

The other equations of a PBS are usually coupled. These are equations for
the energy balance, where the unknown quantity is the temperature T [K],
for the balance of the molar concentration c [mol/m3] of dissolved species, and
for the balance of the particle population density f [1/kg m3] (the unit is for
a particle population density with the only internal coordinate mass, it is
different in other situations).

The energy balance of the PBS has the form

∂tT −DT∆T + u · ∇T = Fener,growth(c, T, f) in (0, tend)×Ω, (1.2)

where DT [m
2
/s] is a diffusion coefficient, u is the velocity from (1.1), and

the right-hand side Fener,growth(c, T, f) [K/s] models the energy consumption
or production in the growth process of the crystals. Since the velocity is
divergence-free, it holds that u · ∇T = ∇ · (Tu).

In a crystallization process, the dissolved material in the fluid is used in
the growth process of the crystals. The corresponding balance equation has
the form

∂tc−Dc∆c+ u · ∇c = Fconc,growth(c, T, f) in (0, tend)×Ω. (1.3)

Here,Dc [m
2
/s] is again a diffusion coefficient and Fconc,growth(c, T, f) [mol/s m3]

represents the consumption or production of dissolved material. We like to
mention that there are PBSs with a coupled system of equations of type (1.3)
for several concentrations, like in the modeling of precipitation processes, e.g.,
see [36].

The final part of a PBS is an equation for the particle population density.
Assuming that the number of internal or property coordinates is dint ≥ 1,
then this equation might read as follows

∂tf + (u + used) · ∇f +∇int · (G(c, T )f)

= Fagg(u, c, T, f) + Fbreak(u, c, T, f) in (0, tend)×Ω ×Ωint. (1.4)
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Here, Ωint is the dint-dimensional domain for the internal coordinate and
used [m/s] is the sedimentation velocity, which is assumed to be divergence-
free. The growth term is assumed to be linear with the growth rateG(c, T ) [kg/s],
and ∇int is the nabla operator with respect to the internal coordinates. Nu-
cleation is included via appropriate boundary conditions with respect to the
internal coordinates. The right-hand side of (1.4) describes the agglomeration
(aggregation, coalescence) of crystals and their breakage (fragmentation).

To simplify the presentation below, the case dint = 1 will be considered
in this section, i.e., a so-called univariate population. Then, Ωint is just an
interval, e.g., an interval with respect to the mass of the crystals Ωint =
[mmin,mmax] in kg and it is ∇int = ∂m. In this case, the agglomeration term
for every time-space point (t,x) has the form

Fagg(u, T, f) =
1

2

∫ mmax

mmin

κagg(u, T,m−m′,m′)f(m−m′)f(m′) dm′

−
∫ mmax

mmin

κagg(u, T,m−m′,m′)f(m)f(m′) dm′, (1.5)

where κagg [m
3
/s] is the agglomeration kernel. The first term, which is the

source term, models the amount of crystals of mass m that are created
by the agglomeration of two crystals with masses m′ and m − m′, where
m′ ∈ (mmin,mmax). The corresponding sink term accounts for the crystals of
mass m that vanish because they are consumed by agglomeration with other
crystals of mass m′. The breakage term might be of the form

Fbreak(u, c, T, f) =

∫ mmax−m

mmin

κbreak(u, T,m,m′)f(m+m′) dm′

−1

2

∫ m

mmin

κbreak(u, T,m−m′,m′)f(m′) dm′, (1.6)

where κbreak [1/kg s] is the breakage kernel. The first term on the right-hand
side describes the appearance of crystals of mass m and the second term
describes the disappearance of such crystals due to breakage events.

1.2 Uni-variate Process

1.2.1 Benchmark Problem

Different phenomena such as nucleation, growth, breakage, and agglomera-
tion occur during crystallization. It depends on the particular crystallization
process, which phenomena are dominant. They have to be identified and inte-
grated in the population balance system (PBS) as shown in (1.4), while other
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Fig. 1.1 Schematic of the benchmark experiment in the helically coiled flow tube (HCT)

crystallizer.

terms may be neglected. The resulting coupled PBS needs to be parameter-
ized. For that, benchmark problems are required. Here, a growth dominated
crystallizer is selected.

As mentioned in the previous section, the crystal mass can be used as in-
ternal property coordinate of the PBS. The goal of the presented benchmark
problem is to intensify a process to grow faceted crystals shape-selectively.
Hence, a measure of crystal size is applied as internal coordinate. To deter-
mine the crystal size distribution (CSD), 3d-crystal shapes are estimated from
2d-projections of the observed particles following the methods by [9, 10, 11].
The shape is described by the perpendicular distances of the crystal faces
to the crystal center. It is sufficient to consider one perpendicular distance
for each face type to describe the full symmetry of an ideal crystal. Potas-
sium aluminum sulfate dodecahydrate, also called potash alum, crystallizes
predominantly as octahedron in aqueous solution. Hence, its shape can be
characterized by one face type. The resulting crystal distribution is univari-
ate.

The benchmark problem is of high dimension. There are four dimensions
in time and space and one internal coordinate. Further, the solid and liquid
phase are coupled.

1.2.2 Helically Coiled Flow Tube Crystallizer

1.2.2.1 Setup and Process

Growth-dominated experiments are realized in a helically coiled flow tube
(HCT) crystallizer. The crystallization is temperature controlled. For the
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experiments, solution is pumped from a reservoir to the HCT, as depicted in
Figure 1.1. The solution passes a degasifier before crystal seeds are added,
where the seeds are of a defined size fraction. The suspension is cooled in the
HCT to grow. At the outlet of the HCT, the crystal population is imaged by
a flow-through microscope. Finally, the crystals are dissolved in a reservoir.

Seeds are sieved in different size fractions. The seed fractions are applied
for residence time experiments without growth and for growth experiments.
In the experiments, several process parameters can be varied systematically:
helix orientation, average fluid flow rate, crystal seed fraction, feed concen-
tration, and temperature [66, 67]. Selected results are shown for an HCT
crystallizer with a coil diameter of 0.11 m and an inner tube diameter of
0.006 m at laminar flow rates.

1.2.2.2 Residence Time Distribution

In residence time experiments for the dispersed phase, a sieved crystal size
fraction was added within 10 s at the inlet. The solution was saturated and
isothermal conditions were applied to avoid crystal growth. The residence
time was estimated from the crystal projections, which were recorded at the
tube outlet by the flow-through microscope. Further, the crystal shape and
a size descriptor were estimated from the projections. Crystal velocities were
calculated from the measured residence times and known geometry of the
HCT and are depicted in Figure 1.2. They were measured in an HCT crys-
tallizer made of glass (length of 35 m, upward flow). Mean crystal velocities
were calculated for several size classes. It was observed that large crystals of
about 200 µm size are faster than smaller crystals of a size of about 100 µm.
This observation holds for particles of a density which deviates from the fluid
density at laminar flow rates in HCTs [66, 67]. In the PBS, the residence time
can be empirically described in dependence of the crystal size by a polyno-
mial function or by interpolation from measurements. To apply the model in
a size range that exceeds the measured sizes, it can be assumed that very
small crystals follow the fluid flow, as shown in Figure 1.2.

The crystal residence time depends on the process parameters. Crystalliza-
tion experiments in HCTs show that crystals of different size have different ve-
locities in HCTs. Large crystals are faster than small crystals. Size-dependent
residence times can be used to separate crystals of certain sizes in batch or
periodic operation.

1.2.2.3 Crystal Growth

Crystals can be grown in HCTs by cooling crystallization. The longer the
tubes and the lower the fluid velocities, the more time crystals have to grow
and the larger the attainable final crystal sizes. This is illustrated for the
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Fig. 1.2 Crystal-size dependent crystal velocities at two different laminar average fluid

velocities (blue, dashed) for the univariate potash alum. Measured in experiments (black,

solid) and extrapolated (black, dotted).

Fig. 1.3 Product crystal number density distributions after crystal growth experiments
for varying average fluid flow rate: left: u =0.24 m/s; right: u =0.35 m/s. Potash alum seed

fraction of a size x of (95± 11) µm at a feed saturation temperature of 40 ◦C and an initial

outlet supersaturation of σ =4 %.

case of varying fluid velocity in Figure 1.3. Crystal growth can be realized
continuously in HCTs to change the CSD.

Numerically, the solution of the full model of the form (1.1)–(1.6) is ex-
pensive due to the mutual coupling of the equations. Hence, the model is
reduced and assumptions are made for a dynamic simulation with reasonable
computation times:

a) It is assumed that the energy balance (1.2) can be neglected when a tem-
perature profile is given.

b) The momentum balance (1.1) is neglected.
c) Only one spatial coordinate is considered, which is the z-coordinate along

the tube axis.
d) A low suspension density and moderate cooling are applied experimentally

to suppress nucleation, breakage, and agglomeration.
e) Crystal growth is size-independent.

The reduced population balance equation (PBE) is

∂tf + u · ∇f +G(c, T )∇int · f = 0 in (0, tend)×Ω ×Ωint. (1.7)
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Fig. 1.4 Crystal growth experiments (blue bars) and simulation (green solid curve) of a
potash alum seed fraction at a feed saturation temperature of 40 ◦C and an initial super-

saturation of σ =17 % at the outlet for an average fluid flow rate u =0.24 m/s. Crystal

number density distributions: top: seed crystals; bottom: product.

For the continuous phase, there are two balance equations, since potash alum
crystallizes as dodecahydrate under consumption of water from the solution.
The diffusion term in (1.3) is replaced by a dispersion term of the same
structure, but of a different value for the coefficient Dc. The crystal growth
rate depends on the supersaturation of the continuous phase and thereby on
the local temperature T (t, z). The local temperature can be set by external
cooling and it can vary dynamically.

The reduced PBS consisting of (1.3) and (1.7) was discretized in space z
and in the internal size coordinate x via finite volume method. The derived
differential algebraic equation system was solved with the Matlab-ode23
solver, which is based on a Runge-Kutta approach. Product CSDs resulting
after crystal growth are depicted in Figure 1.5. As expected, the final crys-
tal size increases with tube length during cooling crystallization. In batch
simulations, the size-dependent residence time leads to narrow crystal size
distributions compared to a uniform particle residence time.

1.2.3 Brief Survey on Numerical Methods for Solving
a PBS

Let the time interval be decomposed into subintervals [tn−1, tn], n = 1, . . . N ,
with 0 = t0 < t1 < . . . < tN = tend and let the (numerical) solution
un−1, Tn−1, cn−1, fn−1 at the time instance tn−1 be given. Then, one has
to apply some time stepping scheme to compute the (numerical) solution at
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Fig. 1.5 Simulated product number density distribution based on a reduced model for the

crystal growth of a normally distributed potash alum seed fraction (µ =106 µm, σ =41 µm)

for different tube lengths. Left: a constant particle velocity; right: a size-dependent crystal
velocity based on the measurement data.

tn. This section provides a brief survey on methods that are proposed in the
literature for computing a numerical solution at tn.

Since a monolithic approach for solving the PBS, which computes all un-
known functions together from (1.1)–(1.4), is computationally too demand-
ing, the PBS is split into several parts and these parts are solved consecu-
tively.

1.2.3.1 The Navier–Stokes Equations

Because the velocity appears in all equations and there is no back coupling of
the other unknowns to the flow field, it is a straightforward idea to solve first
the Navier–Stokes equations (1.1). These equations can be solved monolithi-
cally or decoupled by a so-called projection scheme. As temporal discretiza-
tion, often first or second order time stepping schemes are used, like the Euler
schemes, the Crank–Nicolson scheme, or the backward difference formula of
order 2 (BDF2). The nonlinear term in the momentum balance can be treated
implicitly, semi-implicitly, or explicitly. The semi-implicit approach is called
implicit-explicit (IMEX) scheme. Usual spatial discretizations include finite
element methods (FEM), finite volume methods (FVM), or, for simple do-
mains, finite difference methods (FDM). A detailed description of all these
approaches is far beyond the scope of this paper. Many of them are described,
within the framework of FEMs, in [35, Chapter 7].

The situation becomes more complicated if the flow is turbulent. There is
no mathematical definition of turbulence, but a good physical description is
that a turbulent flow contains a wide range of physically important scales. In
particular, there are many small scales that cannot be resolved on affordable



10 Ahrens, Lakdawala, Voigt, Wiedmeyer, John, Le Borne, Sundmacher

grids and, consequently, that cannot be simulated. Standard discretizations
cannot cope with this situation since they try to simulate all important scales.
Simulations with such discretizations usually blow up in finite time. Since ne-
glecting the small scales leads to physically incorrect numerical simulations,
an approach is needed to model the impact of the unresolvable scales onto the
resolvable scales. This approach is called turbulence modeling. In the litera-
ture, many turbulence models are proposed, e.g., see [54, 58], and turbulence
modeling is still an active field of research. There is no turbulence model that
can be considered to be the best one.

At the end of this step, un is known and it can be used in the other
equations of the PBS.

1.2.3.2 The Energy and Concentration Equations

As a next, natural step, the equations (1.2) for the energy balance and (1.3)
for the concentration balance can be solved. Again, due to the numerical
complexity, a monolithic solution of this system of equations does not seem
to be attractive. Instead, the equations are solved individually, by using the
currently available data, e.g.,

1.) ∂tTn −DT∆Tn + un · ∇Tn = Fener,growth (cn−1, Tn−1, fn−1) ,
2.) ∂tcn −Dc∆cn + un · ∇cn = Fconc,growth (cn−1, Tn, fn−1) ,

where still the temporal derivatives have to be discretized. In this approach,
one has to solve two linear equations. The individual solution of these equa-
tions can be iterated by using in the second iteration the temperature and
concentration solution computed in the first iteration and so on.

In many applications, in particular in crystallization processes, the dif-
fusion parameters in (1.2) and (1.3) are smaller by several orders of mag-
nitude compared with the size of the velocity field. This situation is called
convection-dominated and there is a similar difficulty as for turbulent flows:
there are important features of the solution, so-called layers, that cannot
be resolved on affordable grids. As for turbulent flows, standard numerical
discretizations fail in this situation and the use of a so-called stabilized dis-
cretization is necessary, e.g., see [55]. There are many proposals for stabilized
discretizations in the literature. In the context of the coupled system (1.2) and
(1.3), it is essential that the numerical solution computed with the stabilized
method must not possess unphysical values, so-called spurious oscillations, or
it is allowed to exhibit only negligible spurious oscillations. This property is
important because the computed solutions serve as data in other equations,
for certain coefficients, and if the numerical solutions have spurious oscilla-
tions, then non-physical coefficients in other equations might be computed.
At any rate, it was noted in [36] for a precipitation process that using a sta-
bilized discretization that does not sufficiently suppress spurious oscillations
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usually leads to a blow-up of the simulations of the coupled system in finite
time.

As a matter of fact, many of the proposed stabilized schemes lead to numer-
ical solutions with non-negligible spurious oscillations, e.g., see the numerical
assessment in [39]. Some schemes that satisfy the requirement with respect
to the spurious oscillations are the followings:

• finite difference methods

– upwind; very diffusive and very inaccurate,
– FCT (flux-corrected transport) schemes [14];
– ENO (essentially non-oscillatory) [32], WENO (weighted ENO) [45];

much more accurate, small spurious oscillations possible,

• finite element methods

– linear FEM-FCT [42]; often good compromise between accuracy and
efficiency,

– FEM-FCT [46, 43]; nonlinear method, often quite accurate,

• finite volume methods

– Scharfetter–Gummel method [59]; improved upwind but still quite dif-
fusive,

– FCT [70].

The assessments provided above are based mostly on our experience from
[37].

1.2.3.3 The Population Balance Equation

After having discretized the temporal derivative in (1.4), one obtains an equa-
tion for fn in a four- or even higher-dimensional domain. But this difficulty
is not the only one for solving the population balance equation. There is a
transport operator on the left-hand side of (1.4) whose discretization requires
special techniques, and on the right-hand side there are integral operators
whose efficient evaluation is complicated, in particular for the first term of
the agglomeration (1.5).

First of all, there are several principal ways for designing a scheme for
computing a numerical approximation of fn:

• solve an equation in the high-dimensional domain Ω × Ωint, where the
left-hand side is discretized with some appropriate discretization based on
FDM, FEM, or FVM, the so-called direct discretization,

• apply an operator-splitting scheme that deals first with an equation in Ω
and after this with an equation in Ωint,

• utilize a momentum-based method to transform the population balance
equation to a system of equations in a three-dimensional domain,
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• apply a stochastic method for solving (1.4).

The first approaches will be discussed briefly in the following whereas the
last approach is presented in detail in Section 1.2.4.

Utilizing the first approach, the direct discretization, is computationally
demanding. One issue is that usual CFD codes do not support four- or higher-
dimensional domains. Using an implicit approach, then the system matrix
becomes comparatively dense, compared with 3d, and the question of an
appropriate solver for the linear systems of equations arises. The left-hand
side of (1.4) is a transport operator, which can be considered as a limit
case with vanishing diffusion of the convection-dominated operators from the
energy and concentration balances. The discretizations mentioned for the
convection-dominated operators in Section 1.2.3.2 can be applied also for the
transport operator of the population balance equation. In addition one needs
a numerical method for evaluating the integral terms on the right-hand side
of (1.4), see Section 1.3.2 for a discussion of this topic. Direct discretizations
of 4d population balance equations can be found, e.g., in [12, 13, 60], and of
a 5d population balance equation in [40].

Operator-splitting schemes for population balance equations in the form
mentioned above were proposed in [25], see also [26]. Motivations for this pro-
posal are efficiency, the possibility to use software that is designed for domains
in usual dimensions, and the possibility to apply different discretizations for
the different equations. The principal form of the equations to be solved is
as follows. Let f̂n = fn−1, solve in the first step

∂tf̂ + (un + used,n−1) · ∇f̂ = 0 in (tn−1, tn)×Ω (1.8)

for all y ∈ Ωint. Then, set f̃n−1 = f̂n, solve

∂tf̃ + ∂m

(
G(cn, Tn)f̃

)
= Fagg(un, cn, Tn, f̂n) + Fbreak(un, cn, Tn, f̂n) in (tn−1, tn)×Ωint(1.9)

for all x ∈ Ω, and set fn = f̃n. There are several modifications of this basic
operator-splitting scheme for population balance equations, in particular to
perform the steps in a different order, e.g., see [3, 25, 27]. Equation (1.8)
is usually a transport equation with dominating convection, such that one
has to utilize a stabilized discretization, see Section 1.2.3.2. Also (1.9) is a
transport equation, but the growth of the crystals might be sufficiently slow
such that one can apply some standard discretization. The operator splitting
introduces an additional splitting error which does not spoil the optimal order
of convergence for low order finite element methods [25].

As already mentioned at the beginning of this section, the definition of
Equation (1.4) for the crystal size distribution in a higher-dimensional domain
is a major challenge for the simulation of population balance systems. A
popular way to avoid this issue is the consideration of the first moments of
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the crystal size distribution, as proposed the first time in [33], where the
so-called Method of Moments (MOM) was derived. The kth moment of the
crystal size distribution is given by

Mk =

∫ ∞
0

mkf dm, k = 0, 1, 2, . . . . (1.10)

It will be assumed, that f is zero for m ≤ mmin and m ≥ mmax, i.e., that
there are a minimal and a maximal mass for the crystals. Hence, the domain
of integration in (1.10) can be restricted to this interval. On the one hand,
the first moments are often important in practice because they correspond
to physical quantities, like the number of crystals (0th moment) or the mass
of the crystals (3rd moment). But on the other hand, the reconstruction of
the crystal size distribution from its moments is a severely ill-posed problem
and it is hard to design stable algorithms [34].

Multiplying (1.4) with mk, integrating with respect to the internal co-
ordinate, commuting this integration with differentiation in time and with
respect to the external variable yields an equation for the kth moment

∂tMk + (u + used) · ∇Mk =

∫ mmax

mmin

mkS d`, k = 0, 1, 2, . . . , (1.11)

with
S = Fagg(u, c, T, f) + Fbreak(u, c, T, f)− ∂m (G(c, T )f) .

System (1.11) is a closed system for a finite number of moments only in
special cases, e.g., if there are no agglomeration, no breakage, and special
growth functions.

For the case that a closure of (1.11) cannot be found, we consider for
simplicity only the growth term on the right-hand side of (1.11). Applying
integration by parts and using that f vanishes at mmin and mmax, this term
can be reformulated as follows

−
∫ mmax

mmin

mk∂m (G(c, T )f) dm =

∫ mmax

mmin

kmk−1G(c, T )f dm

=

∫ mmax

mmin

G̃(c, T )f dm, k ≥ 1,

with the new growth function G̃(c, T ) = kmk−1G(c, T ). Note that this inte-
gral still contains the unknown crystal size distribution f . The principal idea
of the Quadrature Method of Moments (QMOM) proposed in [49] consists
in approximating this integral by some quadrature formula∫ mmax

mmin

G̃(c, T )f dm ≈
N∑
i=1

ωiG̃(mi), (1.12)
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where N is the number of quadrature points, which is prescribed by the user,
ωi are the weights of the quadrature rule and mi are the nodes (quadrature
points, abscissas). Then, at time instance tn, one considers the system of
equations for the moments

∂tMk + (u + used) · ∇Mk =

∫ mmax

mmin

G̃(cn, Tn)fn−1 dm, k = 0, . . . , 2N − 1,

(1.13)
where the left-hand side has still to be discretized appropriately and the
right-hand side is approximated with (1.12).

To keep the quadrature error in (1.12) as small as possible, the weights
and abscissas should be chosen such that the optimal order (2N − 1) of
the numerical quadrature is obtained. Several algorithms are available for
this purpose. In [41], it is shown that the long quotient-modified difference
algorithm (LQMDA) behaves better than two other algorithms concerning
stability and efficiency. For computing the optimal weights and abscissas, the
knowledge of f is not necessary, but only of the first 2N moments of f . Thus,
for the first time step n = 1, one can use the known initial condition of f for
computing the right-hand side in (1.13) such that the first 2N moments at
time t1 can be computed. Then, these moments can be used for computing
the right-hand side for the next time instance and so on.

Agglomeration and breakage processes can be also incorporated into the
framework of QMOM, e.g., see [48]. An extension of the QMOM, which does
not compute the moments, but directly the weights and abscissas, is the
Direct Quadrature Method of Moments (DQMOM), as proposed in [47]. It
is also possible to simulate multivariate populations with QMOM, e.g., see
[18].

1.2.3.4 On Our Experience with Some of the Methods

As already mentioned above, it was noted in [36] that the use of a stabilized
scheme for convection-diffusion equations, which does not suppress spurious
oscillations, sufficiently often leads to a blow up of the simulations. Only
cutting off such oscillations appropriately led to stable simulations. However,
such cut-off techniques lead inevitably to violations of conservation proper-
ties. Moreover, in the same paper it was concluded that the use of upwind
techniques led to completely smeared and practically useless results. A clear
improvement of the quality of the numerical solutions was observed in [38] by
using a linear FEM-FCT scheme for the convection-diffusion and transport
equations in the PBS. Based on this experience, we have employed the linear
FEM-FCT scheme for solving the energy equation (1.2) and concentration
equation (1.3) in PBSs. Different numerical methods for the 4d population
balance equation were studied in [13]. The problem of interest was a tur-
bulent air-droplet flow in a segment of a wind tunnel, where Ω × Ωint was
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a tensor product domain in 4d. In this situation, FDM approaches can be
applied easily. Two kinds of linear FEM-FCT schemes and an FDM ENO
scheme were compared. It turned out that the FDM ENO scheme was by far
the most efficient approach, such that it was recommended for population
balance equations on tensor product domains. This scheme was also applied
successfully for the simulation of a bivariate population balance in [40]. In
[3], a direct discretization using the FDM ENO approach for the popula-
tion balance equation (1.4) and an operator-splitting scheme were compared
for an axisymmetric problem. While the operator-splitting scheme converged
faster to a steady-state, the evolution of the transition was predicted more
accurately by the direct discretization.

In summary, up to the publication of [3], we could, on the one hand, iden-
tify accurate and efficient approaches for simulating PBSs that are given
on tensor product domains. Here, efficiency refers only to the differential
operators in the population balance equation (1.4). Efficient methods for
the integral operators are a different topic, which will be discussed in Sec-
tion 1.3.2. But on the other hand, it is very complicated to extend our favorite
approach, the direct discretization, to problems defined in more general do-
mains, which occur usually in applications. In this respect, we could make
decisive progress in the preceding years by employing and further developing
a stochastic method, which will be discussed in detail in Section 1.2.4.

1.2.4 A Stochastic Method for Simulating the Crystal
Size Distribution

This section describes a stochastic particle simulation (SPS) method for com-
puting a numerical approximation of the crystal size distribution f whose
behavior is modeled by the population balance equation (1.4). This method
can be applied successfully for the simulation of problems given in complex
spatial domains.

The basis of the SPS method that is utilized in our simulations is the
method proposed in [53, 52]. This method had to be extended by all features
that are caused from the movement of the crystals in the spatial domain: con-
vective transport in three dimensions, sedimentation, crystal-wall collisions,
and the coupling with the deterministic methods for solving the other equa-
tions (1.1)–(1.3) of the PBS. The algorithms from [52, 53] include convective
transport in one dimension, growth, and coagulation (collision growth). With
respect to the first and third feature, the method is based on two classical
algorithms. The first one is Bird’s direct simulation Monte-Carlo algorithm
for the Boltzmann equation [8] that proposes an approach to handle the con-
vective transport part with a splitting method. The second algorithm is the
Gillespie algorithm [28, 29] that models the coagulation via stochastic jump
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processes. One of the original contributions from [53] is a stochastic algorithm
for simulating crystal growth via a surface reaction model.

Altogether, the splitting scheme applied in the SPS method consists of two
parts: the convective transport of crystals, discussed in Section 1.2.4.1, and
Markov jump processes for simulating growth, agglomeration, and insertion
of crystals, described in Section 1.2.4.2. Section 1.2.4.3 presents the complete
algorithm that simulates the PBSs (1.1)–(1.4).

1.2.4.1 Convective Transport of Stochastic Computational
Crystals

The spatial domain Ω is triangulated by a triangulation consisting of mesh
cells Kj , j ∈ {1, ..., N}. Each mesh cells contains a crystal ensemble Ej . In
the stochastic method, computational crystals (particles) are considered that
represent an ensemble of physical crystals (particles). For simplifying the no-
tion, the computational crystals will be called just ‘crystals’ in the following.

Consider a spatial mesh cell K and a crystal ensemble (K, E), where each
crystal ei in E possesses a spatial and an internal coordinate ei = (xi,mi),
with xi ∈ K and mi ∈ Ωint. The complete ensemble E with NE crystals is
given by E = (e1, ..., eNE ).

Let ∆t be a constant splitting time. First of all, the flow field u from
the Navier–Stokes equations (1.1) is responsible for the transport of crystals.
Second, crystals are also moved by sedimentation with the sedimentation
velocity used. In the convection step, each crystal ei is transported along the
trajectories of u + used

xi −→ xi +∆t (u(xi) + used(xi)) . (1.14)

There are two topics that will be discussed in this section. From the mod-
eling point of view, a model for the sedimentation velocity used is needed.
From the algorithmic point of view, one has to detect whether the crystal
left its mesh cell after the transport step or even would hit the boundary
of the domain if the transport step is performed and appropriate numerical
procedures have to be performed in these situations.

For the considered application, a crystallization process in a fluidized bed
crystallizer, the sedimentation of crystals has to be taken into account. Sed-
imentation depends on various aspects, like the form of the crystals and the
actual local velocity field. In our application, the crystals can attain quite
different forms. Since we could not find an appropriate sedimentation model
in the literature, we decided to use as basis a sedimentation model for spher-
ical particles, see [7, pp. 58] for its derivation. However, numerical studies in
[6] showed that we had to modify this model for our purposes. Concretely,
a scaling factor was introduced. Finally, the sedimentation velocity in our
numerical simulations has the form
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used = (0, 0, uz)
T with uz = σ

(
6
ρπ

) 2
3

(ρcryst − ρ)g

18µ
m

2
3 . (1.15)

In this model, ρ [kg/m3] is the density of the fluid, ρcryst [kg/m3] the density of
the crystals, µ [kg/m·s] the dynamical viscosity of the fluid, g = 9.81 m/s2 the
gravity, and σ the numerically determined scaling factor. It can be observed
that the sedimentation model (1.15) depends on the mass of the crystals. In
[6], a brief numerical study led to the choice σ = 0.1 in (1.15). Section 1.2.5
will present results that are obtained also with a different scaling factor.

After having performed the transport step (1.14), it must be checked
whether each moved crystal still belongs to the same mesh cell. If not, then it
must be removed from its current ensemble. If the final point of the relocation
is within Ω, it is inserted in the ensemble of the new cell. However, it might
happen that this point is outside Ω such that the crystal hits the boundary of
the flow domain. The treatment of this situation required a notable extension
of the algorithm for the crystal transport.

First of all, for the considered application, we distinguished the boundary
part through which the crystal would leave the domain. Crystals that would
leave through the inflow boundary, which is located at the bottom of the
fluidized bed crystallizer, are measured and removed from the simulations.
This situation happens because of the sedimentation of crystals. Crystals
that would leave through other boundaries are reflected and repositioned in
the domain. Two reflection algorithms were implemented, which both model
elastic wall collisions where no kinetic energy is absorbed in the collision. A
perfect reflection is utilized if the starting point of the crystal’s movement
is sufficiently away from the boundary of the domain, i.e., its distance is
larger than a prescribed tolerance. Otherwise, a random reflection is applied.
This random reflection is also used in the case of double reflections at two
boundary parts. For details describing the reflection algorithms, it is referred
to [4, 6].

1.2.4.2 Modeling of Growth, Coagulation, and Crystal Insertion
by Markov Jump Processes

The crystals are allowed to interact with each other only within their current
ensemble. In particular, crystals do not have to meet in the same point in
space in order to agglomerate, it is enough for them to be contained in a
common mesh cell.

Growth, agglomeration, and insertion of crystals are modeled with Markov
jump processes. These processes are described in this section, following [52,
53], in terms of the so-called ‘stochastic weighted algorithm’. For further
technical details, it is referred to [52, 53].
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Starting at some time t ∈ [0, tend), the system stays in the state E(t) for
an exponentially distributed waiting time τ , P (τ ≥ s) = exp(−λ(E)s). Here,
λ(E) is the waiting time parameter that is the sum of the individual rates of
all jumps that are possible in E(t). This parameter is the sum of the growth
jump rate λgrow(E) and the agglomeration jump rate λaggl(E):

λ(E) = λgrow(E) + λaggl(E).

First, the simulation of crystal growth will be described. The growth term
as it stands in the population balance equation (1.4) is a transport term
along the internal coordinate. The rationale behind a stochastic simulation
of this term by Markov jump processes is the interpretation of crystal growth
as crystal surface growth via a chemical reaction. One can derive a relation
between the growth rate G(c, T ) and the corresponding reaction rate, e.g.,
see [5]. A crystal growth jump has an impact on just one crystal ei. Given a
growth height ∆mi, the state of ei is changed by

ei = (xi,mi) −→ (xi,mi +∆mi) =: ẽi.

The crystal ej for which the next growth jump occurs is chosen with the
probability

G(c, T,mj)

∆mi
(λgrow(E))

−1
. (1.16)

In our implementation of the SPS method, c and T are assumed to be constant
in K in expression (1.16). The total rate for the growth jumps in E is given
by

λgrow(E) =

NE∑
i=1

G(c, T,mi)

∆mi
.

In agglomeration jumps, two crystals ei and ej , with i < j, are involved.
Such a jump has the form

ei, ej −→ (ξ(xi,xj),mi +mj) =: ẽi.

After having performed this jump, the crystal ej is removed from the ensemble
and the crystal ẽi has to be placed in an appropriate way in the ensemble,
i.e., one has to assign an appropriate position to ẽi. For designing a stable
method, it is proposed in [52] to choose the new position y of a crystal that
emerged from coagulation of the crystals

(
mi,xi

)
and

(
mj ,xj

)
stochastically,

distributed according to the probabilities

P (y = xi) =
mi

mi +mj
, P (y = xj) =

mj

mi +mj
,

i.e., to use the center of mass in the probabilities. Similarly as for the growth,
the total rate of agglomeration jumps is the sum of all individual agglomer-
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ation jump rates of pairs of crystals

λaggl(E) =
1

2NE

NE∑
i,j=1

κagg(mi,mj).

The involvement of two crystals in an agglomeration jump is random with
the probabilities

P (ei and ej chosen for agglomeration) =
κagg(mi,mj)

2NE
.

Ensembles of crystals might be changed also by insertion of crystals in
the flow domain. This process affects usually only a few mesh cells. Crystal
insertion is modeled by so-called inception jumps, i.e., each ensemble in mesh
cells, where crystals are injected, is equipped with an additional jump rate
λin(E) and a corresponding jump, which adds a new crystal to the ensemble.

1.2.4.3 Coupled Simulation with a Splitting Scheme

Our basic approach for developing a code for solving the PBS (1.1)–(1.4)
numerically consisted in coupling two separate codes: one designed for sim-
ulating the Computational Fluid Dynamic (CFD) equations (1.1)–(1.3) with
deterministic methods, and the other one designed for simulating crystal in-
teractions with stochastic methods. For this purpose, we used the in-house
codes ParMooN [24, 68] for the CFD part and Brush [53] for the SPS part.

The complete simulation procedure is sketched in Figure 1.6. In each time
instance, first the CFD equations are solved and then the population bal-
ance equation (1.4) with the SPS method. In order to couple the two codes,
an interface was developed and implemented that is responsible for the data
transfer between the codes. Other major extensions of Brush that were nec-
essary include the simulation of the transport of the crystals in three dimen-
sions, the implementation of the sedimentation model, the implementation
of crystal-wall interactions, and the implementation of routines for assigning
the crystals to mesh cells. For more details, it is referred to [4].

1.2.5 Numerical Simulations of a Fluidized Bed
Crystallizer

The deterministic-stochastic approach described in Section 1.2.4 was utilized
for the simulation of the behavior of the crystallization process for another
benchmark problem. The second benchmark was a crystallization process in
a fluidized bed crystallizer.
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START

Compute velocity field

Interpolate data from SPS code

Compute temperature and concentration

CFD

Transport of crystals

Assign crystals to cells

Perform Markov jumps in each cell separately

SPS

t← t+∆t

t < tstop

END

Assign interpolated CFD
data to SPS code

No

Yes

Fig. 1.6 Schematic sketch of the coupled simulation via a splitting scheme.

In a fluidized bed crystallizer, crystal growth and agglomeration can be
combined, where the main control variables are temperature profiles and
flow rates. Crystals can be separated by size and withdrawn at a varying
crystallizer height. The size separation is again controlled by the flow rates.

The experimental implementation of such a crystallizer is depicted in Fig-
ure 1.7. Solution is removed from the top of the fluidized bed crystallizer
through a filter. It is pumped back into the device from the bottom to flu-
idize the crystals. The crystallizer is cooled by a double jacket to increase the
supersaturation over time. Crystals can be sampled from a variable height in
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Fig. 1.7 Schematic of the benchmark experiment in the fluidized bed crystallizer with

exemplary crystals in different withdrawal heights.

the fluidized bed crystallizer during an experiment. As in the first benchmark
problem, the crystal shape can be analyzed by a flow-through microscope.

A PBS of the form (1.1)–(1.4) was used for modeling this process. Fig-
ure 1.8 presents the computational domain and its decomposition in tetra-
hedra. The computational domain neglects the small inlet extension at the
bottom, compared with the fluidized bed crystallizer used in the experiment.
This modification is caused from an algorithmic issue, since the routine that
locates the mesh cell where a crystal is situated after a transport step requires
a convex domain. A routine implemented in the research code TetGen [63]
was used for this purpose. The grid shown in Figure 1.8 consists of 10 752
tetrahedra.

Preliminary numerical studies showed that the used grids were too coarse
for simulating all scales of the flow field. This situation is the typical one
that is encountered in the simulation of turbulent flows and it is well known
that one has to utilize a turbulence model. There are many proposal for such
models, e.g., see [54, 58]. In our simulations, we applied the Smagorinsky
Large Eddy Simulation (LES) model, which adds to the momentum equation
of the Navier–Stokes equations (1.1) the nonlinear viscous term

νSmago‖∇u‖F∇u = CSmagoδ
2‖∇u‖F∇u, (1.17)

where δ is the local filter width, which was chosen to be piecewise constant,
namely twice the length of the shortest edge of a tetrahedron, CSmago is a
user-chosen parameter, and ‖ · ‖F is the Frobenius norm of a tensor. Numeri-
cal studies showed that the value CSmago = 5 · 10−4 was sufficient, which is a
comparably small value and which indicates that the flow is only slightly tur-
bulent. In the experiments, a typical average inflow velocity was U ≈ 0.08 m/s.
Together with the choice of a characteristic length L = 0.1 m as a typical
inner diameter and the density and dynamic viscosity of purified water, the
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Fig. 1.8 Geometry (in mm) and mesh used in the simulations, left: front view; right: top
and bottom views.

Table 1.1 Coefficients for the PBSs modeling the fluidized bed crystallizer process.

name notation unit value/function

density of purified water ρ kg/m3 1050
dynamic viscosity of purified water µ kg/m·s 0.0014

diffusion coefficient in (1.2) DT m2/s
λsusp

ρsuspCsusp

thermal conductivity λsusp W/m·K 0.6

suspension density ρsusp kg/m3 1050
suspension specific heat capacity Csusp J/kg·K 3841

scaling parameter in (1.2) gT K·m3/kg
∆hcryst

ρsuspCsusp

crystallization enthalpy ∆hcryst J/kg 89100

diffusion coefficient (c) Dc m2/s 5.4 · 10−10

scaling parameter (1.2) gc mol/kg − 1
Mhydrate

molar mass of hydrate Mhydrate kg/mol 0.4744
density of crystals ρcryst kg/m3 1760

Boltzmann constant kB J/K 1.3806504 · 10−23

universal gas constant R J/K·mol 8.314

Reynolds number is Re = µUL/ρ ≈ 6000, see Table 1.1 for the values of the
physical coefficients. These coefficients were kept constant during the simu-
lation since there were only small variations of the temperature (±1 K) and
the amount of crystals was negligible.

The Navier–Stokes equations (1.1) were discretized in time with the
Crank–Nicolson scheme, which is of second order, and the equidistant time
step ∆t = 0.05 s. They were linearized with a standard Picard iteration and
the arising linear saddle point problems were discretized in space with the
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Fig. 1.9 Snapshot of the flow field, inflow rate 56 kg/h.

popular inf-sup stable pair P2/P1, a so-called Taylor–Hood pair of finite el-
ement spaces. That means, the velocity was approximated with continuous
and piecewise quadratic functions and the pressure with continuous piecewise
linear functions. Hence, the resolution of the velocity field is in fact twice as
fine as suggested by the grid from Figure 1.8. A snapshot of the flow field is
displayed in Figure 1.9. For the temporal discretization of the temperature
equation (1.2) and the concentration equation (1.3) also the Crank–Nicolson
scheme was used, with the same time step as for the Navier–Stokes equations.
The spatial discretization was performed with the linear FEM-FCT scheme
from [37, 42] with P1 finite elements, see Section 1.2.3.2. Finally, the popula-
tion balance equation (1.4) was simulated with the SPS method described in
Section 1.2.4. The breakage of crystals was neglected in the numerical simu-
lations. The coupled PBS was simulated with the splitting scheme presented
in Section 1.2.4.3. There were 49419 degrees of freedom for the velocity and
2349 for the pressure, temperature, and concentration.

As final simulation time, tend = 1800 s = 30 min was set, such that 36 000
time steps had to be performed. For the flow, the mass flow rate at the inlet
was 56 kg/h in the whole time interval. The flow field was allowed to develop
in the first 30 s. Then, the crystals were inserted in the flow during the time
interval [30 s, 40 s]. In contrast to the experiment, where all crystals are
inserted into the crystallizer basically at the same time, the crystals enter in
the simulations during a short time interval. There is an algorithmic reason,
since the SPS method works better if there is a rather uniform distribution
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of crystals. The seed mass of the crystals was 10−4 kg. It was divided equally
into two parts, one with crystals of diameter 75 µm and one of crystals with
diameter 125 µm. Both parts were represented via a log-normal distribution
with 25 µm standard deviation.

Storage for 256 computational crystals was assigned to each mesh cell of
the flow domain Ω. As already mentioned in Section 1.2.4.1, each computa-
tional crystal represents a number of physical crystals. In preliminary simu-
lations, 5.0× 108 # physical crystals/m3 was found to be an upper bound for the
concentration of physical crystals away from the bottom of the device. In this
region, a linear conversion to computational crystals was used such that this
upper bound corresponds to 256 computational crystals. Close to the bottom,
the concentration of physical crystals was often higher, due to sedimentation.
In this region, still a linear conversion was applied, but the conversion factors
were increased by 10 below 0.1 m and by 100 below 0.05 m. The choice of the
conversion factor is a purely numerical issue. It influences the computational
cost and the numerical precision, but otherwise it has no effect on the results
for the physical quantities. This setup led to roughly 150 000 computational
crystals in Ω after having completed the insertion at 40 s. This number is
typically reduced by around 50 % at the end of a simulation because of ag-
glomeration and in addition since, as explained in Section 1.2.4.1, crystals
that would leave through the inlet due to sedimentation were removed from
the simulations.

The coefficients for the temperature equation (1.2) are given in Table 1.1.
The Dirichlet boundary data for the temperature were linearly interpolated
in the time interval [0, tend], where the initial temperature was T (0 s) =
288.95 K, i.e. 15.8 ◦C, and the final temperature was T (3600 s) = 288.35 K,
which is 15.2 ◦C. Also the coefficients for the concentration equation (1.3)
are provided in Table 1.1. As initial condition c(0 s) = 207 mol/m3 was chosen,
which corresponds to the saturation concentration at 17 ◦C.

For the sedimentation, the model (1.15) was utilized. A brief numerical
study in [6] showed that one has to choose the scaling factor in this model
rather small. Otherwise, too many crystals would leave through the inlet of
the domain due to sedimentation, compare Section 1.2.4.1. In [6], σ = 0.1
was used. In this section, also results obtained with σ = 0.05 are presented
to continue the study with respect to the scaling factor.

For the growth term in the population balance equation (1.4), a model
from [64] is utilized

Gd =

{√
2

π
1
3
kG1 exp

(
−kG2

RT

)
(Shyd,H2O+ − 1)

kG3 [m/s] , if Shyd,H2O+ > 1,

0 else,

where the model parameters are given by kG1
= 5 · 107 m/s, kG2

= 75 ·
103 J/mol, kG3

= 1.4. The factor
√
2/π

1
3 comes from converting an octahedral

to a spherical crystal shape. The quantity
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Shyd,H2O+ =
whyd,H2O+

weq
hyd,H2O+(T )

[kg/kg]

is the relative supersaturation of the solution. Here, whyd,H2O+ [kg/kg] is the
current mass loading and weq

hyd,H2O+(T ) [kg/kg] the mass loading in equilibrium
given by

weq
hyd,H2O+(T ) = a1 + a2T + a3T

2 + a4T
3 + a5T

4

[
kg hydrate

kg added water

]
,

with coefficients a1 = 0.0506, a2 = 0.0023, a3 = 7.76 · 10−5, a4 = −2.43 ·
10−6, and a5 = 4.86 · 10−8. This solubility model is known to be valid in a
temperature range from 10 ◦C to 60 ◦C. To apply this growth model in our
simulations, a number of conversions had to be made, see [4, 6] for details.

For the agglomeration kernel in (1.5), the Brownian kernel

κagg(T,m1,m2) = κ
2TkB

3µ

(
1

d(m1)
+

1

d(m2)

)
(d(m1) + d(m2))

[
m3
/s
]

(1.18)
was utilized, where κ is a scaling parameter and d(m) = 3

√
6m/ρcrystπ [m] is

the sphere equivalent diameter. The same kernel was applied in the simu-
lations presented in [6], where different values of κ ≤ 5000 were tested. In
fact, most results from [6] were computed with κ = 5000. However, in other
applications, where we used the Brownian kernel, we found higher values of
the scaling factor, e.g., κ = 7000 in [3] and even κ ∈ [200 000, 300 000] for a
strongly agglomeration-dominated problem studied in [31]. For this reason,
we continued the numerical studies with respect to the scaling factor of the
Brownian kernel to higher values of κ and the results will be presented in
this section.

The internal coordinate in the PBS is crystal mass. However, for the evalu-
ation of the numerical simulations, the sphere equivalent diameter in µm will
be used, since this facilitates the interpretation of the computational results
and the comparison with the experimental data.

In the simulations, the nuclei were of 5 µm diameter. Figure 1.10 presents
the temporal development of the average crystal diameter in the whole flu-
idized bed crystallizer for the two considered parameters σ ∈ {0.05, 0.1} in
the sedimentation model (1.15) and for different values of the parameter κ in
the Brownian agglomeration kernel (1.18). For both values of σ there is the
same tendency: the larger κ, the larger is the average diameter. For smaller
values of κ, the temporal growth of the average diameter is approximately
linear in the considered time interval. There is also a linear growth in the first
part of the time interval for larger values. But then, a flattening of the curves
can be observed. At the final time, one obtains in average larger crystals
with σ = 0.1. With this higher value of the sedimentation parameter, there
is a higher concentration of crystals close to the inlet, which increases the
probability for agglomeration events in this region. These crystals are com-
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Fig. 1.10 Dependency of the average crystal diameter on the parameter κ of the Brownian

agglomeration kernel: left σ = 0.05, right σ = 0.1. Averaging was performed for all crystals

with diameter larger or equal to 5 µm.

parably large since the sedimentation velocity depends also on the mass of
the crystals, such that the agglomeration events lead to even larger crystals.

In the experiment, the smallest measurable crystals were of diameter
50 µm. In order to compare numerical results and experimental data, the
same value was used as lower threshold for computing the average diameter
of the simulation results. Experimental data are displayed in Figure 1.11. One
can see that in the considered time interval, the averaged diameter increased
approximately linearly by around 80 µm. At the final time, the average di-
ameter is between 234 µm and 261 µm. There is no separation of different
sizes of crystals in different heights of the fluidized bed crystallizer. In the
results for the simulations, Figures 1.12 and 1.13, the value of the coordinate
z comprises all computational crystals in the interval [z− 0.025, z+ 0.025] of
5 cm width.

Figure 1.12 presents the results obtained with the parameter σ = 0.1 in the
sedimentation model (1.15), which is the same parameter as used in [6]. One
can observe that for all parameters κ of the Brownian kernel (1.18) there is
more or less a linear increase of the crystal diameter only at the beginning of
the process. In the last part of the time interval, the average diameter is nearly
constant. There is a slight increase of the average diameter with an increase
of κ. For κ = 5000, the average diameter at the final time is in the interval
[187, 205] µm and for κ = 10000, it is in the interval [196, 215] µm. There is
a clear separation of the average diameter with respect to the regions of the
fluidized bed crystallizer. The largest crystals are close to the inlet and the
smallest crystals in the upper region. Comparing the curves of Figures 1.10
and 1.12, one can observe that there are only comparatively small differences
of the average diameter at the final time. Hence, there are not many small
crystals left in the fluidized bed crystallizer.
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Fig. 1.11 Development of the average diameter in different heights [m] of the fluidized

bed crystallizer, experimental results. Crystals with diameter larger or equal to 50 µm were

measured. The average diameter is between 234 µm and 261 µm at the final time.

The results for the newly considered segmentation parameter σ = 0.05 are
shown in Figure 1.13. For this parameter, there is in a long part of the time
interval an almost linear increase of the average diameter. Like for σ = 0.1,
the average diameter increases if the parameter κ of the Brownian kernel
increases and there is layering of the crystals with the largest crystals close
to the inlet and the smallest crystals in the upper part of the device. The
average crystal parameter at the final time is between 211 µm and 236 µm for
κ = 5000 and for κ = 10000, it is the interval [241, 272] µm. From comparing
Figures 1.10 and 1.13, one can see that the average diameter at the final
time is considerably larger if the small crystals with diameter smaller than
50 µm are neglected. Hence, it seems there are still many small crystals in
the fluidized bed crystallizer.

Altogether, the results show the enormous impact of the choice of the
sedimentation parameter σ in model (1.15) on the obtained computational
results. The results for σ = 0.05 are considerably closer to the experimental
data, both with respect to the nearly linear increase of the average diameter
and with respect to the average diameter at the final time, than the results
for σ = 0.1. There is a particularly good agreement with respect to the second
issue for κ = 8000, where the average diameter is in the interval [232, 260] µm.

1.3 Bi-variate Processes

The evolution of the crystal population is defined in (1.4) for a dint-dimensional
internal property coordinate. The internal coordinates are estimates for the
crystal size and shape. In Section 1.2.1, the description of a univariate sub-
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Fig. 1.12 Development of the average diameter in different heights of the fluidized bed
crystallizer, σ = 0.1 and κ ∈ {5000, 6000, 7000, 8000, 9000, 10000}, top left to bottom right.

Averaging was performed for all crystals with diameter larger or equal to 50 µm.
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Fig. 1.13 Development of the average diameter in different heights of the fluidized bed
crystallizer, σ = 0.05 and κ ∈ {5000, 6000, 7000, 8000, 9000, 10000}, top left to bottom

right. Averaging was performed for all crystals with diameter larger or equal to 50 µm.
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stance was introduced. An example bivariate substance is potassium dihydro-
gen phosphate. Also for the bivariate system, the 3d-crystal shape of single
crystals can be determined with high accuracy [15]. For agglomerated parti-
cles, further descriptors can be selected to describe the size and shape of a
particle that is composed of several primary particles. Primary and agglom-
erated potash alum crystals are depicted in Figure 1.7. The descriptors for
agglomerates may again be based on a shape estimation, e.g., the projec-
tions may be fitted to geometrical polytopes [61]. There is a large number
of further shape descriptors, such as the Feret diameter [23], the length of
the boundary curve of a projected particle, the projection area, the area of
the convex hull of the projection, the diameter, perimeter, and volume of a
circle of the same projected area, the widths of the major and minor axes
of an ellipse, the convexity [23], the eccentricity [71], the sphericity, and the
fractal dimension [65]. Here, the volume of a sphere of equivalent diameter
is chosen since the agglomerates in the considered benchmark process are
compact. The volume is used to calculate the mass of a crystal. The mass is
assumed to be an additive property.

1.3.1 Agglomeration Kernel Identification From
Experiments

In Section 1.2.5, an agglomeration dominated crystallizer was presented. Ag-
glomeration depends on the local distribution of crystals in the fluidized bed
crystallizer (FBC), which is determined by the fluid dynamics in the FBC [6].
The particle movement was therefore simulated as described in Section 1.2.5.
In the agglomeration term (1.5) of the PBE, the agglomeration kernel κagg
determines the rate of agglomeration. Required agglomeration kernels can be
identified from measurement data and numerical simulations by solving in-
verse problems. An example of such measurement data is shown schematically
in Figure 1.14.

The agglomeration kernel is usually an unknown functional relation of
the volumes of agglomerating particles. Thus, the identification of the ker-
nel is an ill-conditioned problem. To solve the problem, two approaches can
be applied. A set of unknown parameters can be identified using measure-
ment data. For this approach, the structure of the kernel has to be known,
which can be estimated from modeling the agglomeration process [51] or from
known approaches [17]. A second approach is the solution of inverse problems
[19, 69]. This approach is based on the measurement data and the dynamic
agglomeration model whereas a priori knowledge on the kernel is not required.
Solving the inverse problem, the kernel can be approximated with Laurent
polynomials [22]. Like this, the kernel can be described with a small set of
parameters and it is separable. An efficient calculation of a separable source
term is possible via the fast Fourier transform [16, 30].
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Fig. 1.14 Exemplary agglomeration kernel for stronger agglomeration of small crystals
for the internal size coordinates x and y of two agglomerating particles.

1.3.2 Efficient Evaluation of Agglomeration Terms

This section is concerned with the efficient evaluation of the agglomeration
terms (1.5) in the univariate case (dint = 1) as well as the extension to mul-
tivariate distributions (dint ≥ 2). The foundation for an efficient method for
the univariate case has been laid in [30] and numerically realized, tested and
extended in [16, 21, 56, 57, 62]. In a multivariate case, the particle properties
are denoted by m = (m1, . . . ,mdint) ∈ Rdint≥0 with a maximum value of mmax,
i. e., mj ∈ [0,mmax]. In this section, the internal properties are not associated
with physical units (e.g. length or mass) but treated as dimensionless quan-
tities. For simplicity of notation, the kernel is assumed to be only dependent
on the particle properties m and m′ but neither on time nor location. Under
these assumptions, the agglomeration term is given by

Fagg(f,m) = F+
agg(f,m)− F−agg(f,m)

=
1

2

m1∫
0

· · ·

mdint∫
0

κagg(m−m′,m′)f(m−m′)f(m′) dm′

−
mmax∫
0

· · ·
mmax∫
0

κagg(m,m′)f(m)f(m′) dm′, (1.19)

where F+
agg(f,m) denotes the source term and F−agg(f,m) denotes the sink

term of the agglomeration process. This definition of the source term does
not account for any particles forming with a property larger than the maxi-
mum mmax. The sink term, however, allows a particle to disappear, when it
agglomerates with another particle to one with property larger than mmax.
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Hence, technically particles may be lost over time if mmax is too small. The
choice of mmax should reflect this consideration. The two key ingredients to-
ward the proposed efficient evaluation of these integrals are a discretization
of the property space Ωint on a uniform grid and a separable approximation
of the agglomeration kernel,

κagg(m,m′) ≈
M∑
ν=1

αν(m) · βν(m′) (1.20)

for a moderate separation-rank M ∈ N of the kernel κagg. This allows to
simplify the convolution-type integral of F+

agg(f,m) to a sum of M multi-
dimensional convolution integrals,

F+
agg(f,m) =

1

2

m1∫
0

· · ·

mdint∫
0

M∑
ν=1

αν(m−m′)βν(m′)f(m−m′)f(m′) dm′

=
1

2

M∑
ν=1

m1∫
0

· · ·

mdint∫
0

φν(m−m′)ψν(m′) dm′ (1.21)

with φν(m) := αν(m)f(m) and ψν(m) := βν(m)f(m).
Analogously, the sink term results in

F−agg(f,m) =

mmax∫
0

· · ·
mmax∫
0

M∑
ν=1

αν(m)f(m)βν(m′)f(m′) dm′

=

M∑
ν=1

φν(m) ·
mmax∫
0

· · ·
mmax∫
0

ψν(m′) dm′. (1.22)

In particular, m-dependent terms have been factored out of the integral which
reduces the complexity to evaluate F−agg(f,m).

1.3.2.1 Discretization of the Property Space

In order to evaluate the integrals in (1.21) and (1.22) numerically, a suitable
discretization of the property space Ωint to discretize f(m) is introduced. One
first defines a uniform tensor grid G by choosing the number of degrees of free-
dom per property, n, and divides the interval (0,mmax) into n sub-intervals
of width h := mmax

n which is used to define grid points gj = (j1h, · · · , jdinth)
and cells

Cj := (j1h, j1h+ h)× · · · × (jdint , jdinth+ h), for j ∈ {0, . . . , n− 1}dint .
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Fig. 1.15 A uniform tensor grid with dint = 2 and n = 4.

An example of this grid with dint = 2 and n = 4 is given in Figure 1.15. Each
of the N := ndint cells has volume of V := hdint .

In the following derivations, the density distribution f(m) (and the kernel
factors αν(m) and βν(m′)) are discretized to be piecewise constant with
respect to this grid G, i. e.,

f(m) = f(m′) =: fj if m,m′ ∈ Cj, (1.23)

hence the function f(m) is approximated by a tensor f ∈ Rn×...×n with N
entries fj.

For piecewise constant integrands, the agglomeration integrals (1.21) and
(1.22) can be evaluated exactly at all grid points through evaluation of the
nested sums

F+
agg(gj+1) =

V

2

M∑
ν=1

j1∑
k1=0

· · ·
jdint∑

kdint=0

φνj−k · ψνk =:
V

2

M∑
ν=1

Q+,ν
agg (j), (1.24)

using Q+,ν
agg ∈ Rn×···×n in (1.24) to denote the unscaled and unshifted result

of the discrete convolution. The efficient evaluation of Q+,ν
agg will be the focus

of subsection 1.3.2.2 to reduce the complexity of the straightforward evalua-
tion O(N2) to a log-linear complexity of O(N logN). The resulting F+

agg is
piecewise linear and needs to be projected to a piecewise constant function.
This issue is addressed in subsection 1.3.2.3.

The sink-term (1.22) within a cell Cj is computed as

F−agg(m)|Cj = V ·
M∑
ν=1

φνj ·
n∑

k1=0

· · ·
n∑

kdint=0

ψνk =: V ·
M∑
ν=1

φνj · S−,νagg (1.25)

with a scalar S−,νagg as the result of the summation. The computation of (1.25)
is of complexity O(kN) and results in a piecewise constant function (in the
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form of a tensor with N entries) corresponding to the number of disappearing
particles in each cell.

1.3.2.2 Efficient Evaluation of a Discrete Convolution via Fourier
Transform

This section deals with the efficient evaluation of

Q+
agg(j) =

j1∑
k1=0

· · ·
jdint∑

kdint=0

φj−k · ψk (1.26)

which is required in order to compute the source term F+
agg(f,m) in (1.24).

Since the computation is analogous for all kernel factors, the index ν has
been dropped.

It is well known that a discrete convolution (1.26) can be evaluated simul-
taneously for all j using the multi-dimensional convolution theorem ([50]),

Q+
agg = F−1(F(φ)�F(ψ)), (1.27)

where F and F−1 denote the Fourier transform and its inverse and � denotes
the elementwise (or Hadamard) product.

The result of a convolution of a tensor of size n × · · · × n is a tensor of
size 2n× · · · × 2n with an index j ∈ {0, . . . , 2n− 1}dint . However, one is only
interested in the n × · · · × n subtensor since all other entries go beyond the
computational domain (properties larger than mmax). In order to calculate
this full convolution result via a sequence of univariate Fourier transforms,
the input tensors φ and ψ need to be enlarged to this size by adding zeros.
One then obtains tensors φ̃, ψ̃ ∈ R2n×···×2n with entries

φ̃j, ψ̃j =

{
φj, ψj if j ∈ {0, . . . , n− 1}dint ,
0 else,

(1.28)

in a process called zero-padding.
The multivariate Fourier transform (1.27) is defined by

F : R2n×···×2n → C2n×···×2n, φ̃ 7→ F(φ̃) with (1.29)

(F(φ̃))j :=

2n−1∑
s=0

φ̃s ·
dint∏
q=1

eiπsqjq/n.

The function F is rewritten in the form
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F(φ̃) =

2n−1∑
s=0

φ̃s ·
dint∏
q=1

eiπsqjq/n

=

2n−1∑
sdint=0

· · ·

(
2n−1∑
s1=0

φ̃ · eiπs1j1/n
)
· · · eiπsdint jdint/n

= Fdint ◦ Fdint−1 ◦ · · · ◦ F1(φ̃), (1.30)

reducing it to a composition of univariate Fourier transforms in the qth di-
mension,

Fq : C2n×···×2n → C2n×···×2n, φ̃ 7→ Fq(φ̃) with (1.31)

(F(φ̃))qj :=

2n−1∑
s=0

φ̃j1,··· ,jm−1,s,jm+1,...,jdint
· eiπsjq/n.

The implication is that the complete Fourier transform of φ̃ can be com-
puted via a sequence of one-dimensional Fourier transforms. Every Fq can be
calculated via multiple applications of the FFT-algorithm [20]. This reduces
the complexity of each one-dimensional Fourier transform to O(n log n) and
hence reduces the complexity of F down to O(dintn

dint log n) = O(N logN).
The same techniques are employed for the inverse Fourier transform to calcu-
late the complete convolution in O(N logN) instead of O(N2) without using
FFT.

An additional acceleration of the calculation is achieved by exploiting the
zero-padding, which is necessary to obtain the full convolution result. When
computing F1(φ̃), one needs to calculate (2n)dint−1 fast Fourier transforms
of length 2n, each one over dint − 1 fixed indices j2 through jdint from 0 to

2n− 1. By taking the zero-pattern of φ̃ into account, many one-dimensional
Fourier transforms are applied to zero-vectors which can be skipped to save
computational time. These superfluous Fourier transforms are characterized
by a multi-index j with at least one jq > n for q > 1. This reduces the number
of one-dimensional FFTs during the computation of F1 from (2n)dint−1 to
ndint−1, a factor of 2dint−1 compared to the straightforward implementation.
The same argument can be used to reduce the number of one-dimensional
Fourier transforms in the subsequent calculations of F2 to Fdint−1 as part of
the zero-pattern is preserved. An illustration of this zero-pattern for dint = 3
is shown in Figure 1.16. The number of one-dimensional Fourier transforms
for the computation of Fq is reduced to 2q ·ndint−1, reducing the total number
of one-dimensional Fourier transforms from d · (2n)dint−1 to (2dint −1)ndint−1.
The total complexity is thereby reduced to O(N log n). Further details can
be found in [1].
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φ̃ F1(φ̃) F2(F1(φ̃))

Fig. 1.16 Illustration of the non-zero-pattern of φ̃ and the intermediate results of its
Fourier transform F(φ̃).

1.3.2.3 Conservation of Multivariate Moments

So far, the source term (1.24) has been calculated at the grid-points gj that
can efficiently be calculated via the procedure outlined in subsection 1.3.2.2.
The function F+

agg(f,m) is piecewise linear with respect to all internal vari-
ables since it is the result of an integration of a piecewise constant function.
The values Fj = F (gj) of the function at every grid point gj are given,
F+
agg(f,m) is represented with the standard basis of piecewise linear “hat”

functions

Λj(m) =

dint∏
q=1

Tjq (mq) with (1.32)

Tjq (mq) =


mq/h− jq + 1 , if (jq − 1) · h ≤ mq ≤ jq · h,
−mq/h+ jq + 1 , if jq · h ≤ mq ≤ (jq + 1) · h,
0 , else,

(1.33)

with standard hat functions Tjq (·). The function Λj(m) satisfies Λj(gj) = 1

and Λj(g̃j) = 0 if j̃ 6= j which allows to write

F+
agg(f,m) =

n−1∑
j=0

Fj · Λj(m).

Since the result is piecewise linear, it does not satisfy (1.23) and requires a
projection. It is possible to construct a projection that preserves all square-
free moments.

A multivariate moment Me(f)(t) (for a vector e = (e1, . . . , edint) ∈ Ndint0 )
of a particle density distribution f(m) at time t is defined by
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Me(f)(t) :=

∫∫
Ωint

f(m)

dint∏
q=1

meq
q dm, (1.34)

and a moment Me(f)(t) with all eq < 2 is called square-free, i. e., if e ∈
{0, 1}dint .

It is a natural choice to distribute all particles associated with a single
basis function Λj(m) onto its 2dint cells of support denoted by Cj+k with
k = {−1, 0}dint to preserve all 2dint square-free moments. This can be done
for each basis function individually since local preservation implies global
preservation of moments.

One calculates

Me(Λj) =

∫∫
Ωint

Λj(m)

dint∏
q=1

meq
q dm

= Fj

dint∏
q=1

∫ jqh+h

jqh−h
meq
q Tjq (mq) dmq = Fj

dint∏
q=1

Ijqeq ,

with

Ijqeq :=

(jq+1)h∫
(jq−1)h

meq
q Tjq (m) dm =

{
h , if eq = 0,

h2jq , if eq = 1,
(1.35)

to simplify notation. A cell Cj+k with an associated piecewise constant value
wj+k carries moments determined by

Me(Cj) =

∫∫
Ωint

wj

dint∏
q=1

meq
q dm

= wj+k

dint∏
q=1

(jq+kq+1)h∫
(jq+kq)h

meq
q dmq = wj+k

dint∏
q=1

J jq+kqeq ,

with

J jqeq :=

(jq+1)h∫
jqh

meq dm =

{
h , if eq = 0,

h2 · (jq + 0.5) , if eq = 1,
(1.36)

to again simplify the integral.
Moment equality can be preserved by choosing values wj+k that satisfy
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Me(Λj) =
∑

k={−1,0}dint

Me(Cj+k)

⇐⇒ Fj

dint∏
q=1

Ijqeq =
∑

k={−1,0}dint

wj+k

dint∏
q=1

J jq+kqeq . (1.37)

By using

J j−1e + J je =

{
2h , if e = 0,

2h2j , if e = 1

}
= 2Ije ,

which follows directly from the definitions of (1.35) and (1.36), one pairs the
2dint summands in (1.37) and obtains

wj+k =
Fj

2dint
,

implying a uniform distribution of particles associated with a single grid-point
gj to its surrounding 2dint cells.

This result is somewhat surprising as it does neither rely on the size of the
grid (the cell-width h) nor the index j of the cell in question. Further details
can also be found in [2].

1.3.2.4 Multivariate Moments for the Pure Agglomeration
Settings

This section is devoted to the analysis of moments Me(f)(t) of a multivariate
particle distribution f(m) over time. For this, one obtains expressions to
track any multivariate moment in the absence of breakage and growth and
compares those values to numerical moments obtained over the course of a
simulation using the discretization presented here.

Let dint = 2 and denote the internal particle properties with m =
(m1,m2). The change of a moment Me(f) of a two-dimensional distribution
f(m) over time is given by

dMe(f)(t)

dt
=

∫∫
Ωint

me1
1 m

e2
2 Fagg(f,m) dm

=
1

2

∫∫
Ωint

me1
1 m

e2
2

m1∫
0

m2∫
0

κagg(m−m′,m′)f(m−m′)f(m′) dm′ dm

−
∫∫
Ωint

me1
1 m

e2
2

∫∫
Ωint

κagg(m,m′)f(m)f(m′) dm′ dm.
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Setting κagg(m,m′) = 1 eliminates the kernel from the equation. The domain
of integration of the inner integral in the source term can be expanded to
[0,mmax]2 by setting f(m−m′) := 0 if any component of m−m′ is negative.
A further change in the integration variable gives

dMe(f)(t)

dt
=

1

2

∫∫
Ωint

∫∫
Ωint

f(m)f(m′) · (m1 +m′1)e1 · (m2 +m′2)e2 dm′ dm

−
∫∫
Ωint

∫∫
Ωint

me1
1 m

e2
2 f(m)f(m′) dm′ dm.

The binomials in the first line are expanded in order to separate the inte-
grations with respect to m and m′ and then the order of summations and
integrations is changed. A similar separation in the second line leads to

dMe(f)(t)

dt

=
1

2

e1∑
k1=0

e2∑
k2=0

(
e1
k1

)(
e2
k2

)∫∫
Ωint

mkf(m) dm ·
∫∫
Ωint

(m′)
e−k

f(m′) dm′

−
∫∫
Ωint

me1
1 m

e2
2 f(m) dm ·

∫∫
Ωint

f(m′) dm′.

Every integral is in the form of (1.34) and is replaced accordingly. The rate
of change of one moment then reads

dMe(f)(t)

dt
=

1

2

e1∑
k1=0

e2∑
k2=0

(
e1
k1

)(
e2
k2

)
·M(k1,k2)(f)(t) ·M(e1−k1,e2−k2)(f)(t)

−Me(f)(t) ·M(0,0)(f)(t), (1.38)

which is an ordinary differential equation in the moments, independent of the
detailed particle distribution f(m). With this, one can calculate the evolution
of all moments given the moments of an initial distribution.

By using the moments of a discrete distribution f(m) (as opposed to a
continuous distribution) as initial values for (1.38), the only error present is
due to the projection presented in subsection 1.3.2.3.

For the numerical simulation with dint = 2, the initial distribution is dis-
cretized by

f(m, 0) = N0e
−200(m1−0.1)2 · e−200(m2−0.1)2 (1.39)

with n = 512 for both internal coordinates with mmax = 10. This results in
N = 5122 degrees of freedom and a width of h = 10

512 . The constant N0 will
be chosen such that M(0,0)(f) = 0.1 at t = 0.
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Fig. 1.17 Ae (1.40) over the course of a simulation for moments Me with e = (0, 0) (top

left), e = (1, 1) (top right), e = (2, 2) (bottom left) and e = (3, 3) (bottom right).

Numerical simulation up to t = 50 will result in M(0,0)(f)(50) = 0.0286 at

the end. In order to keep track of the numerical moments M̃e(f)(t) in the
simulation, the ratio between numerical and theoretical moments,

Ae = M̃e(f)/Me(f), (1.40)

is computed.
The ratio A(0,0) is shown in the top left of Figure 1.17 which displays a small
loss of 0.18% (minimal ratio is A(0,0)(50) = 0.9982) over time that is most
likely caused by coarse time steps. There is no loss in the first cross moment
as one finds M(1,1)(f) = 1 for all t (shown in the top right of Figure 1.17).
A smaller ratio occurs for higher order moments that are not square-free. It
is not expected that Ae(t) = 1 for all t since the moments are not preserved
analytically. The ratio A(2,2) is shown in the bottom left of Figure 1.17 and
indicates an under-prediction over the entire time period, similar to A(3,3)

in the bottom right. The error does not exceed 0.6% and 2.3%, respectively.
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Even though there is an error in the prediction of higher order moments,
they are predicted with a very good accuracy given the grid with N = 5122

degrees of freedom.

1.4 Summary and Outlook

The model experiment in the HCT crystallizer led to interesting and new
results concerning the particle fluid interaction. Crystal size distributions
change from the inlet to the outlet, already without growth, as crystals of
varying size have a different residence time in the HCT. This newly found
effect can be used to change the width of the CSD; or be used under growth
conditions to keep the typically observed broadening of the CSD very low.
Some first insights on the shape dependence of this effect are encouraging to
investigate this in more detail in our future work.

For the numerical simulation of PBSs, a deterministic-stochastic algorithm
was developed that enables the simulation of PBSs in rather complex spatial
domains. Here, it was utilized for the simulation of a crystallization process
in a fluidized bed crystallizer. To this end, two codes, one with determinis-
tic finite element methods for the CFD equations and one with stochastic
methods for the crystals, were coupled. Furthermore, the stochastic code was
extended by all features that are due to the transport of the crystals in the
three-dimensional domain.

Future work concerning the numerical simulations comprises algorithmic
and modeling issues. From the algorithmic point of view, the code with the
SPS methods should be MPI parallelized (the finite element CFD code is
already) such that simulations of PBSs can be performed on clusters of com-
puters to enhance the efficiency. From the point of view of the model, different
agglomeration kernels and sedimentation models should be implemented and
the breakage of crystals should be included. In addition, the SPS method
should be extended to multi-variate crystals. This method provides a natural
framework for the simulation of crystals that are modeled in a more complex
way than with one internal coordinate.

The computational bottleneck of the expensive computation of agglomer-
ation terms has been overcome by the exploitation of fast Fourier transfor-
mation (FFT) for the evaluation of convolution sums and tensor trains (TT)
for the representation and arithmetic of multivariate density distributions. In
a sense, numerical simulations have become feasible for a much higher res-
olution than experimental results are available. Future work might include
the identification of models that include multivariate agglomeration, e. g. the
determination of physically relevant agglomeration kernels. Another point of
interest would be the extension of tensor trains to the entire population bal-
ance model, for example their adaptation to the breakage term. Future work
could also focus on a parallelization of the introduced algorithms.
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The agglomeration phenomenon in the fluidized bed crystallizer clearly
shows the potential of such a device for a selective product removal, which is
an important aspect for the post-processing of solids under industrial settings.
As agglomeration can be modeled appropriately only with very specific pa-
rameters and kernels sets, the developed opportunity of big data acquisition
within such a model experiment can be of great interest to the community
of crystallization process engineers. In combination with the presented fast
simulation methods for agglomeration and the corresponding fluid flow cal-
culations, one may even start to optimize flow geometries in order to control
the agglomeration in such crystallizers in the future.
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